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Abstract. We present a symmetric-key predicate-only functional en-
cryption system, SP-FE, which supports functionality for regular lan-
guages describe by deterministic finite automata. In SP-FE, a data owner
can encrypt a string of symbols as encrypted symbols for matching. Later,
the data owner can generate predicate tokens of the transitions in a de-
terministic finite automaton. The server with these tokens can decrypt
a sequence of encrypted symbols correctly and transfer from one state
to another accordingly. If the final state belongs to the set of accept
states, the server takes assigned operations or returns the corresponding
encrypted data. We have proven SP-FE preserves both plaintext privacy
and predicate privacy through security analysis and security games. To
achieve predicate privacy, we put bounds on the length of a string and
the number of states of a DFA. Due to these restrictions, SP-FE can cap-
ture only finite languages. Finally, we present the performance analysis
of SP-FE and mention possible future work.
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1 Introduction

With the maturity of broadband Internet and the innovation in virtualization
and distributed computing, cloud computing has been a significant paradigm
shift that enables for a high-quality and economical way of delivering services. As
an increasing amount of data generated and processed every day, managing data
in the cloud becomes appealing with the benefits of on-demand configuration and
pay-per-use billing [1, 2]. However, cloud users no longer have physical control
of their data; therefore, the security and privacy of storing and retrieval of data
becomes a major concern before adopting this paradigm shift [3, 4].

Traditional encryption schemes support only end-to-end security protection
without providing direct searches through encrypted data by search predicates
[5, 6, 7]. Therefore, cloud users have to download and decrypt all of their cloud
data first to perform searches of their interests locally. In addition, generic tech-
niques such as fully-homomorphic encryption (FHE) [8, 9] and oblivious RAMs



(ORAM) [10, 11] can achieve full security with either costly computation or com-
munication overheads, while applied to a relatively small dataset. Thus, there is
a high demand for a relaxed privacy guarantee yet more efficient construction
to store and retrieve selected data with the help of the cloud.

Functional public-key encryption schemes [12] and many of its instances like
attribute-based encryption schemes [13, 14, 15] and predicate encryption schemes
[16, 17, 18, 19] were devised to support expressive search predicates. These search
predicates include conjunctions, disjunctions, CNF/DNF formulas, polynomial
evaluation and exact thresholds of encrypted keywords. However, in all of these
schemes, search predicates involved only a fixed number of non-repetitive key-
words from the predefined keyword universe. Processing a string of encrypted
symbols representing a keyword is essential for the predicates of certain regular
languages for lexical analysis and pattern matching.

However, the predicate tokens in functional encryption schemes may reveal
the content of the search predicates because encryption does not require a pri-
vate key in the public-key setting. Adversaries may encrypt the keywords of
their choices and check the ciphertexts with the delegated predicate token to
learn whether the chosen keywords satisfy the search predicate encoded in the
predicate token. Therefore, predicate privacy is inherently impossible to achieve
in the public-key setting. Researchers started focusing on the symmetric-key
setting for predicate privacy with keyword-based search predicates [20, 21, 22].
Functional encryption for regular languages, a type of symbol-based search pred-
icates, was considered in [23] and [24], while functional encryption for regular
languages with additional predicate privacy is still an open problem.

1.1 Our Contributions

In this paper, we propose a symmetric-key predicate-only functional encryption
scheme, SP-FE, supporting predicates of deterministic finite automata (DFA).
The server can determine the transition path of a series of encrypted symbols
by decryption through the predicate tokens. If the final state belongs to the set
of accept states, the server will take assigned operations or returns the corre-
sponding encrypted data. We have proved SP-FE to be plaintext privacy and
predicate privacy in a selective model by a detailed analysis and hybrid games.
Finally, we exhibit the performance analysis and mention possible future work.

2 Related Works

This section starts with secure private DFA evaluation. Following that, func-
tional encryption schemes and many of its variants are discussed.

2.1 Private DFA Evaluation

This topic can be generalized as secure two-party computation [25, 26]. Secure
private DFA evaluation enables one party to evaluate its private DFA on a
plaintext held by another party without leaking any information to both parties.



The first study was done by Troncoso-Pastoriza et al. [27] and then Frikken
[28] enhanced the communication and computation complexity. Mohasssel et
al. [29] further reduced the computation costs for both parties. Blanton and
Aliasgari [30] proposed a DFA evaluation scheme by outsourcing the computation
to multiple servers through secret sharing. All of the above schemes focus on the
plaintext to be evaluated by a DFA. Wei and Reiter [31, 32] was the first to
propose a scheme where a client can evaluate a DFA on the encrypted data held
by a server. Their scheme protected not only the privacy of the data and the
DFA from the server, but the privacy of the data from the client. In general,
private DFA evaluation requires both parties to evaluate the result interactively.

2.2 Functional Encryption

Functional encryption schemes [12] are non-interactive public-key encryption
schemes where anyone possessing a secret key skf can compute a function f(x)
of a value x from the encryption Enc(x) without learning any other information
about x. However, the predicate tokens in these functional encryption schemes
may reveal the content of the underlying search predicates because encryption
does not require a private key in the public-key setting. Thus predicate privacy
is inherently impossible to achieve in the public-key setting. Shen et al. [21] was
the first to consider predicate privacy in the symmetric-key setting. Blundo et
al. [20] used the assumptions related to linear split secret sharing, while Yoshino
et al. [22] further enhanced the efficiency by prime-order group instantiation.
However, in all of these schemes, search predicates involve only a fixed number
of non-repeated keywords. Processing a string of searchable symbols, possibly
repetitive, is essential for the search predicates of regular languages. The func-
tional encryption for regular languages was devised in the public-key setting with
plaintext privacy only [23]. The functional encryption for regular languages with
extra predicate privacy is still an open problem.

