
Indistinguishability Obfuscation

versus

Point Obfuscation with Auxiliary Input

Christina Brzuska1 Arno Mittelbach2

1Tel Aviv University, Israel
2Darmstadt University of Technology, Germany

brzuska@post.tau.ac.il arno.mittelbach@cased.de

Abstract. In a recent celebrated breakthrough, Garg et al. (FOCS 2013) gave the first candidate
for so-called indistinguishability obfuscation (iO) thereby reviving the interest in obfuscation for
a general purpose. Since then, iO has been used to advance numerous sub-areas of cryptography.
While indistinguishability obfuscation is a general purpose obfuscation scheme, several obfuscators
for specific functionalities have been considered. In particular, special attention has been given to
the obfuscation of so-called point functions that return zero everywhere, except for a single point
α. A strong variant is point obfuscation with auxiliary input (AIPO), which allows an adversary
to learn some non-trivial auxiliary information about the obfuscated point α (Goldwasser,
Tauman-Kalai; FOCS, 2005).

Multi-bit point functions are a strengthening of point functions, where on α, the point function
returns a string β instead of 1. Multi-bit point functions with auxiliary input (MB-AIPO)
have been constructed by Canetti and Bitansky (Crypto 2010) and have been used by Matsuda
and Hanaoka (TCC 2014) to construct CCA-secure public-key encryption schemes and by and
Bitansky and Paneth (TCC 2012) to construct three-round weak zero-knowledge protocols for
NP.

In this paper we present both positive and negative results. We show that if indistinguishability
obfuscation exists, then MB-AIPO does not. Towards this goal, we build on techniques by
Brzuska, Farshim and Mittelbach (Crypto 2014) who use indistinguishability obfuscation as a
means of attacking a large class of assumptions from the Universal Computational Extractor
framework (Bellare et al; Crypto 2013). On the positive side we introduce a weak version of
MB-AIPO which we deem to be outside the reach of our impossibility result. We prove that this
weak version of MB-AIPO suffices to construct a public-key encryption scheme that is secure
even if the adversary can learn an arbitrary leakage function of the secret key, as long as the
secret key remains computationally hidden. Thereby, we strengthen a result by Canetti et al.
(TCC 2010) that showed a similar connection in the symmetric-key setting.

Keywords. Indistinguishability obfuscation, differing-inputs obfuscation, point function obfus-

cation, multi-bit point function obfuscation, auxiliary input obfuscation, leakage resilient PKE
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1 Introduction

The obfuscation of a program should hide its inner workings while preserving the functionality of
the program. Inspired by heuristic code-obfuscation techniques [CTL97], obfuscation turned into a
major research area of cryptography due to its manifold applications.

The formal definition of Virtual Black-Box Obfuscation (VBB) demands that an obfuscated
program is as good as a black-box that provides the same input-output behaviour as the program.
Since the seminal paper of Barak et al. [BGI+01, BGI+12], we know that this strong notion of
obfuscation is generally not achievable. In particular, Barak et al. show that so-called point functions
cannot be VBB-obfuscated when “paired” with a particularly chosen second function.

A (multi-output-bit-)point function pα,β maps all strings to 0, except for a single point α which
the function maps to the string β. The second function is a test function Tα,β that takes as input a
circuit C and tests whether C(α) is equal to β. Now, if an adversary is given access to two oracles
that compute pα,β and Tα′,β′ then it cannot check whether the two functions “match”, i.e., whether
(α′, β′) = (α, β). In turn, when given a circuit C that computes pα,β , the adversary can run Tα,β on
C and simply check whether Tα,β(C) returns 1. Hence, the obfuscation of pα,β and the obfuscation
of Tα,β leak more information than two oracles for pα,β and Tα,β establishing a counterexample for
VBB obfuscation.

As Barak et al. [BGI+01, BGI+12] showed that general VBB-obfuscation is impossible, follow-up
work did not aim for general obfuscation techniques but rather focused on obfuscating specific
functionalities such as re-encryption [HRsV07] and encrypted signatures [Had10]. Perhaps sur-
prisingly, a sequence of works also achieved positive results for VBB obfuscation of point func-
tions [Can97, CMR98, Fis99, Wee05, CD08, CKVW10, BC10, BP12].

The seemingly contradiction is resolved by considering auxiliary information about the obfuscated
circuit. Goldwasser and Tauman-Kalai introduced the concept of auxiliary information within the
study of obfuscation [GK05]. With this concept we can rephrase the counterexample by Barak et
al. [BGI+01] by considering the “test function” Tα,β to be auxiliary information about the obfuscated
point function pα,β. Thus, one way of stating their result is to say that no VBB obfuscation for
point functions exist, when arbitrary auxiliary information is allowed.

The works of Wee [Wee05], Hofheinz et al. [HMLS07], and Canetti et al. [CD08, CKVW10]
achieve (variants of) VBB obfuscation for point functions. In their respective models for VBB, they
disallow the leakage of auxiliary information about (α, β) and hence, the impossibility result [BGI+01]
and variants thereof [HMLS07] do not apply to their respective settings.

In turn, Canetti [Can97], Dodis, Tauman-Kalai and Lovett [DKL09], Bitansky and Canetti [BC10]
as well as Bitansky and Paneth [BP12] allow for auxiliary information about the obfuscated point to
leak, but use a weaker notion of obfuscation and thereby avoid the impossibility result. Bitansky and
Paneth provide a clean treatment of auxiliary inputs and introduce the notion of point obfuscation
with auxiliary input secure against unpredictable distributions (AIPO) which we adopt in this paper.

Point functions vs. point functions with multi-bit output. When considering point
function obfuscation, we need to make a clear distinction between plain point functions such as px
which map every input to 0 except for the single input x that is mapped to 1 and point functions
with multi-bit output (MBPF) such as px,m where input x is mapped to string m. Although very
similar, obfuscation schemes for MBPFs are seemingly harder to construct than obfuscation schemes
for plain point functions. Indeed, Canetti and Dakdouk initiated the study of obfuscation for MBPFs
and showed that such obfuscation schemes are closely related to composable obfuscation schemes
for plain point functions [CD08]. They show that obfuscators for MBPFs exist if, and only if,
composable obfuscators for plain point functions exist. Moreover, they show that composability is a
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non-trivial property. Both of these results carry over to obfuscation in the presence of hard-to-invert
auxiliary information.

Indistinguishability obfuscation. Simultaneously to constructing task-specific obfuscation
schemes, the quest for general obfuscators continued, and in a celebrated breakthrough [GGH+13],
Garg, Gentry, Halevi, Raykova, Sahai and Waters presented a candidate construction for indis-
tinguishability obfuscation (iO). The notion of indistinguishability obfuscation is weaker than
VBB-obfuscation and says intuitively that, for any two circuits that compute the same function,
their obfuscations are indistinguishable. As Goldwasser and Rothblum [GR07] establish, this seem-
ingly weak notion of obfuscation is actually the best possible notion of obfuscation. And indeed, the
work by Garg et al. [GGH+13] inspired simultaneous breakthroughs for hard problems in several
sub-areas of cryptography [SW13, BCP14, ABG+13, GGHR14, HSW14, BZ13, BST13] such as
functional encryption, deniable encryption, two-round secure multi-party computation, full-domain
hash, poly-many hardcore bits for any one-way function and more.

Contribution. In this paper we give both positive and negative results. We show that the
existence of indistinguishability obfuscation contradicts the positive results for multi-bit point
function obfuscation in the presence of hard-to-invert auxiliary information (MB-AIPO) [BP12,
MH14]. That is, if indistinguishability obfuscation exists, then MB-AIPO does not exist and the
assumptions in [BP12, MH14] are false. Or, equivalently, if MB-AIPO exists, then indistinguishability
obfuscation does not exist and all candidate assumptions are false [GGH+13, PST13, GLSW14].
However, given the current advancements in the understanding of indistinguishability obfuscation—
for example, Gentry et al. [GLSW14] show in a very recent work that iO can be based on the
Multilinear Subgroup Elimination Assumption thereby giving the first construction based on an
instance-independent assumption—we consider the existence of iO to be more likely.

