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Abstract. In a recent celebrated breakthrough, Garg et al. (FOCS 2013) gave the first candidate
for so-called indistinguishability obfuscation (iO) thereby reviving the interest in obfuscation for
a general purpose. Since then, iO has been used to advance numerous sub-areas of cryptography.
While indistinguishability obfuscation is a general purpose obfuscation scheme, several obfuscators
for specific functionalities have been considered. In particular, special attention has been given
to the obfuscation of so-called point functions that return zero everywhere, except for a single
point α. A strong variant is point obfuscation with auxiliary input (AIPO), which allows
an adversary to learn some non-trivial auxiliary information about the obfuscated point α
(Goldwasser, Tauman-Kalai; FOCS, 2005).

Multi-bit point functions are a strengthening of point functions, where on α, the point function
returns a string β instead of 1. Multi-bit point functions with auxiliary input (MB-AIPO)
have been constructed from composable AIPO by Canetti and Dakdouk (Eurocrypt 2008) and
have been used by Matsuda and Hanaoka (TCC 2014) to construct CCA-secure public-key
encryption schemes and by and Bitansky and Paneth (TCC 2012) to construct three-round weak
zero-knowledge protocols for NP.

In this paper we present both positive and negative results. We show that if indistinguishability
obfuscation exists, then MB-AIPO does not. Towards this goal, we build on techniques by
Brzuska, Farshim and Mittelbach (Crypto 2014) who use indistinguishability obfuscation as a
means of attacking a large class of assumptions from the Universal Computational Extractor
framework (Bellare et al; Crypto 2013). On the positive side we introduce a weak version of
MB-AIPO which we deem to be outside the reach of our impossibility result. We prove that this
weak version of MB-AIPO suffices to construct a public-key encryption scheme that is secure
even if the adversary can learn an arbitrary leakage function of the secret key, as long as the
secret key remains computationally hidden. Thereby, we strengthen a result by Canetti et al.
(TCC 2010) that showed a similar connection in the symmetric-key setting.
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1 Introduction

The obfuscation of a program should hide its inner workings while preserving the functionality
of the program. Inspired by heuristic code-obfuscation techniques [CTL97], obfuscation turned
into a major research area of cryptography due to its manifold applications. The formal definition
of Virtual Black-Box Obfuscation (VBB) demands that an obfuscated program is as good as a
black-box that provides the same input-output behaviour as the program. Since the seminal paper
of Barak et al. [BGI+01, BGI+12], we know that this strong notion of obfuscation is generally not
achievable.

Hence, research focused on special-purpose obfuscators and, in particular, there are various
positive results for obfuscating so-called point functions px, that map all strings to 0, except for
a single string x that they map to 1 [Can97, CMR98, Fis99, Wee05, HMLS07, CD08, DKL09,
CKVW10, BC10, BP12]. Other positive examples include obfuscating re-encryption [HRsV07] and
encrypted signatures [Had10].

Point functions vs. point functions with multi-bit output. When considering point
function obfuscation, we need to make a clear distinction between plain point functions such as px
which map every input to 0 except for the single input x that is mapped to 1 and point functions
with multi-bit output (MBPF) such as px,m where input x is mapped to string m. Obfuscators for
plain point functions are constructed in [Can97, Wee05, HMLS07, DKL09].

Another important distinction is, whether the adversary is given some “leakage” about x, so-
called auxiliary information, as introduced by Goldreich and Tauman Kalai [GK05]. We note that
the obfuscator by Canetti [Can97] also allow for auxiliary information about the point x to leak
and the obfuscator by Dodis et al. [DKL09] allows for auxiliary information that hides the point
statistically.

Although very similar, obfuscation schemes for MBPFs seem to be harder to construct than
obfuscation schemes for plain point functions. Indeed, Canetti and Dakdouk initiated the study of
obfuscation for MBPFs and showed that such obfuscation schemes are closely related to composable
obfuscation schemes for plain point functions [CD08]. They show that obfuscators for MBPFs exist
if composable obfuscators for plain point functions exist. Moreover, they show that composability is
a non-trivial property. Both of these results carry over to obfuscation in the presence of auxiliary
information, as long as the auxiliary information does not allow to recover the point. We refer to this
type of auxiliary information as hard-to-invert or more specifically to computationally hard-to-invert.

Bitansky and Paneth [BP12] provide a clean treatment of auxiliary inputs and introduce the
notion of point obfuscation with auxiliary input secure against unpredictable distributions (AIPO).
Assuming composable AIPO they construct a three-round weak zero-knowledge protocol for NP.
Matsuda and Hanaoka [MH14] extend the notion of AIPO to the multi-bit point function case
(MB-AIPO) and show how to use it to build CCA-secure public-key encryption. We adopt the
notions AIPO and MB-AIPO in this paper.

Indistinguishability obfuscation. Simultaneously to constructing task-specific obfuscation
schemes, the quest for general obfuscators continued, and in a celebrated breakthrough [GGH+13],
Garg, Gentry, Halevi, Raykova, Sahai and Waters presented a candidate construction for indis-
tinguishability obfuscation (iO). The notion of indistinguishability obfuscation is weaker than
VBB-obfuscation and says intuitively that, for any two circuits that compute the same function,
their obfuscations are indistinguishable. As Goldwasser and Rothblum [GR07] establish, this seem-
ingly weak notion of obfuscation is actually the best possible notion of obfuscation. And indeed, the
work by Garg et al. [GGH+13] inspired simultaneous breakthroughs for hard problems in several
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sub-areas of cryptography [SW13, BCP14, ABG+13, GGHR14, HSW14, BZ13, BST13, BM14]
such as functional encryption, deniable encryption, two-round secure multi-party computation,
full-domain hash, poly-many hardcore bits for any one-way function and more.

Contribution. In this paper we give both positive and negative results. We show that the
existence of indistinguishability obfuscation contradicts the existence of multi-bit point function
obfuscation in the presence of computationally hard-to-invert auxiliary information (MB-AIPO),
a notion which was built upon in [BP12, MH14]. That is, if indistinguishability obfuscation
exists, then MB-AIPO does not exist and some of the results in [BP12, MH14] are based on a
false assumption. (We discuss the precise implications shortly.) Or, equivalently, if MB-AIPO
exists, then indistinguishability obfuscation does not exist and all candidate assumptions are
false [GGH+13, PST13, GLSW14a]. However, we do not have a candidate construction for MB-
AIPO1, but we do have candidate construction for iO. Therefore, given the current advancements in
the understanding of indistinguishability obfuscation—for example, Gentry et al. [GLSW14a] show
in a very recent work that iO can be based on the Multilinear Subgroup Elimination Assumption
thereby giving the first construction based on an instance-independent assumption—we consider
the existence of iO to be more likely.

In summary, we derive the following negative results.

Theorem [informal]. If indistinguishability obfuscation exists, then MB-AIPO and hence compos-
able AIPO do not exist.

To give a high-level idea of our proof, let us have a closer look at the result by Barak et
al. [BGI+01, BGI+12]. Technically, they show that multi-bit output point functions cannot be
VBB-obfuscated when “coupled” with a particularly chosen second function. Let pα,β be a multi-bit
output point function that maps all strings to 0, except for the single point α which the function
maps to the string β. Now, the second function is a test function Tα,β that takes as input a circuit
C and tests whether C(α) is equal to β. Now, if an adversary is given access to two oracles that
compute pα,β and Tα′,β′ then it cannot check whether the two functions “match”, i.e., whether
(α′, β′) = (α, β). In turn, when given a circuit C that computes pα,β , the adversary can run Tα,β on
C and simply check whether Tα,β(C) returns 1. Hence, the obfuscation of pα,β and the obfuscation
of Tα,β leak more information than two oracles for pα,β and Tα,β thus establishing a counterexample
for VBB obfuscation. A (multi-output-bit-)point function pα,β maps all strings to 0, except for a
single point α which the function maps to the string β. The second function is a test function Tα,β
that takes as input a circuit C and tests whether C(α) is equal to β. Now, if an adversary is given
access to two oracles that compute pα,β and Tα′,β′ then it cannot check whether the two functions
“match”, i.e., whether (α′, β′) = (α, β). In turn, when given a circuit C that computes pα,β, the
adversary can run Tα,β on C and simply check whether Tα,β(C) returns 1. Hence, the obfuscation
of pα,β and the obfuscation of Tα,β leak more information than two oracles for pα,β and Tα,β thus
establishing a counterexample for VBB obfuscation.

Although the starting point of Barak et al.’s result is a point function pα,β , the finally constructed
unobfuscateble function is a combination of the point function pα,β together with test function
Tα,β and thus their result is an impossibility result for general VBB obfuscation rather than an
impossibility for point function obfuscation.

1Note that the construction by Canetti and Dakdouk [CD08] is from composable AIPO for which we do not
have a candidate construction. The construction by Bitansky and Canetti [BC10, BC14] achieves composable point
obfuscation in the virtual grey-box setting (VGB) which implies MB-AIPO, but only for statistically hard-to-invert
leakage [MH14].
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However, we can think of either of the circuits as “auxiliary information” [GK05] and then, we
can rephrase their result as showing that either VBB obfuscation with auxiliary information of
multi-bit point functions is impossible, or VBB obfuscation with auxiliary information of the “test
function” is impossible.

To show our impossibility result, we construct an obfuscation of the test function Tα,β that
Barak et al. used to establish their impossibility result for VBB obfuscation [BGI+01, BGI+12]. The
hardness resides in proving that the obfuscation of Tα,β indeed hides all partial information about
α and β. Towards this goal, we build on techniques developed by Brzuska, Farshim and Mittel-
bach [BFM14] who show a similar 1-out-of-2 result, namely that indistinguishability obfuscation and
a large class of assumptions of the Universal Computational Extractor framework (UCE) [BHK13a]
are mutually exclusive. Namely, we obfuscate the test function via indistinguishability obfuscation
and prove that it is indistinguishable from an obfuscation of the zero circuit, the circuit that returns
0 on all inputs. As the zero circuit does not contain any information about α and β, we argue that
also an obfuscation of the test function Tα,β hides α and β computationally.