3 Background and Preliminary

This section presents the background and preliminary necessary for SP-FE.

3.1 Deterministic Finite Automata and Regular Languages

A deterministic finite automaton (DFA) is a finite state machine that accepts or
rejects finite strings of symbols. A DFA M is a quintuple (Q,Σ, δ, q0, F ) where
(1) Q is a finite set of states, (2) Σ is the input alphabet, a finite set of symbols,
(3) δ : Q×Σ → Q is the transition function, where (q, q′, σ) ∈ δ iff δ(q, σ) = q′,
(4) q0 is an initial state, and (5) F is the set of final states, a subset of Q. �

Given a DFA M =(Q,Σ, δ, q0, F ), if M accepts an string w = w1w2, · · · , wn
∈ Σn, there exists a sequence of states, a transition path, r = r0, r1, ..., rn ∈ Qn,
where (1) r0 = q0, (2) δ(ri, wi+1) = ri+1, for 0 ≤ i ≤ n − 1, and (3) rn ∈ F . A
regular language is also defined as a language recognized by a DFA.



3.2 Definitions and Security Model

Definition 1. A symmetric-key predicate-only functional encryption scheme for
DFA-type predicates over a set of symbols Σ can be derived from [22]:

- Setup(1λ): It takes security parameters 1λ as input and outputs public pa-
rameters and a secret key SK.

- Encrypt(SK,w): It takes a secret key SK and a string of symbols w ∈ Σ∗,
and outputs a string of ciphertext CT / a string of encrypted symbols.

- KeyGen(SK,M=(Q,Σ, δ, q0, F )): It takes a secret key SK and a DFA M as
input, and outputs a set of token TK / a string of encrypted transactions.

- Decrypt(TK,CT ): It takes a set of token TK and a string of ciphertext CT
as input, and outputs either ‘1’ (’Accept’) or ‘0’ (’Reject’) indicating that the
result of the DFA M encoded in TK on the input w encrypted in CT . �
Security Model. The selective game-based security of a symmetric-key predicate-
only functional encryption for DFA-type predicates is considered.

- Setup: The challenger C runs Setup(1λ) and gives public parameters to the
adversary A. A outputs a bit d ∈ {0, 1}: if d = 0, A takes up a ciphertext chal-
lenge and outputs two plaintext w0, w1 ∈ Σ∗. Otherwise, A takes up a token
challenge and outputs two description of DFA M0 and M1.

- Phase 1: A adaptively outputs one of the following two queries. The same
string of symbols wi and the same description of DFA M j can only be queried
once. The stated restrictions is to ensure the challenge is not trivial.

In a ciphertext challenge, A issues ith ciphertext query by requesting for a
string of ciphertext CT i of wi ∈ Σ∗. C responds with CT i ← Encrypt(SK,wi).
Also, A issues jth token query by requesting a DFA M j with the restriction that
M j accepts or rejects both w0 and w1 with the same number of accept states in
the transition paths. C responds with TKj ← KeyGen(SK,M j). In a token
challenge, A issues ith ciphertext query by requesting for a string of ciphertext
CT i of wi ∈ Σ∗ with the restriction that wi is accepted or rejected by both
M0 and M1 with the same number of accept states in the transition paths. C
responds with CT i ← Encrypt(SK,wi). Also, A issues jth token query by re-
questing a DFA M j . C responds with TKj ← KeyGen(SK,M j).

- Challenge: The challenger C flips a random coin b ∈ {0, 1}. If A has chosen
the ciphertext challenge, C gives CTb← Encrypt(SK,wb) to A; otherwise (A
has chosen the token challenge), C gives TKb← KeyGen(SK,Mb) to A.

- Phase 2: A continues to query CT i and TKj as in Phase 1.

- Guess: A outputs a guess b′ ∈ {0, 1} of b. The advantage of an adversary A
in this game is defined as Pr[b′ = b]− 1

2 .

Definition 2. A symmetric-key predicate-only functional encryption scheme for
DFA-type predicates is token indistinguishable if all polynomial-time adversaries
have at most a negligible advantage in winning the above token challenge game.
This property guarantees predicate privacy.

Definition 3. A symmetric-key predicate-only functional encryption scheme for
DFA-type predicates is ciphertext indistinguishable if all polynomial-time adver-



saries have at most a negligible advantage in winning the above ciphertext chal-
lenge game. This property guarantees plaintext privacy.

3.3 Notation

Σ is a set of ordinary symbols used to form a keyword/plaintext w, while Σ′ is
a set of special symbols randomly added into w to form w′. The special symbols
cannot be specified in w. The union of these two sets forms Σ′′. Each symbol
wi ∈ Σ′′ has a unique index si. The sizes of these three sets are σ, σ′, and
σ′′ respectively. nw denotes the length of w, while Nw denotes the maximum
length of w′, where nw ≤ 1

2Nw. In addition, there are d 12Nwe groups of special
symbols, whose size is from 1 to d 12Nwe. A group of symbols are added as a set
in a predefined circular order starting with any one of the symbols. A predicate
DFA M is denoted as (Σ,Q, δ, q0, F ). Redundant states are chosen from Q to
form Q′ and from F to form F ′, while duplicated transitions are included in δ to
form δ′. Q′ and δ′ are randomized to form Q′′ and δ′′. The sizes of Q, Q′ and Q′′

are nQ, n′Q and n′′Q = NQ respectively, where NQ ≥ 2nQ. The states in Q are

marked from 0 to nQ − 1, thus the number of transition in δ is n2Q. NQ denotes
the maximum number of states, thus the maximum number of transitions Nδ is
N2
Q. q0 and F ′ are randomized into q′0 and F ′′. δ and its matrix representation

Aδ can be converted. If Aδ[x][y] is W , where W ⊆ Σ′′ and x, y ∈ Q′′, there are
(x, y, wi) transitions in δ, where wi ∈W .

