
Soft Analytical Side-Channel Attacks

Nicolas Veyrat-Charvillon1, Benôıt Gérard2, François-Xavier Standaert3.

1 IRISA-CAIRN, Campus ENSSAT, 22305 Lannion, France.
2 DGA Mâıtrise de l’Information, 35998 Rennes, France.

3 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. In this paper, we introduce a new approach to side-channel
key recovery, that combines the low time/memory complexity and noise
tolerance of standard (divide and conquer) differential power analysis
with the optimal data complexity of algebraic side-channel attacks. Our
fundamental contribution for this purpose is to change the way of ex-
pressing the problem, from the system of equations used in algebraic at-
tacks to a code, essentially inspired by low density parity check codes. We
then show that such codes can be efficiently decoded, taking advantage of
the sparsity of the information corresponding to intermediate variables in
actual leakage traces. The resulting soft analytical side-channel attacks
work under the same profiling assumptions as template attacks, and di-
rectly exploit the vectors of probabilities produced by these attacks. As
a result, we bridge the gap between popular side-channel distinguishers
based on simple statistical tests and previous approaches to analytical
side-channel attacks that could only exploit hard information so far.

1 Introduction

The great majority of side-channel attacks published in the literature follow a
divide and conquer strategy (DC). That is, they first attack independent parts
of the key separately (divide), and then combine these pieces of information
(conquer). Information on individual parts of the key is obtained by study-
ing correlations between key-dependent leakage predictions and the actual side-
channel measurements. The information can then be combined either by simply
concatenating the most probable values of each key part together, or by using
an enumeration algorithm [27, 28]. Examples of distinguishers exploiting such a
strategy include Kocher et al.’s Differential Power Analysis (DPA) [13], Brier et
al.’s Correlation Power Analysis (CPA) [2], Gierlichs et al.’s Mutual Information
Analysis (MIA) [9], Chari et al.’s Template Attacks (TA) [4] and Schindler et
al.’s Stochastic Approach (SA) [23]. The popularity of these tools is due to their
simplicity and versatility: they can be adapted to essentially any implementa-
tion, have low time complexity and work in a gray box manner. That is, they do
not require a precise understanding of the underlying hardware, but their data
complexity is highly dependent on the quality of the adversary’s leakage predic-
tions. Therefore, the knowledge of implementation details and some engineering
intuition can usually be exploited to improve their time and data complexity.

In this context, one fundamental question regarding DC distinguishers is
whether they are sufficient for security evaluations. That is, are the security
levels estimated with such tools close enough to the worst-case? In view of the
previously listed qualities (and in particular, their excellent time complexity),
the most likely drawback candidate for DC strategies is a suboptimal data com-
plexity. As a result, a number of research works have investigated whether the
application of analytical strategies (i.e. targeting the full key at once) could pro-
vide improved results. To the best of our knowledge, one of the first attempts in
this direction was Mangard’s Simple Power Analysis (SPA) against the AES key
expansion algorithm [15]. The Side-Channel Collision Attacks (SCCA) in [1, 24,
25] were next interesting steps, in which the key is recovered by solving a set of
(mostly) linear equations corresponding to the first cipher round(s). Following,
Algebraic Side-Channel Attacks (ASCA) were introduced in [21, 22] and prob-
ably constitute the most representative example of analytical strategy to date.
Under certain conditions, they are able to extract the key of an AES implemen-
tation from a single leakage trace, in an unknown plaintext/ciphertext scenario.

