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Abstract. In this article, we study the security of iterative hash-based MACs, such as HMAC

or NMAC, with regards to universal forgery attacks. Leveraging recent advances in the analysis
of functional graphs built from the iteration of HMAC or NMAC, we exhibit the very first generic
universal forgery attack against hash-based MACs. In particular, our work implies that the
universal forgery resistance of an n-bit output HMAC construction is not 2n queries as long
believed by the community. The techniques we introduce extend the previous functional
graphs-based attacks that only took in account the cycle structure or the collision probability:
we show that one can extract much more meaningful secret information by also analyzing
the distance of a node from the cycle of its component in the functional graph.
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1 Introduction

A message authentication code (MAC) is a crucial symmetric-key cryptographic primitive, which
provides both authenticity and integrity for messages. It takes a k-bit secret key K and an arbitrary
long message M as inputs, and produces an n-bit tag. In the classical scenario, the sender sends
both a message M and a tag T = MAC(K,M) to the receiver, where the secret key K is shared
between the sender and the receiver prior to the communication. Then, the receiver computes
another tag value T ′ = MAC(K,M) using her own key K, and matches T ′ to the received T . If
a match occurs, the receiver is ensured that M was indeed sent by the sender and has not been
tampered with by a third party.

There are several ways to build a MAC from other symmetric-key cryptographic primitives, but
a very popular approach is to use a hash function. In particular, a well-known example is HMAC [2],
designed by Bellare, Canetti and Krawczyk in 1996. HMAC has been internationally standardized by
ANSI, IETF, ISO and NIST, and is widely implemented in various worldwide security protocols
such as SSL, TLS, IPSec, etc.

Being cryptographic objects, MACs should satisfy various security requirements and the classical
notions are key recovery resistance and unforgeability:

• Key recovery resistance: it should be practically infeasible for an adversary to recover the value
of the secret key.

• Unforgeability : it should be practically infeasible for an adversary to generate a message and
tag pair (M,T ) such that T is a valid tag for M and such that M has not been queried to MAC

previously by the adversary.

In the case of an ideal MAC, the attacker should not be able to recover the key in less than 2k

computations, nor to forge a valid MAC in less than 2n computations. Depending on the control of
the attacker over the message, one discriminates between two types of forgery attacks: existential
forgery and universal forgery attack. In the former case, the attacker can fully choose the message
M for which he will forge a valid tag T , while in the later case he will be challenged to a certain
message M and must find the MAC tag value T for this particular message. In other words, universal
forgery asks the attacker to be able to forge a valid MAC on any message, and as such is a much
more powerful attack than existential forgery and would lead to much more damaging effects in



practice. Yet, because this security notion is easier to break, most published attacks on MACs concern
existential forgery.

Moreover, cryptographers have also proposed a few extra security notions with respect to dis-
tinguishing games such as distinguishing-R and distinguishing-H [12]. The goal of a distinguishing-
R attack is to distinguish a MAC scheme from a monolithic random oracle, while the goal of a
distinguishing-H attack is to distinguish hash function-based MACs (resp. block cipher and operat-
ing mode-based MACs) instantiated with either a known dedicated compression function (resp. a
dedicated block cipher) or a random function (resp. a random block cipher). While these distin-
guishers provide better understanding of the security margin, the impact to the practical security
of a MAC scheme would be rather limited.

Given the importance of HMAC in practice, it is only natural that many researchers have analyzed
the security of this algorithm and of hash-based MACs in general. On one hand, cryptographers are
devoted to find reduction-based security proofs to provide lower security bound. Usually a MAC based
on a hash function with a l-bit internal state is proven secure up to the bound O(2l/2). Examples
include security proofs for HMAC, NMAC and Sandwich-MAC [2, 1, 25]. Namely, it is guaranteed that
no generic attack succeeds with a complexity below the security bound O(2l/2) (when l ≤ 2n) in
the single-key model.

On the other hand, cryptographers are also continuously searching for generic attacks to get
upper security bound for hash-based MACs, since the gap between the 2l/2 lower bound and the
best known generic attacks is still very large for several security properties. The cases of existential
forgery and distinguishing-R attacks are tight: in [17], Preneel and van Oorschot proposed generic
distinguishing-R and existential forgery attacks with a complexity of O(2l/2) computations. Their
methods are based on the generation of internal collisions which are detectable on the MAC output
due to the length extension property of the inner iterated hash function (one can generate an
existential forgery by simply looking for an internal collision in the hash chain and then, given any
pair of messages using this internal collision as prefix, it is easy to forge the tag for one message
by querying the other message to the tag oracle).

In [16] Peyrin et al. utilized the cycle property of HMAC in the related-key model to distinguish it
from a random mapping and eventually described generic distinguishing-R attack with a complex-
ity of only O(2n/2) computations (note that these related-key attacks do not contradict the O(2l/2)
security proof which was provided in the single-key model only). A similar weakness was indepen-
dently pointed out by Dodis et al. in the context of indifferentiabiity of HMAC [5]. One year after,
leveraging the ideas of cycle detection in functional graphs from [16], Leurent et al. [14] showed
that, contrary to the community belief, there exists a generic distinguishing-H attack requiring only
O(2l/2) computations on iterative hash-based MACs in the single-key model. All security bounds on
iterative hash-based MACs are therefore tight, except the case of universal forgery for which the best
generic attack still requires 2n computations and it remains unknown exactly where the security
lies between 2n and min{2l/2, 2n} computations.