In summary, we derive the following negative results.

Theorem [informal]. If indistinguishability obfuscation exists, then composable AIPO, VBB
multi-bit point obfuscation secure with auxiliary inputs and average-case MB-AIPO do not exist.

To show our impossibility result, we construct an obfuscation of the test function Tα,β that
Barak et al. used to establish their impossibility result for VBB obfuscation [BGI+01, BGI+12].
The hardness resides in proving that the obfuscation of Tα,β indeed hides all partial information
about α and β. Towards this goal, we build on techniques developed by Brzuska, Farshim and
Mittelbach [BFM14] who show a similar 1-out-of-2 result, namely that indistinguishability and a
large class of assumptions of the Universal Computational Extractor Framework (UCE) [BHK13]
are mutually exclusive. Namely, we obfuscate the test function via indistinguishability obfuscation
and prove that it is indistinguishable from an obfuscation of the zero circuit, the circuit that returns
0 on all inputs. As the zero circuit does not contain any information about α and β, we argue that
also an obfuscation of the test function Tα,β hides α and β computationally.

Intriguingly, it seems that our negative results do not carry over to the setting of obfuscating plain
point functions in the presence of auxiliary information, that is, to plain AIPO (assuming they are
not composable). As an analogy, consider the impossibility result by Barak et al. [BGI+01, BGI+12].
Also here, it seems crucial that the point function pα,β has a multi-bit output β. Imagine that Tα
takes the circuit C as input and returns 1 if and only if C(α) = 1, then an adversary could perform
binary search and recover α, even when only given access to Tα and pα as oracles. Therefore, the
impossibility does not carry through to standard point functions.
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On the positive side we show ways to work around our impossibility result. Firstly, note that
Canetti et al. [CKVW10] introduce weaker versions of MB-AIPO that are not affected by our
negative results. In particular, they use these weaker notions to build a symmetric-key encryption
scheme that is secure in the presence of hard to invert leakage about the key. We strengthen their
result insofar, as we present a notion that lies between their weaker versions of MB-AIPO and full
MB-AIPO.

Our weak notion of MB-AIPO requires that the auxiliary information computationally hides the
point x even when given the corresponding point value m for some multi-bit point function px,m.
This restriction seems sufficient to bypass our impossibility result and, intriguingly, assuming AIPO
and iO, we give a construction that achieves this notion of weak MB-AIPO. Finally, we use our
weak MB-AIPO construction to build a public-key encryption scheme which is leakage resilient in
the presence of hard-to-invert leakage of the key.

Conclusion and future work. We showed that MB-AIPO as used in [BP12, MH14] and iO
are mutually exclusive. It remains to investigate whether the positive results in [BP12, MH14] can
be salvaged through weaker notions of MB-AIPO or, perhaps, when combining AIPO and iO in a
similar way as we did in Section 4. At a first glance, our weakened notion of MB-AIPO does not
seem to suffice for the applications in [BP12, MH14], but it remains to study whether other weak
variants of MB-AIPO can be used.

On the other hand, one might also ask whether our negative result can be extended to showing
that AIPO and iO are mutually exclusive. Currently, we do not know whether this is possible, but
such a result seems to require different techniques than the ones we use. Our result implies that
differing-inputs obfuscation (diO) and MB-AIPO are mutually exclusive. Perhaps, using different
techniques, one might be able to show that diO and AIPO are mutually exclusive, for example, by
showing that we can instantiate the special-purpose obfuscator by Garg et al. [GGHW13] using
AIPO.

We hope that our work sparks further interest in studying the connections between iO/diO on
the one hand and notions of (multi-bit) point obfuscation on the other hand.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter, which all algorithms get implicitly and in
unary representation 1λ. By {0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗
the set of all bit-strings of finite length. The length of x is denoted by |x|. If x, y ∈ {0, 1}∗ are two
bit strings of the same length, then we denote their inner product over GF(2) by 〈x, y〉. For a finite
set X, we denote the action of sampling x uniformly at random from X by x←$ X, and denote the
cardinality of X by |X|. Algorithms are assumed to be randomized, unless otherwise stated. We call
a algorithm efficient or PPT if it runs in time polynomial in the security parameter. All algorithms
may be randomized, unless explicitly stated differently. If A is randomized then by y ← A(x; r) we
denote that A is run on input x and with random coins r and produced output y. If no randomness
is specified, then we assume that A is run with freshly sampled uniform random coins, and write
this as y←$ A(x). We often refer to algorithms, or tuples of algorithms, as adversaries. If E is
an event then we denote by Pr[E] its probability and if X is a random variable, we denote its
expectation by E[X]. We say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1). We say a function
poly is polynomial if poly ∈ λO(1).
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Obfuscation. Obfuscation has been extensively used within cryptography and it comes in many
different flavors. In the following section we present the various definitions that we use in this paper.
We start by recalling the strongest definition of virtual black-box (VBB) obfuscation with auxiliary
inputs due to [BGI+01, GK05, BGI+12].

Definition 2.1 (Worst-case obfuscator with auxiliary input). A PPT O is a worst-case obfuscator
with auxiliary input for an ensemble C = {Cλ}λ∈N of families of poly-size circuits if it satisfies:

• Functionality. For any λ ∈ N and C ∈ Cλ, O(C) is a circuit which computes the same
function as C.

• Polynomial slowdown. For any λ ∈ N and C ∈ Cλ, |O(C)| ≤ poly(|C|).

• Virtual black-box. For any PPT adversary A there is a PPT simulator Sim such that for
all sufficiently large λ ∈ N, C ∈ Cλ and z ∈ {0, 1}poly(λ):∣∣∣Pr[A(z,O(C)) = 1]− Pr

[
SimC(z, 1|C|) = 1

]∣∣∣ ≤ negl(λ)

where the probability is taken over the coins of A, Sim and O.

Indistinguishability obfuscation. While VBB obfuscation as defined above provably does
not exist [BGI+01] for all circuits, weaker notions such as indistinguishability obfuscation may well
do. VBB obfuscation requires that for any PPT adversary given the code of some functionality
(and some auxiliary input) there exists a PPT simulator that given only black-box access to the
functionality (and as input the same auxiliary input) produces a computationally indistinguishable
distribution. An indistinguishability obfuscation (iO) scheme, on the other hand, only ensures that
the obfuscations of any two functionally equivalent circuits are computationally indistinguishable.
Indistinguishability obfuscation was originally proposed by Barak et al. [BGI+01] as a potential
weakening of virtual-black-box obfuscation. We recall the definition from [GGH+13].

Definition 2.2. A PPT algorithm iO is called an indistinguishability obfuscator for a circuit class
{Cλ}λ∈N if the following conditions are satisfied:

• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ iO(1λ, C)

]
= 1 .

• Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈ Cλ such that
C0(x) = C1(x) on all inputs x the following distinguishing advantage is negligible:∣∣∣Pr

[
D(1λ, iO(1λ, C1)) = 1

]
− Pr

[
D(1λ, iO(1λ, C0)) = 1

]∣∣∣ ≤ negl(λ) .

Differing-inputs obfuscation. Differing-inputs obfuscation is closely related to indistinguisha-
bility obfuscation and also goes back to the seminal paper of Barak et al. [BGI+01, BGI+12].
While indistinguishability obfuscation requires circuits to be identical on all inputs, differing-inputs
obfuscation intuitively says that if a distinguisher can tell apart two obfuscated circuits then one
can efficiently extract a value on which the circuits differ. We here follow the definition of Ananth et
al. [ABG+13] and Boyle et al. [BCP14] and first define the notion of differing-inputs circuits which
in turn are then used to define differing-inputs obfuscation.
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Definition 2.3 (Differing-Inputs Circuits). A circuit family {Cλ}λ∈N together with a sample algo-
rithm (C0, C1, z)←$ Sam(1λ) which samples C0, C1 ∈ Cλ is said to be a differing-inputs family if for
all PPT algorithms A there is a negligible function negl such that:

Pr
[
C0(x) 6= C1(x) : (C0, C1, z)←$ Sam(1λ), x←$ A(1λ, C0, C1, z)

]
≤ negl(λ)

Definition 2.4 (Differing-Inputs Obfuscation). A PPT algorithm diO is a differing-inputs obfusca-
tor for a differing-inputs family ({Cλ}, Sam) if the following holds:

• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ diO(1λ, C)

]
= 1 .

