
Combining Leakage-Resilient PRFs and Shuffling

Towards Bounded Security for Small Embedded Devices

Vincent Grosso, Romain Poussier, François-Xavier Standaert, Lubos Gaspar,

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Combining countermeasures is usually assumed to be the
best way to protect embedded devices against side-channel attacks. These
combinations are at least expected to increase the number of measure-
ments of successful attacks to some reasonable extent, and at best to
guarantee a bounded time complexity independent of the number of mea-
surements. This latter guarantee, only possible in the context of leakage-
resilient constructions, was only reached either for stateful (pseudo-random
generator) constructions, or large parallel implementations so far. In this
paper, we describe a first proposal of stateless (pseudo-random function)
construction, for which we have strong hints that security bounded im-
plementations are reachable under the constraints of small embedded
devices. Our proposal essentially combines the well-known shuffling coun-
termeasure with a tweaked pseudo-random function introduced at CHES
2012. We first detail is performances. Then we analyze it against standard
differential power analysis and discuss the different parameters influenc-
ing its security bounds. Finally, we put forward that its implementation
in 8-bit microcontrollers can provide a better security vs. performance
tradeoff than state-of-the art (combinations of) countermeasures.

1 Introduction

Securing block cipher implementations in small embedded devices is a challeng-
ing problem. Popular countermeasures include masking, shuffling or the insertion
of random delays, for which state-of-the-art solutions can be found in [3, 17, 21].
In practice, such countermeasures are usually combined in order to reach high
security levels – which raises the question of which combinations bring the best
security vs. efficiency tradeoffs. For example, mixing masking with shuffling has
been shown to be an effective solution [9, 18], while mixing masking with random
delays may be easier to cryptanalyze [5]. These type of combinations essentially
aim at reducing the amount of information leakage per block cipher execution.

More recently, an orthogonal approach has attracted the attention of cryptog-
raphers, of which the goal is to limit the adversary’s power by bounding its data
complexity (i.e. number of plaintexts for which the leakage can be observed) or
number of measurements. This approach is usually referred to as re-keying [11] or
leakage-resilient cryptography [6] in the literature. From an application point-of-
view, the most interesting primitives are stateless ones – Pseudo-Random Func-
tions (PRFs), typically – since they provide essentially the same functionalities



as block ciphers (so are useful, e.g. for encryption, authentication, hashing). In
this context, the standard construction is the tree-based one from Goldreich,
Goldwasser and Micali (GGM) [8]. Its leakage-resilience has first been analyzed
under a random-oracle based assumption in [19]. A modified construction ex-
ploiting an “alternating structure” has then been proven secure in the standard
model by Dodis and Pietrzak [4]. Faust et al. next succeeded to get rid of this
alternating structure and to prove the GGM construction in the standard model,
at the cost of some additional randomness requirements. Eventually, Yu Yu and
Standaert showed how to relax these randomness requirements in minicrypt [22],
and Abdalla et al. studied how to improve the efficiency of these constructions by
exploiting a skip-list data structure [1]. All these previous results were obtained
for non-adaptive leakage functions (i.e. pre-determined by the hardware).

In practice, the hope of leakage-resilient constructions is to obtain security-
bounded implementations, in the sense that the time complexity of the best side-
channel attack is lower-bounded, independent of the number of measurements
performed by the adversary. Unfortunately, a recent report from Beläıd puts
forward that this hope is not reached with the previously listed leakage-resilient
PRFs1. This work further shows that the combination of leakage-resilient PRFs
with masking does not lead to any significant security improvements. In this
context, the only positive (heuristic) result of security bounded implementation
was obtained for the tweaked PRF construction proposed by Medwed et al. at
CHES 2012 [15], that takes advantage of hardware parallelism and carefully
chosen plaintexts. The main idea of this tweak is to exploit plaintexts of the
shape p = (b, b, . . . , b), i.e. where all the bytes entering the key additions are the
same. Intuitively, if these bytes are manipulated in parallel, they create a “key-
dependent algorithmic noise” that is hard to exploit by side-channel adversaries
and may (under certain conditions) lead to security-bounded implementations.
However, this positive result only applied to hardware implementations so far.