3.4 Composite-Order Bilinear Groups and Complexity Assumption

Composite-Order Groups Let G be a composite-order bilinear group genera-
tor that takes as input a security parameter λ and outputs a tuple (p1, p2, p3,G,
GT , ê) where p1, p2 and p3 are distinct primes, G and GT are cyclic groups of
order N=p1p2p3 and the pairing ê : G×G→ GT with three properties:

1. Bilinearity : For all g and h ∈ G, a, b ∈ ZN , ê(ga, hb) = ê(g, h)ab,

2. Non-degeneracy : For any g ∈ G, if ê(g, h) = 1 for all h ∈ G, then g = 1, and

3. Computability : The bilinear map ê can be computed in polynomial time.

Complexity Assumption ([22]) Given a bilinear group generator G, output
three groups Gi of prime order pi for i = 1, 2, 3 by the experiment:

1. (p1, p2, p3,G,GT , ê)← G(1λ),

2. N ← p1p2p3, g1
R← G1, g2

R← G2, g3
R← G3,

3. P ← (N,G,GT , ê),
4. D ← (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 gc1d3 ), where a1, a2

R← Zp1 ,

b1
R← Zp2 , and c1, c,d

R← Zp3 , and

5. T0 ← ga31 gc23 , T1 ← ga31 gb22 g
c2
3 , where a3

R← Zp1 and b2
R← Zp2 .

The advantage of an adversary A in distinguishing T0 from T1 with the param-
eters (P,D) is defined as AdvA := |Pr[A(P,D, T0) = 1]-Pr[A(P,D, T1) = 1]|.
Definition 4. The above complexity assumption holds for any polynomial-time
adversary A if AdvA is negligible [22].



3.5 The Building Block

The scheme by Yoshino et al. [22] provides a good starting point to construct
SP-FE. It is a keyword-based predicate-only predicate encryption scheme.

- IPE.Setup(1λ): It takes a security parameter 1λ as input and outputs public
parameters and a secret key SK.
- IPE.Encrypt(SK, x): It takes a secret key SK and a plaintext x ∈ Σ∗ and
outputs a ciphertext CT .
- IPE.GenToken(SK, y): It takes a secret key SK and a description of predicate
y as input and outputs a token TK.
- IPE.Check(TK,CT ): It takes a token TK and a ciphertext CT as input and
outputs either ‘1’ (’Accept’) or ‘0’ (’Reject’) indicating the result of the predicate
y encoded in TK on the input x encrypted into CT . �

Note that we use the disjunctive predicates of [18] to protect the input sym-
bols of a transition. SymbolSetToVector is to generate vectors of a string of
symbols or a set of transactions. The algorithm is summarized as follows:

Procedure: SymbolSetToVector(a, mode) [18]
Input: a, where a ⊆ Σ′′, |Σ′′| = σ′′, mode = 0: TK mode, mode = 1: CT mode;
Output: va

if (a is ∅) then va = (aσ′′ , aσ′′−1, . . . , a0) = (0, 0, · · · , 0)
else if (mode is 0) then

va = (aσ′′ , aσ′′−1, . . . , ad+1, ad, ad−1, . . . , a0), where

f(x) =
∏d

1(x− si) = adx
d + ad−1xd−1 + . . .+ a0 and aσ′′ = . . . = ad+1 = 0.

else (mode is 1) then
va = (sσ

′′

i mod N, . . . , s0i mod N) = (aσ′′ , aσ′′−1, . . . , a0), where N is the
order of the groups G and GT

return va

4 SP-FE Construction

We provide main procedures of SP-FE construction. Following that, we present
detailed algorithms with comprehensive explanation.

4.1 Main Procedures

We make use of Yoshino et al. scheme [22] by encrypting each symbol in the
plaintext as an encrypted symbol and each symbol set of a transition as a pred-
icate token. However, direct transformation cannot achieve both plaintext and
predicate privacy because the following information may reveal to the adversary:
(1) The length of a plaintext, nw, (2) the number of states in a DFA, nQ, (3)
the number of accept states, |F |, (4) the number of transitions, |δ|, and (5) the
transition path. Thus, addSpecialSymbols aims at adding special symbols to
the plaintext, while addStatesTransitions targets at inserting dummy states,
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Fig. 1. The procedure ‘addSpecialSymbol’(‘aaa’) and its seven possible outputs

transitions and shuffle states of a DFA. These designs guarantee the adversaries
cannot gain extra advantages in the challenge games.

Procedure: addSpecialSymbols(w)
Input: w, where w = (w1, . . . , wnw), wi ∈ Σ,nw ≤ `
Output: w′, where w′ = (w′1, . . . , w

′
Nw

), w′i ∈ Σ′′, Nw = 2`

Repeat 1. and 2. until nw = Nw.

1. Set pos
R← Znw+1 and k

R← ZNw−nw
2. Insert the (k+ 1)th symbol group at position pos with a pre-defined circular

ordering starting from one of the symbols in the group. Set nw = nw+(k+1).

return w′ = (w1, w2, . . . , wNw)

Example. In Fig. 1, ` is set as four. There are four groups of special symbols
denoted as (1)‘]’, (2)‘`’ and ‘a’, (3)‘<’, ‘∧’ and ‘>’, and (4) ‘p’, ‘q’, ‘y’ and ‘x’.
We have d ordered sequences of a group of size d. For example, to insert the
symbols in the third group, one of the three sequences can be chosen: ‘< ∧ >’,
‘∧ ><’, and ‘>< ∧’. In addition, one group of symbols can be nested in the
other group of symbols like in the third, fourth and fifth column in Fig. 1. Af-
ter a group of symbols are consumed by a DFA, their effects will be canceled out.