Besides generic attacks, cryptanalysts also evaluated MACs based on (standardized) dedicated
hash functions, mainly by exploiting some weakness of the compression function [3, 12, 8, 23, 19, 20,
13, 24, 26, 22, 9]. The details of such attacks will be omitted in the rest of this article, since we deal
with generic attacks irrespective to the specifications of the internal compression function.

Our contribution. In this article, we describe the first generic universal forgery attack on iterative
hash-based MACs, requiring less then 2n computations. More precisely, our attack complexity is
O(max(2l−s, 25l/6, 2s)), where 2s represents the block length of the challenge message. In other
words, for reasonable message sizes, the complexity directly decreases along with an increase of s,
up to a message size of 2l/6 where the complexity hits a plateau at 25l/6 computations. Previously
known attacks and proven bounds are summarized in Table 1 and we emphasize that this is the
first generic universal forgery attack on HMAC in the single key model (except the trivial 2n brute
force attack). For example, a corollary to our work is that HMAC instantiated with the standardized
hash function RIPEMD-160 [4] (or MD5 [21] and RIPEMD-128 [4]), which allows arbitrarily long
input messages (this conditions is needed since even though the challenge message can have a small
length, we will need to be able to query 2l/2-block long messages during the attack), only provides



Table 1. We summarize the security state of HMAC (with n ≤ l ≤ 2n) including previous results and our
universal forgery attacks. Notation max() is to choose the largest value.

security notion
single key setting related-key setting

provable security generic attack generic attack

Distinguishing-R O(2l/2) [2, 1] O(2l/2) [17] O(2n/2) [16]

Distinguishing-H O(2l/2) [2, 1] O(2l/2) [14] O(2n/2 + 2l−n) † [16]

Existential forgery O(2l/2) [2, 1] O(2l/2) [17] O(2n/2 + 2l−n) † [16]

Universal forgery O(2l/2) [2, 1]
previous: O(2n)

new: O(max(2l−s, 25l/6, 2s)) ‡

†: the attacks have complexity advantage with n < l < 2n;
‡: 2s is the blocks length of the challenge message. The attack has complexity advantage with n ≤ l < 6n/5.

a 2133.3 (resp. 2106.7) computations security with regards to universal forgery attacks, while it was
long believed that the full 2160 (resp. 2128) was holding for this strong security property.

Moreover, our techniques are novel as they show that one can extract much more meaningful
secret information than by just analyzing the cycle structure or the collision probability of the
functional graphs of the MAC algorithm, as was done previously [16, 14]. Indeed, the distance of a
node from the cycle of its components in the functional graph is a very valuable information to
know for an attacker, and we expect even more complex types of information to be exploitable by
attackers against iterative hash-based MACs.

2 Description of NMAC and HMAC

A hash function H maps arbitrarily long messages to an n-bit digest. It is usually built by
iterating a fixed input length compression function f , which maps inputs of l+ b bits to outputs of
l bits (note that l ≥ n). In details, H first pads an input message M to be a multiple of b bits, then
splits it into blocks of b bits m0||m1|| · · · ||ms−1, and calls the compression function f iteratively
to process these blocks. Finally, H might use a finalization function g that maps l bits to n bits in
order to produce the hash digest.

x0 = IV xi+1 = f(xi,mi) hashdigest = g(xs)

Each of the chaining variables xi are l bits long, and IV (initial value) is a public constant.

NMAC algorithm [2] keys a hash function H by replacing the public IV with a secret key K, which
is denoted as HK . It then uses two l-bit secret keys Kin and Kout referred to as the inner and
the outer keys respectively, and makes two calls to the hash function H. NMAC is simply defined to
process an input message M as:

NMAC(Kout,Kin,M) = HKout(HKin(M)).

The keyed hash functions HKin and HKout are referred to as the inner and the outer hash functions
respectively.

HMAC algorithm [2] is a single-key variant of NMAC, depicted in Figure 1. It derives Kin and Kout

from the single secret key K as:

Kin = f(IV,K ⊕ ipad) Kout = f(IV,K ⊕ opad)

where ipad and opad are two distinct public constants. HMAC is then simply defined to process an
input message M as:

HMAC(K,M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)))



where ‖ denotes the concatenation operation. It is interesting to note that HMAC can use any key
size. If the key K is shorter than b bits, then it is padded with 0 bits to reach the size b of an entire
message block. Otherwise, if the key K is longer than b bits, then it is hashed and then padded
with 0 bits: K ← H(K)‖0b−n.
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Fig. 1. HMAC with an iterated hash function with compression function f , and output function g.

For simplicity, in the rest of this article we will describe the attacks based on the utilization of
the HMAC algorithm. However, we emphasize that our methods apply similarly to hash-based MACs
such as NMAC [2], Sandwich-MAC [25], etc.

3 Previous functional-graph-based attacks for HMAC

Our universal forgery attack is based on recent advances in hash-based MACs cryptanalysis [16,
14] and in this section we quickly recall these methods and explain how we extend them. First of
all, we need to introduce the notion of functional graph and the various properties that can be
observed from it.