• Security. For any PPT distinguisher D, for any (C0, C1, z)←$ Sam(1λ) the following distin-
guishing advantage is negligible:∣∣∣Pr

[
D(1λ, diO(1λ, C1), z) = 1

]
− Pr

[
D(1λ, diO(1λ, C0), z) = 1

]∣∣∣ ≤ negl(λ) .

Boyle, Chung and Pass [BCP14] show that any general indistinguishability obfuscator is also an
differing-inputs obfuscator for certain classes of circuits. That is, any indistinguishability obfuscator
for all circuits in P/poly is a also a differing-inputs obfuscator for circuits that differ on at most
polynomially many inputs. We recall their Theroem:

Theorem 2.5 ([BCP14]). Let iO be an indistinguishability obfuscator for P/poly. Let ({Cλ},Sam)
be a differing-inputs family for which there exists a polynomial d : N→ N, such that for all λ ∈ N
and all pairs C0, C1 ∈ Cλ it holds that |{x : C0(x) 6= C1(x)}| ≤ d(λ). Then iO is a differing-inputs
obfuscator for ({Cλ}, Sam).

Point obfuscation. Besides the general purpose indistinguishability obfuscator we consider
obfuscators for the specific class of so-called point functions. A point function px for some value
x ∈ {0, 1}∗ is defined as

px(s) :=

{
1 if s = x

⊥ o/w

In this paper, we consider a variant of point function obfuscators under auxiliary input which was
first formalized by Canetti [Can97]. We here give the definition from [BP12]. The first definition
formalizes unpredictable distributions which are in turn used to define obfuscators for point functions.

Definition 2.6 (Unpredictable Distribution). A distribution ensemble D = {Dλ = (Zλ, Xλ)}λ∈N,
on pairs of strings is unpredictable if no poly-size circuit family can predict Xλ from Zλ. That is,
for every poly-size circuit family {Cλ}λ∈N and for all large enough λ:

Pr(z,x)←$ Dn [Cλ(z) = x] ≤ negl(λ)

Definition 2.7 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT
algorithm AIPO is a point obfuscator for unpredictable distributions if it satisfies the functionality
and polynomial slowdown requirements as in Definition 2.1, and the following secrecy property: for
any unpredictable distribution D = {Dλ = (Zλ, Xλ)}λ∈N over {0, 1}poly(λ) × {0, 1}λ it holds for any
PPT algorithms A that there exists a negligible function negl such that:∣∣∣Pr(z,x)←$ Dλ

[
A(1λ,AIPO(x), z) = 1

]
− Prz←$ Zλ,u←$ {0,1}λ

[
A(1λ,AIPO(u), z) = 1

]∣∣∣ ≤ negl(λ)
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Obfuscation for point functions with multi-bit output. While point functions only
return a single bit, a point function with multi-bit output (MBPF) px,m for values x,m ∈ {0, 1}∗ is
defined as

px,m(s) :=

{
m if s = x

⊥ o/w

For an MBPF px,m we call x the point address and m the point value. Similar to AIPO we
define MB-AIPO via an unpredictable distribution where the distribution outputs a tuple (x,m)
(defining a point function px,m) together with auxiliary information z. We require that it should
be computationally infeasible to recover the point address x given auxiliary information z. Thus,
in the MBPF setting we define the unpredictable distribution as D = {Dλ = (Zλ, Xλ,Mλ)}λ∈N
but still require that the point address (aka., x) remains hidden given the auxiliary input. From
an MB-AIPO obfuscator we now require that the obfuscation of px,m is indistinguishable from an
obfuscation with a changed point address m′ where m′ is chosen uniformly at random. Intuitively
this captures that the obfuscation does not reveal any information about the point value.

Definition 2.8 (Auxiliary input point obfuscation for unpredictable distributions (MB-AIPO)).
A PPT algorithm MB-AIPO is a multi-bit point obfuscator for unpredictable distributions if it
satisfies the functionality and polynomial slowdown requirements as in Definition 2.1, and the
following secrecy property: for any unpredictable distribution D = {Dλ = (Zλ, Xλ,Mλ)}λ∈N over
{0, 1}poly(λ) × {0, 1}λ × {0, 1}λ it holds for any PPT algorithms A that

Pr(z,x,m)←$ Dλ

[
A(1λ,MB-AIPO(x,m), z) = 1

]
− Pr(z,x,m)←$ Dλ,

m′←$ {0,1}λ

[
A(1λ,MB-AIPO(x,m′), z) = 1

]
is negligible in λ.

Remark. Similarly, to the presented definition we could define MB-AIPO by requiring that the
obfuscation of point function px,m is indistinguishable from an obfuscation of px′,m′ . That is instead
of only adapting the point value we could conceive a notion in which the honest obfuscation should
be indistinguishable from one where both the point address and the point value are chosen uniformly
at random. However, we show in Section 3 that, assuming indistinguishability obfuscation exists,
neither of the above definitions can be met.

Average-case point obfuscation and statistical unpredictability. The notions for
point obfuscation as defined above can be regarded as worst-case notions. In many applications
an average-case notion where the point address is chosen uniformly at random could be sufficient.
Indeed Matsuda and Hanaoka [MH14] recently presented constructions of CCA-secure public-key
encryption schemes based on an average-case notion of MB-AIPO where the point address is sampled
uniformly at random. MH14 denote the resulting average case MB-AIPO notion by AIND-δ-cPUAI.

A second avenue to weaken the security requirements of point obfuscators is to require that the
auxiliary input needs to hide the point address statistically. We call unpredictable distributions for
which this is the case statistically unpredictable.

3 IO implies the impossibility of MB-AIPO

In the following we present our negative result, namely that indistinguishability obfuscation and
multi-bit point function obfuscation in the presence of auxiliary information (MB-AIPO) are mutually
exclusive. We discuss implications of our result in Section 3.2.

8



3.1 IO and MB-AIPO are mutually exclusive

Multi-bit point obfuscation with auxiliary inputs is a powerful primitive and has been used to
construct CCA-secure encryption schemes [MH14] and to circumvent black-box impossibility results
for three-round weak zero-knowledge protocols for NP [BP12]. Our following result intuitively says
that, if indistinguishability obfuscation exists, then MB-AIPOs (as defined in Definition 2.8) cannot
exist. The result remains valid even if we consider average case MB-AIPOs (where point address
x is chosen uniformly at random). Technically our result builds on techniques used by Brzuska,
Farshim and Mittelbach (BFM; [BFM14]). BFM show a similar “one-out-of-two” result, namely
that if indistinguishability obfuscation exists, then certain kinds of UCE-secure hash functions (a
hash function security notion recently introduced in [BHK13]) cannot exist [BFM14]. BFM use
an indistinguishability obfuscation of a specially constructed circuit which can be shown to hide
(computationally) its inner workings but which is sufficient to later distinguish within the security
game. UCEs are, in some sense, similar to AIPOs as the admissibility of adversaries is decided
in a setting which is not quite the same as the setting into which the adversary is placed in the
security game. For AIPOs, an adversary is admissible if its first part implements an unpredictable
distribution. In the actual security game, the second adversary, however, does not only get as
output the (unpredictable) leakage of the first adversary but some additional information provided
by the game. The idea is now to output a circuit which, given this additional information will
break the security property but which without it leaks no information whatsoever. Showing that an
indistinguishability obfuscation hides a certain value is usually the crux in proofs involving iO. For
this, we construct a new technique which may be of independent interest and is given as Lemma 3.2.