In this paper, we investigates whether more positive results can be obtained
for software implementations, by combining the CHES 2012 tweaked PRF with
the shuffling countermeasure. We next denote this proposal as the Shuffled PRF
(SPRF) construction. The main motivation behind such a proposal is that key-
dependent algorithmic noise can be produced by the parallel manipulation of
carefully chosen plaintexts p = (b, b, . . . , b). Hence, since the impact of a shuffling
is (under certain conditions) to emulate the noise of large parallel implementa-
tions within the constraints of small embedded devices, this combination could
be effective. For this purpose, we first describe a framework allowing us to ana-
lyze the security of SPRF implementations against standard DPA attacks [13],
and put forward that it depends on two main parameters: first, the amount of
direct leakage on the S-box computations and permutation used for shuffling;
second, the amount of indirect leakage, essentially due to the fact that the power

1 In short, because these (stateless) PRF constructions can only bound the adver-
sary’s data complexity, by contrast with (stateful) leakage-resilient Pseudo-Random
number Generators (PRGs) that bound the adversary’s number of measurements.



consumed to compute different S-boxes may depend on the resource used and
execution time. We then show that one type of indirect leakages (namely, dif-
ferent resources leaking differently at the same time sample) is beneficial to the
adversary, while the other type (namely, the same resource leaking differently
at different time samples) is detrimental. This suggests simple guidelines for
cryptographic hardware designers willing to improve the security of SPRFs. We
finally apply our results to the challenging case-study of an 8-bit microcontroller,
and show that security-bounded implementations can be obtained under actual
(direct and indirect) leakages. To the best of our knowledge, it is the first time
that such a positive result is obtained for a small embedded device. Furthermore,
and compared to the hardware construction in [15], our software scheme has the
additional advantage that all operations (i.e. the key additions and S-boxes, but
also MixColumns and the key scheduling) are shuffled with a 16-permutation.
This mitigates possible weaknesses due to adversaries targeting one out of four
MixColumns, hence reducing the key-dependent algorithmic noise.

2 Background

2.1 Leakage-resilient PRFs

We first describe the GGM construction evaluated on an input x ∈ {0, 1}n un-
der a key k ∈ {0, 1}n, next denoted Fk(x). It requires n stages and 2n random
plaintexts pib, with b ∈ {0, 1} and 1 ≤ i ≤ n. Each stage consists in a block
cipher execution, where an intermediate key ki is computed from the previous
intermediate key ki−1 and the plaintext pix(i) (i.e. ki = Eki−1

(
pix(i)

)
, with x(i)

the ith bit of x, k0 initialized to k and the output Fk(x) set to kn. Taking AES
as an example, this implies computing n = 128 block cipher executions to pro-
duce a single output. The tweak proposed in [15] is to use more (namely, 256)
plaintexts of a specific shape per stage, leading to a total of 16 stages (plus
one output whitening). For this purpose, the input is first split in 16 bytes de-
noted as x = (x1, x2, . . . , x16). Next and as illustrated in Figure 1, each stage
updates the intermediate key as ki+1 = Eki(pxi+1

), with 1 < i ≤ 16 and plain-
texts of a specific shape pxi = (xi, xi, . . . , xi). Eventually, the output is defined
as Fk(x) = Ek16(p) (with p an additional plaintext). Intuitively, the combina-
tion of a parallel implementation with the carefully selected plaintexts creates
key-dependent algorithmic noise, and the output whitening prevents attacks ex-
ploiting the ciphertext (given that the block cipher is secure against SPA).

2.2 Shuffled AES implementation

Shuffling is a countermeasure against side-channel attacks that aims to random-
ize the execution of an algorithm over time. It has been applied to the AES
in [9] and [21]. The main parameter influencing its security is the number of per-
mutations randomizing each operation. Taking the simple example of the AES
S-boxes, one can choose between executing them according to a random index



k

E px1

px2E

. . .

px16E

E p

Fk(x)

k 0

k
1

k
15

k16

Fig. 1. Efficient leakage-resilient PRF.

(among 16 possible ones) that is just incremented, or according to a random
permutation (among 16! possible ones). It has been shown in [21] that the first
solution (although cheaper) may lead to very efficient attacks. In particular,
an implementation protected with such a Random Start Index (RDI) may be
as weak as an unprotected one for low noise levels. As a result, our following
investigations will only consider shuffling based on a random permutation.