The functional graph Gf of a function f : {0, 1}l → {0, 1}l is simply the directed graph in which
the vertices (or nodes) are all the values in {0, 1}l and where the directed edges are the iterations
of f (i.e. a directed edge from a vertex a to a vertex b exists iff f(a) = b). The functional graph
of a function is composed of one or several components, each having its own internal cycle. For
example, we give in Figure 2 from the Appendix a representation of the functional graph of SHA-3
reduced to 8-bit input/output.

For a random function, the functional graph will possess several statistical properties that have
been extensively studied. For example, it is to be noted that with high probability the functional
graph of a random function will have a logarithmic number of components and among them there is
one giant component that covers most of the nodes. In addition, this giant component will contain
a giant tree in which are present about a third of the nodes of Gf . Theorems 1 and 2 state these
remarks in a more formal way.

Theorem 1 ([6, Th. 2]). The expectations of the number of components, number of cyclic nodes
(a node belonging to the cycle of its component), number of terminal nodes (a node without a
preimage), and number of image nodes (a node with a preimage) in a random mapping of size N
have the asymptotic forms, as N →∞:

(i) #Components: 1
2 logN

(ii) #Cyclic nodes:
√
πN/2

(iii) #Terminal nodes: e−1N

(iv) #Image nodes: (1− e−1)N

Starting from any node x, the iteration structure of f is described by a simple path that
connects to a cycle. The length of the path (measured by the number of edges) is called the tail
length of x (or the height of x) and is denoted by λ(x). The length of the cycle is called the cycle



length of x and is denoted µ(x). Finally, the rho-length of x is denoted ρ(x) and represents the
length of the non repeating trajectory of x: ρ(x) = λ(x) + µ(x).

Theorem 2 ([6, Th. 3]). Seen from a random node in a random mapping of size N , the expec-
tations of the tail length, cycle length, rho length, tree size, component size, and predecessors size
have the following asymptotic forms:

(i) Tail length (λ):
√
πN/8

(ii) Cycle length (µ):
√
πN/8

(iii) Rho length (ρ = λ+ µ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

Moreover, the asymptotic expectations of the giant component and its giant tree have been provided
in [7].

Theorem 3 ([7, VII.14]). In a random mapping of size N , the largest tree and the largest com-
ponent have expectations asymptotic, respectively, of 0.48 ∗N and 0.7582 ∗N .

Knowing all these statistical properties for the functional graph of a random function, Peyrin et
al. [16] studied the successive iterations of HMAC with a fixed small message block for two related-
keys K and K = K ⊕ ipad⊕ opad. Thanks to a small weakness of HMAC in the related-key setting,
they observed that the two corresponding functional graphs are exactly the same (while ideally
they should look like the functional graphs of two independent random functions) and this can
be detected on the output of HMAC by measuring the cycle lengths. They used this property to
derive generic distinguishing-R, distinguishing-H and existential forgery attacks in the related-key
setting.

Later, Leurent et al. [14] extended the scope of cycle detection by providing a single-key utiliza-
tion of this technique. Namely, they show how to craft two special long messages (mainly composed
of identical message blocks), both following two separate cycle loops in the functional graph of the
internal compression function. This trick allows the two messages to collide after the last processed
message block, but also to have the same length (and thus the processing of the final padding
block would not reintroduce differences). Such a collision can therefore be detected on the out-
put of HMAC, and they use this special information leakage (information is leaked on the unknown
internal compression function used) to derive a generic distinguishing-H attack in the single-key
setting. They also provide another attack that can trade extra complexity cost for smaller message
size, and in which the property scrutinized is the probability distribution of the collisions in the
functional graph.

From a high-level perspective, these two previous works mainly considered as distinguishing
properties the cycle nodes or the collisions distribution in a functional graph. In this article, we
consider a functional graph property which seems not trivial to exploit: the height λ of a tail
node, i.e. the distance of a node from the cycle of its component. While not trivial and likely
to be costly, the potential outcome of analyzing such a property is that if one can extract this
information leakage from the HMAC output, he would get direct information on a particular node of
the computation. The attack can therefore be much sharper (the size of the cycle is not a powerful
property as it represents a footprint equivalent for all the nodes of the component, while the height
of a node is much more discriminating), and that is the reason why it eventually allows us to derive
a generic universal forgery attack in the classical single-key setting.

4 General description of the universal forgery attack

Let Mt = m1‖m2‖ . . . ‖ms be the target message to forge given by the challenger to the adversary
(we start the counting from m1 since the first message block m0 to be processed by the inner hash
function call is m0 = K ⊕ ipad). In order to forge the tag value corresponding to this message,
we will construct a different message M ′t which will collide with Mt in the inner hash function of
HMAC, namely HKin

(M ′t) = HKin
(Mt), and this directly leads to colliding tags on the output of the

HMAC: T = HKout(HKin(M ′t)) = HKout(HKin(Mt)). Then, by simply querying the HMAC value T of
M ′t , we eventually forge a valid tag corresponding to Mt by outputting T .