Procedure: addStatesTransitions(M)
Input: M=(Q,Σ, δ, q0, F ), nQ ≤ `, where

|δ| = nδ,δ = {(uj , vj , wk)}nδj=1;uj , vj ∈ Q and wk ∈ Σ
Output: M ′′=(Q′′, Σ′′, δ′′, q′0, F

′′), where NQ = 2` and |δ′′| = Nδ = N2
Q

1. Add Random Symbols: For each row i in a DFA, each of the symbols in
Σ′′ should appear once and only once. If a symbol wi of a group of special
symbols of size d does not appear in the row i,
(a) Prepare the sequence wi, w

′
1, w

′
2, · · · , w′d starting with wi and a sequence

of states i, t1, t2, · · · , td, where wi does not appear in row i and w′j does
not appear in row tj for 1 ≤ j ≤ d and tj ∈ Q

(b) Include the transitions (i, t1, wi), (tj , tj+1, w
′
j) for 1 ≤ j ≤ d − 1, and

(td, i, w
′
d) into δ to form δ′.

2. Add Random States, Add Final States and Transitions:
(a) Randomly duplicate ( `2 − |F |) states from F to form F ′. The new state

creates a new column and copies the row of its original state as its row.
(b) Randomly duplicate `

2 states from the `
2 states in 1. together with F ′ to

form Q′. Denote Si as the set of equivalent states of the state i, where

Si ⊆ Q′, ∪|Q|i=1Si = Q′, and Si ∩ Sj = ∅ for any two sets.
There are extra `2 − n2q transitions added into δ to form δ′.

3. Shuffle Symbols within Equivalent Set : For each row i, the transition symbols
are shuffled among the columns of the equivalent states to form δ′′.






q0 q1 q2

q0 bcd a ∅
q1 cd a b

q2 ∅ ∅ abcd


 1.

=⇒




q0 q1 q2

q0 bcd >yx♯ a ⊣ ∧p ⊢<q
q1 cd ⊢<qp a > x♯ b ⊣ ∨x
q2 ⊣ ∧ ⊢< xq abcd >yp♯


 2.

=⇒




q0 q1 q2 q3 q4 q5 q6 q7

q0 bcd >yx♯ a ⊣ ∧p ⊢<q ∅ ∅ ∅ ∅ ∅
q1 cd ⊢<qp a > x♯ b ⊣ ∨x ∅ ∅ ∅ ∅ ∅
q2 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q3 bcd >yx♯ a ⊣ ∧p ⊢, <, q ∅ ∅ ∅ ∅ ∅
q4 cd ⊢<qp a > x♯ b ⊣ ∨x ∅ ∅ ∅ ∅ ∅
q5 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q6 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q7 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅




3.
=⇒




q0 q1 q2 q3 q4 q5 q6 q7
q0 bd♯x ∧ ⊣ ∅ c >y ap q ∅ <⊢
q1 c <⊢ a♯ ∧ dpq y > ∅ ⊣ bx
q2 ∧ ⊢q c > ⊣ x< by a♯ dp
q3 b > x ap ∅ cd♯y ⊣ ∧ ∅ ∅ q <⊢
q4 d ⊢< ∅ ∧ ⊣ cpq a♯ >y ∅ bx ∅
q5 ∧ ⊢q > ⊣ < x cd♯ p aby
q6 ⊣ ∧ q ay ∅ <⊢ x d b > p c♯
q7 ⊣ ⊢qx acpy ∧ < ∅ d♯ b >




4.
=⇒




q′0 q1
′ q2

′ q′3 q4
′ q5

′ q′6 q7
′

q′0 a♯ >y bx ∧ ⊣ cpq d ⊢< ∅ ∅ ∅
q′1 <⊢ x b > p ay ∅ ⊣ ∧ d q c♯
q′2 x< a♯ c > ⊣ ∧ by ⊢q dp
q′3 ⊣ ∧ ∅ ∅ cd♯y b > x ∅ ap q <⊢
q′4 ap ∅ ∅ c >y bd♯x q ∧ ⊣ <⊢
q′5 < x p > ⊣ ∧ cd♯ ⊢q aby
q′6 y > ⊣ ∧ dpq c <⊢ ∅ a♯ bx
q′7 < d♯ acpy ∧ ⊣ ∅ ⊢qx b >




Fig. 2. The procedure ‘addStatesTransitions’ processing ‘containing substring ab’

4. Shuffle States: Randomly choose two states Qi, Qj . Exchange ith row with
jth row, and ith column with jth column to form Q′′ and δ′′. Set one state
in Sq0 as a starting state q′0, while set F ′′ as the final states after exchange.

return M ′′=(Q′′, Σ′′, δ′′, q′0, F
′′), where δ′′={(uj , vj , wk)}Nδj=1

Example. In Fig. 2, ` is set as four and Σ = {a, b, c, d}. For each row, every
symbols in Σ′′ should appear once and only once. In addition, the input DFA
has specified all the symbols in Σ for each row. To fill in a special symbol
of a group, there is a transition path from state i back to state i again after
consuming the ordered circular sequence starting from this symbol. Take symbol
’>’ as example, the sequence is ’>’, ’<’ and then ’∧’. There is a transition path:

q0
>⇒ q0

<⇒ q2
∧⇒ q0 and there are (q0, q0, >), (q0, q2, <), and (q2, q0,∧) transitions

in δ. The next step is to duplicate the set of accept states so that F ′ = ` and
duplicate the other states so that Q′′ = 2`. Therefore, there are three equivalent
sets: Sq0 = {q0, q3}, Sq1 = {q1, q4}, and Sq2 = {q2, q5, q6, q7}. For the third step,
the symbols of one equivalent set in one row can be redistributed. Take q2 row as
example. ‘a’ is moved from q0-column into q3-column, while ‘x’ is moved from q1-
column, into q4-column. Finally, exchange state 0 with state 4 and state 1 with
6 by interchanging q0-row with q4-row, q0-column with q4-column, q1-row with
q6-row, and q1-column with q6-column. Set the start state q′0 from S′q0 = {q′3, q′4}
as q′4 and hide the others. Set the set of final states F ′′ as {q′1, q′2, q′5, q′7}.