Intriguingly, it seems that our negative results do not carry over to the setting of obfuscating plain
point functions in the presence of auxiliary information, that is, to plain AIPO (assuming they are
not composable). As an analogy, consider the impossibility result by Barak et al. [BGI+01, BGI+12].
Also here, it seems crucial that the point function pα,β has a multi-bit output β. Imagine that Tα
takes the circuit C as input and returns 1 if and only if C(α) = 1, then an adversary could perform
binary search and recover α, even when only given access to Tα and pα as oracles2. Therefore, the
impossibility does not carry through to standard point functions.

On the positive side we show ways to work around our impossibility result. Firstly, note that
Canetti et al. [CKVW10] introduce weaker versions of MB-AIPO that are not affected by our
negative results. In particular, they use these weaker notions to build a symmetric-key encryption
scheme that is secure in the presence of hard-to-invert leakage about the key. We strengthen their
result insofar, as we present a notion that lies between their weaker versions of MB-AIPO and full
MB-AIPO.

Our weak notion of MB-AIPO requires that the auxiliary information computationally hides the
point x even when given the corresponding point value m for some multi-bit point function px,m.
This restriction seems sufficient to bypass our impossibility result and, intriguingly, assuming AIPO
and iO, we give a construction that achieves this notion of weak MB-AIPO. Finally, we use our
weak MB-AIPO construction to build a public-key encryption scheme which is leakage resilient in
the presence of hard-to-invert leakage of the key.

Notions of MB-AIPO. Lynn et al. [LPS04] initiate the study of obfuscators for point functions
with multi-bit output (MBPF) in the idealized random oracle model (ROM) and give a construction
of a VBB obfuscator in the ROM. Though they do not explicitly introduce auxiliary information, it
is easily seen that their construction allows for computationally hard-to-invert auxiliary information.
Canetti and Dakdouk [CD08] initiated the study of MBPF-obfuscators in the standard model
and showed that these exist if so-called t-composable obfuscators exist for plain point functions.
Building on these results Canetti and Bitansky [BC10, BC14] show that the point obfuscator by
Canetti [Can97] meets the requirements of a t-composable point function obfuscator down to a
strong variant of the decisional Diffie–Hellman assumption (DDH), namely the t-strong vector DDH
assumption. Note that the notion they achieve is the so-called notion of Virtual Grey-Box obfuscation

2Access to the testing function Tα suffices to recover α, even when not given access to pα neither as a circuit nor
as an oracle.
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(VGB)—the virtual grey box notion was introduced by Bitansky and Canetti [BC10, BC14] and
allows the simulator in the VBB setting to run in unbounded time—and not the stronger notion of
VBB obfuscation. In [CKVW10] Canetti et al. show that obfuscators for MBPFs are closely related
to symmetric encryption and that obfuscators for MBPFs secure in the presence of (certain types
of) auxiliary inputs imply the existence of (certain types of) leakage resilient symmetric encryption
schemes. Bitansky and Paneth [BP12] introduce a clean treatment of a form of auxiliary information
which hides the obfuscated point computationally (AIPO) and Matsuda and Hanaoka [MH14]
extend their notion to multi-bit output functions which is also the notion considered in this paper
(MB-AIPO). Using composable AIPOs Bitansky and Paneth construct a three-round weak zero-
knowledge protocol for NP based on composable AIPO [BP12] thereby circumventing a black-box
impossibility result [GK96]. Matsuda and Hanaoka (MH, [MH14]) introduce also an average case
variant of MB-AIPO and a more restricted version of MB-AIPO which requires the auxiliary input
to statistically hide the obfuscated point. They further study the relation between these average
case MB-AIPO notions and the worst-case notions of point obfuscation, that is, virtual black-box
and virtual grey-box. MH construct CCA secure public-key encryption from an IND-CPA secure
encryption scheme using MB-AIPO with computationally hard-to-invert auxiliary information, as
well as, how to achieve CCA security starting from a CPA-secure lossy encryption scheme and
using MB-AIPO with statistically hard-to-invert auxiliary information. In a very recent work,
Canetti et al. [CFPR14] show how to build fuzzy extractors using t-composable point obfuscation
secure in the presence of auxiliary information in the virtual grey-box setting. MH show that this
form of point obfuscation implies MB-AIPO with respect to statistically hard-to-invert auxiliary
information [MH14], it is, however, not known if it can be shown to also imply MB-AIPO with
computationally hard-to-invert auxiliary information.

Our negative result shows that if indistinguishability obfuscation exists that MB-AIPO with
computationally hard-to-invert auxiliary information does not exist. This applies to the first of
the twoe constructions of CCA secure PKE schemes by Matsuda and Hanaoka [MH14] as well
as to the construction of a three-round weak zero-knowledge protocol for NP by Bitansky and
Paneth [BP12].3 We leave as open problems, whether our negative results can be strengthened to
encompass further uses of MBPF obfuscation or, whether the above constructions can be based on
weaker notions of MBPF obfuscation not ruled out by our result.

Finally, we note that our result can be regarded as a random oracle uninstantiability result. One
can show that the VBB obfuscator given by Lynn et al. [LPS04] is a secure MB-AIPO in the random
oracle model, even if hard-to-invert leakage is allowed. Our results shows that, if indistinguishability
obfuscation exists, then there is no hash-function that instantiates the random oracle securely
according to this notion of security.

Point obfuscation and indistinguishability obfuscation. For our positive result, a con-
struction of weak MB-AIPO and subsequently a construction of a leakage resilient PKE scheme,
we combine AIPOs and indistinguishability obfuscation. In a recent work Brzuska and Mittelbach
(BM, [BM14]) show that combining these techniques allows to build powerful primitives and they
give the first construction of a standard model hash function which is UCE secure for a non-trivial
UCE notion which implies universal hardcore-functions and q-query correlated input secure hash
functions. Furthermore, we note that our notion of weak MB-AIPO is inspired by the UCE notion
introduced by BM: UCE secure with respect to strongly unpredictable sources.

3Bitanski and Paneth actually consider the stronger notion of composable AIPO which implies MB-AIPO. We also
note that the construction of 3-message witness-hiding protocols from AIPO [BP12] as well as the construction of a CCA
secure PKE scheme from a lossy encryption scheme and MB-AIPO with statistically hard-to-invert information [MH14]
are not affected by our result.
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In a recent and independent work, Hofheinz constructs fully secure constrained pseudorandom
functions [Hof14] in the random oracle model. A constrained PRF allows for the generation of keys
that enable the holder to evaluate the PRF on a set of points but not on all points, and various
forms have been suggested [BW13, BGI14, KPTZ13]. In contrast to previous works Hofheinz uses
point obfuscation and an extension he calls extensible testers—an extensible tester can be regarded
as an obfuscation of a set of points Z which can be combined with a known set Z ′ into a tester for
set (Z ∪ Z ′)—in conjunction with indistinguishability obfuscation to hide which points a given key
allows to honestly evaluate. This allows him to achieve full security without relying on complexity
leveraging which was used in previous constructions entailing a superpolynomial loss of security in
the adaptive setting. We note that unlike this work (and the work by BM) Hofheinz relies on the
simpler assumption of plain point obfuscation (that is, obfuscation without auxiliary inputs) and
shows how to build extensible testers based on the DDH-based point obfuscator by Canetti [Can97].

Further 1-out-of-2 results. Indistinguishability obfuscation has led to many surprising
breakthroughs in a number of sub-areas of cryptography [SW13, BCP14, ABG+13, GGHR14,
HSW14, BZ13, BST13, BM14]. Interestingly, the existence of indistinguishability obfuscation seems
to collide with the existence of other desirable primitives. Before our result for MB-AIPO, several
1-out-of-2 results have been established for iO. In particular, we already know of some notions of
obfuscation that are mutually exclusive with iO. Namely, Bitansky et al. [BCG+14] show that iO
implies the non-existence of average-case virtual black-box obfuscation with auxiliary input (AI-VBB)
for circuit families with super-polynomial pseudo-entropy. In particular, AI-VBB obfuscation is
impossible for all pseudo-random function families. Moreover, they also show that indistinguishability
obfuscation implies the non-existence of average-case virtual black-box obfuscation with a universal
simulator for circuit families with a superpolynomial amount of pseudo-entropy. Bitansky et
al. [BCPR14] show that if indistinguishability obfuscation exists, then for every extractable one-way
function family there is an (unbounded polynomial-length) auxiliary input distribution Z and
an adversary A such that all extractors fail for A. Boyle and Pass [BP13] strengthen this result
under the assumption of differing-input obfuscation (diO). If diO exists, then the quantifiers can be
reversed so that Z does not depend on the one-way function family.

Moreover, Bitansky et al. [BCPR14] show how to construct extractable one-way functions with
bounded auxiliary input under relatively standard assumptions. Finally, Marcedone et al. [MO14],
as well as Koppula et al. [KRW13] show that if indistinguishability obfuscation exists, then IND-
CPA-security of an encryption scheme does not imply its circular security, even if the cycles are of
arbitrary polynomial-length.

On the plausibility of iO. Barak et al. [BGI+01, BGI+12] introduce Indistinguishability
Obfuscation as a notion of obfuscation that is not ruled out by their impossibility result for virtual
black-box obfuscation. The many positive results using iO as well as the number of 1-out-of-2 results
indicate that indeed, indistinguishability obfusaction is a strong assumption and Komargodskiy
et al. [KMN+14] show that (even imperfect) indistinguishability obfuscation does not exist in
Pessiland [Imp95], a world where NP is hard but one-way functions do not exist. Their result does
not carry over to a world where one-way functions exist.

Garg et al. [GGHW13] show that differing-inputs obfuscation—a stronger form of indistinguish-
ably obfuscation also introduced in the seminal paper by Barak et al. [BGI+01, BGI+12]—is mutually
exclusive with some special-purpose obfuscator. As the particular special-purpose obfuscator that
they consider seems to be a relatively mild assumption, we interpret their result as a conditional
impossibility result for differing-inputs obfuscation. However, their result does not apply to indistin-
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guishability obfuscation. In particular, recent results show how to improve the assumptions that
underly indistinguishability obfuscation [PST13, BR14, BGK+14, AGIS14, GLSW14b] supporting
the plausibility of indistinguishability obfuscation.