Besides the generation of a permutation vector (that is common to all solu-
tions), different alternatives exist to implement a shuffled AES. The straightfor-
ward method requires an indirect indexing of the operands. That is, a counter is
used to index a permutation vector, and the result is used to index the operand
vector. Thus, instead of operating on registers directly, two RAM accesses are
required for each (read or write) access to operands. This naturally leads to quite
large cycle counts. A more efficient solution proposed at ASIACRYPT 2012 is
to randomize the execution path. For this implementation, the assembly code of
every transform is split into 16 independent blocks of instructions. Each of these
16 blocks is augmented with a label. This allows identifying its address in ROM.
Furthermore, every transform is associated with an array of 17 16-bit words,
where the first 16 words hold the addresses of the 16 blocks, and the 17th holds
the address of the return instruction. During the execution of the cipher, the
addresses are first re-ordered according to a previously generated permutation.
Then, whenever entering a transform, a pointer is set to the beginning of the
array in order to execute its 16 blocks of instructions in random order.



Table 1. SPRF performances compared to masking [17].

Implementation Cycles count ×103

First-order Masking 129

Second-order Masking 271

Third-order Masking 470

SPRF (double indexing) 788

SPRF (rand. exec. path) 252

Note that the implementations with double indexing and randomized execu-
tion path from [21] that we re-use in the following paid attention to shuffle all
the AES operations with a 16-permutation. For this purpose, MixColumns is im-
plemented in sets of 16 independent instructions based on xtime operations and
three dummy key schedulings are interleaved with the real one (since the AES
key scheduling only has four independent operations). Based on these choices,
the cycle count of a SPRF implementation in an Atmel AVR micro-controller is
given in Table 1, and compared with (1st-, 2nd- and 3rd-order) masking.

3 Evaluation framework

In order to analyze the security of SPRF implementations, we will use the stan-
dard DPA attacks defined in [13]. Furthermore, as our goal is to approach worst-
case evaluations, we will consider the profiled setting of template attacks [2], and
quantify their complexity with the security graphs described in [20].

Since the SPRF construction essentially relies on a shuffled AES design, the
main challenge for our following investigations is to efficiently exploit the leakages
of such implementations. In particular, and as previously discussed in [21] this
requires to combine information obtained from the permuted operations in a
meaningful way. As usual in side-channel attacks, we will target the first-round
S-boxes and consider different (more or less ideal) models for this purpose.

Starting with the simplest situation, we can assume that all the S-boxes leak
in the same manner (as in [15]), e.g. according to a Hamming weight function.
This provides the adversary with 16-element vectors defined as:

Lu = [HW(S(x0 ⊕ k0)) +N0, . . . ,HW(S(x15 ⊕ k15)) +N15],

in the unprotected case, with Ni a Gaussian-distributed random noise with vari-
ance σ2

n. Moving to a shuffled implementation, the vector becomes:

Ls = [HW(S(xp(0) ⊕ kp(0))) +N0, . . . ,HW(S(xp(15) ⊕ kp(15))) +N15],

with p the permutation used in the shuffling. Eventually, the SPRF construction
will additionally force the same single value for all bytes, that is:

Lsprf = [HW(S(x⊕ kp(0))) +N0, . . . ,HW(S(x⊕ kp(15))) +N15].



In this context, the standard DPA adversary essentially requires a leakage model
for the key byte s she targets, that can be written as:

Pr[L = l|Ks = k] =
∑
t

f(t, s, l′)∑
t′ f(t

′, s, l′)
Pr[Lt = lt|Ks = k],

where t is the time instant where an S-box is executed, l′ is an optional vector
containing information on the permutation p, Lt is an element of the leakage
vector L, and the function f indicates how the adversary deals with the permuted
operations. In the (ideal) case where only the vector Lsprf would be available, the
only possibility is to perform a direct template attack assuming a uniform prior
for the permutation, i.e. f(t, s, l′) = 1/16. Next, and based on a leakage model
Pr[L|Ks], the template adversary combines the leakage vectors corresponding to
q different inputs for each candidate ks using Bayes’ law as follows:

pks
=

q∏
j=1

Pr[ks|L(j), p(j)].

For each target implementation in the next section we will repeat 100 experi-
ments and for each value q in these experiments, use the rank estimation in [20]
to evaluate the time complexity needed to recover the full AES master key. Even-
tually, we will build security graphs, where the attack probability of success is
provided in function of a time complexity and number of measurements.

Incorporating indirect leakages. The execution of 16 S-boxes is illustrated
in Figure 2 for unprotected and shuffled S-boxes. In this respect, one important
observation made in [21] is the existence of indirect leakages on the permutation
p, due to the fact that the different physical resources used to execute the S-
boxes may leak according to different models. In order to capture this possibility
in our simulations, we will define a family of linear leakage functions as:

Lr(x) =

7∑
i=0

air · x(i),

where the air are random coefficient within some interval (see next). These dif-
ferent leakage functions are directly reflected in the leakage vector as follows:

Lr
sprf = [Lp(0)(S(x⊕ kp(0))) +N0, . . . , Lp(15)(S(x⊕ kp(15))) +N15].