4.2 Algorithms

SP-FE consists of four probabilistic polynomial-time algorithms: SP-FE.Setup,
SP-FE.Encrypt, SP-FE.GenToken and SP-FE.Decrypt. In SP-FE.Setup, the
user executes IPE.Setup to obtain a secret key SK and system parameters
according to the characteristic of plaintexts and predicates.

Algorithm: SP-FE.Setup(1λ):

SK ← IPE.Setup(1λ)



Set `,Σ, and Σ′ and set Nw = 2`,NQ = 2`,Nδ = N2
Q

return SK

In SP-FE.Encrypt, the user executes addSpecialSymbols on input w to
produce w′. Then the user calls to symbolSetToVector and IPE.Encrypt for
each of the symbol in w′ to produce a ciphertext set CT .

Algorithm: SP-FE.Encrypt(SK,w = w1, . . . , wnw):

w′ ← addSpecialSymbols(w), where |w′| = Nw
for (i = 1 to Nw) do

xi ← symbolSetToVector(w′i, 1); CT = CT ∪CTi = IPE.Encrypt(xi)

return CT = {CTi}Nwi=1

In SP-FE.GenToken, the user executes addStatesTransitions on the search
predicate M to produce M ′′. Then the user calls to symbolSetToVector and
IPE.GenToken for each of the transitions in δ′′ to produce a token set TK.

Algorithm: SP-FE.GenToken(SK, M=(Σ,Q, δ, q0, F )):

M ′′ ← addStatesTransitions(M), where

M ′′=(Σ′′, Q′′, δ′′, q′0, F
′′), |Q′′| = NQ, |δ′′| = N2

Q

for (r = 1 to NQ) do

for (c = 1 to NQ) do

(r, c,yr,c)← symbolSetToVector(Aδ′′ [r][c],0)

TK = TK ∪ TKr,c = (r, c,IPE.GenToken(SK, yj))

return TK

In SP-FE.Decrypt, the server executes IPE.Check on input CTi and TKqc,j

to test a transition (qc, j, TKqc,j) in δ′′. The server obtains the next state j if
IPE.Check(CTi, TKqc,j) returns ‘1’ and set the current state qc as j. The server
continues to check CTi+1 with the transitions in δ′′ starting with qc. If the final
state qc is in F ′′ after checking CTNw , the plaintext w′ satisfies the DFA in M ′′.

Algorithm: SP-FE.Decrypt(CT , M ′′=(Q′′, Σ′′, δ′′, q′0, F
′′)):

qc = q′0
for (i = 1 to Nw) do

for all (qc, j, TKqc,j) ∈ δ′′, j ∈ Q′′ do

if (IPE.Check(CTi, TKqc,j) == 1) then

qc = j, break inner for-loop

if (qc ∈ F ′′) then return 1

else return 0



5 Analysis

We describe a sequence of hybrid security games to demonstrate that SP-FE
achieves both plaintext privacy and predicate privacy.

5.1 Security Analysis

Proof Sketch. The proof uses a sequence of hybrid games where a challenge
token is encrypted with one vector in the first subsystem and is encrypted with
another vector in the second subsystem. Let (w, z) denote a token encrypted
by vector w in the first subsystem and by vector z in the second subsystem.
Try to prove the challenge token associated with w corresponding to (w,w) is
indistinguishable from that associated with z corresponding to (z, z). A sequence
of hybrid games demonstrates (w,w) ' (w,0) ' (w, z) ' (0, z) ' (z, z). Given

the token {TKj}Nδj=1 = {(uj , vj), {Kj
1,i}σ

′′+1
i=1 , {Kj

2,i}σ
′′+1
i=1 ,Kj

1 ,K
j
2}Nδj=1.

Game 1. The token encrypted by vector (w,w).

{TKj}Nδj=1 =





(uj , vj), {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2wi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 2. The token encrypted by vector (w,0).

{TKj}Nδj=1 =





(uj , vj), {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 g
Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 3. The token encrypted by vector (w, z).

{TKj}Nδj=1 =





(uj , vj), {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 4. The token encrypted by vector (0, z).

{TKj}Nδj=1 =





(uj , vj), {gV1,i

1 g
Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 5. The token encrypted by vector (z, z).

{TKj}Nδj=1 =





(uj , vj), {gV1,i

1 gTβ1zi
2 g

rj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Theorem 1. If G satisfies Assumption 1, SP-FE is token indistinguishable.

Proof. From Lemma 1, Game 1 and Game 2 are computationally indistinguish-
able. From Lemma 2, Game 2 and Game 3 are computationally indistinguish-
able. From Lemma 3, Game 3 and Game 5 are computationally indistinguishable.



Therefore, Game 1 and Game 5 are computationally indistinguishable.

Theorem 2. If G satisfies Assumption 1, SP-FE is ciphertext indistinguishable.