Conclusion and future work. We show that indistinguishability obfuscation and MB-AIPO—
that is, MB-AIPO as used in [BP12, MH14] and with computationally hard-to-invert auxiliary
information—are mutually exclusive. It remains to investigate whether the positive results in [BP12,
MH14] can be salvaged through weaker notions of MB-AIPO or, perhaps, when combining AIPO and
iO in a similar way as we did in Section 4 to receive our positive result for weak MB-AIPO. We note,
however, that, at a first glance, it is not straightforward to base the applications in [BP12, MH14]
on our weakened notion of MB-AIPO4.

On the other hand, one might also ask whether our negative result can be extended to showing
that AIPO and iO are mutually exclusive. Currently, we do not know whether this is possible, but
such a result seems to require different techniques than the ones we use. Our result implies directly
that also differing-inputs obfuscation (diO) and MB-AIPO are mutually exclusive. Perhaps, using
different techniques, one might be able to first show that diO and AIPO are mutually exclusive, for
example, by showing that we can instantiate the special-purpose obfuscator by Garg et al. [GGHW13]
using AIPO.

We hope that our work sparks further interest in studying the connections between iO/diO on the
one hand and notions of (multi-bit) point obfuscation on the other hand. More generally, we believe
that it is an interesting question to identify notions of security that collide with indistinguishability
obfuscation and we expect even more results of that flavour in the future.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter, which all algorithms get implicitly and in
unary representation 1λ. By {0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗
the set of all bit-strings of finite length. The length of x is denoted by |x|. If x, y ∈ {0, 1}∗ are two
bit strings of the same length, then we denote their inner product over GF(2) by 〈x, y〉. For a finite
set X, we denote the action of sampling x uniformly at random from X by x←$ X, and denote
the cardinality of X by |X|. We call a randomized algorithm efficient or PPT if it runs in time
polynomial in the security parameter. We assume algorithms to be randomized, unless explicitly
stated differently. If A is randomized then by y ← A(x; r) we denote that A is run on input x and
with random coins r and produced output y. If no randomness is specified, then we assume that A
is run with freshly sampled uniform random coins, and write this as y←$ A(x). We often refer to
algorithms, or tuples of algorithms, as adversaries. If E is an event then we denote by Pr[E] its
probability and if X is a random variable, we denote its expectation by E[X]. We say a function
negl(λ) is negligible if negl(λ) ∈ λ−ω(1). We say a function poly is polynomial if poly ∈ λO(1).

If we speak of an ensemble or a family {Cλ}λ∈N of circuits, denoted by a calligraphic letter such
as C, we mean that Cλ contains a set of circuits for each security parameter λ ∈ N. We speak
of a sequence of circuits {Cλ}λ∈N to denote a non-uniform circuit, that is, one circuit for every
security parameter. By a distribution or an ensemble of distributions D = {Dλ}λ∈N we identify a

4Note that [BP12] use point functions that satisfy even stronger security guarantees than MB-AIPO for showing
the existence of 3-round protocols that are weakly zero-knowledge. Also note, that their second result, a 3-round
witness-hiding protocol, is not affected by our result. Likewise, our result only affects the CCA-encryption scheme
in [MH14] that is based on CPA-security and MB-AIPO. They also build a CCA-secure encryption scheme based on
lossy IND-CPA secure encryption and MB-AIPO with statistically hard-to-invert auxiliary input. This latter result is
not affected by our result.
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function ensemble {fλ : Sλ → [0, 1]}λ∈N with corresponding set Sλ that assigns each element in Sλ
a probability weight in [0, 1] such that

∑
x∈Sλ fλ(x) = 1 for all λ ∈ N. We consider only efficiently

sampleable distributions D by which we mean that a (possibly non-uniform) algorithm Samλ exists
that on input a uniformly random string r outputs a value in Sλ according to distribution Dλ, that
is, such that for all λ ∈ N and x ∈ Sλ

Prr [Samλ(r) = x] = fλ(x).

We often say we “run” a distribution or we simply write Dλ(1λ) to denote that the corresponding
sample algorithm is invoked on fresh random coins.

Obfuscation. Obfuscation has been extensively used within cryptography and it comes in many
different flavors. We now present the various definitions that we use in this paper. We start by
recalling the strongest definition of virtual black-box (VBB) obfuscation with auxiliary inputs due
to [BGI+01, GK05, BGI+12].

Definition 2.1 (Worst-case obfuscator with auxiliary input (VBB-AI)). A PPT O is a worst-case
obfuscator with auxiliary input for an ensemble C = {Cλ}λ∈N of poly-size circuits if it satisfies:

• Functionality. For any λ ∈ N and C ∈ Cλ, O(C) is a circuit which computes the same
function as C, that is, for all x it holds

Pr
[
C ′(x) = C(x)

∣∣C ′←$ O(C)
]

= 1.

• Polynomial slowdown. For any λ ∈ N and C ∈ Cλ, Pr[ |C ′| ≤ poly(|C|) |C ′←$ O(C) ] = 1.

• Virtual black-box. For any PPT adversary A there is a PPT simulator Sim such that for
all sufficiently large λ ∈ N, C ∈ Cλ and z ∈ {0, 1}poly(λ):∣∣∣Pr[A(z,O(C)) = 1]− Pr

[
SimC(z, 1|C|) = 1

]∣∣∣ ≤ negl(λ)

where the probability is taken over the coins of A, Sim and O.

Indistinguishability obfuscation. While VBB obfuscation as defined above provably does
not exist [BGI+01] for all circuits, weaker notions such as indistinguishability obfuscation may well
do. VBB obfuscation requires that for any PPT adversary given the code of some functionality
(and some auxiliary input) there exists a PPT simulator that given only black-box access to the
functionality (and as input the same auxiliary input) produces a computationally indistinguishable
distribution. An indistinguishability obfuscation (iO) scheme, on the other hand, only ensures that
the obfuscations of any two functionally equivalent circuits are computationally indistinguishable.
Indistinguishability obfuscation was originally proposed by Barak et al. [BGI+01] as a potential
weakening of virtual-black-box obfuscation. We recall the definition from [GGH+13].

Definition 2.2. A PPT algorithm iO is called an indistinguishability obfuscator for a circuit
ensemble C = {Cλ}λ∈N if the following conditions are satisfied:

• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ iO(1λ, C)

]
= 1.

• Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈ Cλ such that
C0(x) = C1(x) on all inputs x the following distinguishing advantage is negligible:∣∣∣Pr

[
D(1λ, iO(1λ, C1)) = 1

]
− Pr

[
D(1λ, iO(1λ, C0)) = 1

]∣∣∣ ≤ negl(λ) .
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Differing-inputs obfuscation. Differing-inputs obfuscation is closely related to indistinguisha-
bility obfuscation and also goes back to the seminal paper of Barak et al. [BGI+01, BGI+12].
While indistinguishability obfuscation requires circuits to be identical on all inputs, differing-inputs
obfuscation intuitively says that if a distinguisher can tell apart two obfuscated circuits then one
can efficiently extract a value on which the circuits differ. We here follow the definition of Ananth
et al. [ABG+13] and Boyle et al. [BCP14] and first define the notion of differing-inputs distributions
which in turn are then used to define differing-inputs obfuscation.

Definition 2.3 (Differing-inputs circuits). A sample algorithm (C0, C1, z)←$ Sam(1λ) that samples
circuits from a circuit ensemble C = {Cλ}λ∈N is said to be a differing-inputs distribution if for all
PPT algorithms A there is a negligible function negl such that:

Pr
[
C0(x) 6= C1(x) : (C0, C1, z)←$ Sam(1λ), x←$ A(1λ, C0, C1, z)

]
≤ negl(λ)

Definition 2.4 (Differing-inputs obfuscation). A PPT algorithm diO is a differing-inputs obfuscator
for a differing-inputs distribution Sam (for circuit ensemble {Cλ}λ∈N) if the following holds:

• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ diO(1λ, C)

]
= 1.

• Security. For any PPT distinguisher D, for any (C0, C1, z)←$ Sam(1λ) the following distin-
guishing advantage is negligible:∣∣∣Pr

[
D(1λ, diO(1λ, C1), z) = 1

]
− Pr

[
D(1λ, diO(1λ, C0), z) = 1

]∣∣∣ ≤ negl(λ) .

Boyle, Chung and Pass [BCP14] show that any general indistinguishability obfuscator is also a
differing-inputs obfuscator for certain classes of circuits. That is, any indistinguishability obfuscator
for all circuits in P/poly is a also a differing-inputs obfuscator for distributions over pairs of circuits
that differ on at most polynomially many inputs. We recall their Theroem:

Theorem 2.5 ([BCP14]). Let iO be an indistinguishability obfuscator for P/poly. Let ({Cλ}λ∈N, Sam)
be a differing-inputs distribution for which there exists a polynomial d : N→ N, such that

Pr
[
|{x : C0(x) 6= C1(x)}| ≤ d(λ)

∣∣∣ (C0, C1, z)←$ Sam(1λ)
]
≥ 1− negl(λ) .

Then iO is a differing-inputs obfuscator for ({Cλ},Sam).

Point obfuscation. Besides the general purpose indistinguishability obfuscator we consider
obfuscators for the specific class of so-called point functions. A point function px for some value
x ∈ {0, 1}∗ is defined as

px(s) :=

{
1 if s = x

⊥ o/w

In this paper, we consider a variant of point function obfuscators under auxiliary input which was
first formalized by Canetti [Can97]. We here give the definition from [BP12] presented in a game
based formulation. The first definition formalizes unpredictable distributions which are in turn used
to define obfuscators for point functions.