So to some extent, ASCA could be viewed as an extreme opposite to DC
attacks, with a minimum data complexity coming at the cost of a (much) more
complex and sensitive solving phase – hence raising questions regarding their
practical relevance. For example in the first papers from Renauld et al., the ad-
versary represents the target block cipher and its leakages as an instance of sat-
isfiability problem that she sends to a generic sat solver (other types of solvers,
e.g. based on Gröbner bases, have also been analyzed [3]). The main issue with
this approach is a very weak resistance to noise, since the solver essentially needs
to be fed with correct hard information. For this purpose, the usual strategy was
to group certain leakage values according to a model with lower cardinality, e.g.
the well-known Hamming weight one, in order to trade robustness for informa-
tiveness. Improved heuristics are presented in [17, 29]. More recently, Oren et
al. proposed to replace the use of a solver by that of an optimizer, leading to
Tolerant ASCA (TASCA) able to exploit more general models [18, 19]. Yet, even
these last attempts were quite inefficient in exploiting soft information, mainly
because of the difficulty to translate a vector of probabilities (e.g. as provided
by classical TA) into an optimizer-friendly format. In fact TASCA essentially
encode these vectors as exhaustive hard information, hence limiting the num-
ber of leaking operations that could be included in the optimizer to a couple of
rounds (compared to the full cipher in ASCA), because of memory issues. Even-
tually, the results in [10] provide yet another powerful approach to analytical
side-channel attacks, based smart enumeration and specialized to the AES, but
so far they also remain limited to the exploitation of hard information.

This state-of-the-art seems to suggest that the probabilistic information pro-
vided by side-channel leakages can be easily exploited with DC attacks, while
analytical strategies require a preprocessing step to translate this soft informa-
tion into hard one. In this paper, we argue that this intuition is flawed, and in
fact relates to the way of formulating the problem rather than to its nature.
That is, while previous analytical attacks were expressing the target block ci-

phers and their leakages as equations, we propose to describe the same problem
as a code. As a result, and for the first time, we detail a Soft Analytical Side-
Channel Attack (SASCA) that combines the best of two worlds, namely the
noise robustness and low time complexity of DC strategies with the low data
complexity of analytical ones. In this respect, our first contribution is to exhibit
a natural way to encode a side-channel cryptanalysis problem. Next, we show
that we can efficiently decode such problems thanks to the Belief Propagation
algorithm (BP). Using these new tools, we are able (i) for low noise levels: to
attack the aes furious implementation that was targeted in previous works on
ASCA/TASCA with a single leakage trace, with significantly reduced time and
memory complexities, (ii) for large noise levels: to attack the same implementa-
tion with multiple plaintexts, but with 23 to 24 less traces than a standard TA.
Summarizing, the proposed technique bridges the gap between DPA and ASCA.

Related works. While the motivation for SASCA quite directly derives from
previous works in ASCA/TASCA, its mathematical modeling fundamentally dif-
fers from them and is in fact much closer to some results exploiting techniques
from coding theory. In particular, the application of Hidden Markov Models in
the context of time-randomized implementations [5, 12] or side-channel disas-
semblers [6], and the decoding of Low Density Parity Check (LDPC) codes in
the context of SCCA [8] were sources of inspiration for the following work.

Cautionary note. In order to show the applicability of SASCA at different
noise levels, our empirical results are based on simulated experiments. Yet, we
insist that SASCA is (in general) just as realistic as any TA, since it relies on
exactly the same assumptions for the profiling phase (i.e. the knowledge of a
single key). Furthermore, we paid attention to exploit exhaustive templates (i.e.
used 256 profiles per intermediate value attacked) which can be generalized to
any leakage function and corresponds to the worst-case time complexity.

2 Soft Analytical Side-Channel Attacks

We first emphasize the differences between previous solver- or optimizer-based
approaches to analytical side-channel attacks and our decoder-based solution. We
then describe the BP algorithm and discuss its connection to the exploitation of
side-channel leakage. We finally detail how to describe an AES implementation as
a factor graph, that can be efficiently decoded by BP. The following descriptions
assume a profiled attack scenario, as usual in worst-case evaluations [26].

2.1 Solving (or optimizing) vs. decoding

In the course of a profiled side-channel attack, the adversary extracts information
from leakage traces. This information comes from the processing of intermediate
values throughout the cryptographic computations. By comparing these leakages
with previously estimated templates, she obtains for each target value Xi a
conditional posterior distribution Pr[Xi|L]. Provided the device is not perfectly

side-channel resistant, most of the posterior distributions will have an entropy
lower than that of a uniform distribution. In this context, the most interesting
pieces of information relate to the encryption key. For this purpose, not only
the leakages that directly correspond to key bytes – informally denoted as SPA
leakages – are exploited, but also those of intermediate variables that depend
on both the key and the (usually known) plaintext – informally denoted as
DPA leakages – such as the sbox outputs in the first aes round, typically. For
example, starting from the posterior probability of the output value Sout given
the leakage Lout, one can deduce its image before the substitution layer:

Pr[Sin = v|Lout] = Pr[Sout = sbox(v)|Lout].