Constructing such a message M ′t is in fact equivalent to finding a second preimage of Mt on
the keyed hash function HKin

. While second preimage attacks have been published on public
iterative hash functions [11], unfortunately they cannot be applied to a keyed hash function as
they depend on the knowledge of the intermediate hash values when processing Mt. However, in
our situation the intermediate hash values for HKin

(Mt) are hidden since only the tag is given as
output and since Kin is unknown to the adversary, and so he will not be able to guess them. We
will overcome this issue by proposing a novel approach to recover some intermediate hash value
xi from the computation of HKin

(Mt). We stress that this is different from and much harder than
previous so-called internal state recovery in [14], which recovers some internal state of a message
completely chosen by the adversary himself. Note that once xi is recovered, we get to know all the
next intermediate hash values by simply computing xi+1 = f(xi,mi), . . ., xs+1 = f(xs,ms) since
H is an iterative hash function. Once these intermediate hash values are known, we can apply the
previous second preimage attacks [11] in order to find M ′t .

In order to recover one value from the set of the intermediate chaining values X = {x1, x2, . . . ,
xs+1} of HKin(M), we choose offline 2l/s values Y = {y1, y2, . . . , y2l/s}, and one can see that with
a good probability one element yj of Y will collide with an element in X. We need to filter out
this yj value and this seems not easy since there is no previously published suitable property on
the intermediate hash values of HMAC that the adversary can detect on the output.

One may consider using internal collisions, which are detectable by searching for colliding tags
due to the length extension property: finding a message pair (m,m′) for xi such that f(xi,m) =
f(xi,m

′) by querying HMAC online and then using this pair to determine if yj = xi holds by checking
offline if f(yj ,m) = f(yj ,m

′) holds. However, note that with this naive method only a single xi can
be tested at a time (since other xi′ with i′ 6= i are very likely not to collide with the message pair
(m,m′)) and we will therefore have to repeat this procedure for each value of X independently.
Thus, this attack fails as we would end up testing 2l pairs and reaching a too high complexity.

Overall, it is essential to find a new property on the intermediate hash values of HMAC such that
it can be detected by the adversary and such that it can be exploited to match a value of Y to all
the values in X simultaneously. In our attack, we will use a novel property, yet unexploited: the
height λ(xi) of each xi of X in the functional graph of fV , where fV stands for the compression
function with the message block fixed to a value V ; fV (·) = f(·, V ). In the rest of this article,
without loss of generality, we will let V be the message block only composed of zero bits and we
denote f[0](·) = f(·, [0]) the corresponding compression function.

4.1 The height property of a node in a functional graph

In the functional graph of a random mapping on a finite set of size N , it is easy to see that each
node x has a unique path connecting it with a cycle node, and we denoted the length of this path
the height λ(x) of x (or tail length). Obviously, for cycle nodes, we have λ = 0. The set of
all nodes with the same height λ is usually called the λ-th stratum of the functional graph and
we denote it as Sλ. Researchers have carried out extensive studies on the distribution of Sλ as
N →∞. In particular, Harris proved that the mean value of S0 is

√
πN/2 [10], which is consistent

with Theorem 1 as the number of the cycle nodes. After that, Mutafchiev [15] proved the following
theorem as an extension of Harris’s result.

Theorem 4 ([15, Lemma 2]). If N → ∞ and λ = o(
√
N), the mean value of the λ-th stratum

Sλ is
√
πN/2.

Note that Mutafchiev’s result is no longer true for λ = O(
√
N) and, for interested readers, we refer

to [18] for the limit distribution of Sλ with λ = O(
√
N).

Interestingly, if the largest component is removed from the functional graph, then the remaining
components also form a functional graph of a random mapping on a finite set of size (1− 0.7582) ∗
N = 0.2418 ∗N (since Theorem 3 tells us that the largest component has an expected number of
nodes of 0.7582 ∗N). Thus we get the following corollary.

Corollary 1. If N → ∞ and λ = o(
√
N), the mean value of the λ-th stratum Sλ in the largest

component is 0.64
√
N =

√
πN/2−

√
πN ∗ 0.2418/2.



Now we move back to discuss about the height distribution in the functional graph Gf[0] of f[0].

From Corollary 1, we can deduce that if l → ∞ and λ = o(2l/2), the mean value of Sλ in the
largest component of f[0] is 0.64 ∗ 2l/2. In order to illustrate the notion of λ = o(2l/2) more clearly,
we rewrite the corollary into the following equivalent one.

Corollary 2. Let δ(l) be any function such that δ(l) → ∞ as l → ∞. There exists a positive
value l0 such that for any l > l0, the mean value of λ-th stratum Sλ with 0 ≤ λ ≤ 2l/2/δ(l) in the
largest component is 0.64 ∗ 2l/2.

Next, we will utilize Corollary 2 to prove the lower bound on the number of distinct height
values of the intermediate chaining values in X, which we will use in order to evaluate the attack
complexity. Denote the set of all the nodes with a height λ ∈ [0, 2l/2/δ(l)] as N ′, which covers in
total 0.64∗2l/δ(l) nodes. Thus, a random node belongs toN ′ with a probability 0.64/δ(l). Moreover,
from Corollary 2, for a random node in N ′, its height is uniformly distributed in [0, 2l/2/δ(l)]. From
these properties of N ′, we get that 0.64 ∗ s/δ(l) elements in X belong to N ′. Moreover, there is
no collision on the height among these elements with an overwhelming probability if s � 2l/4

holds. Note that in our forgery attack, we will set s to be at most 2l/6 (see Section 5.1 for the
details). Overall, the lower bound on the number of distinct height values in X is 0.64∗s/δ(l). It is
important and interesting to note that from Corollary 2, if l becomes very large, δ(l) will become
negligible compared to exponential-order computations 2Ω(l), e.g., δ(l) = log(l).