Definition 2.6 (Unpredictable distribution). A distribution ensemble D = {Dλ = (Zλ, Xλ)}λ∈N,
on pairs of strings is unpredictable if no poly-size (non-uniform) circuit can predict Xλ from Zλ.
That is, for every poly-size circuit sequence {Cλ}λ∈N and for all large enough λ:

Pr(z,x)←$ Dn [Cλ(z) = x] ≤ negl(λ)

10



Remark. Alternatively, we could use a variant of Definition 2.6 for uniform distributions D.
Jumping ahead, we note that our negative result, Theorem 3.1 also carries over to uniform distribu-
tions. Theorem 2.5 by Boyle et al. [BCP14] holds for both, uniform and non-uniform samplers. For
our construction of weak MB-AIPO in Proposition 4.5, AIPO for non-uniform samplers yields weak
MB-AIPO for non-uniform samplers, and AIPO for uniform samplers yields weak MB-AIPO for
uniform samplers. Likewise, for Proposition 5.3, weak MB-AIPO for non-uniform samplers yields a
leakage-resilient PKE secure against non-uniform adversaries, while weak MB-AIPO for uniform
samplers yields a leakage-resilient PKE secure against uniform adversaries. For ease of presentation,
we omit the explicit treatment of uniform and non-uniform adversaries.

Definition 2.7 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT
algorithm AIPO is a point obfuscator for unpredictable distributions if it satisfies the functionality
and polynomial slowdown requirements as in Definition 2.1, and the following secrecy property: for
any (efficiently sampleable) unpredictable distribution B1 over {0, 1}poly(λ) × {0, 1}λ it holds for any
PPT algorithm B2 that the probability that the following experiment outputs true for (B1,B2) is
negligibly close to 1

2 :

b←$ {0, 1}
(z, x0)←$ B1(1λ)

x1←$ {0, 1}λ

p←$ AIPO(xb)

b′←$ B2(1λ, p, z)
return b = b′

The probability is over the coins of adversary (B1,B2), the coins of AIPO and the choices of x1 and b.

Obfuscation for point functions with multi-bit output. While point functions only
return a single bit, a point function with multi-bit output (MBPF) px,m for values x,m ∈ {0, 1}∗ is
defined as

px,m(s) :=

{
m if s = x

⊥ o/w

For an MBPF px,m we call x the point address and m the point value. Similar to AIPO we can define
MB-AIPO via an unpredictable distribution—the notion was introduced by Matsuda and Hanaoka
[MH14] in an average case formulation called AIND-δ-cPUAI—where the distribution outputs a tuple
(x,m) (defining a point function px,m) together with auxiliary information z. We require that it
should be computationally infeasible to recover the point address x given auxiliary information z.
Thus, in the MBPF setting we define the unpredictable distribution as D = {Dλ = (Zλ, Xλ,Mλ)}λ∈N
but still require that the point address (aka., x) remains hidden given the auxiliary input. From
an MB-AIPO obfuscator we now require that the obfuscation of px,m is indistinguishable from an
obfuscation with a changed point address m′ where m′ is chosen uniformly at random. Intuitively
this captures that the obfuscation does not reveal any information about the point value.

Definition 2.8 (Auxiliary input point obfuscation for unpredictable distributions (MB-AIPO)). A
PPT algorithm MB-AIPO is a multi-bit point obfuscator for unpredictable distributions if it satisfies
the functionality and polynomial slowdown requirements as in Definition 2.1, and the following
secrecy property: for any (efficiently sampleable) unpredictable distribution B1 over {0, 1}poly(λ) ×
{0, 1}λ × {0, 1}poly(λ) it holds for any PPT algorithm B2 that the probability that the following
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experiment outputs true for (B1,B2) is negligibly close to 1
2 :

b←$ {0, 1}
(z, x,m0)←$ B1(1λ)

m1←$ {0, 1}λ

p←$ MB-AIPO(x,mb)

b′←$ B2(1λ, p, z)
return b = b′

The probability is over the coins of adversary (B1,B2), the coins of AIPO and the choices of x1 and b.

Remark. Definition 2.8 was used in [BP12] and in [MH14]. One could modify the MB-AIPO
definition by requiring that the obfuscation of point function px,m is indistinguishable from an
obfuscation of px′,m′ . That is, instead of only adapting the point value, we could conceive a
notion in which the honest obfuscation should be indistinguishable from one where both the point
address and the point value are chosen uniformly at random. In Section 3, we show that, assuming
indistinguishability obfuscation exists, neither of the two definitions can be met.

Average-case point obfuscation and statistical unpredictability. The notions for point
obfuscation as defined above is over arbitrary high-entropy distributions over the point address.
Instead, one could consider a slightly weaker variant where the point address is sampled according
to the uniform distribution. Indeed, Matsuda and Hanaoka [MH14] recently presented constructions
of CCA-secure public-key encryption schemes based on this version of point obfuscation. They
call AIPO with arbitrary high-entropy samplers a worst-case notion, and AIPO with the uniform
distribution an average-case notion and denote it by AIND-δ-cPUAI. Our impossibility result also
applies to AIND-δ-cPUAI.

A second avenue to weaken the security requirements of point obfuscators is to require that the
auxiliary input needs to hide the point address statistically. We call unpredictable distributions for
which this is the case statistically unpredictable. Our impossibility result does not carry over to this
notion.

3 IO Implies the Impossibility of MB-AIPO

In the following we present our negative result, namely that indistinguishability obfuscation and
multi-bit point function obfuscation in the presence of auxiliary information (MB-AIPO) are mutually
exclusive. We discuss implications of our result in Section 3.2.

3.1 IO and MB-AIPO are Mutually Exclusive

Multi-bit point obfuscation with auxiliary inputs is a powerful primitive and has, for example, been
used to construct CCA-secure encryption schemes [MH14] and to circumvent black-box impossibility
results for three-round weak zero-knowledge protocols forNP [BP12]. Our following result intuitively
says that, if indistinguishability obfuscation exists, then MB-AIPOs (as defined in Definition 2.8)
cannot exist. The result remains valid even if we consider average case MB-AIPOs (where point
address x is chosen uniformly at random). Technically our result builds on techniques used by
Brzuska, Farshim and Mittelbach (BFM; [BFM14]). BFM show a similar 1-out-of-2 result, namely
that if indistinguishability obfuscation exists, then certain kinds of UCE-secure hash functions,
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a hash function security notion recently introduced in [BHK13a]) cannot exist [BFM14]. In the
UCE-framework, a hash function H gets a hash key hk and an input x and outputs y. BFM obfuscate
the circuit

(H(·, x) = y),

that given a hash-key hk checks whether hk “matches” the pair (x, y), that is, whether H(hk, .) maps
x to y. They show that, if |hk| < 2 |y|, then it is likely (in the corresponding experiment) that the
circuit is the 0-circuit that outputs 0 on all inputs and hence, the indistinguishability obfuscation of
this circuit does not leak x.

We will use a similar technique to hide the point address. In order to break AIPO with
indistinguishability obfuscation, we need to show that, given the auxiliary input, it is hard to recover
the point address, but that, given the auxiliary input and the point function, one can distinguish.
Similarly, for UCEs, one needs to show that, given some leakage about x and y, it is hard to recover
x, but that, given the leakage and the hash-key hk, one can distinguish whether y was generated by
applying H(hk, .) to x or whether y was drawn at random.

Showing that an indistinguishability obfuscation hides a certain value is usually the crux in
proofs involving iO. For this, we construct a new technique which may be of independent interest
and is given as Lemma 3.2.

Theorem 3.1. If indistinguishability obfuscation exists for all circuits in P/poly, then average-case
obfuscation for multi-bit point functions secure under auxiliary input (MB-AIPO) does not exist.

To prove Theorem 3.1 we use indistinguishability obfuscation to construct an unpredictable
distribution B1 together with an adversary B2 that, given leakage from the unpredictable distribution
can distinguish between point obfuscations from the unpredictable distribution and point obfuscations
from the uniform distribution.

We first give the unpredictable distribution B1 which takes as input the security parameter 1λ and
outputs two values x, z together with some leakage L. Here leakage L will be the indistinguishability
obfuscation of a predicate circuit that takes as input a description of a function f , evaluates the
function on a hard-coded value x, runs the result through a pseudo-random generator PRG and
finally compares this result with some hard-coded value y. That is, we consider the circuit

C[x, y] := iO
(
PRG(uT(·, x)) = y

)
,

where uT denotes a universal Turing machine (or rather a universal circuit taking as input a circuit
description of a fixed length). This use of a PRG allows us later to argue that if value y is chosen
uniformly at random that with high probability it falls outside the image of the PRG and thus the
circuit implements the zero-circuit. We note that our usage of the PRG is somewhat similar to
the use by Sahai and Waters in their construction of a CCA-secure PKE scheme from iO [SW14]
as well as the range-extension of a UCE1-secure hash-function by Bellare et al. [BHK13b] used to
strengthen the impossibility result by Brzuska et al. [BFM14].

We next formally define the unpredictable distribution. For this let n and m be two polynomials
and let PRG : {0, 1}n(λ) → {0, 1}2n(λ) be a pseudo-random generator with stretch 2. Note that we
do not need to additionally assume the existence of PRGs as AIPOs (and in particular MB-AIPOs)
already imply one-way functions.5 Let, furthermore, uT(·, x) be a universal Turing machine that

5 Canetti et al. [CKVW10] show that multi-bit point function obfuscation is tightly related to symmetric encryption
and that MB-AIPO implies the existence of (leakage-resilient) IND-CPA symmetric encryption schemes.
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on input a description of a function f outputs f(x). We define the unpredictable distribution as
((x, z), L) computed as:

z←$ {0, 1}n(λ)

y ← PRG(z)

x←$ {0, 1}m(λ)

L←$ iO
(
PRG(uT(·, x)) = y

)
output: ((x, z), L)

We now present the adversary B2 that, given the leakage from B1, breaks the security of the
multi-bit point obfuscator. We then argue that B1, indeed, implements an unpredictable distribution.
Adversary B2 gets values p and L as input, where p is either a point obfuscation of px,z sampled
according to B1 or an obfuscation for px,u for a uniformly random value u. Adversary B2 computes
L(p) and outputs the result. If p is an obfuscation of px,z, then B2 computes the predicate function

PRG(px,z(x)) = y

where y was computed as PRG(z). Thus, it will always output 1. If, however, p is an obfuscation of
px,u, then with overwhelming probability over the choice of u, adversary B2 returns 0. It follows
that (B1,B2) break the security of the obfuscator with overwhelming probability. We now prove
that (B1,B2) is also a valid pair of adversaries, that is, that B1 is an unpredictable distribution.
In the following lemma, we show that, under the assumption of indistinguishability obfuscation,
the leakage computed by B1 is indistinguishable from an obfuscated zero circuit, the circuit that
returns 0 on all inputs. As the zero circuit does not leak any information about y, the leakage is
unpredictable.