Intuitively, such resource-based indirect leakages break the assumption that all
the S-boxes leak similarly, and help the adversary to know at which time in-
stant a target S-box is executed. How strong are indirect leakages depends on
the correlation between the models for different resources. In [15], FPGA experi-
ments suggest that this correlation can rate between strong (i.e. 0.99 for S-boxes
implemented in RAM) and weaker (i.e. 0.68 for combinatorial S-boxes).



0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

time

re
so

u
rc

e

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Fig. 2. S-boxes execution paths: unprotected device (u boxes, blue), shuffling with ran-
dom start index (i boxes, green), shuffling with randomized permutation (p boxes, red).

Interestingly, we will show in the following that for SPRFs, the detrimental
effect of leakage functions depending on the resource used is moderated by the
fact that these functions may also depend on the time instant when they are
executed (e.g. because of the pipeline state of a software implementation). We
incorporate this possibility in our simulations with the following definition:

Lr,t(x) =

7∑
i=0

air,t · x(i),

which directly leads to the leakage vectors of the form:

Lr+t
sprf = [Lp(0),0(S(x⊕ kp(0))) +N0, . . . , Lp(15),15(S(x⊕ kp(15))) +N15].

Incorporating direct leakages. Quite naturally, indirect leakages are not the
only information one can obtain about the permutation used for shuffling. If
this permutation is generated on-chip, an informed adversary could also take
advantage of a direct permutation leakage vector. In this context, the fact that
the leakages functions depends on the resource used or time of execution has no
impact on security. So we illustrate it with a Hamming weight function:

L′ = [HW(p(0)) +N0, . . . ,HW(p(15)) +N15].

Note however that direct permutation leakages can be avoided in certain cases,
e.g. by randomizing the program memory as can be achieved (assuming a secure
precomputation phase) within the recent FRAM technology [10].



4 Simulated experiments

Simulated experiments are convenient tools to evaluate implementations in vari-
ous (more or less realistic) settings and to test the impact of different parameters
on their security level. In the following, the first parameter we will play with is
the amount of noise in the leakage vectors defined in the previous section. It is
characterized by the variance of the noise variables Ni. In order to make its read-
ing more intuitive, we will relate this noise level with the Signal-to-Noise Ratio
(SNR), defined as the quotient between the variance of the mean leakage traces
(aka signal) and the noise variance [12]. For Hamming weight leakages on 8-bit
values, this signal equals 2 and we considered two noise levels for illustration: a
weak one corresponding to σ2

n = 0.1, SNR= 20 and a stronger one corresponding
to σ2

n = 10, SNR= 0.2. Based on these parameters, we first study the ideal case
with no direct permutation leakage and all S-boxes leaking identically.

4.1 Ideal setting (identical S-box leakages, no direct perm. leakage)

In this case, the adversary is only provided with the leakage vector Lsprf and the
only attack she can mount is a template one with uniform prior. As expected, the
construction is security-bounded. That is, after a transient period, the template
attack’s time complexity saturates and becomes independent of the number of
measurements. The impact of the noise parameter is clearly exhibited on Fig-
ure 3, where a higher noise level (i.e. 10 vs. 0.1) ensures a higher security bound
(i.e. 285 vs. 260) that is also reached for larger number of measurements (i.e. 1000
vs. 100). Note that these results even improve the ones of Medwed et al. [15] for
hardware implementations, since a higher noise only implied a later saturation
of the bound in this case (i.e. had no impact on the value of the bound).

Fig. 3. Template attacks with uniform prior in the ideal scenario where all S-boxes
leak identically. Left: low noise level (σ2 = 0.1). Right: high noise level (σ2 = 10).