On the other hand, we performed experiments to evaluate the expected number of the distinct
height values in X. More precisely, we used SHA-256 compression function for small values of l. We
prepend 0256−l to a l-bit value x, then compute y=SHA-256 (0256−l‖x), and finally output the l
LSBs of y. With l ≤ 30, we generated random pairs and checked if their heights collide or not in the
functional graph of l-bit truncated SHA-256 compression function. The experimental results show
that a pair of random values has a colliding height with a probability of around 2−l/2. Moreover, it is
matched with a rough probability estimation as follows. Let x and x′ be two randomly chosen l-bit
values. Suppose x and x′ have the same height, then it implies that after i iterations of f[0] (denoted
as f i[0]), either one of the following two cases occurs. One is f i[0](x) = f i[0](x

′), which has a probability

of roughly 2−l for each i conditioned on f i−1[0] (x) 6= f i−1[0] (x′). The other one is that f i[0](x) 6= f i[0](x
′)

and both f i[0](x) and f i[0](x
′) enter the component cycle simultaneously, which has a probability of

roughly (
√
π/2 ∗ 2−l/2)2 = π/2 ∗ 2−l for each i, since the number of cycle nodes is

√
π/2 ∗ 2l/2.

Note that Theorem 2 proved the expected tail length is
√
π/8 ∗ 2l/2. Thus, if neither of the two

cases occurs up to
√
π/8 ∗ 2l/2 iterations, we get that f i(x) and f i

′
(x′) enter the component cycle

with different i and i′, namely x and x′ have different heights. So the total probability of randomly
chosen x and x′ having the same height is at most 2−l∗

√
π/8∗2l/2+π/2∗2−l∗

√
π/8∗2l/2 ≈ 2−l/2.

Overall, we make a natural, conservative and confident conjecture as follows (note that s is at most
2l/6 in our attacks. See Section 5.1 for the details).

Conjecture 1. With s ≤ 2l/6, there is only a negligible probability that a collision exists among the
heights of s random values in a functional graph of a l-bit random mapping.

In the rest of the paper, we will describe our attacks based on the Conjecture 1, namely the
heights of the intermediate hash values in X are distinct. However, if only taking in account the
proven lower bound 0.64 ∗ s/δ(l) of the number of the distinct heights in X, the number of offline
nodes should be increased by δ(l)/0.64 times, and the attack complexity is increased by a factor of
O(δ(l)). Note that O(δ(l)) is negligible compared to 2O(l), and thus it has very limited influence
to the complexity for large l.

4.2 Deducing online the height of a few unknown intermediate hash values

We now explain how to deduce the height λ(xi) of a node xi in the functional graph Gf[0] of f[0].
We start by finding the cycle length of the largest component of Gf[0] , and we denote it by L. This

can be done offline with a complexity of O(2l/2) computations, as explained in [16]. Then, we ask



for the MAC computation of two messages M1 and M2:

M1 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖[1]‖[0]2

l/2

M2 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

‖[1]‖[0]2
l/2+L

where [0]j represents j consecutive zero-bit message blocks, and we check if the two tags collide.
It is important to note that if the intermediate hash value xi is located in the largest component
of Gf[0] and has a height λ(xi) no larger than 2l/2, then the intermediate hash value after pro-

cessing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2

is in the cycle of the largest component. Also, the intermediate

hash values after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1] and m1‖m2‖ . . . ‖mi−1‖[0]2

l/2+L‖[1] will
be equal (and we denote it by x) since in the latter we just make an extra cycle walk before
processing the message block [1]. Under a similar reasoning, if x is also in the largest compo-
nent1 and has a height λ(x) no larger than 2l/2, we get that the intermediate hash values after

processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2+L‖ [1]‖[0]2

l/2

and m1‖m2‖ . . . ‖mi−1‖[0]2
l/2‖[1]‖[0]2

l/2+L are
equal. Moreover, since M1 and M2 have the same block length, we get a collision on the inner
hash function, which directly extends to a collision on the output tag. From the functional graph
properties of a random function given in Sections 3 and 4.1, a randomly chosen node will be lo-
cated in the largest component of Gf[0] with a probability of about 0.7582 and will have a height

no larger than 2l/2 with a probability roughly 0.5. Thus, M1 and M2 will collide with a probability
(0.7582 ∗ 0.5)2 = 0.14.

In order to recover the height λ(xi) of one node xi in the functional graph Gf[0] of f[0], we will
test log(l) message pairs obtained from (M1,M2) by changing the block [1] to other values. If (at
least) one of these pairs collides, we can deduce that with overwhelming probability2 xi is in the
largest component, and has a height λ(xi) of at most 2l/2. Otherwise, we give up on recovering the
height λ(xi) of xi, and move to find the height λ(xi+1) of the next intermediate hash value xi+1.