Lemma 3.2. Let n,m be two polynomials. For x ∈ {0, 1}λ, let uT(·, x) be a universal Turing
machine that on input a description of a function f ∈ {0, 1}m(λ) outputs f(x).

If PRG : {0, 1}n(λ) → {0, 1}2n(λ) is a pseudo-random generator and iO is a secure indistinguisha-
bility obfuscator for all circuits in P/poly, then for all efficient PPT distinguishers Dist there exists
a negligible function negl such that∣∣∣Pr

[
Dist

(
1λ, iO

(
PRG(uT(., x)) = PRG(y)

))
= 1
]
− Pr

[
Dist(1λ, iO(0)) = 1

]∣∣∣ ≤ negl(λ)

where the first probability is over the random choice of x and y and the coins of iO and Dist and the
second probability is over the coins of iO and Dist.

Proof. We bound the distinguishing probability in Lemma 3.2 with the security of the PRG and the
indistinguishability obfuscator iO. We consider the following hybrids (which are also depicted in
Figure 1):

Game1: The game chooses a random value z and computes y ← PRG(z). It constructs the predicate
circuit Cx,y ← (PRG(uT(., x)) = PRG(y)) and an obfuscation C̃ =←$ iO(Cx,y). It then calls
distinguisher Dist on input C̃ and outputs whatever Dist outputs.

Game2: As before, except that the game chooses a uniformly random value y. It constructs the
predicate circuit Cx,y ← (PRG(uT(., x)) = y) and an obfuscation C̃ = ←$ iO(Cx,y). It then
calls distinguisher Dist on input C̃ and outputs whatever Dist outputs.
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Game1(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y ← PRG(z)

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game2(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game3(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

abort if (x, y) ∈ Bad(λ)

Cx,y ← (PRG(uT(., x)) = y)

C̃ =←$ iO(Cx,y)

b′←$ Dist(1λ, C̃)

return (1 = b′)

Game4(λ)

z←$ {0, 1}n(λ)

x←$ {0, 1}m(λ)

y←$ {0, 1}|PRG(z)|

abort if(x, y) ∈ Bad(λ)

C̃ =←$ iO(0)

b′←$ Dist(1λ, C̃)

return (1 = b′)

PRG Bad iO

Figure 1: The hybrids for the proof of Claim 3.2. We have highlighted the changes between the games with a
light-grey background.

Game3: As before, except that the game terminates if there there exists a value f ∈ {0, 1}m(λ)

such that Cx,y(f) = 1. We denote this event by (x, y) ∈ Bad(λ) if for values (x, y) such a
value f exists.

Game4: As before, except that now an obfuscation of the constant zero-circuit C̃←$ iO(0) is
constructed.

We bound the difference between Game1 and Game2 by the security of the PRG. Game2 and
Game3 are, by the fundamental lemma of the game-playing technique [BR06], identical until event
Bad(λ) occurs. We now prove that Bad(λ) only happens with negligible probability. For a uniformly
random pair of values (x, y) we have that the probability that there exists a function f such that
PRG(uT(f, x)) = y is upper bounded by the probability that y is in the image of the PRG. As the
PRG maps n(λ) bits to 2n(λ) bits, the probability that a random y is in the image of the PRG is
upper bounded by 2−n(λ).

Finally, we bound the difference between Game3 and Game4 by the security of the indistinguisha-
bility obfuscator iO by noting that if (x, y) /∈ Bad(λ) then circuit Cx,y encodes the constant zero
circuit. We now explain this formally.

Firstly, let us externalize some of the variables that the games use and introduce a unified
notation for Game3 and Game4. For i ∈ {3, 4}, let Gamei[x, y](λ) be equal to the game Gamei(λ)
where the game chooses values x and y. We define A[x, y](C) to be an adversary against the
indistinguishability obfuscator iO that gets a circuit C as input, where C is either an obfuscation of
circuit Cx,y or an obfuscation of the constant zero circuit 0. Adversary A[x, y](C) runs distinguisher
D on input (1λ, C) and outputs whatever D outputs.

If C = Cx,y then adversary A[x, y](C) perfectly simulates game Game3[x, y](λ) and if C = 0
then the adversary simulates Game4[x, y](λ). Thus, we can rewrite the difference between the game’s
distributions

Pr[Game3(λ)]− Pr[Game4(λ)]

as

Ex,y
[

Pr[Game3[x, y](λ)]
]
− Ex,y

[
Pr[Game4[x, y](λ)]

]
Note that x and y are chosen such that (x, y) /∈ Bad(λ). Due to the linearity of expectation we can
further rearrange this as

=Ex,y

[
Pr[Game3[x, y](λ)]− Pr[Game4[x, y](λ)]

]
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=Ex,y

[
Pr
[
A[x, y](1λ, iO(Cx,y)) = 1

]
− Pr

[
A[x, y](1λ, iO(0)) = 1

]]
=Ex,y

[
AdvioiO,A[x,y],Cx,y ,0(λ)

]
≤max

x,y
AdvioiO,A[x,y],Cx,y ,0(λ)

By the security of the indistinguishability obfuscator, the advantage of any efficient adversary is
negligible and, hence, also maxx,y Adv

io
iO,A[x,y],Cx,y ,0(λ) is negligible.

3.2 Implications

Average case MB-AIPO is a relaxed notion of virtual-black-box point obfuscation in the presence of
auxiliary input and in particular implied by it [MH14]. Consequently our impossibility result also
shows that VBB obfuscation of multi-bit point functions secure in the presence of auxiliary input
cannot exist if indistinguishability obfuscation exist:

Corollary 3.3. If indistinguishability obfuscation exists, then VBB multi-bit point obfuscation
secure with auxiliary input does not exist.

We note that VBB multi-bit point obfuscation is also often referred to as Digital Lockers.

Canetti and Dakdouk [CD08] study the composition of point function obfuscation and show
that composable AIPO implies the existence of composable MB-AIPO. And hence, applying our
result we get the following corollary.

Corollary 3.4. If indistinguishability obfuscation exists, then composable AIPO does not exist.

Several results have been based on the existence of MB-AIPO (or composable AIPO). Matsuda
and Hanaoka give a CCA secure public-key encryption scheme based on MB-AIPO [MH14] and
Bitansky and Paneth give a three-round weak zero-knowledge protocol for NP based on composable
AIPO [BP12].6 In Section 4 we present a weakened notion of MB-AIPO that we deem to fall outside
our impossibility result. It is not clear whether this weaker notion suffices for the applications
in [BP12, MH14] and such a proof is not straightforward, so it remains to study whether other weak
variants of MB-AIPO could be used.

A random oracle uninstantiability. Lynn et al. [LPS04] construct VBB obfuscators for
multi-bit point functions in the idealized random oracle model and their result can easily be seen to
encompass auxiliary information. Thus, assuming indistinguishability obfuscation exists our result
rules out the existence of a standard model hash function that can instantiate the random oracle in
their construction.

Corollary 3.5. If indistinguishability obfuscation exists, then the multi-bit output point function
obfuscator by Lynn et al. [LPS04] cannot be instantiated in the standard model so that it achieves
VBB security with auxiliary input.

6We note that the construction of 3-message witness-hiding protocols from AIPO [BP12] as well as the construc-
tion of a CCA secure PKE scheme from lossy encryption schemes and MB-AIPO with statistically hard-to-invert
information [MH14] are not affected by our result.

16



3.3 On Circumventing our Impossibility Result

Matsuda and Hanaoka [MH14] present a CCA-secure PKE scheme that is based on MB-AIPO and,
thus, ruled out by our impossibility result, if indistinguishability obfuscation exists. However, they
also present a version of a CCA-secure PKE scheme based on the weaker assumption of MB-AIPO
that is secure only with respect to statistically unpredictable distributions. Indeed, our techniques
do not carry over to ruling out MB-AIPO for statistically unpredictable distributions, because the
way in which we use indistinguishability obfuscation, inherently relies on computational security.
Switching to a statistical notion of security was also proposed for UCEs in order to salvage a large
number of applications [BFM14, BHK13a].

Moreover, Canetti et al. [CKVW10] present notions of MB-AIPO in the setting of computational
unpredictability that are not affected by our impossibility result. In the following section, we present
a variant of MB-AIPO that is stronger than theirs but weaker than the definition that we show
to be impossible. Namely, we strengthen the assumption on unpredictable distributions to remain
unpredictable even in case the point value m is given. We call this notion strong unpredictability
and, indeed, give a construction based on AIPO and indistinguishability obfuscation. An analogous
notion of unpredictability has recently been introduced by Brzuska and Mittelbach in the context of
UCE security [BM14].

4 Weak MB-AIPO from iO and AIPO

In this section we show that, despite the negative results from the previous section, point obfuscation—
in particular AIPO—and indistinguishability obfuscation (iO) together make a powerful team. Our
first observation is that we can use iO to construct a point obfuscation scheme which can securely
obfuscate point functions given as input the point function, rather than the point address. This
is inherently different from all previous point obfuscation schemes [Can97, CMR98, Fis99, Wee05,
CD08, CKVW10, BC10, BP12] which always take the point address as input. We call this sort of
obfuscator point-independent as the obfuscator works independently of the actual point (in fact it
may be computationally infeasible for the obfuscator to recover the point from its input). Using a
similar technique we then construct a mild form of a multi-bit point function obfuscation scheme
secure in the presence of auxiliary input that we call weak MB-AIPO. Later, in Section 5, we use
our construction of weak MB-AIPOs to construct a public-key encryption scheme that is leakage
resilient with respect to any computationally hard-to-invert leakage of the secret-key.