Theorem 3.1. If indistinguishability obfuscation exists, then average-case obfuscation for multi-bit
point functions secure under auxiliary input (MB-AIPO) does not exist.

To prove Theorem 3.1 we use indistinguishability obfuscation to construct an unpredictable
distribution B1 together with an adversary B2 that, given leakage from the unpredictable distribution
can distinguish between point obfuscations from the unpredictable distribution and point obfuscations
from the uniform distribution.

We first give the unpredictable distribution B1 which takes as input the security parameter 1λ and
outputs two values x, z together with some leakage L. Here leakage L will be the indistinguishability
obfuscation of a predicate circuit that takes as input a description of a function f , evaluates the
function on a hard-coded value x, runs the result through a pseudo-random generator PRG and
finally compares this result with some hard-coded value y. That is, we consider the circuit

C[x, y] := iO
(
PRG(uT(·, x)) = y

)
,

where uT denotes a universal Turing machine.
To formally define the unpredictable distribution, let n and m be two polynomials and let

PRG : {0, 1}n(λ) → {0, 1}2n(λ) be a pseudo-random generator with stretch 2. Note that we do not
need to additionally assume the existence of PRGs as AIPOs (and in particular MB-AIPOs) already
imply one-way functions.1 Let, furthermore, uT(·, x) be a universal Turing machine that on input
a description of a function f outputs f(x). We define the unpredictable distribution as ((x, z), L)

1 Canetti et al. [CKVW10] show that multi-bit point function obfuscation is tightly related to symmetric encryption
and that MB-AIPO implies the existence of (leakage-resilient) IND-CPA symmetric encryption schemes.
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computed as:

z←$ {0, 1}n(λ)

y ← PRG(z)

x←$ {0, 1}m(λ)

L←$ iO
(
PRG(uT(·, x)) = y

)
output: ((x, z), L)

We now present the adversary B2 that, given the leakage from B1, breaks the security of the
multi-bit point obfuscator. We will then argue that B1, indeed, implements an unpredictable
distribution. Adversary B2 gets values p and L as input, where p is either a point obfuscation of Ix,z
sampled according to B1 or an obfuscation for Iu,v for uniformly random values u, v. Adversary B2
computes L(p) and outputs the result. If p is an obfuscation of Ix,z, then B2 computes the predicate
function

PRG(Ix,z(x)) = y

where y was computed as PRG(z). Thus, it will always output 1. If, however, p is an obfuscation
of Iu,v, then with overwhelming probability over the choice of v and u, B2 returns 0. It follows
that (B1,B2) break the security of the obfuscator with overwhelming probability. We now prove
that (B1,B2) is also a valid pair of adversaries, that is, that B1 is an unpredictable distribution.
In the following lemma, we show that, under the assumption of indistinguishability obfuscation,
the leakage computed by B1 is indistinguishable from an obfuscated zero circuit, the circuit that
returns 0 on all inputs. As the zero circuit does not leak any information about y, the leakage is
unpredicable.

Lemma 3.2. Let n,m be two polynomials. For x ∈ {0, 1}λ, let uT(·, x) be a universal Turing
machine that on input a description of a function f ∈ {0, 1}m(λ) outputs f(x).

If PRG : {0, 1}n(λ) → {0, 1}2n(λ) is a pseudo-random generator and iO is a secure indistinguisha-
bility obfuscator for all circuits in P/poly, then for all efficient PPT distinguishers Dist there exists
a negligible function negl such that∣∣∣Pr

[
Dist

(
1λ, iO

(
PRG(uT(., x)) = PRG(y)

))
= 1
]
− Pr

[
Dist(1λ, iO(0)) = 1

]∣∣∣ ≤ negl(λ)

where the first probability is over the random choice of x and y and the coins of iO and Dist and the
second probability is over the coins of iO and Dist.

Proof. We bound the distinguishing probability in Lemma 3.2 with the security of the PRG and the
indistinguishability obfuscator iO. We consider the following hybrids (which are also depicted in
Figure 1):

Game1: The game chooses a random value z and computes y ← PRG(z). It constructs the predicate
circuit Cx,y ← (PRG(uT(., x)) = PRG(y)) and an obfuscation C̃ =←$ iO(Cx,y). It then calls
distinguisher Dist on input C̃ and outputs whatever Dist outputs.

Game2: The game chooses a uniformly random value y. It constructs the predicate circuit
Cx,y ← (PRG(uT(., x)) = y) and an obfuscation C̃ =←$ iO(Cx,y). It then calls distinguisher
Dist on input C̃ and outputs whatever Dist outputs.
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Game1(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y ← PRG(z)

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game2(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game3(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

abort if (x, y) ∈ Bad(λ)

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game4(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

abort if(x, y) ∈ Bad(λ)

C̃ =←$ iO(0)

b′←$ Dist(1λ, C̃)

return (1 = b′)

PRG Bad iO

Figure 1: The hybrids for the proof of Claim 3.2. We have highlighted the changes between the games with a
light-grey background.

Game3: As before, except that the game terminates if there there exists a value f ∈ {0, 1}m(λ)

such that Cx,y(f) = 1. We denote this event by (x, y) ∈ Bad(λ) if for values (x, y) such a
value f exists.

Game4: As before, except that now an obfuscation of the constant zero-circuit C̃←$ iO(0) is
constructed.

We bound the difference between Game1 and Game2 by the security of the PRG. Game2 and
Game3 are, by the fundamental lemma of the game-playing technique [BR06], identical until event
Bad(λ) occurs. We now prove that Bad(λ) only happens with negligible probability. For a uniformly
random pair of values (x, y) we have that the probability that there exists a function f such that
PRG(uT(f, x)) = y is upper bounded by the probability that y is in the image of the PRG. As
the PRG has a stretch of 2, the probability that a random y is in the image of the PRG is upper
bounded by 2−n(λ).

Finally, we bound the difference between Game3 and Game4 by the security of the indistinguisha-
bility obfuscator iO by noting that if (x, y) /∈ Bad(λ) then circuit Cx,y encodes the constant zero
circuit. We now explain this formally.

Firstly, let us externalize some of the variables that the games use and introduce a unified
notation for Game3 and Game4. For i ∈ {3, 4}, let Gamei[x, y](λ) be equal to the game Gamei(λ)
where the game chooses values x and y. We define A[x, y](C) to be an adversary against the
indistinguishability obfuscator iO that gets a circuit C as input, where C is either an obfuscation of
circuit Cx,y or an obfuscation of the constant zero circuit 0. Adversary A[x, y](C) runs distinguisher
D on input (1λ, C) and outputs whatever D outputs.

If C = Cx,y then adversary A[x, y](C) perfectly simulates game Game3[x, y](λ) and if C = 0
then the adversary simulates Game4[x, y](λ). Thus, we can rewrite the difference between the game’s
distributions

Pr[Game3(λ)]− Pr[Game4(λ)]
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as

= Ex,y
[

Pr[Game3[x, y](λ)]
]
− Ex,y

[
Pr[Game4[x, y](λ)]

]
= Ex,y

[
Pr[Game3[x, y](λ)]− Pr[Game4[x, y](λ)]

]

= Ex,y

[
Pr
[
A[x, y](1λ, iO(Cx,y)) = 1

]
− Pr

[
A[x, y](1λ, iO(0)) = 1

]]
= Ex,y

[
AdvioiO,A[x,y],Cx,y ,0(λ)

]
≤ max

x,y
AdvioiO,A[x,y],Cx,y ,0(λ)

By the security of the indistinguishability obfuscator, the advantage of any efficient adversary is
negligible and, hence, also maxx,y Adv

io
iO,A[x,y],Cx,y ,0(λ) is negligible.

3.2 Implications

Average case MB-AIPO is a relaxed notion of virtual-black-box point obfuscation in the presence of
auxiliary input and in particular implied by it [MH14]. Consequently our impossibility result also
shows that VBB obfuscation of multi-bit point functions secure in the presence of auxiliary input
cannot exist if indistinguishability obfuscation exist:

Corollary 3.3. If indistinguishability obfuscation exists, then VBB multi-bit point obfuscation
secure with auxiliary input does not exist.