Proof. Because the tokens and ciphertexts of SP-FE are formed symmetrically,
ciphertext indistinguishability can be proven in the same way as token indistin-
guishability except that no (uj , vj) is considered in the ciphertext CT . We can
modify the proof by exchanging the elements in G1 with the ones in G3.

Corollary 1. If G satisfies Assumption 1, SP-FE is selective secure (both token
indistinguishable and ciphertext indistinguishable).

Proof. We have proved SP-FE is both token indistinguishable in Theorem 1 and
ciphertext indistinguishable in Theorem 2. Therefore, if the adversary has ad-
vantages ε in breaking Assumption 1, then the simulator has the same advantage
in breaking Assumption 1. Thus SP-FE preserves both ciphertext privacy and
token privacy, while providing DFA-type predicates. �

5.2 Sequence of Hybrid Games

This section proves the proposed SP-FE satisfies Definition 2 (token indistin-
guishable) by a sequence of hybrid games from Game 1 to Game 5.

Lemma 1. If G satisfies Assumption 1, Game 1 and Game 2 are computation-
ally indistinguishable.

Proof: Simulator B tries to break Assumption 1 by an adversary A trying to dis-
tinguish Game 1 from Game 2. Simulator B is given an instance of Assumption
1: the public parameters (N,G,GT , ê), (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 , gc1d3 )

and a1, a2, a3
R← Zp1 , b1, b2

R← Zp2 , c1, c2, d
R← Zp3 , g1

R← G1, g2
R← G2 and

g3
R← G3. Also, generate a random bit b ∈ {0, 1}, and set Tb = ga31 gbb22 gc23 .

- Setup: A is given the public parameters and outputs two challenges M1 =
(Σ,Q1, δ1 = {(uj , vj ,W )}nδj=1, q0,1, F1) and M2 = (Σ,Q2, δ2 = {(uj , vj),W}nδj=1,
q0,2, F2). B converts M1 into M ′1 by addStatesTransitions and transforms δ′

into {(uj , vj), (wj)}Nδj=1 by symbolSetToVector. B performs the same proce-

dures on M2 to obtain {(uj , vj), (zj)}Nδj=1. B sends {wj}Nδj=1 and {zj}Nδj=1 to the

challenger C. Set {{qj1,i, qj2,i}σ
′′+1
i=1 , {rj1,i}σ

′′+1
i=1 {r′j2,i}σ

′′+1
i=1 }Nδj=1 randomly from ZN .

- Phase 1: A adaptively outputs one of the two queries.

(1) Token Query. B receives a predicate M=(Σ,Q, δ={(uj , vj ,W )}nδj=1, q0, F )

fromA. B turnsM intoM ′′=(Σ′′, Q′′, δ′′={(uj , vj),W}Nδj=1, q
′
0, F

′′) by addStat-

esTransitions and turns δ′ into {(uj , vj), (yj)}Nδj=1 by symbolSetToVector.

B randomly sets T ′, β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2 from ZN and outputs

TKj . Denote TKj={(uj , vj), ({Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2)}Nδj=1, where







{Kj
1,i}σ

′′+1
i=1 ={gV

′
1,i

1 (ga11 g2)β1yi(gd
2

3 )T
′rj1,i}σ′′+1

i=1 ={gV1,i

1 gβ1yi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 ={gV

′
2,i

1 (ga11 g2)β2,yi(gd3)T
′wi · (gd23 )T

′r′j2,i}σ′′+1
i=1 ={gV2,i

1 gβ2yi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1=

∏σ′′+1
i=1 (K

−qj1,i
1,i K

−qj2,i
2,i )(gb12 g

c1d
3 )V

′
1 (gd3)V

′
2 =g

−Σσ′′+1
i=1 (V1,iq

j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3

Kj
2=(gd23 )T

′
=gT3





Nδ

j=1

with (uj
R← Z|NQ|, vj

R← Z|NQ|), T=d2T ′, {V1,i=β1a1yi+V ′1,i}σ
′′+1
i=1 , {V2,i=β2a1yi+

V ′2,i}σ
′′+1
i=1 , {rj2,i = d−1wi+r′j2,i}σ

′′+1
i=1 , V1 = b1V

′
1−β1Σσ′′+1

i=1 qj1,iyi−β2Σσ′′+1
i=1 qj2,iyi,

and V2 = c1dV
′
1 +dV ′2 −T (Σσ′′+1

i=1 qj1,i)r
j
1,i+Σσ′′+1

i=1 qj2,ir
j
2,i). The tokens generated

in Phase 1 has the same distribution as that by SP-FE.GenToken because

V ′1 , V
′
2
R← ZN .

(2) Ciphertext Query. B receives a plaintext w = (w1, . . . , wnw) from A. B
transforms w into w′ = (w1, . . . , wNw) by addSpecialSymbols and transforms

w′ into {xj}Nwj=1 by symbolSetToVector. B randomly sets S, α′1, α
′
2, {U ′1,i}σ

′′+1
i=1 ,

{U ′2,i}σ
′′+1
i=1 , U ′1, U

′
2 from ZN and outputs CTj forA. Denote CTj={{Cj1,i, Cj2,i}σ

′′+1
i=1 ,

Cj1 , C
j
2}Nδj=1, where





{Cj1,i}σ
′′+1
i=1 = {(g1)Sq

j
1,i(gb12 g

c1
3 )α

′
1xi(gd

2

3 )U
′
1,i}σ′′+1

i=1 {g
Sqj1,i
1 gα1xi

2 g
U1,i

3 }σ′′+1
i=1

{Cj2,i}σ
′′+1
i=1 = {(g1)Sq

j
2,i(gb12 g

c1
3 )α2,xi(gd

2

3 )U
′
2,i}σ′′+1

i=1 {g
Sqj2,i
1 g

α′
2xi

2 g
U2,i

3 }σ′′+1
i=1

Cj1 = gS1

Cj2 =
∏σ′′+1
i=1 [(gd

2

3 )−U
′
1,ir

j
1,i−U ′

2,ir
′j
2,i(gc13 )α

′
1xi+α

′
1xi ]·

∏σ′′+1
i=1 (gd3)−U

′
2,iwi · (ga11 g2)U

′
1g
U ′

2
1 = gU1

1 gU2
2 g
−Σσ′′+1

i=1 (U1,ir
j
1,i+U2,ir

j
2,i)