For a known plaintext value P , one can compute a posterior distribution on a
key byte K by unrolling the computation one step further:

Pr[K = k|P = p, Lout] = Pr[Sout = sbox(k ⊕ p)|Lout].

These simple equations show that it is possible to derive information about
the key using intermediate variables. Furthermore, one can easily combine the
leakage obtained from multiple plaintexts, by marginalizing Pr(K = k) over the
corresponding traces: this is in fact what DC attacks do. Next, and since multiple
key-dependent variables can usually be found within cryptographic implemen-
tations, a natural problem is to find ways to exploit them efficiently. But this is
exactly where the DC strategy faces limitations. Namely, combining the leakage
of these intermediate variables is trivial as long as they only depend on a single
key byte, e.g. the sbox inputs and outputs in a first block cipher round. One just
deals with the additional variable as with an additional plaintext in this case.
Taking the example of aes, this can even be extended to the first mixcolumns
operation, if 32-bit key hypotheses are performed by the adversary. But the DC
approach is inherently limited to the exploitation of predictable parts of the key.
So as soon as the diffusion is complete (which very rapidly occurs in modern
ciphers and therefore corresponds to most of their intermediate computations),
the leakages are left unexploited by such strategies. This limitation directly leads
to the main problem we tackle in this paper, namely: How to efficiently exploit
the leakage of any intermediate variable in a side-channel attack?

Previous ASCA were a first attempt to answer this question, by trying to
solve a system of equations describing the target cryptographic algorithm, com-
plemented with the information extracted. These attacks typically begin by siev-
ing intermediate values, keeping only the most probable ones. A usual approach is
to coalesce the leakages by Hamming weights for this purpose. The set of remain-
ing values is then verified one against another (e.g. using heuristic sat-solvers).
Unfortunately, this algebraic approach cannot easily deal with the probability
distributions output by TA, which are thus discretized and sieved. Whenever the
measurement noise is not negligible, this introduces “errors” that are fatal to al-
gebraic solvers. As mentioned in introduction, optimizers allow mitigating this
problem, but are still limited in the exhaustive way they encode the probabilities
(which is too expensive for describing more than a couple of aes rounds).

Our method works differently, by operating directly on the posterior distribu-
tions of the intermediate values extracted from leakage traces, and propagating
the information throughout the computation steps of the algorithm. When at-
tacking a cryptographic implementation, we first build a large graphical model
containing the intermediate variables, which are linked by constraints corre-
sponding to the atomic operations executed. For instance, the exclusive-or and
sbox functions are usually found in software implementations of the aes. Next,
the goal is to find the marginal distribution of the key, given the distributions of
all the intermediate variables. While this is generally a hard problem, we observe
that an important feature of cryptographic algorithms is that intermediate val-
ues tend to appear only in a few places. A similar behavior is present in Gallager
codes [7], also called Low-Density Parity Check codes (LDPC). In such a code,
codeword bits are linked together by a small number of parity constraints (i.e.
linear in the codeword size). Decoding such a construction is generally performed
via application of the BP algorithm, also known as sum-product algorithm. Our
application in the following sections is a (conceptually) simple extension, where
values are not limited to bits, and parity constraints go beyond exclusive-ors.