In the former situation, we can start to search for the exact node height λ(xi) of xi in Gf[0] ,
and we will accomplish this task thanks to a binary search. Namely, we first check whether the

intermediate hash value after processing m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1

is in the cycle or not (note
that we now have 2l/2−1 [0] blocks in the middle, instead of 2l/2 originally), and this can be done
by asking for the MAC computation of two messages M∗1 and M∗2

M∗1 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1

‖[1]‖[0]2
l/2+L

M∗2 = m1‖m2‖ . . . ‖mi−1‖[0]2
l/2−1+L‖[1]‖[0]2

l/2

and by checking if their respective tags collide. After testing log(l) such pairs obtained from
(M∗1 ,M

∗
2 ) by modifying the block [1] to other values, if (at least) one pair collides, we can deduce

that with overwhelming probability the intermediate hash value after processing m1‖m2‖ . . . ‖mi−1

‖[0]2
l/2−1

is in the cycle, and the height λ(xi) of xi is no larger than 2l/2−1. Otherwise, we deduce
that λ(xi) lies between 2l/2−1 and 2l/2. Thus, the amount of possible height values for xi are re-
duced by one half. We continue iterating this binary search procedure log2(2l/2) = l/2 times, and
we will eventually obtain the exact height value λ(xi) of xi. By applying such a height recovery
procedure, we get to know the height value for 0.38 ∗ s values in X on average (one intermediate
hash value xi has probability 0.7582 to be located in the biggest component, and probability about
1/2 to have a height not greater than 2l/2).

4.3 Deducing offline the height of many known intermediate hash values

Before we start to retrieve a value xi of X, we need to handle the set Y offline. When we choose
values to build the set Y = {y1, y2, . . . , y2l/s}, we also have to compute their respective height in

1 Since we processed a message block [1], different from [0], the last computation will not follow the
functional graph Gf[0] and we will be mapped to a random point in Gf[0] .

2 Since the probability that xi is in the largest component and has a height λ(xi) ≤ 2l/2 is constant,
choosing log(l) messages will ensure that the success probability of this step is very close to one, see [14].



the functional graph of f[0]. One may consider to use a trivial and random sampling, i.e. choosing
random nodes first and then computing their height. Note that such a procedure is very expensive,
since computing height for a random value requires around 2l/2 computations on average, which
renders the total complexity of building Y beyond 2l. We propose instead to use an offline sampling
procedure as follows.

We first initialize Y as an empty set and we start by choosing a new and random value y1,
namely y1 /∈ Y . Then, we apply f[0] to update it successively; yi+1 = f(yi, [0]), and memorize all
the yi’s in the computation chain. The iteration terminates if yi+1 collides with a previous stored
value y ∈ Y whose height is already known (we denote it as λ), or if it collides with a previous
node yj (1 ≤ j ≤ i) in the current chain, namely a new cycle is generated. In the former case,
we naturally compute the height of nodes yp (1 ≤ p ≤ i) in the chain as λ + i + 1 − p, and store
all of them in Y . For the latter case, we set the height of all the nodes from yj to yi as 0 (since
they belong to the cycle of their own component), and we then compute the height of tail nodes
yp (0 ≤ p < j) as j − p and store all of them in Y .

Using this procedure, we can select 2l/s values and obtain their height with a complexity of only
2l/s computations. Moreover, from the functional graph properties of a random function given in
Sections 3 and 4.1, we know that on average 38% values in Y are located in the largest components
and have a height no larger than 2l/2.

Note that Y is not a set of random values. We do not know the distribution of height values of
the elements in Y , which essentially makes Conjecture 1 be necessary for our attack. The detailed
discussion follows in next section.

4.4 Exploiting the height information leakage

At this point, the attacker built the sets X and Y and knows the height of almost all their elements
(for X, only the heights of 0.38 ∗ s elements are known). The next step is to recover one value in
X (which are still unknown to the attacker) by matching between the elements in set X and the
elements in set Y . However, for each xi in X, we do not have to try to match every value in Y .
Indeed, we just need to pay attention to a smaller subset of Y in which the elements have the same
height value as xi. Moreover, since the elements in the set X have distinct heights (see details in
Section 4.1), these subsets of Y are all disjoint. Thus in total we need to match at most 2l/s pairs,
namely the size of Y . This point is precisely where the adversary will get a complexity advantage
during his attack.

4.5 Attack summary

Finally, let us wrap everything up and describe the universal forgery attack from the very beginning.
The adversary is given a target message Mt = m1‖m2‖ . . . ‖ms by the challenger, for which he has
to forge a valid tag. He splits Mt into two parts Mt1‖Mt2 :

Mt1 = m1‖m2‖ . . . ‖ms1 will be used for the intermediate hash value recovery,

Mt2 = ms1+1‖ms1+2‖ . . . ‖ms will be used in the second preimage attack.

During the online phase, the adversary applies the height recovery procedure from Section 4.2
for each xi (1 ≤ i ≤ s1 + 1), and stores them in X. Moreover, he produces a filter (m,m′) for
each xi such that f(xi,m) = f(xi,m

′) holds. During the offline phase, the adversary chooses 2l/s1
values following the sampling procedure from Section 4.3 and stores them in Y .