3





Nδ

j=1

with α1=b1α
′
1, α2=b1α

′
2, {U1,i=d

2U ′1,i+c1α
′
1xi}σ

′′+1
i=1 , {U2,i=d

2U ′2,i+c1α
′
2xi}σ

′′+1
i=1 ,

{rj2,i=d−1wi + r′j2,i}σ
′′+1
i=1 , U1 = a1U

′
1 + U ′2, and U2 = U ′1. The ciphertexts gener-

ated in Phase 1 has the same distribution as that by SP-FE.Encrypt because

U ′1, U
′
2
R← ZN .

- Challenge: B receives query of challenge token from A. B is given the chal-

lenge query for Assumption 1 as Tb = ga31 gbb22 gc23 with b ∈{0, 1} and a3
R← Zp1 ,

b2
R← Zp2 , c2, d

R← Zp3 . B randomly sets β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , and

V ′2 from ZN and generates corresponding tokens for A as follows.




{Kj
1,i}σ

′′+1
i=1 = {gV

′
1,i

1 (ga11 g2)β1wi(gc2d3 )r
j
1,i}σ′′+1

i=1 = {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 = {(Tb)wig

V ′
2,i

1 (gc2d3 )r
′j
2,i}σ′′+1

i=1 = {gV2,i

1 gβ2wi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1 = gc2d3 = gT3

Kj
2 = Πσ′′+1

i=1 (K
−qj1,i
1,i K

−qj2,i
2,i )(gc2d3 gb12 )V

′
1 g
V ′
2

3 = g
−Σσ′′+1

i=1 (V1,iq
j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3





Nδ

j=1

with (uj
R← Z|Q′′|, vj

R← Z|Q′′|), T = c2d, β2=bb2, {V1,i=d2V ′1,i + a1β1wi}σ
′′+1
i=1 ,

{V2,i = V ′2,i + a3wi}σ
′′+1
i=1 , V1 = b1V

′
1 −Σσ′′+1

i=1 (β1q
j
1,i + β2q

j
1,i)wi, and V2=TV ′1 +



V ′2 − TΣσ′′+1
i=1 (qj1,i · rj1,i + qj1,ir

j
2,i). The distribution of the ciphertexts generated

when T1 = ga31 gb22 g
c2
3 is given is exactly the same as the one in Game 1. Similarly,

The distribution of the ciphertexts generated when T0 = ga31 gc23 is given is exactly
the same as the one in Game 2.

- Phase 2: B continues to adaptively query as in Phase 1.

- Guess: A outputs a guess b′ of b and sends it to B.

If the adversary A has the advantage ε in distinguishing Game 1 from Game 2,
then the simulator B has the same ε advantage in breaking Assumption 1. This
completes the proof of the Lemma 1. �
Lemma 2. If G satisfies Assumption 1, Game 2 and Game 3 are computationally
indistinguishable.

Proof: Simulator B tries to break Assumption 1. by an adversary A trying to
distinguish Game 2 from Game 3. Simulator B is given an instance of Assumption
1: the public parameter (N,G,GT , ê), (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 , gc1d3 )

and a1, a2, a3
R← Zp1 , b1, b2

R← Zp2 , c1, c2, d
R← Zp3 , g1

R← G1, g2
R← G2 and

g3
R← G3. Also, generate a random bit b ∈ {0, 1}, and set Tb = ga31 gbb22 gc23 .

- Setup: A is given public parameters and outputs the descriptions of two
challenges M1 = (Σ,Q1, δ1 = {(uj , vj ,W )}nδj=1, q0,1, F1) and M2 = (Σ,Q2, δ2 =

{(uj , vj),W}nδj=1, q0,2, F2). B converts M1 into M ′1 by addStatesTransitions

and transforms δ′ into {(uj , vj), (wj)}Nδj=1 by symbolSetToVector. B performs

the same procedures on M2 to obtain {(uj , vj), (zj)}Nδj=1. B sends {wj}Nδj=1 and

{zj}Nδj=1 to the challenger C and sets {{qj1,i, qj2,i}σ
′′+1
i=1 , {rj1,i}σ

′′+1
i=1 , {r′j2,i}σ

′′+1
i=1 }Nδj=1

from ZN , where |Σ′′| = σ′′.

- Phase 1: A adaptively outputs one of the two queries.

(1) Token Query. B receives a predicate M=(Σ,Q, δ={(uj , vj ,W )}nδj=1, q0, F )

from A. B transforms M into M ′′ = (Σ′′, Q′′, δ′′ = {(uj , vj),W}Nδj=1, q
′
0, F

′′)

by addStatesTransitions and transforms δ′ into {(uj , vj), (yj)}Nδj=1 by sym-

bolSetToVector. B randomly sets T ′, β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2 from

ZN and outputs TKj . Denote TKj={(uj , vj), ({Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2)}Nδj=1.

The only difference between Lemma 1 and Lemma 2 is that Lemma 2 implicitly

sets {rj2,i = d−1zi+r′2,i}σ
′′+1
i=1 in {Kj

2,i}σ
′′+1
i=1 . The tokens in Phase 1 has the same

distribution as that by SP-FE.GenToken because V ′1 , V
′
2
R← ZN .