4.1 Point-independent Point Function Obfuscation

Goldwasser and Rothblum [GR07] introduce the notion of best-possible obfuscation. Intuitively
an obfuscator is a best-possible obfuscator if an obfuscation leaks as little information about the
original program as any functionally equivalent circuit. In the context of point functions this
means that a best-possible obfuscator for point functions (or for more general function classes)
on input a point function px would need to output an obfuscated point function which is as least
as good as an obfuscation produced by, for example, an AIPO obfuscator on input the point
address x. Goldwasser and Rothblum show that if we consider PPT obfuscators, then the notions of
best-possible obfuscation and indistinguishability obfuscation are equivalent [GR07]. Let us recall
the definition of best-possible obfuscation:

Definition 4.1 ([GR07]: Best-possible obfuscation). A PPT O is a best-possible obfuscator for an
ensemble C = {Cλ}λ∈N of families of poly-size circuits if it satisfies the preserving functionality and
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polynomial slowdown properties as in Definition 2.1, and also has the following property (instead of
the virtual black-box property).

• Computational best-possible obfuscation. For any polynomial size learner L, there
exists a polynomial size simulator Sim such that for every large enough input length λ, for any
circuit C1 ∈ Cλ and for any circuit C2 ∈ Cλ that computes the same function as C1 and such
that |C1| = |C2| it holds for any PPT adversary A that∣∣∣Pr

[
A(1λ,L(O(C1))) = 1

]
− Pr

[
A(1λ,Sim(C1)) = 1

]∣∣∣ ≤ negl(λ)

Thus, if iO is an indistinguishability obfuscator for all circuits in P/poly, then the mapping
C 7→ iO(C) yields a point-independent point function obfuscator since the indistinguishability
obfuscation of point function px must not leak more about x than what can be extracted from
the “best possible” point-obfuscation scheme on input x. Furthermore, if AIPO exists, then a
best possible point obfuscation is at least as good as AIPO and hence, our construction yields a
point-independent obfuscation scheme that is secure in the presence of auxiliary inputs.

4.2 Weak MB-AIPO from AIPO and iO

In the following we give a relaxed definition of MB-AIPO and subsequently give a construction based
on plain AIPO and indistinguishability obfuscation. We weaken the original MB-AIPO definition
(Definition 2.8) by requiring that an obfuscation must only be secure for unpredictable distributions
that hide the point address even given the the point value m. We call this notion of unpredictability
strong unpredictability and note that an analogous notion has recently been introduced in the context
of UCE security [BM14]. If we restrict adversaries to strong unpredictability we yield an MB-AIPO
notion that we call weak MB-AIPO.

Definition 4.2 (Strongly unpredictable distribution). We say that a distribution ensemble D =
{Dλ = (Zλ, Xλ,Mλ)}λ∈N, on triples of strings is strongly unpredictable if no poly-size (non-uniform)
circuit family can predict Xλ from (Zλ,Mλ). That is, for every sequence of poly-sized circuits
{Cλ}λ∈N and for all large enough λ:

Pr(z,x,m)←$ Dn [Cλ(z,m) = x] ≤ negl(λ)

Definition 4.3 (Weak MB-AIPO). A PPT algorithm AIPO is a weak multi-bit point obfuscator if
it is a MB-AIPO for strongly unpredictable distributions.

Next, we present our construction of a weak MB-AIPO scheme. The idea will be to use a
plain AIPO (for the point address x). We then construct a circuit which evaluates the AIPO and
outputs m if, and only if, this evaluation returns 1. The construction will be the indistinguishability
obfuscation of that circuit.

Construction 4.4. Let AIPO be a secure AIPO and iO be a secure indistinguishability obfuscator
for all circuits in P/poly. We construct a weak MB-AIPO obfuscator MB-AIPO as follows. On
input a point address x and value m MB-AIPO constructs a point obfuscation px←$ AIPO(x). It
then constructs the following circuit

C[px,m](x∗) := if (px(x∗) = 1) then return m else return ⊥

and outputs an indistinguishability obfuscation of C[px,m].
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Proposition 4.5. If AIPO exists and if iO is a secure indistinguishability obfuscator for all circuits
in P/poly then the above construction is a weak MB-AIPO.

Proof. Consider an adversary (B1,B2) against the weak MB-AIPO property of MB-AIPO where
B1 implements an unpredictable distribution, that is, on input the security parameter it outputs
a point function description (x,m) together with some auxiliary information z. We proceed to
proof the result in three hybrid steps where the first game is identical to the MB-AIPO game where
adversary B2 receives an honest obfuscation of point function px,m and the last game is identical
to the MB-AIPO game where the adversary receives an obfuscation of point function px,m′ for a
uniformly random m′:

Game1: Is the original MB-AIPO game where B1 outputs (z, (x,m)), that is, a point description
(x,m) and auxiliary information z and where B2 receives as input (iO(C[px,m]), z).

Game2: Is identical to before but now B2 receives an indistinguishability obfuscation of the constant
zero circuit 0.

Game3: Is the original MB-AIPO game where B1 outputs (z, (x,m)), that is, a point description
(x,m) and auxiliary information z and where B2 receives as input (iO(C[px,m

′]), z) where m′

is a uniformly random string.

We, thus, need to show that the difference between the above games is negligible. For the
difference between games Game1 and Game2 we consider the following claim.

Claim 4.6. Let Sam be the following sample algorithm. It runs adversary B1 to receive point
function description (x,m) and auxiliary information z. It constructs an AIPO px←$ AIPO(x) and
then builds circuit C[px,m] as in the construction. Additionally it pads the constant zero circuit 0
to the same length as C[px,m]. It outputs (C[px,m],0, z). If AIPO is secure then this distribution
of pairs of circuits is differing-inputs.

Assume this is not the case. Then there exists an extractor Ext that on input (C[px,m],0, z)
outputs a target value τ (with noticeable probability) such that C[px,m](τ) 6= 0(τ) and, hence,
τ = x. We will use this extractor to break the security of the AIPO scheme, that is, we construct
(A1,A2) as an adversary against the security of AIPO. Adversary A1 runs B1 to receive point
function description (x,m) and auxiliary information z. It chooses a random value r and computes
b← 〈r, x〉. It outputs (x, (z,m, r, b)). Adversary A2 gets as input a (z,m, r, b) and a point function
obfuscation p which is either an obfuscation for px or for pu for a uniformly random u. It constructs
circuits C[p,m] and the constant zero circuit 0 and runs extractor τ←$ Ext(C[p,m],0, z). If τ = ⊥
it flips a bit and outputs it. Else, if τ 6= ⊥, then p(τ) = 1 and, hence, value τ is either equal to x or
to u. In this case adversary A2 outputs 1 if 〈τ, r〉 = b and 0 otherwise.

Analysis. Let us denote by ε the probability that Ext outputs a value τ 6= ⊥ in the differing-inputs
game. Then, if τ = x adversary A2 will always output 1 as, by construction, 〈x, r〉 = b. If, on the
other hand, τ = u, then adversary A2 will output 1 only with probability 1

2 as u and r are randomly
chosen values and r remains hidden from Ext. Thus, our adversary has a distinguishing advantage of
1
2ε. In the following we make this intuition formal. We note that our simulation technique is inspired
by Brzuska and Mittelbach [BM14] who build variants of UCE security based on puncturable PRFs,
iO and AIPO and that the formal analysis is almost taken verbatim.

Let us denote by d = 0 the event that in the AIPO-game, the honest point function px gets
obfuscated, and let d = 1 describe the event that in the AIPO-game, pu gets obfuscated for a random
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value u. Let further ε be the probability that Ext returns a value τ 6= ⊥ in the differing-inputs game,
that is, ε := Pr[⊥ 6= Ext | d = 0] (note that the in the differing-inputs game the obfuscated point
function is always px). For readability we will drop the inputs given to adversaries Ext and A2 in the
following formal treatment. We can now consider the distinguishing probability of our adversary A2

Pr[A2 = 1 | d = 0]− Pr[A2 = 1 | d = 1]

= Pr[A2 = 1 | d = 0,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 0] +

Pr[A2 = 1 | d = 0,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 0]− Pr[A2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
· Pr[Ext = ⊥ | d = 0]− Pr[A2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
·
(

1− Pr[Ext 6= ⊥ | d = 0]
)
− Pr[A2 = 1 | d = 1]

=
1

2
· Pr[Ext 6= ⊥ | d = 0] +

1

2
− Pr[A2 = 1 | d = 1] =

1

2
ε+

1

2
− Pr[A2 = 1 | d = 1]

Let U denote a random variable describing the choice of point function pu (in case d = 1) and note
that u is chosen from {0, 1}λ.

=
1

2
ε+

1

2
− Pr[A2 = 1 | d = 1,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 1] +

Pr[A2 = 1 | d = 1,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 1]

=
1

2
ε+

1

2
−

1

2λ

∑
u∈{0,1}λ

(
Pr[A2 = 1 | d = 1, U = u,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ |U = u, d = 1] +

Pr[A2 = 1 | d = 1, U = u,Ext = ⊥ ] · Pr[Ext = ⊥ |U = u, d = 1]

)
If extractor Ext outputs a value u (given that d = 1), then the probability that A2 outputs 1
(Pr[A2 = 1 | d = 1, U = u,Ext 6= ⊥ ]) is equivalent to PrR,b [ 〈R, u〉 = b] where random variable R
denotes the choice of value r by A1 to compute b = 〈r, x∗〉. Note that extractor Ext is independent
of R and b and, thus, PrR,b [ 〈R, u〉 = b] = 1

2 . It follows

=
1

2
ε+

1

2
−

1

2λ

∑
u∈{0,1}λ

(
PrR,b [ 〈R, u〉 = b] · Pr[Ext 6= ⊥ |U = u, d = 1] +

1

2
· Pr[Ext = ⊥ |U = u, d = 1]

)

=
1

2
ε+

1

2
− 1

2λ

∑
u∈{0,1}λ

(
1

2
·
(

Pr[Ext 6= ⊥ |U = u, d = 1] + Pr[Ext = ⊥ |U = u, d = 1]
))

=
1

2
ε+

1

2
− 1

2λ

∑
u∈{0,1}λ

1

2
· 1 =

1

2
ε

This establishes that adversary A2 is able to distinguish with noticeable probability since, by
assumption, the success probability ε of extractor Ext is noticeable.