2.2 The Belief-Propagation algorithm

Our description of the BP algorithm is largely based on the (excellent) de-
scription provided in [14, chapter 26]. Let us consider a set of N variables
x ≡ {xn}Nn=1, and define a function P ∗ of x which is a product of M factors:

P ∗(x) =

M∏
m=1

fm(xm),

where each factor fm(xm) is a function of a subset xm of x. The P ∗ function is
typically depicted using a factor graph, in which circles correspond to variables
xi and squares to functions fm. An edge is drawn between xi and fm if xi ∈ xm,
meaning that the m-th factor depends on the i-th variable. For example, the
parity functions and factor graph of a simple 3-repetition code are shown below:

f1(x1) = Pr(x1 = 1)
f2(x2) = Pr(x2 = 1)
f3(x3) = Pr(x3 = 1)

f4(x1, x2) =

{
1 if x1 ⊕ x2 = 0
0 otherwise

f5(x2, x3) =

{
1 if x2 ⊕ x3 = 0
0 otherwise

f1 f2 f3

f4 f5

x1 x2 x3

The task we are interested in is that of marginalization. That is, we aim to be
able to compute the following function:

Zn(xn) =
∑

x,xn=xn

P ∗(x),

and more importantly it normalized version Pn(xn) = Zn(xn)/Z, where:

Z =
∑
x

M∏
m=1

fm(xm).

These tasks are intractable in general. Even when the factor functions are limited
to three variables, the cost of computing the exact marginal is believed to grow
exponentially with the number of variables N . The BP algorithm can circumvent
this problem and compute marginals efficiently as long as the factor graph is tree-
like. We will denote by N (m) the set of variables involved in factor fm, byM(n)
the set of factors where variable xn appears, and shorthand the set of variables
in xm with xn excluded as: xm \ n ≡ {xn′ : n′ ∈ N (m) \ n}. The algorithm
works by passing two types of messages along the edges of the factor graph,
from variables to factors (qn→m) and from factors to variables (rm→n). The sets
of messages are updated using two rules:

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn).

rm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N (m)\n

qn′→m(x′n)

 .

Convergence should occur after a finite number of iterations, at most equal to the
longest path. Once the network has converged, the marginal function (also called
belief) of a variable xn can be recovered by multiplying together all incoming
messages at the corresponding node:

Zn(xn) =
∏

m∈M(n)

rm→n(xn).

The normalized value Pn(xn) = Zn(xn)/Z is easily obtained by summing to-
gether the marginal functions Z =

∑
xn
Zn(xn). As already mentioned, the BP

algorithm returns the exact marginals as long as the factor graph is a tree-shaped
graphical model. Yet, in many useful cases such as decoding, the graph contains
cycles. Fortunately, BP can be applied directly on general factor graphs as well,
raising the so-called “loopy” BP. While this version does not guarantee to return
the correct marginals, and may even not converge to a fixed point in some cases,
it usually gives results that are good enough for most applications.

2.3 Efficient representation of an AES implementation

Our method for SASCA consists in an application of the BP algorithm to the
decoding of keys using plaintexts, ciphertexts and side-channel traces. In this
section, we illustrate it in the context of an implementation of the aes in an 8-
bit device. For this purpose, the xi variables defined in the description of the BP
algorithm will represent the intermediate values handled by the cryptographic
algorithm, and the parity functions will be separated into two sets:

– The first set corresponds to the a priori knowledge on the variables acquired
through side-channel leakages, denoted as fi(xi) = Pr[xi = v|L].

– The second set corresponds to the operations executed by the implementa-
tion. In the case of a binary operation op(xi1 , xi2), the function is defined by:

fi(xi1 , xi2 , xi3) =

{
1 if op(xi1 , xi2) = xi3 ,
0 otherwise.

Based on these notations, an adversary first has to encode the aes computations
in a form that is compatible with the BP algorithm. For illustration, and because
it is publically available, we will describe how to build a factor graph for the aes
furious implementation (http://point-at-infinity.org/avraes).