We note that VBB multi-bit point obfuscation is also often referred to as Digital Lockers.

Canetti and Dakdouk [CD08] study the composition of point function obfuscation and show
that composable AIPO implies the existence of composable MB-AIPO. And hence, applying our
result we get the following corollary.

Corollary 3.4. If indistinguishability obfuscation exists, then composable AIPO does not exist.

Several results have been based on the existence of MB-AIPO (or composable AIPO). Matsuda
and Hanaoka give a CCA secure public-key encryption scheme based on MB-AIPO [MH14] and
Bitansky and Paneth give a three-round three-round weak zero-knowledge protocol for NP based
on composable AIPO [BP12]. In Section 4 we present a weakened notion of MB-AIPO that we deem
to fall outside our impossibility result. At a first glance, however, this weaker notion seems not
sufficient for the applications in [BP12, MH14], so it remains to study whether other weak variants
of MB-AIPO could be used.

3.3 On circumventing our impossibility result

Matsuda and Hanaoka [MH14] present a CCA-secure PKE scheme that is based on MB-AIPO and,
thus, ruled out by our impossibility result, if indistinguishability obfuscation exists. However, they
also present a version of a CCA-secure PKE scheme based on the weaker assumption of MB-AIPO
that is secure only with respect to statistically unpredictable distributions. Indeed, our techniques
do not carry over to ruling our MB-AIPO for statistically unpredictable distributions, because the
way in which we use indistinguishability obfuscation, inherently relies on computational security.
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Switching to a statistical notion of security was also proposed for UCEs in order to salvage a large
number of applications [BFM14, BHK13].

Moreover, Canetti et al. [CKVW10] present notions of MB-AIPO in the setting of computational
unpredictability that are not affected by our impossibility result. In the following section, we present
a variant of MB-AIPO that is stronger than theirs but weaker than the definition that we show
to be impossible. Namely, we strengthen the assumption on unpredictable distributions to remain
unpredictable even in case the point value m is given. We call this notion strong unpredictability
and, indeed, give a construction based on AIPO and indistinguishability obfuscation. An analogours
notion of unpredictability has recently been introduced by Brzuska and Mittelbach in the context of
UCE security [BM14].

4 Weak MB-AIPO from iO and AIPO

In this section we show that, despite the negative results from the previous section, point obfuscation
(AIPO) and indistinguishability obfuscation (iO) together make a powerful team. We begin showing
that iO can be used to construct a point obfuscation scheme which can securely obfuscate point
functions given as input the point function, rather than the point address. This is inherently
different from all proposed point obfuscation schemes so far [Can97, CMR98, Fis99, Wee05, CD08,
CKVW10, BC10, BP12] which always take the point address as input. We call this sort of
obfuscator point-independent as the obfuscator works independent of the actual point (in fact it
may be computationally infeasible for the obfuscator to recover the point from its input). Using
a similar technique we will then construct a mild form of a multi-bit point function obfuscation
scheme secure in the presence of auxiliary input. We call notion weak MB-AIPO. In Section 5 we
will then use our construction of weak MB-AIPOs to construct a public-key encryption scheme that
is leakage resilient with respect to any computationally hard-to-invert leakage of the secret-key.

4.1 Point-independent point function obfuscation

Our first construction is based on an observation. Goldwasser and Rothblum [GR07] introduce the
notion of best-possible obfuscation. Intuitively an obfuscator is a best-possible obfuscator if an
obfuscation leaks as little information about the original program as any functionally equivalent
circuit. In the context of point functions this means that a best-possible obfuscator for point
functions (or for more general function classes) on input a point function Ix would need to output
an obfuscated point function which is as least as good an obfuscation as, for example, an AIPO
obfuscator produces on input the point address x. Goldwasser and Rothblum show that if we
consider PPT obfuscators, then the notions of best-possible obfuscation and indistinguishability
obfuscation are equivalent [GR07]. Let us recall the definition of best-possible obfuscation

Definition 4.1 ([GR07]: Best-possible obfuscation). A PPT O is a best-possible obfuscator for an
ensemble C = {Cλ}λ∈N of families of poly-size circuits if it satisfies the preserving functionality and
polynomial slowdown properties as in Definition 2.1, and also has the following property (instead of
the virtual black-box property).

Computational Best-Possible Obfuscation. For any polynomial size learner L, there exists a
polynomial size simulator Sim such that for every large enough input length λ, for any two
circuit C1 ∈ Cλ and for any circuit C2 ∈ Cλ that computes the same function as C1 and such
that |C1| = |C2| it holds for any PPT adversary A that∣∣∣Pr

[
A(1λ,L(O(C1))) = 1

]
− Pr

[
A(1λ,Sim(C1)) = 1

]∣∣∣ ≤ negl(λ)
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Thus, if iO is an indistinguishability obfuscator for all circuits in P/poly, then the mapping
C 7→ iO(C) yields a point-independent point function obfuscator since the indistinguishability
obfuscation of point function Ix must not leak any more about x than what can be extracted
from the “best possible” point-obfuscation scheme on input x. Furthermore, if AIPO exists, then
our construction yields an point-independent obfuscation scheme that is secure in the presence of
auxiliary inputs.

4.2 Weak MB-AIPO from AIPO and iO

In the following we give a relaxed definition of MB-AIPO and subsequently give a construction based
on plain AIPO and indistinguishability obfuscation. We weaken the original MB-AIPO definition
(Definition 2.8) by requiring that an obfuscation must only be secure for unpredictable distributions
that hide the point address even given the the point value m. We call this notion of unpredictability
strong unpredictability and note that an analogous notion has recently been introduced in the context
of UCE security [BM14]. If we restrict adversaries to strong unpredictability we yield an MB-AIPO
notion that we call weak MB-AIPO.

Definition 4.2 (Strongly Unpredictable Distribution). We say that a distribution ensemble D =
{Dλ = (Zλ, Xλ,Mλ)}λ∈N, on triples of strings is strongly unpredictable if no poly-size circuit family
can predict Xλ from (Zλ,Mλ). That is, for every poly-size circuit family {Cλ}λ∈N and for all large
enough λ:

Pr(z,x,m)←$ Dn [Cλ(z,m) = x] ≤ negl(λ)

Definition 4.3 (Weak MB-AIPO). A PPT algorithm AIPO is a weak multi-bit point obfuscator if
it is a MB-AIPO for strongly unpredictable distributions.

Next, we present our construction of a weak MB-AIPO scheme. The idea will be to use a
plain AIPO (for the point address x). We then construct a circuit which evaluates the AIPO and
outputs m if, and only if, this evaluation returns 1. The construction will be the indistinguishability
obfuscation of that circuit.

Construction 4.4. Let AIPO be a secure AIPO and iO be a secure indistinguishability obfuscator
for all circuits in P/poly. We construct a weak MB-AIPO obfuscator MB-AIPO as follows. On
input a point address x and value m MB-AIPO constructs a point obfuscation px←$ AIPO(x). It
then constructs the following circuit

C[px,m](x∗) := if (px(x∗) = 1) then return m else return ⊥

and outputs an indistinguishability obfuscation of C[px,m].

Proposition 4.5. If AIPO exists and if iO is a secure indistinguishability obfuscator for all circuits
in P/poly then the above construction is a weak MB-AIPO.

Proof. Assume Proposition 4.5 does not hold. Then there exists adversary (B1,B2) against the
weak MB-AIPO property of MB-AIPO where B1 implements an unpredictable distribution, that is,
on input the security parameter it outputs a point function description (x,m) together with some
auxiliary information z. We will prove that both circuits MB-AIPO(x,m) as well as MB-AIPO(x,m′)
(for some uniformly random message m′) are differing-inptus (given z) from the constant zero circuit
0 (that is, the circuit that outputs 0 on all inputs). As circuits MB-AIPO(x,m) and 0 differ on
exactly one point (i.e., x) we can use the result by Boyle et al. [BCP14] (here recalled as Theorem 2.5)
that already under indistinguishability obfuscation the two circuits are indistinguishable. We can,
thus, proceed in three hybrid steps:
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Game1 Is the original MB-AIPO game, where B2 always receives an honest obfuscation of point
function Ix,m.