It remains to show that A1 implements an unpredictable distribution. Note that B1 is strongly
unpredictable (cp. Definition 4.2) and hence point x remains computationally hidden given values z
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and m. As r is a uniformly random value chosen independently of x and b is a single bit which can
be guessed it follows that, indeed, A1 implements an unpredictable distribution.

This concludes the proof of Claim 4.6. ♦

We next show that with Claim 4.6 it follows that games Game1 and Game2 are negligibly
close. Boyle et al. [BCP14] show that every indistinguishability obfuscator is also a differing-inputs
obfuscator for circuit families that differ on at most polynomially many points (we give their
result as Theorem 2.5 on page 10). As the circuits considered in Claim 4.6 differ only on a single
point it follows that their obfuscation under an indistinguishability obfuscator are computationally
indistinguishable and hence games Game1 and Game2 are negligibly close.

For games Game2 and Game3, the analysis is analogous. The only difference consists in m′ being
chosen at random. Thus, we can make use of Claim 4.6 with the sample adapted to output circuit
C[px,m

′]. This concludes the proof.

A second construction. In the next section we will construct a leakage resilient public-key
encryption scheme, for which we will need an extended construction of MB-AIPO that we present
next. Namely, we prove that the construction is still secure if, additionally, we return the AIPO
of x. Intuitively, that should not harm security, because, given an MB-AIPO for (x,m), it is easy to
construct an AIPO for x. However, making this statement formal requires some care.

Construction 4.7. Let AIPO be a secure AIPO and iO be a secure indistinguishability obfuscator
for all circuits in P/poly. We construct a weak MB-AIPO obfuscator MB-AIPO as follows. On
input a point address x and value m MB-AIPO constructs a point obfuscation px←$ AIPO(x). It
then constructs the following circuit

C[px,m](x∗) := if (px(x∗) = 1) then return m else return ⊥

and outputs an indistinguishability obfuscation of C[px,m] together with px.

We next show that also this adapted construction fulfills the security properties of a weak
MB-AIPO scheme.

Proof. We proceed by the following game hops where the first is identical to the MB-AIPO setting
where the adversary (B1,B2) gets an honest obfuscation of point function px,m and the last is
identical to the dual setting where it gets as input an obfuscation of px,m′ for a uniformly random
point value m′.

Game1: Is the original MB-AIPO game with where adversary B1 outputs (z, (x,m)) and where B2
gets as input ((iO(C[px,m]), px), z). Note that px is an obfuscation of the point function for
point address x.

Game2: As before, but instead of returning px, that is the obfuscation of coming from the con-
struction, we construct a fresh point obfuscation of x. Hence, the adversary B2 gets as input
((iO(C[px,m]),AIPO(x)), z).

Game3: Instead of returning AIPO(x), we return AIPO(u) for a random point u, that is, the adversary
B2 gets ((iO(C[px,m]),AIPO(u)), z).

Game4: Instead of returning iO(C[px,m]), we return iO(C[px,m
′]) for a random m′, that is, the

adversary B2 gets ((iO(C[px,m
′]),AIPO(u)), z).
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Game5: Instead of returning AIPO(u) for a random point u, we return AIPO(x), that is, the adversary
B2 gets ((iO(C[px,m

′]),AIPO(x)), z).

Game6: Instead of returning a fresh point obfuscation of x, we return px, that is, the adversary B2
gets ((iO(C[px,m

′]), px), z).

Note that the last game corresponds to the MB-AIPO-game where the point value is chosen uniformly
at random. Hence, it suffices to show that the six games are computationally indistinguishable.

Game1 to Game2. We reduce to the security of the indistinguishability obfusactor iO. Note that
the two circuits px (given to the adversary in Game1) and AIPO(x) (given to the adversary in Game2)
are functionally equivalent as they are two independently generated obfusactions of point function
for point x. Let (B1,B2) be a distinguisher between Game1 and Game2. Then, we construct an
adversary against the security property of obfusactor iO analogously to the final game hop of the
proof of Lemma 3.2.

Game2 to Game3. We reduce to the distinguishing advantage between games Game2 and Game3
to the security of the point obfuscation scheme AIPO. Let (B1,B2) be a distinguisher between
Game2 and Game3. Then, we construct an adversary (D1,D2) against AIPO as follows: D1 runs B1
to obtain (z, (x,m)). It runs px←$ AIPO(x), computes C←$ iO(C[px,m]) and returns ((z, C), x).
That is, the auxiliary input returned by D1 is (z, C). D2 receives (p, (z, C)) as input and runs B2
on ((C, p), z), that is, on multi-bit point function (C, p) and auxiliary information z. D2 outputs
whatever B2 outputs. If p is AIPO(x), then the input distribution to (B1,B2) is as in Game2. If p
is AIPO(u), then the input distribution to (B1,B2) is as in Game3. Hence, if (B1,B2) is successful,
then so is (D1,D2).

It remains to show that (D1,D2) is a valid adversary against AIPO, that is, that D1 is unpre-
dictable. This follows from the strong unpredictability of B1 and the security of AIPO, that is, given
a predicator P against the strong unpredictability of D1, we will either construct an adversary
against the security of AIPO or a predictor R against the strong unpredictability of B1.

Let P be a predictor against the unpredictability of D1. Then, we construct R against the
strong unpredictability of B1 as follows: Adversary R gets as input (z,m) where z is the auxiliary
information generated by B1 and m is the point value output by B1. It draws a random point v
and runs pv←$ AIPO(v), C←$ iO(C[pv,m]). It then runs predictor P on input (C, z) and outputs
whatever P returns. We now need to argue that P produces the right output, although v is used in
the generation of C and not x as expected by P. We reduce the difference in P’s behavior to the
AIPO security.

Assume that P has non-negligible probability of returning x when getting (iO(C[px,m]), z), but
not when getting (iO(C[pv,m]), z). Then, we construct an adversary (D1,D2) against the AIPO
security as follows. Adversary D1 runs B1 to get (z, (x,m)). It draws a random string r and sets bit
b to be the inner product of r and x, that is, b← 〈r, x〉. Adversary D1 outputs ((z,m, r, b), x), that
is, its leakage is (z,m, r, b). Now, D2 gets (z,m, r, b) as well as a point function p as input. It runs
the predictor P(iO(C[p,m], z)) to obtain some value x′. It tests whether p(x′) = 1 and if this is not
the case it returns a random bit. If p(x′) = 1, then it returns 1 if and only if the inner product of r
and x′ is equal to b, that is, it returns 〈r, x′〉.

Now, to see that (D1,D2) breaks the security of AIPO, we first show that it is a valid adversary,
i.e., that D1 is unpredictable and then analyse the success probability. Adversary D1 is unpredictable
because B1 is strongly unpredictable and because b is a single bit that can be guessed. Let us turn to
the success probability of (D1,D2). The formal treatment is identical to the advantage computation
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within Claim 4.6. We now give the intuition behind the success probability of (D1,D2). If p is a
point obfuscation of px, then P returns x with non-negligible probability ν and in these cases, D2

returns 1 with probability 1, because the bit always matches. Thus, if p is a point function of px,
then D2 returns 1 with probability ν + (1− ν) · 12 = 1

2 + ν
2 . If p is a point obfuscation of a random

point pv, then, independently of the behaviour of P, D2 returns 1 with probability 1
2 . Hence, the

success probability is non-negligible.

Game3 to Game4. We reduce to the MB-AIPO security of Construction 4.4 that we established
in Proposition 4.5. Let (B1,B2) be an adversary that distinguishes between Game3 and Game4,
where B1 is strongly unpredictable. We construct an adversary (D1,D2) against the weak MB-AIPO
property of Construction 4.4 as follows. D1 runs B1 and outputs whatever B1 outputs. D2 gets
(C, z). It draws a random value u and computes p←$ AIPO(u). It then runs B2 on ((C, p), z) and
outputs whatever B2 outputs. D1 is strongly unpredictable, because B1 is. Moreover, the simulation
is perfect. Hence, the advantage of (D1,D2) is identical to the advantage of (B1,B2).

Game4 to Game5. Analogous to the game hop from Game2 to Game3.

Game5 to Game6. Analogous to the game hop from Game1 to Game2.

5 Leakage Resilient Public-key Encryption

In this section, we will use the construction of weak MB-AIPO to build a leakage resilient public-
key encryption scheme. Our result is inspired by Canetti et al. who show that multi-bit point
obfuscation is tightly connected to symmetric encryption [CKVW10]. They give an intriguingly
simple construction of a symmetric encryption scheme from an MB-AIPO as follows. Encryption
under key k is defined as Enck(m) := MB-AIPO(k,m). Correspondingly, decryption interprets the
ciphertext as a circuit and runs it on the key, that is, Deck(c) := c(k). Furthermore, they show
how to build an MB-AIPO scheme from symmetric encryption. They classify the relationships
between the two primitives depending on the strength of the MB-AIPO and encryption scheme,
respectively. In particular, they show that a version of MB-AIPO obfuscation implies the existence
of a symmetric key encryption scheme secure in the presence of leakage (of the key) with the only
requirement that the leakage computationally hides the secret key.