(2) Ciphertext Query. B receives a plaintext w=(w1, . . . , wnw) from A. B
transforms w into w′ = (w1, . . . , wNw) by addSpecialSymbols and transforms

w′ into {xj}Nwj=1 by symbolSetToVector. B sets S, α′1, α
′
2, {U ′1,i}σ

′′+1
i=1 , {U ′2,i}σ

′′+1
i=1 ,

U ′1, U
′
2 from ZN and outputs CTj forA. Denote CTj = {{Cj1,i, Cj2,i}σ

′′+1
i=1 , Cj1 , C

j
2}Nδj=1.

The only difference between Lemma 1 and Lemma 2 is that Lemma 2 implicitly

sets {rj2,i = d−1zi+r′j2,i}σ
′′+1
i=1 in {Kj

2,i}σ
′′+1
i=1 . The ciphertexts generated in Phase

1 has the same distribution as that by SP-FE.Encrypt because U ′1, U
′
2
R← ZN . -



Challenge: B receives query of challenge token from A. B is given the challenge

query for Assumption 1 as Tb = ga31 gbb22 gc23 with b ∈{0, 1} and a3
R← Zp1 , b2

R←
Zp2 , c2, d

R← Zp3 . B randomly generates β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2

from ZN and generates corresponding tokens for A as follows.

Denote TKj = {(uj , vj), {Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2}Nδj=1, where





{Kj
1,i}σ

′′+1
i=1 = {gV

′
1,i

1 (ga11 g2)β1wi(gc2d3 )r
j
1,i}σ′′+1

i=1 = {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 = {(Tb)zig

V ′
2,i

1 (gc2d3 )r
′j
2,i}σ′′+1

i=1 = {gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1 = gc2d3 = gT3

Kj
2 = Πσ′′+1

i=1 (K
−qj1,i
1,i K

−qj2,i
2,i )(gc2d3 gb12 )V

′
1 g
V ′
2

3 = g
−Σσ′′+1

i=1 (V1,iq
j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3





Nδ

j=1

with (uj
R← Z|Q′′|, vj

R← Z|Q′′|), T=c2d, β2=bb2, {V1,i=d2V ′1,i + a1β1wi}σ
′′+1
i=1 ,

{V2,i=V ′2,i + a3β2zi}σ
′′+1
i=1 , V1 = b1V

′
1 − Σσ′′+1

i=1 (β1q
j
1,iwi + β2q

j
1,izi), and V2 =

TV ′1 + V ′2 − TΣσ′′+1
i=1 (qj1,i·rj1,i + qj1,ir

j
2,i). The distribution of the ciphertexts gen-

erated when T1 = ga31 gb22 g
c2
3 is given is exactly the same as the one in Game

3. Similarly, The distribution of the ciphertexts generated when T0 = ga31 gc23 is
given is exactly the same as the one in Game 2.

- Phase 2: B continues to adaptively query as in Phase 1.

- Guess: A outputs a guess b′ of b and sends it to B.

If the adversary A has the advantage ε in distinguishing Game 2 from Game 3,
then the simulator B has the same ε advantage in breaking Assumption 1. This
completes the proof of the Lemma 2. �
Lemma 3. If G satisfies Assumption 1, Game 3 and Game 5 are computation-
ally indistinguishable.

Proof: Game 3 and Game 4 are computationally indistinguishable following
the proof of Lemma 2 by setting Game 4 as Game 2 except for exchanging

{{Kj
1,i}σ

′′+1
i=1 }Nδj=1 with {{Kj

2,i}σ
′′+1
i=1 }Nδj=1 and exchanging {(uj , vj),wj}Nδj=1 with

{(uj , vj), zj}Nδj=1. Similarly, Game 4 and Game 5 are computationally indis-
tinguishable following the proof of Lemma 1 by setting Game 4 as Game 2

except for exchanging {{Kj
1,i}σ

′′+1
i=1 }Nδj=1 with {{Kj

2,i}σ
′′+1
i=1 }Nδj=1 and exchanging

{(uj , vj),wj}Nδj=1 with {(uj , vj), zj}Nδj=1. This completes the proof.

5.3 Performance Analysis

The performance of SP-FE is as follows: SP-FE.Encrypt requires Nw number of
SK-PE.Encrypt. SP-FE.GenToken costs N2

Q number of SK-PE.GenToken. SP-

FE.Decrypt takes 1
2NQ number of SK-PE.Check in average for each transition.

For the performance of SK-PE, SK-PE.Encrypt (8σ′′+2) · Tadd+(13σ′′+3) · Tsm,
while SK-PE.GenToken takes (8σ′′+2)·Tadd+(13σ′′+3)·Tsm. SK-PE.Check takes
(2σ′′+2) ·Tpairing. Tadd, Tsm and Tpairing denote the time for the point addition
in G, the scaler multiplication in G and the embedded pairing function. On the



other hand, a plaintext w of length nw is encrypted as Nw symbols. The size of
the ciphertext is Nw · (2σ′′+2) · |G|, while that of the token is Nδ · (2σ′′+2) · |G|
plus the description of the DFA, where |G| is the size of the element in G.

6 Conclusions

In this paper, we proposed a symmetric-key predicate-only functional encryp-
tion scheme SP-FE, which supports functionality for regular languages. SP-FE is
proven to guarantee plaintext privacy and predicate privacy. In addition, SP-FE
can be extended to a full-fledged functional encryption scheme by the technique
from [18] to further manage messages. For future work, we would like to ex-
tend SP-FE to support predicates of more expressive languages like context-free
languages to extend the horizon of functional encryption schemes.
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