Game2 Is identical to before but now B2 receives an indistinguishability obfuscation of the constant
zero circuit 0.

Game3 Is the original MB-AIPO game, where B2 always receives an obfuscation of point function
Ix,m′ where m′ is a uniformly random point value.

We, thus, need to show that the difference between the above games is negligible. For the
difference between games Game1 and Game2 we consider the following claim.

Claim 4.6. Let Sam be the following sample algorithm. It runs adversary B1 to receive point
function description (x,m) and auxiliary information z. It constructs an AIPO px←$ AIPO(x) to
then construct circuit C[px,m] as in the construction. Additionally it constructs the constant zero
circuit 0 padded to the same length as C[px,m]. It outputs (C[px,m],0, z).

If AIPO is secure then the such defined family of circuits is differing-inputs.

Assume this is not the case. Then there exists an extractor Ext that on input (C[px,m],0, z)
outputs a target value τ (with noticeable probability) such that C[px,m](τ) 6= 0(τ) and, hence,
τ = x. We will use this extractor to break the security of the AIPO scheme. Let (A1,A2) be an
adversary against the security of AIPO. Adversary A1 runs B1 to receive point function description
(x,m) and auxiliary information z. It chooses a random value r and computes b← 〈r, x〉. It outputs
(x, (z,m, r, b)). Adversary A2 gets as input a (z,m, r, b) and a point function obfuscation p which is
either an obfuscation for Ix or for Iu for a uniformly random u. It constructs circuits C[p,m] and
the constant zero circuit 0 and runs extractor τ←$ Ext(C[p,m],0, z). If τ = ⊥ it flips a bit and
outputs it. Else, if τ 6= ⊥, then p(τ) = 1 and, hence, value τ is either equal to x or to u. In this
case adversary A2 outputs 〈τ, r〉 = b.

Analysis. Let us denote by ε the probability that Ext outputs a value τ 6= ⊥ in the differing-inputs
game. Then, if τ = x adversary A2 will always output 1 as, by construction, 〈x, r〉 = b. If, on the
other hand, τ = u, then adversary A2 will output 1 only with probability 1

2 as u and r are randomly
chosen values and r remains hidden from Ext. Thus, our adversary has a distinguishing advantage of
1
2ε. In the following we make this intuition formal. We note that our simulation technique is inspired
by Brzuska and Mittelbach [BM14] who build variants of UCE security based on puncturable PRFs,
iO and AIPO and that the formal analysis is almost taken verbatim.

Let us denote by d = 0 the event that in the AIPO-game, the honest point function Ix gets
obfuscated, and let d = 1 describe the event that in the AIPO-game, Iu gets obfuscated for a random
u. Let further ε be the probability that Ext returns a value τ 6= ⊥ in the differing-inputs game, that
is, ε := Pr[⊥ 6= Ext | d = 0]. For readability we will drop the inputs given to adversaries Ext and
A2 in the following formal treatment. We can now consider the distinguishing probability of our
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adversary A2

Pr[A2 = 1 | d = 0]− Pr[A2 = 1 | d = 1]

= Pr[A2 = 1 | d = 0,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 0] + Pr[A2 = 1 | d = 0,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 0]−
Pr[A2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
· Pr[Ext = ⊥ | d = 0]− Pr[A2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
·
(

1− Pr[Ext 6= ⊥ | d = 0]
)
− Pr[A2 = 1 | d = 1]

=
1

2
· Pr[Ext 6= ⊥ | d = 0] +

1

2
− Pr[A2 = 1 | d = 1] =

1

2
ε+

1

2
− Pr[A2 = 1 | d = 1]

Let U denote a random variable describing the choice of point function Iu (in case d = 1).

=
1

2
ε+

1

2
− Pr[A2 = 1 | d = 1,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 1] +

Pr[A2 = 1 | d = 1,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 1]

=
1

2
ε+

1

2
−

1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
Pr[A2 = 1 | d = 1, U = u,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ |U = u, d = 1] +

Pr[A2 = 1 | d = 1, U = u,Ext = ⊥ ] · Pr[Ext = ⊥ |U = u, d = 1]

)
If adversary Ext outputs a value u (given that d = 1), then the probability that A2 outputs 1
(Pr[A2 = 1 | d = 1, U = u,Ext 6= ⊥ ]) is equivalent to PrR,b [ 〈R, u〉 = b] where random variable R
denotes the choice of value r by A1 to compute b = 〈r, x∗〉. Note that extractor Ext is independent
of R and b and, thus, PrR,b [ 〈R, u〉 = b] = 1

2 . It follows

=
1

2
ε+

1

2
−

1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
PrR,b [ 〈R, u〉 = b] · Pr[Ext 6= ⊥ |U = u, d = 1] +

1

2
· Pr[Ext = ⊥ |U = u, d = 1]

)

=
1

2
ε+

1

2
− 1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
1

2
·
(

Pr[Ext 6= ⊥ |U = u, d = 1] + Pr[Ext = ⊥ |U = u, d = 1]
))

=
1

2
ε+

1

2
− 1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

1

2
· 1 =

1

2
ε

This establishes that adversary A2 is able to distinguish with noticeable probability since, by
assumption, the success probability ε of extractor Ext is noticeable.

It remains to show that A1 implements an unpredictable distribution. By Definition 4.3 point x
remains hidden given values z and m. As r is a uniformly random value chosen independently of x
and b is a single bit which can be guessed it follows that, indeed, A1 implements an unpredictable
distribution.

This concludes the proof of Claim 4.6. ♦
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We next show that with Claim 4.6 it follows that games Game1 and Game2 are negligibly close.
Boyle et al. [BCP14] who show that every indistinguishability obfuscator is also a differing-inputs
obfuscator for circuit families that differ on at most polynomially many points (we give their result as
Theorem 2.5 on page 7). As the circuits considered in Claim 4.6 differ on only a single point it follows
that their obfuscation under an indistinguishability obfuscator are computationally indistinguishable
and hence games Game1 and Game2 are negligibly close.

For games Game2 and Game3, the analysis is analogous. The only difference consists in m′ being
chosen at random. Thus, we can make use of Claim 4.6 with the sample adapted to output circuit
C[px,m

′]. This concludes the proof.

A second construction. In the next section we will construct a leakage resilient public-key
encryption scheme, for which we will need an extended construction of MB-AIPO that we present
next. Namely, we prove that the construction is still secure if, additionally, we return the AIPO
of x. Intuitively, that should not harm security, because, given an MB-AIPO for (x,m), it is easy to
construct an AIPO for x. However, making this statement formal requires some care.

Construction 4.7. Let AIPO be a secure AIPO and iO be a secure indistinguishability obfuscator
for all circuits in P/poly. We construct a weak MB-AIPO obfuscator MB-AIPO as follows. On
input a point address x and value m MB-AIPO constructs a point obfuscation px←$ AIPO(x). It
then constructs the following circuit

C[px,m](x∗) := if (px(x∗) = 1) then return m else return ⊥

and outputs an indistinguishability obfuscation of C[px,m] together with px.

We next show that also this adapted construction fulfills the security properties of a weak
MB-AIPO scheme.

Proof. We proceed by the following game hops where the first is identical to the MB-AIPO setting
where the adversary gets an honest obfuscation of point function Ix,m and the last is identical to the
dual setting where it gets as input an obfuscation of Ix,m′ for a uniformly random point value m′.

Game1 Is the original MB-AIPO game with b = 0. The adversary B2 gets ((iO(C[px,m]), px), z).

Game2 Instead of returning px, we construct a fresh point obfuscation of x, that is, the adversary
B2 gets ((iO(C[px,m]),AIPO(x)), z).