Concretely, our program takes in a description which is very similar to the
assembly code of aes furious, with the memory related operations left out,
but where any assignment requires a newly named variable. Namely, variable
nodes are denoted by names starting with a capital letter, such as K[2,4]_0 for
the intermediate key in row 2 and column 4 of key scheduling round 0, which
also happens to be the second master key byte (noted K0

2,4 in the factor graph),
or SB[2,1]_0 for the sbox output in row 2 and column 1 of round 0 (SB0

2,1 in
the factor graph). These variable nodes correspond to intermediate values com-
puted during encryption, such as the state (ST), key addition or mixcolumns
intermediate results (AK and MC), outputs of xtime operations (XT), . . . Be-
sides, factor node names start with an underscore such as _Xor (exclusive or)
and _Xtime (polynomial multiplication by x). They correspond to instructions
executed during encryption. For example, Table 1 gives samples of the corre-
spondence between the assembly code, input description and factor graph. Note
that the factor nodes for the prior probabilities of the variables are not drawn.

Assembly code Graph description Factor graph

ld H1, Y+
eor ST11, H1
mov ZL, ST11
lpm ST11, Z

*
_Xor AK[1,1]_0 ST[1,1]_0 K[1,1]_0
*
_Sbox SB[1,1]_0 AK[1,1]_0 xor sbox

AK0
1,1ST 0

1,1K0
1,1 SB0

1,1

mov H3, ST11
eor H3, ST21
mov ZL, H3
lpm H3, Z

*
_Xor MC[3,1]_0 SB[1,1]_0 SB[2,1]_0
*
_Xtime XT[1,1]_0 MC[3,1]_0 xor xtime

SB0
1,1 SB0

2,1 MC0
3,1 XT 0

1,1

mov ZL, ST24
lpm H3, Z
eor ST11, H3
eor ST11, H1

*
_Sbox SK[1,1]_1 K[2,4]_0
_Xor XK[1,1]_1 SK[1,1]_1 K[1,1]_0
_XorCst K[1,1]_1 XK[1,1]_1 0x1 sbox xor xorcst

K0
2,4 SK1

1,1 K0
1,1 XK1

1,1 K1
1,1

Table 1. Factor graph representation of an aes encryption

There are two notable differences between SASCA and the classical decoding
of LDPC codes. First, variable nodes are not binary digits, but rather elements of

GF(28). Second, factor nodes are not limited to exclusive or’s, but may include
any of the variety of functions used in cryptographic implementations (e.g. xor,
sbox, xtime). However, these factor nodes are not much more complex than for
classical decoding, as illustrated with our three previous examples:

xor(A,B,C) =

{
1 if A⊕B = C,

0 otherwise.

sbox(A,B) =

{
1 if A = S(B),

0 otherwise.

xtime(A,B) =

{
1 if A = Xt(B),

0 otherwise.

This natural representation of operations is very efficient, as opposed to the
contrived way aes encryptions are translated to sat instances (roughly, it corre-
sponds to 1,200 equations and variables in GF(28) compared to 18,000 equations
in 10,000 variables in sat-based ASCA). Taking advantage of it, the SASCA ad-
versary then tries to compute the key marginal probability for Pn(K) given the
leakages. For this purpose, one simply has to incorporate the implicit factor
nodes corresponding to prior knowledge on variable nodes, as given by the tem-
plates of the side-channel attack. For instance, the factor for the output of the
first sbox in the first round fm(SB0

1,1) is the posterior distribution Pr[SB0
1,1|L].

In addition, any known value (for instance the plaintext bytes) has a prior knowl-
edge with entropy zero, and any value that does not leak (either because it is
protected or precomputed) has a uniform prior. Eventually, the loopy BP algo-
rithm propagates information throughout the factor graph: if successful (i.e. in
case of convergence), it should return the approximate marginal probabilities of
the key bytes Pn(K0

1,1) to Pn(K0
4,4), i.e. the answer we are looking for.

2.4 Attacking with several traces

The ability to efficiently exploit (i.e. combine the information of) several leakage
traces is one of the reasons that have made DPA attacks so popular – since it
typically leads to the noise vs. data complexity tradeoff that is at the core of most
side-channel attacks. It also remains one of the main practical issue for ASCA
and follow-up works. So far, the only way several traces can be useful is when
they are repetitions of the same encryption (without randomizations), so that the
noise can be averaged out. By contrast, adding traces corresponding to multiple
plaintexts could only be managed with the construction of larger systems, that
are too memory consuming for TASCA, and increasing the probability that one
piece of hard information in such systems is incorrect for ASCA.