Let us recall a somewhat simplified version of their notion of semantic security of a symmetric
encryption scheme with weak keys and auxiliary inputs:

Definition 5.1 ([CKVW10]: Symmetric Encryption with Weak Keys and Auxiliary Inputs). Let
D = {Dλ = (Zλ,Kλ)}λ∈N be an unpredictable distribution ensemble. We say that an encryption
scheme has semantic security with keys chosen from {Kλ}λ∈N and auxiliary inputs from {Zλ}λ∈N if
there exists a PPT algorithm Sim(1λ, `) such that, for all PPT adversaries A we have:∣∣∣Pr

[
SEMD,Sim0 (A, λ) = 1

]
− Pr

[
SEMD,Sim1 (A, λ) = 1

]
−
∣∣∣ ≤ negl(λ)

where the games SEMD,Simb for b = 0, 1 are defined via the following experiment:

1. (z, k)←$ Dλ and give z to A

2. Adversary A submits a query m. Set c0←$ Enck(m), c1←$ Sim(1λ, |m|) and give cb to A.

3. The output of the game is the output of A.
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Figure 2: The IND-CPA game for public-key encryption
schemes with hard-to-invert key leakage. An adversary is
deemed admissible if it is PPT and if the output of A0 com-
putationally hides the key, that is, z has super-logarithmic
min-entropy.

IND-CPAA0,A1,A2

E (λ)

b←$ {0, 1}; (pk, sk)←$ E .KGen(1λ)

z←$ A0(1λ, sk); (m, st)←$ A1(1λ, pk, z)

c0←$ E .Enc(m)

r←$ {0, 1}|m|; c1←$ E .Enc(r)
b′←$ A2(1λ, cb, st)

return (1 = b′)

Canetti et al. show that such a strong form of symmetric encryption exists if, and only if, certain
types of MB-AIPOs exist. Their type of MB-AIPO requires that the message m (point value) is
drawn independently from the point x (point address). Their notion of MB-AIPO for independent
messages is weaker than our notion of MB-AIPO against strongly computationally unpredictable
distributions as presented in Definition 4.3 and, in particular, not affected by our impossibility
result.

We improve the result by Canetti et al. by building a leakage-resilient encryption scheme,
that is public key rather than symmetric key. We first present the variant of IND-CPA security
with hard-to-invert key-leakage of a public-key encyption scheme E that we consider (we give the
pseudocode in Figure 2). In the IND-CPA game with adversary (A0,A1,A2) an initial adversary
A0 takes as input the secret key and outputs some leakage z. Adversary A1 is run on input the
public key pk and leakage z and outputs a single messages m together with some state st. Then,
according to a secret bit b either message m or a uniformly random message m′ of the same length
is encrypted yielding ciphertext c which is given together with state st to the final adversary A2

which needs to guess bit b.7

Construction 5.2. Let λ be the security parameter, let AIPO denote a point obfuscater and iO
an indistinguishability obfuscator. Key generation picks a secret key sk←$ {0, 1}λ as a uniformly
random bit string of length λ. As public key it outputs a point obfuscation of x, that is, it outputs
pk←$ AIPO(x). To encrypt a message m one constructs the circuit

C[pk,m](x∗) := if (pk(x∗) = 1) then return m else return ⊥

and computes an indistinguishability obfuscation c←$ iO(C[pk,m]) which yields the ciphertext c.
For decryption one computes m← c(x).

Correctness of the scheme follows from the correctness criteria of indistinguishability obfuscation
and AIPO. We reduce IND-CPA security of the scheme to the security of weak MB-AIPO (note,
that an encryption is nothing but an obfuscation following Construction 4.4).

Proposition 5.3. If Construction 4.7 is a weak MB-AIPO, then Construction 5.2 is IND-CPA
secure in the presence of computationally uninvertible leakage on the secret-key.

Proof. Assume that there exists a successful adversary A0,A1,A2. We are going to construct an
adversary B1,B2 against MB-AIPO.

Adversary B1 selects a random point x and runs adversary A0 on input the security parameter
and x to receive some leakage z. It constructs an AIPO obfuscation pk←$ AIPO(x) and runs
adversary A1 on input (1λ, pk, z) to receive a message m and state st. It outputs ((x,m), st).
Adversary B2 gets as input an obfuscation c that is either equal to MB-AIPO(x,m) or equal to
MB-AIPO(x,m′) as well as state st. It runs adversary A2 on input (1λ, c, st) and outputs whatever
A2 outputs.

7The described real-or-random notion of IND-CPA can be shown to be equivalent upto a factor of 2 in the reduction
to the more frequently used left-or-right security notion [BDJR97].
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Analysis. Our analysis proceeds in two steps. First, we show that if A0,A1,A2 is successful, then
so is B1,B2. Then, we prove that B1 implements a strongly unpredictable distribution as required
for weak MB-AIPO.

To see that B1,B2 are successful, we observe that the simulation is perfect. It remains to show
that B1 implements a strongly unpredictable distribution. We reduce to the unpredictability of A0.
Let P be a predictor against the strong unpredictability of B1, then we construct a predictor R
against the unpredictability of A0.
R receives the leakage z that was created by A0. It draws a random point u and sets

pk←$ AIPO(u). Then, the predictor R runs A1 on (z, pk) to obtain a message m and some
state st. It runs P on (m, st) to get a value x′ and returns x′. Now, A1 gets as input AIPO(u) instead
of AIPO(x). We argue that, assuming the security of AIPO, P is also successful on this distribution.
Assume that P has non-negligible probability ν in returning x when A1 is run on (z,AIPO(x)),
but negligible probability ν in returning x when A1 is run on (z,AIPO(u)) for a random u. Then,
we construct an adversary (C1, C2) against AIPO as follows. Adversary C1 runs A0 to create (z, x).
Then, C1 draws a random string r and sets b to be the inner product of r and x, that is, b = 〈r, x〉.
Adversary C1 returns ((z, r, b), x). The second stage C2 gets ((z, r, b), p) and runs A1 on (z, p) to
obtain a message m and some state st. It runs P on (m, st) to get a value x′. It checks whether
p(x′) = 1. If no, it returns a random bit. If yes, then it returns 1 if and only if the inner product of
x′ and r is equal to b.

Firstly, the first stage C1 is unpredictable because A0 is and b is only a single bit of x. Now,
let us see that (C1, C2) are also successful. If p is a point obfuscation of x, then P returns x with
probability ν and thus, C2 returns 1 with probability ν+ (1− ν) · 12 . If p is not a point obfuscation of
x, then, indepdently of the behaviour of P, C2 returns 1 with probability 1

2 thus yielding an overall
advantage of ν

2 . The formal treatment is identical to the advantage computation within Claim 4.6.
This concludes the proof.
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A Constructions of Point Obfuscation Schemes

In the following we present the two constructions (and their underlying assumptions) of AIPOs
secure with respect to Definition 2.7. These constructions are, to the best of our knowledge, the
only two candidates that achieve AIPO security. Other constructions, such as the construction
by Wee [Wee05] either do not consider auxiliary information or put additional restrictions on the
auxiliary information.

The first construction is due to Canetti [Can97] who bases his construction on a strong variant
of the DDH assumption. We here present the construction in the formulation of [BP12] and then
present the assumption it is based on.

Construction A.1 (AIPO obfuscator due to [Can97]). Let G := {Gλ}λ∈N be a group ensemble,
where each Gλ is a group of prime order pλ ∈ (2λ−1, 2λ). We define an obfuscator O for points in

the domain Zpλ as follows: Ix
O7→ C(r, rx), where r←$ Gλ is a random generator of Gλ, and C(r, rx)

is a circuit which on input i, checks whether rx = ri.

Assumption A.2 ([Can97],[BP12]). There exists an ensemble of prime order groups G := {Gλ}λ∈N
such that for any unpredictable distribution D = {Dλ = (Zλ, Yλ)}λ∈N with support {0, 1}poly(λ)×Zpλ ,
it holds that for all PPT algorithms A there exists a negligible function negl such that∣∣∣Prr←$ Gλ,←$ (z,x)←$ Dλ [A(z, r, rx) = 1]− Prr←$ Gλ,z←$ Zλ,u←$ Zpλ [A(z, r, ru) = 1]

∣∣∣ ≤ negl(λ)

The second candidate construction for AIPO is due to Bitansky and Paneth [BP12] who adapt
the point obfuscation scheme of Wee [Wee05] to allow for auxiliary input. Their construction is
based on an assumption on the existence of strong pseudorandom permutations. Let us recall
the underlying assumption (which generalizes the original assumption due to Wee [Wee05]) before
recalling the construction.

Assumption A.3 ([BP12]). There exists an ensemble of permutation families F = {Fλ = {f}}
such that for any unpredictable distribution ensemble D = {Dλ = (Zλ, Yλ)}λ∈N, the following two
distribution ensembles are also unpredictable:

• ((Zλ, f(Yλ), f);Yλ)

• ((Zλ, f); f(Yλ)),

where in both f←$ Fλ (independently of Dλ).

Based on Assumption A.3, Bitansky and Paneth show that the following construction yields an
AIPO obfuscator satisfying Definition 2.7 [BP12].

Construction A.4 ([BP12]). Let F be a family of permutations as given by Assumption A.3. AIPO
obfuscator O works as follows: given a point y ∈ {0, 1}λ, O samples 3λ permutations {fi}i∈[3λ] from

Fλ and 3λ strings {ri}i∈[3λ] from {0, 1}λ. For every i ∈ [3λ], let f i := fi ◦ fi−1 ◦ . . . ◦ f1 (where ◦
denotes composition). Obfuscator O outputs a circuit Cy that has hardcoded into it the randomness
of O, {fi, ri}i∈[3λ] and the bits {bi :=

〈
ri, f

i(y)
〉
}i∈[3λ], where 〈., .〉 denotes the inner product over

GF2. Circuit Cy outputs 1 on a point x if for all i ∈ [3λ] : bi =
〈
ri, f

i(x)
〉
; and 0 otherwise.

From AIPO to MB-AIPO. Constructions of point obfuscation schemes for point functions
with multi-bit output have first been studied by Canetti and Dakdouk [CD08] who show that
composability of plain AIPOs is a sufficient condition for the existence of MB-AIPOs. To the best
of our knowledge no direct constructions of MB-AIPOs have been proposed in the literature.
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