Game3 Instead of returning AIPO(x), we return AIPO(u) for a random point u, that is, the adversary
B2 gets ((iO(C[px,m]),AIPO(u)), z).

Game4 Instead of returning iO(C[px,m]), we return iO(C[px,m
′]) for a random m′, that is, the

adversary B2 gets ((iO(C[px,m
′]),AIPO(u)), z).

Game5 Instead of returning AIPO(u) for a random point u, we return AIPO(x), that is, the adversary
B2 gets ((iO(C[px,m

′]),AIPO(x)), z).

Game6 Instead of returning a fresh point obfuscation of x, we return px, that is, the adversary B2
gets ((iO(C[px,m

′]), px), z).

Note that the last game corresponds to the MB-AIPO-game where the point value is chosen uniformly
at random. Hence, it suffices to show that the six games are computationally indistinguishable.
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Game1 to Game2. We reduce to the security of the indistinguishability obfusactor iO. Note that
the two circuits px (given to the adversary in Game1) and AIPO(x) (given to the adversary in Game2)
are functionally equivalent as they are two independently generated obfusactions of point function
Ix. Let (B1,B2) be a distinguisher between Game1 and Game2. Then, we construct an adversary
against the security property of obfusactor iO analogously to the final game hop of the proof of
Lemma 3.2.

Game2 to Game3. We reduce to the security of the AIPO. Let (B1,B2) be a distinguisher between
Game2 and Game3. Then, we construct an adversary (C1, C2) against the AIPO as follows: C1 runs
B1 to obtain (z, x,m). It runs px←$ AIPO(x), computes C←$ iO(C[px,m]) and returns ((z, C), x).
That is, the auxiliary input returned by C1 is (z, C). C2 receives ((z, C), p) and runs B2 on (z, (C, p)).
C2 outputs whatever B2 outputs. If p is AIPO(x), then the input distribution to (B1,B2) is as in
Game2. If p is AIPO(u), then the input distribution to (B1,B2) is as in Game3. Hence, if (B1,B2) is
successful, then so is (C1, C2).

It remains to show that (C1, C2) is a valid adversary against AIPO, that is, that C1 is unpredictable.
This follows from the strong unpredictability of B1 and the security of the AIPO, that is, given a
predicator P against the strong unpredictability of C1, we will either construct an adversary against
the AIPO or a predictor R against the strong unpredictability of B1.

Let P be a predictor against the unpredictability of C1. Then, the R against the strong
unpredictability of B1 behaves as follows: It gets as input (z,m). It draws a random point v and
runs pv←$ AIPO(v), C←$ iO(C[pv,m]) and outputs whatever P(C, z) returns. We now need to
argue that P produces the right output, although v is used in the generation of C and not x. We
reduce to the AIPO security.

Assume that P has non-negligible probability of returning x when getting (iO(C[px,m]), z), but
not when getting (iO(C[pv,m]), z). Then, we construct an adversary (D1,D2) against the AIPO
security as follows. D1 runs B1 to get (z, x,m). It draws a random string r and sets b to be the
inner product of r and x. D1 outputs ((z,m, r, b), x), that is, its leakage is (z,m). Now, D2 gets
(z,m, r, b) as well as a point function p. It runs the predictor P(iO(C[p,m], z)) to obtain some value
x′. It tests whether p(x′) = 1. If not, it returns a random bit. If yes, then it returns 1 if and only if
the inner product of r and x′ is equal to b.

Now, to see that (D1,D2) breaks the AIPO, we first show that it is a valid adversary, i.e., that
D1 is unpredictable and then analyse the success probability. D1 is unpredictable because B1 is
strongly unpredictable and because b is a single bit that can be guessed. Let us turn to the success
probability of (D1,D2). If p is a point obfuscation of px, then P returns x with non-negligible
probability ν and in these cases, D2 returns 1 with probability 1, because the bit always matches.
Thus, if p is a point function of px, then D2 returns 1 with probability ν + (1− ν) · 12 = 1

2 + ν
2 . If p

is a point obfuscation of a random point pv, then, independently of the behaviour of P, D2 returns
1 with probability 1

2 . Hence, the success probability is non-negligible.

Game3 to Game4. We reduce to the MB-AIPO security of Construction 4.4 that we established
in Proposition 4.5. Let (B1,B2) be an adversary that distinguishes between Game3 and Game4,
where B1 is strongly unpredictable. We construct an adversary (C1, C2) against the weak MB-AIPO
property of Construction 4.4 as follows. C1 runs B1 and outputs whatever B1 outputs. C2 gets
(C, z). It draws a random value u and computes p←$ AIPO(u). It then runs B2 on ((C, p), z) and
outputs whatever B2 outputs. C1 is strongly unpredictable, because B1 is. Moreover, the simulation
is perfect. And hence, the advantage of (C1, C2) is as big as the advantage of (B1,B2).
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Game4 to Game5. Analogous to the game hop from Game2 to Game3.

Game5 to Game6. Analogous to the game hop from Game1 to Game2.

5 Leakage resilient public-key encryption

In this section, we will use the construction of weak MB-AIPO to build a leakage resilient public-
key encryption scheme. Our result is inspired by Canetti et al. who show that multi-bit point
obfuscation is tightly connected to symmetric encryption [CKVW10]. They give an intriguingly
simple construction of a symmetric encryption scheme from an MB-AIPO as follows. Encryption
under key k is defined as Enck(m) := MB-AIPO(k,m). Correspondingly, decryption works as
Deck(c) := c(k). Furthermore, they show how to build an MB-AIPO scheme from symmetric
encryption. They classify the relationships between the two primitives depending on the strength of
the MB-AIPO (resp., encryption scheme). In particular, they show that a version of MB-AIPO
obfuscation implies the existence of a symmetric key encryption scheme secure in the presence of
leakage (of the key) with the only requirement that the leakage computationally hides the secret key.

Let us recall a somewhat simplified version of their notion of semantic security of a symmetric
encryption scheme with weak keys and auxiliary inputs:

Definition 5.1 ([CKVW10]: Symmetric Encryption with Weak Keys and Auxiliary Inputs). Let
D = {Dλ = (Zλ, Xλ)}λ∈N be an unpredictable distribution ensemble. We say that an encryption
scheme has semantic security with keys chosen from {Xλ}λ∈N and auxiliary inputs from {Zλ}λ∈N if
there exists a PPT algorithm Sim(1λ, `) such that, for all PPT adversaries A we have:∣∣∣Pr

[
SEMX ,Sim0 (A, λ) = 1

]
− Pr

[
SEMX ,Sim1 (A, λ) = 1

]
−
∣∣∣ ≤ negl(λ)

where the games SEMX ,Sim0 for b = 0, 1 are defined via the following experiment:

1. (z, k)←$ Dλ and give z to A

2. Adversary A submits a query m. Set c0←$ Enck(m), c1←$ Sim(λ, |m|) and give cb to A.

3. The output of the game is the output of A.

Canetti et al. show that such a strong form of symmetric encryption exists if, and only if,
certain types of MB-AIPOs exist. Their type of MB-AIPO requires that the message m is drawn
independently from the point x. Their notion of MB-AIPO for independent messages is weaker than
our notion of MB-AIPO against strongly computationally unpredictable distributions as presented
in Definition 4.3 and, in particular, not affected by our impossibility result.