Then, he recovers the value of one of the xi’s by matching sets X and Y : for each xi, he
checks if f(y,m) = f(y,m′) holds or not for all y’s that have the same height as xi in Y . If a
collision is found, then y is equal to xi with a good probability. Once one xi (1 ≤ i ≤ s1 + 1)
is recovered, the adversary gets to know the value of xs1+1 by computing the iteration xi+1 =
f(xi,mi+1), . . . , xs1+1 = f(xs1 ,ms1), which induces that the latter half of the inner hash function
when processing Mt is equivalent to a public hash function by regarding xs1+1 as the public IV .
Thus, the adversary is able to apply previous second preimage attacks on public hash functions [11]
to find a second preimage M ′t2 for Mt2 . In the end, the adversary queries Mt1‖M ′t2 to the MAC oracle
and receives a tag value T . This tag T is also a valid tag for the challenge Mt and the universal
forgery attack succeeds.



5 Full procedure of the universal forgery attack

In this section, we provide the entire procedure of this complex attack and we first recall the
notations used. Let Mt = m1‖m2‖ . . . ‖ms be the challenge message (we start the counting from
m1, since m0 = K ⊕ ipad during the first compression function call of the inner hash call of HMAC)
and we denote by x1, x2, . . . , xs+1 the successive intermediate hash values of HKin(Mt) when
processing Mt. During the attack, Mt is divided into Mt1‖Mt2 , where Mt1 is m1‖m2‖ . . . ‖ms1 and
Mt2 is ms1+1‖ms1+2‖ . . . ‖ms. As an example, we will use the functional graph Gf[0] of the hash
compression function f when iterated with a fixed message block [0] and we denote by L the cycle
length of the largest component of Gf[0] .

Phase 1 (online). Recover the height of x1, x2, . . ., and xs1+1 in Gf[0] and store them in a set
X. The procedure is detailed as below.

1. Initialize an index counter c as 1, and the set X as empty.
2. Query to the MAC oracle and receive the corresponding tag pairs of log(l) distinct message pairs

m1‖ . . . ‖ mc−1‖ [0]2
l/2+L‖[i]‖[0]2

l/2

and m1‖ . . . ‖ mc−1‖ [0]2
l/2‖[i]‖[0]2

l/2+L , where [i] 6= [0]
and [i]s are distinct among pairs.

3. If there is no tag pair that collides, increment the index counter c← c+1 and if c ≤ s1 +1 then
go to step 2, otherwise terminate this phase. If there is (at least) one tag pair that collides,
then just execute the following steps.
(a) Set two integer variables z1 = 0 and z2 = 2l/2.
(b) Set z = (z1 + z2)/2. Query to the MAC oracle and receive the corresponding tag pairs

of log(l) distinct message pairs m1‖ . . . ‖ mc−1‖ [0]2
z+L‖[i]‖[0]2

l/2

and m1‖ . . . ‖ mc−1‖
[0]2

z‖[i]‖[0]2
l/2+L , where [i] 6= [0] and [i]s are distinct among pairs.

(c) If (at least) one tag pair collides, set z2 = z. Otherwise, set z1 = z.
(d) If z2 6= z1 + 1 holds, go to step 3-b. Otherwise, set the height of xc as λ(xc) = z2, store z2

in position c in X and increment the index counter c← c+ 1. If c ≤ s1 + 1 then go to step
2, otherwise terminate this phase.

Phase 2 (online). Generate a pair of one-block messages (m,m′) for each xi ∈ X, which will be
used as a filter in Phase 4. The procedure is detailed as below.

1. For all xi ∈ X do the following steps.
(a) Select 2l/2 distinct one-block messages, append them to m1‖ . . . ‖mi−1, and send these

newly formatted messages to the MAC oracle. Find the pairsm1‖ . . . ‖mi−1‖m andm1‖ . . . ‖mi−1‖m′
that collides on the output of the MAC.

(b) For all the found pairs (m,m′), choose another random one-block message m′′, and query
m1‖ . . . ‖mi−1‖m‖m′′ and m1‖ . . . ‖mi−1‖m′‖m′′ to the MAC oracle in order to check if their
corresponding tags collide again or not. If none collide, go to step 1-a. Otherwise, store a
colliding pair (m,m′) as the filter for xi in X and go to the next xi in step 1.

Phase 3 (offline). Choose 2l/s1 values with their height in Gf[0] , and store them in a set Y (sorted
according to the height values). The procedure is detailed as below.

1. Initialize a counter c as 0 and the set Y as empty.
2. Choose a new random value y1 such that y1 /∈ Y , and set the chain counter cc to 1.
3. Compute ycc+1 = f[0](ycc)
4. Check if ycc+1 matches a value y stored in Y . If it does, then set the height λ(yi) of yi (with

1 ≤ i ≤ cc) as λ(y) + cc+ 1− i and store the (yi, λ(yi)) pairs (with 1 ≤ i ≤ cc) in Y .
5. Check if ycc+1 matches a previously computed chain value yi (with 1 ≤ i ≤ cc). If it does, then

set the height λ(yj) of all values yj (with i ≤ j ≤ cc) as 0, and the height λ(yj) of yj (with
1 ≤ j < i− 1) as i− j. Store the (yj , λ(yj)) pairs (with 1 ≤ j ≤ cc) in Y .

6. If no match was found in step 4 or 5, then increment the chain counter cc ← cc + 1 and go
to step 3. Otherwise, update the counter c by c ← c + cc and if c < 2l/s1 then go to step 2,
otherwise terminate this phase.