Interestingly, SASCA are able to improve the key recovery success rate with
each additional trace observed. Practically, the factor graph used for decoding
is first replicated for each trace. Yet, since the master key stays the same during

K
ey

S
ch

ed
u
le

aesk(P3)

aesk(P2)

aesk(P1) K0
1,1

K0
1,2

K0
1,3

...

K10
4,4

Fig. 1. Factor graph connections for several traces.

the course of the attack, the part of our factor graph corresponding the key
scheduling also remains constant: it forms a kind of “backbone” where all the
encryption rounds connect, as depicted in Figure 1. As a result, whenever sev-
eral messages are used, the probability distributions are propagated from each
replicated graph towards the key schedule. The impact of such propagation is in
fact very similar to the one resulting from using several traces in a classical TA,
where probabilities are multiplied together and the success rate increases.

3 Experimental results

We now validate the method described in the previous section with illustrative
simulated attacks against the aes furious implementation. For this purpose,
we assume a setup that is essentially similar to the one used to demonstrate
the applicability of ASCA to the AES in [22]. The only difference is that we
will consider implementations with and without the key scheduling leakages. As
previously explained (and illustrated in Table 1), all the operations found in
the assembly code are translated into factor nodes, excluding memory related
operations. For illustration, we considered Hamming weight leakages affected by
a noise of variance σ2

n, but the attack is independent of this choice: any function
could be incorporated without performance penalty. The only important param-
eter in our case is the informativeness of the leakages which, in the first-order
setting we investigate, can be measured with a Signal-to-Noise Ratio (SNR) [16].
Since the signal (i.e. variance) of a Hamming weight leakage function for 8-bit
intermediate values equals 2, one can simply derive the SNR as 2/σ2

n. For il-
lustration, we compared our results with the ones of two standard TA. Namely,
one univariate exploiting only the first-round S-box output leakages, and one
bivariate exploiting the first-round S-box input and output leakages.

The results of our experiments are shown in figure 2. The x-axis corresponds
to the number of messages used for the attack (in log scale), and the y-axis is
a stack of success rate curves for decreasing SNRs (i.e. increasing noise levels).
An alternative view is provided in Figure 3, which sums up these simulation

S
N

R

24

0

1

23

0

1

22

0

1

21

0

1

20

0

1

2−1

0

1

2−2

0

1

2−3

0

1

2−4

0

1

2−5

0

1

2−6

0

1

S
u

ccess
R

ate

1 2 5 10 20 50 100 200 500 1000 2000 5000

Number of traces

Fig. 2. Attacks results for our simulated furious implementation. Each graph gives
the success rate (SR, ranging from 0 to 1) for a given signal-to-noise ratio (SNR,
ranging from 24 down to 2−6) as a function of the number of traces (in logarithmic
scale, ranging from 1 to 5000). The attacks are:

––––– univariate TA targetting the sbox output (in dark gray),

– bivariate TA targetting the sbox input and output (in blue),

– SASCA attack ignoring the key schedule leakages (in violet),

– SASCA attack exploiting all the intermediate values (in orange).

results by showing the data complexity gains of SASCA over TA. It appears
from both figures that these gains are significant and consistently observed for
any noise level. Eventually, the unknown inputs and outputs scenario is detailed
for SASCA in Figure 4. We see that its impact is limited if the key scheduling
leaks (confirming the results from [15]) and more significant otherwise.

20

2−1

2−2

2−3

2−4

M
es
sa
ge

ra
ti
o

24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6

SNR

Fig. 3. Data complexity gain of SASCA compared to TA given as the fraction of
measurements needed to reach a success rate of 0.9 (same colors as in Figure 2).