We improve the result by Canetti et al. by building a leakage-resilient encryption scheme,
that is public key rather than symmetric key. We first give the variant of IND-CPA security
with hard-to-invert key-leakage of a public-key encyption scheme E that we consider (we give the
pseudocode in Figure 2). In the IND-CPA game with adversary (A0,A1,A2) an initial adversary
A0 takes as input the secret key and outputs some leakage z. Adversary A1 is run on input the
public key pk and leakage z and outputs a single messages m together with some state st. Then,
according to a secret bit b either message m or a uniformly random message m′ of the same length
is encrypted yielding ciphertext c which is given together with state st to the final adversary A2

which needs to guess bit b.2

2The described real-or-random notion of IND-CPA can be shown to be equivalent upto a factor of 2 in the reduction
to the more frequently used left-or-right security notion [BDJR97].
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IND-CPAA0,A1,A2

E (λ)

b←$ {0, 1}
(pk, sk)←$ E.KGen(1λ)
z←$ A0(1

λ, sk)

(m, st)←$ A1(1
λ, pk, z)

if b = 0 then

c←$ E.Enc(m)

else

r←$ {0, 1}|m|

c←$ E.Enc(r)
b′←$ A2(1

λ, c, st)

return (1 = b′)

Figure 2: The IND-CPA game for public-key encryption schemes with hard-to-invert key leakage. An adversary is
deemed admissible if it is PPT and if the output of A0 computationally hides the key, that is, z has super-logarithmic
min-entropy.

Construction 5.2. Let λ be the security parameter, let AIPO denote a point obfuscater and iO
an indistinguishability obfuscator. Key generation picks a secret key sk←$ {0, 1}λ as a uniformly
random bit string of length λ. As public key it outputs a point obfuscation of x, that is, it outputs
pk←$ AIPO(x). To encrypt a message m one constructs the circuit

C[pk,m](x∗) := if (pk(x∗) = 1) then return m else return ⊥

and computes an indistinguishability obfuscation c←$ iO(C[pk,m]) which yields the ciphertext c.
For decryption one computes m← c(x).

Correctness of the scheme follows from the correctness criteria of indistinguishability obfuscation
and AIPO. We reduce IND-CPA security of the scheme to the security of weak MB-AIPO (note,
that an encryption is nothing but an obfuscation following Construction 4.4).

Proposition 5.3. If Construction 4.7 is a weak MB-AIPO, then Construction 5.2 is a IND-CPA
secure in the presence of computationally uninvertible leakage on the secret-key.

Proof. Assume that there exists a successful adversary A0,A1,A2. We are going to construct an
adversary B1,B2 against MB-AIPO.

Adversary B1 selects a random point x and runs adversary A0 on input the security parameter
and x to receive some leakage z. It constructs an AIPO obfuscation pk←$ AIPO(x) and runs
adversary A1 on input (1λ, pk, z) to receive a message m and state st. It outputs ((x,m), st).
Adversary B2 gets as input an obfuscation c that is either equal to MB-AIPO(x,m) or equal to
MB-AIPO(x,m′) as well as state st. It runs adversary A2 on input (1λ, c, st) and outputs whatever
A2 outputs.

Analysis. Our analysis proceeds in two steps. First, we show that if A0,A1,A2 is successful, then
so is B1,B2. Then, we prove that B1 implements a strongly unpredictable distribution as required
for weak MB-AIPO.

To see that B1,B2 are successful, we observe that the simulation is perfect. It remains to show
that B1 implements a strongly unpredictable distribution. We reduce to the unpredictability of A0.
Let P be a predictor against the strong unpredictability of B1, then we construct a predictor R
against the unpredictability of A0.
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R receives the leakage z that was created by A0. It draws a random point u and sets
pk←$ AIPO(u). Then, the predictor R runs A1 on (z, pk) to obtain a message m and some
state st. It runs P on (m, st) to get a value x′ and returns x′. Now, A1 gets as input AIPO(u)
instead of AIPO(x). We argue that, assuming the security of AIPO, P is also successful on this
distribution. Assume that P has non-negligible probability ν in returning x when A1 is run on
(z,AIPO(x)), but negligible probability ν in returning x when A1 is run on (z,AIPO(u)) for a random
u. Then, we construct an adversary (C1, C2) against the AIPO as follows. C1 runs A0 to create
(z, x). Then, C1 draws a random string r and sets b to be the inner product of r and x. C1 returns
((z, r, b), x). The second stage C2 gets ((z, r, b), p) and runs A1 on (z, p) to obtain a message m and
some state st. It runs P on (m, st) to get a value x′. It checks whether p(x′) = 1. If no, it returns a
random bit. If yes, then it returns 1 if and only if the inner product of x′ and r is equal to b.

Firstly, the first stage C1 is unpredictable because A0 is and b is only a single bit of x. Now,
let us see that (C1, C2) are also successful. If p is a point obfuscation of x, then P returns x with
probability ν and thus, C2 returns 1 with probability ν + (1− ν) · 12 . If p is a point obfuscation of x,
then, indepdently of the behaviour of P, C2 returns 1 with probability 1

2 thus yielding an overall
advantage of ν

2 which concludes the proof.
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In the following we present the two constructions (and their underlying assumptions) of AIPOs
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by Wee [Wee05] either do not consider auxiliary information or put additional restrictions on the
auxiliary information.

The first construction is due to Canetti [Can97] who bases his construction on a strong variant
of the DDH assumption. We here present the construction in the formulation of [BP12] and then
present the assumption it is based on.

Construction A.1 (AIPO obfuscator due to [Can97]). Let G := {Gλ}λ∈N be a group ensemble,
where each Gλ is a group of prime order pλ ∈ (2λ−1, 2λ). We define an obfuscator O for points in

the domain Zpλ as follows: Ix
O7→ C(r, rx), where r←$ Gλ is a random generator of Gλ, and C(r, rx)

is a circuit which on input i, checks whether rx = ri.

Assumption A.2 ([Can97],[BP12]). There exists an ensemble of prime order groups G := {Gλ}λ∈N
such that for any unpredictable distribution D = {Dλ = (Zλ, Yλ)}λ∈N with support {0, 1}poly(λ)×Zpλ ,
it holds that for all PPT algorithms A there exists a negligible function negl such that∣∣∣Prr←$ Gλ,←$ (z,x)←$ Dλ [A(z, r, rx) = 1]− Prr←$ Gλ,z←$ Zλ,u←$ Zpλ [A(z, r, ru) = 1]

∣∣∣ ≤ negl(λ)

The second candidate construction for AIPO is due to Bitansky and Paneth [BP12] who adapt
the point obfuscation scheme of Wee [Wee05] to allow for auxiliary input. Their construction is
based on an assumption on the existence of strong pseudorandom permutations. Let us recall
the underlying assumption (which generalizes the original assumption due to Wee [Wee05]) before
recalling the construction.

Assumption A.3 ([BP12]). There exists an ensemble of permutation families F = {Fλ = {f}}
such that for any unpredictable distribution ensemble D = {Dλ = (Zλ, Yλ)}λ∈N, the following two
distribution ensembles are also unpredictable:

• ((Zλ, f(Yλ), f);Yλ)

• ((Zλ, f); f(Yλ)),

where in both f←$ Fλ (independently of Dλ).

Based on Assumption A.3, Bitansky and Paneth show that the following construction yields an
AIPO obfuscator satisfying Definition 2.7 [BP12].

Construction A.4 ([BP12]). Let F be a family of permutations as given by Assumption A.3. AIPO
obfuscator O works as follows: given a point y ∈ {0, 1}λ, O samples 3λ permutations {fi}i∈[3λ] from

Fλ and 3λ strings {ri}i∈[3λ] from {0, 1}λ. For every i ∈ [3λ], let f i := fi ◦ fi−1 ◦ . . . ◦ f1 (where ◦
denotes composition). Obfuscator O outputs a circuit Cy that has hardcoded into it the randomness
of O, {fi, ri}i∈[3λ] and the bits {bi :=

〈
ri, f

i(y)
〉
}i∈[3λ], where 〈., .〉 denotes the inner product over

GF2. Circuit Cy outputs 1 on a point x if for all i ∈ [3λ] : bi =
〈
ri, f

i(x)
〉
; and 0 otherwise.

From AIPO to MB-AIPO. Constructions of point obfuscation schemes for point functions
with multi-bit output have first been studied by Canetti and Dakdouk [CD08] who show that
composability of plain AIPOs is a necessary condition for the existence of MB-AIPOs. To the best
of our knowledge no direct constructions of MB-AIPOs have been proposed in the literature.
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