Phase 4 (offline). Recover one intermediate hash value xi in set X. The procedure is detailed
as below.

1. For all xi ∈ X do the following steps.
(a) Get the height λ(xi) of xi and its filter pair (m,m′) from the set X. Get all the (y, λ(y))

pairs in set Y such that λ(y) = λ(xi).
(b) For each y, we check if f(y,m) = f(y,m′) holds or not. If it holds for a yj , then output yj

as the value of xi and terminate this phase. If there is no such a yj , then go to the next xi
in step 1.

Phase 5 (offline). Find a second preimage for the processing of Mt2 as the second message part
of HKin

(Mt). The block length of Mt2 is denoted s2 = s − s1. The procedure is briefly described
below. For the complete algorithm please refer to [11].

1. Compute the intermediate hash values xs1 , xs1+1, . . ., xs from the value xi recovered at Phase
4, i.e. xi+1 = f(xi,mi), . . ., xs = f(xs−1,ms−1). Note that it is not necessary to compute until
xs.

2. Build a [log(s2), s2]-expandable message starting from xs1 to a value denoted as x. More pre-
cisely, for any integer i between log(s2) and s2, there is a message m′s1‖m

′
s1+1‖ · · · ‖m′s1+i from

the expandable message such that it has i blocks and links from xs1 to x:

x = f(. . . f(f(xs1 ,m
′
s1),m′s1+1), . . . ,m′s1+i).

3. Choose 2l/(s2 − log(s2)) random one-block messages m, compute f(x,m), and check if this
matches to an element of the intermediate hash values set {xs1+log(s2), xs1+1+log(s2), . . . , xs}.

4. If a match to xi (with s1 + log(s2) ≤ i ≤ s) is found, derive the (i − s1)-block long message
m′s1+1‖m′s1+2‖ · · · ‖m′i from the expandable message, append the blocks mi+1‖mi+2‖ · · · ‖ms

to it to produce M ′t2 , namely M ′t2 = m′s1+1‖m′s1+2‖ · · · ‖m′i‖mi+1‖mi+2‖ · · · ‖ms.

Phase 6 (online). Forge a valid tag for the challenge Mt.

1. Query message M ′t = Mt1‖M ′t2 to the MAC oracle, and receive its tag value T .
2. Output (Mt, T ) where T is a valid tag for Mt.

5.1 Complexity and success probability analysis

Complexity analysis. We use a single compression function call as complexity unit. We evaluated
the complexity of each phase as below.

Phase 1: O(s1 · l · log(l) · 2l/2) Phase 2: s21 · 2l/2 Phase 3: 2l/s1

Phase 4: 2l/s1 Phase 5: 2l/s2 Phase 6: s

The overall complexity of our generic universal forgery attack therefore depends on the block length
s of the target message Mt:

• For the case s ≤ 2l/6, the overall complexity is dominated by Phase 3 and Phase 5. So we set
s1 = s2 = s/2, and get the overall complexity of O(2l/s) computations.

• For the case 2l/6 < s ≤ 25l/6, the overall complexity is dominated by Phase 2. So we set
s1 = 2l/6, and get the overall complexity of O(25l/6) computations.

• For the case s > 25l/6, the overall complexity is dominated by Phase 6. So we set s1 = 2l/6,
and get the overall complexity of O(s) = 25l/6 computations.

Success probability analysis. First, note that we only need to pay attention to the phases
that dominate the complexity, since the other phases can be repeated enough times to approach
a success probability of 1. For the case s ≤ 2l/6, we note that Phase 3 always succeeds with
probability 1 and the success probability of Phase 5 is 0.63. For the case 2l/6 < s ≤ 25l/6, the
success probability of Phase 2 is approximately 1. For the case s > 25l/6, the success probability of
Phase 6 is approximately 1 after previous phases were repeated enough times. Therefore, the overall
success probability of our attack tends to 1 when repeating a constant time the corresponding
complexity dominating phases.



5.2 Experimental verification

For verification purposes, we have implemented the attack by using HMAC-SHA-256 on a desktop
computer. Due to computational and memory limitations, we shortened the input/output bits of
the SHA-256 compression function to 32 bits. In more details, we input a 32-bit value x to the
compression function, and the compression function expands it to 256 bits by prepending 0 bits:
0224‖x. Then, the compression function also shortens its outputs by only outputting the 32 LSBs.
Particularly for Phase 4, we paid attentions to the average number of pairs left after matching the
heights between the elements in X and the elements in Y , since it is essential for the complexity
advantages. The experiments results confirmed that the universal forgery attack works with the
claimed complexity.

6 Conclusion

In this article, we presented the very first generic universal forgery attack against hash-based MACs,
and we reduced the gap between the HMAC security proof and the best known attack for this crucial
security property. We leave as an open problem if better attacks can be found to further reduce
this gap. Our cryptanalysis method is new and uses the information leaked by the distance of a
node from the cycle (its height) in the functional graph of the compression function with a fixed
message block. We believe other graph properties, even more complex, might be exploitable and
could perhaps further improve the generic complexity of universal forgery attacks against hash-
based MACs.
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Appendix

Fig. 2. Functional graph of Keccak (SHA-3) with 8-bit input and 8-bit output. Example taken from [14].