Discussion. Compared to previous results in ASCA/TASCA, our new tools
bring two main advantages. First, from the SNR point of view, these works were
typically limited to scenarios where a single leakage trace was enough to recover
the master key (i.e. to SNRs > 22). We can deal with any SNR. Second, the
time and memory complexity of the BP decoding is much improved compared
to sat-solver based ASCA and optimizer-based TASCA. Our implementation
deals with a factor graph of size proportional to the number of messages, with a
relatively high (yet easily tractable in practice) constant of approximately 16M
per message. Its computation time is proportional to both the diameter of the
graph (constant after the second message) which sets the number of decoding
iterations, and the number of measurements which sets the amount of messages
exchanged at each iteration. This in fact makes the time and memory complexity
of SASCA quite comparable to the ones of divide and conquer TA (i.e. linear
in the number of messages, with a constant computation time of approximately
one second per message in our prototype implementation) – yet enjoying sub-
stantially smaller data complexities (i.e. similar to ASCA/TASCA) which is, as
expected, the main advantage of analytical strategies over DC ones.

As mentioned in introduction, the practical relevance of such attacks is quite
similar to TA, since it requires the same profiling assumptions (i.e. the knowledge
of a single key). Admittedly, the profiling effort is significantly more expensive
for SASCA, since it requires characterizing all the target intermediate values.
But since all these target values can be profiled independently, building their
templates can be done quite efficiently (with essentially the same amount of
measurements as needed to characterize the first-round operations exploited in
TA), and is easily automated with standard side-channel attack techniques.

24
23
22
21
20
2−1
2−2

1 2 5 10 20 50

SNR

0

1

S
u

cc
es

s
ra

te

24
23
22
21
20

1 2 5 10 20 50 100 200

SNR

0

1

S
u

cc
es

s
ra

te

Number of traces

Fig. 4. SASCA with unknown input and output for different SNRs.The x-axis is the
number of traces used for the attack (in log scale), and the y-axis gives the probability
of key recovery. The top graph corresponds to a leaky key schedule, and the lower
graph gives the results for a leak-free key schedule.

4 Conclusions

By modeling the side-channel analysis problem adequately, SASCA bring the
missing link between standard DC distinguishers and analytical strategies for
key recoveries. As a result and for the first time, we are able to efficiently exploit
the probabilistic information of all the leaking operations in a software imple-
mentation. Our resulting attacks are optimal in data complexity and efficient in
time and memory. Yet, we note that the tools exploited in this first instantiation
of SASCA can certainly be improved. For example, the BP algorithm performs
too many computations for our needs. Indeed, it propagates every distribution
throughout the factor graph whereas in practice, we are mostly interested in
the key. Hence, further works could exploit the propagation of messages only
towards the schedule (i.e. perform Bayesian inference). This would additionally
allow the attack to be performed one message at a time, by accumulating in-
formation retrieved from each trace onto the nodes of the key schedule, hence
reducing the memory requirements to that of a single trace (i.e. 16M).

In view of the improved noise robustness of SASCA, an important open prob-
lem is to determine whether the strong results obtained with this new type of
analytical strategy also apply to implementations protected with countermea-
sures. Masking, shuffling and leakage-resilient cryptography appear as the most
interesting targets in this respect. Besides, the experiments in this work consid-
ered a worst-case scenario where the adversary could take advantage of all the
leaking operations of an AES implementation (i.e. assuming the knowledge of

the source code, essentially). But the investigation of an intermediate scenario
where the adversary would exploit less leaking observations (e.g. the ones he
could guess without knowing the source code) and its resulting time and data
complexity is another interesting scope for additional investigations.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts
by the European Commission through the ERC project 280141 (CRASH).

References

1. Andrey Bogdanov, Ilya Kizhvatov, and Andrei Pyshkin. Algebraic methods in
side-channel collision attacks and practical collision detection. In Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365
of Lecture Notes in Computer Science, pages 251–265. Springer, 2008.

2. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Joye and Quisquater [11], pages 16–29.

3. Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault.
Analysis of the algebraic side channel attack. Journal of Cryptographic Engineer-
ing, 2(1):45–62, 2012.

4. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

5. François Durvaux, Mathieu Renauld, François-Xavier Standaert, Löıc van Olde-
neel tot Oldenzeel, and Nicolas Veyrat-Charvillon. Efficient removal of random
delays from embedded software implementations using hidden markov models. In
Stefan Mangard, editor, CARDIS, volume 7771 of Lecture Notes in Computer Sci-
ence, pages 123–140. Springer, 2012.

6. Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. Building a side channel
based disassembler. Transactions on Computational Science, 10:78–99, 2010.

7. Robert G. Gallager. Low-density parity-check codes. IRE Transactions on Infor-
mation Theory, 8(1):21–28, 1962.

8. Benôıt Gérard and François-Xavier Standaert. Unified and optimized linear colli-
sion attacks and their application in a non-profiled setting. In Prouff and Schau-
mont [20], pages 175–192.

9. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154
of Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

10. Shize Guo, Xinjie Zhao, Fan Zhang, Tao Wang, Zhijie Jerry Shi, François-Xavier
Standaert, and Chujiao Ma. Exploiting the incomplete diffusion feature: A spe-
cialized analytical side-channel attack against the aes and its application to mi-
crocontroller implementations. IEEE Transactions on Information Forensics and
Security, 9(6):999–1014, 2014.

11. Marc Joye and Jean-Jacques Quisquater, editors. Cryptographic Hardware and
Embedded Systems - CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004., volume 3156 of Lecture Notes in Computer Science.
Springer, 2004.

12. Chris Karlof and David Wagner. Hidden markov model cryptoanalysis. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2779 of Lecture
Notes in Computer Science, pages 17–34. Springer, 2003.

13. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

14. David J. C. MacKay. Information theory, inference, and learning algorithms. Cam-
bridge University Press, 2003.

15. Stefan Mangard. A simple power-analysis (spa) attackon implementations of the
aes key expansion. In Pil Joong Lee and Chae Hoon Lim, editors, ICISC, volume
2587 of Lecture Notes in Computer Science, pages 343–358. Springer, 2002.

16. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all -
all for one: unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, 2011.

17. Mohamed Saied Emam Mohamed, Stanislav Bulygin, Michael Zohner, Annelie
Heuser, Michael Walter, and Johannes Buchmann. Improved algebraic side-channel
attack on aes. Journal of Cryptographic Engineering, 3(3):139–156, 2013.

18. Yossef Oren, Mario Kirschbaum, Thomas Popp, and Avishai Wool. Algebraic side-
channel analysis in the presence of errors. In Stefan Mangard and François-Xavier
Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer Science,
pages 428–442. Springer, 2010.

19. Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool. Al-
gebraic side-channel attacks beyond the hamming weight leakage model. In Prouff
and Schaumont [20], pages 140–154.

20. Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Bel-
gium, September 9-12, 2012., volume 7428 of Lecture Notes in Computer Science.
Springer, 2012.

21. Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel attacks.
In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Information Secu-
rity and Cryptology - 5th International Conference, Inscrypt 2009, Beijing, China,
December 12-15, 2009., volume 6151 of Lecture Notes in Computer Science, pages
393–410, 2009.

22. Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Alge-
braic side-channel attacks on the aes: Why time also matters in dpa. In Christophe
Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer
Science, pages 97–111. Springer, 2009.

23. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES, volume 3659 of Lecture Notes in Computer Science, pages 30–46. Springer,
2005.

24. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-attack
on aes: Combining side channel- and differential-attack. In Joye and Quisquater
[11], pages 163–175.

25. Kai Schramm, Thomas J. Wollinger, and Christof Paar. A new class of collision
attacks and its application to des. In Thomas Johansson, editor, FSE, volume 2887
of Lecture Notes in Computer Science, pages 206–222. Springer, 2003.

26. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, EU-
ROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

27. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in

Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2012.

28. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
126–141. Springer, 2013.

29. Fan Zhang, Xinjie Zhao, Shize Guo, Tao Wang, and Zhijie Shi. Improved algebraic
fault analysis: A case study on piccolo and applications to other lightweight block
ciphers. In Emmanuel Prouff, editor, COSADE, volume 7864 of Lecture Notes in
Computer Science, pages 62–79. Springer, 2013.