4.2 Adding indirect resource-based leakages

We now move towards a more realistic scenario with indirect leakages due to the
use of different resources in the implementation, helping the adversary to dis-
tinguish between the different S-boxes. That is, she can use the leakage vector



Lr
sprf . Note that in this case, the only possibility remains to perform a template

attack with uniform prior. But the probabilities Pr[Lt = lt|Ks = k] now de-
pend on the byte index s = p(t). This indirect information is directly obtained
during profiling, so the attack methodology remains identical. As a result, the
main additional parameter is the “similarity” of the leakage functions Lr(.) for
different r’s. For illustration, we will consider a high (average) correlation (of
ρr = 0.99) and a smaller one (of ρr = 0.75). We picked up the leakage functions
(more precisely, their coefficients air) randomly for our experiments, under the
additional constraint that the signal was constant and set to 2, in order for the
noise levels to have a similar meaning as in our previous Hamming weight based
simulations. The results in Figure 4 clearly exhibit the weaknesses of the sim-
ulated SPRF implementations when the noise level is low and S-box leakages
differ too significantly (e.g. for ρr = 0.75 in the left part of the figure) – they are
not security-bounded anymore. Additional simulations performed at the higher
noise level (σ2

n = 10) are provided in Appendix A, Figure 12, and suggest that
increasing the noise level is a simple way to preserve a security bound.

Fig. 4. Template attacks with uniform prior and indirect resource-based leakages, in
the low noise scenario (i.e. σ2

n = 0.1). Left: ρr = 0.75. Right: ρr = 0.99.

4.3 Mitigating resource-based leakages with time-based ones

We now consider the possibility to reduce the previous indirect information by
making the leakage functions not only dependent on the resource used, but
also on the time instant when they are executed. Intuitively, such dependen-
cies are expected to make the exploitation of resource-based indirect leakages
more difficult, by introducing some additional confusion between them due to
the (useless for the adversary) time dependencies. In order to illustrate their
impact, we stick with the most challenging scenario in the previous subsection,
with low noise (σ2

n = 0.1) and low similarity between the resources ρr = 0.75.
We additionally consider weak and strong time-dependencies (with ρt = 0.99
and ρt = 0.75 for the leakage functions Lr,t(.), respectively). As illustrated in
Figure 5, these time-dependencies indeed provide an efficient alternative way
to reach security-bounded SPRF implementations, with lower noise levels (the
same figure is provided for the high noise level in Appendix A, Figure 13.



Fig. 5. Template attacks with uniform prior and indirect time+resource-based leakages
(ρr=0.75), in the low noise scenario (i.e. σ2

n=0.1). Left: ρt=0.99. Right: ρt=0.75.

Note that in this setting, the adversary has to estimate 16 × 16 templates,
each of them corresponding to 256 intermediate values, which is a quite time-
consuming task. Simplifying this profiling can result in a loss of informations.

4.4 Direct permutation leakage

Eventually and for completeness, we add the direct permutation leakage vector
and consider an adversary who can exploit Lr+t

sprf and L′. This context has been
investigated in [21]: it requires an adversary performing a template attack with
non-uniform prior and considers f(t, s, l′) = Pr[L′t = l′t|Kt = Kt], where Kt is the
part of the master key that is manipulated at time instant t. As in this previous
work, we see that its impact on security is limited when the shuffling is based on
random permutations – yet, they allow to converge faster towards the bound.

Fig. 6. Template attacks with direct and indirect (time+resource-based) leakages
(ρr=0.75), in the low noise scenario (i.e. σ2

n=0.1). Left: ρt=0.99. Right: ρt=0.75.

5 Practical experiments

The previous section suggests that SPRF implementations are promising can-
didates for designing security-bounded implementations in low-cost devices. It
further puts forward that designers have two main parameters to increase their
security level: the noise (as usual) and the time- vs. resource-based indirect leak-
ages. In the latter case, we have strong incentive to design shuffled operations



that only slightly depend on the resource used, and more significantly on their
execution time. It naturally raises the question whether such designs exist in
practice. In this respect, an interesting reference is the work on collision attacks
in [7]: it shows that different implementations of the AES (e.g. always re-using
the same registers or not) make the leakage models corresponding to different
operations more or less similar (hence, collision attacks more or less realistic).
We now provide an experimental case study based on an implementation of the
SPRF construction in an Atmel AVR microcontroller. We first investigate the
time- and resource-based dependencies in a shuffled AES implemented with dou-
ble indexing and randomized execution path, then exhibit security evaluations
based on these concrete values, and finally discuss scopes for further research.

In order to characterize the time- and resource-dependencies of the leakage
models in our target AVR implementation, we build accurate templates for each
S-box and time instant. As previously mentioned, this implies computing 16×16
sets of 256 templates – for each of them, we used 50,000 traces. Unfortunately, we
rapidly found out that, both for the randomized execution path and the double
indexing implementations, the time dependencies were small (i.e. with average
values of ρ̂t ≈ 0.99). By contrast, we could observe the quite strong resource-
dependencies illustrated in Figure 7. Interestingly, we also noticed significant
differences between the two approaches to shuffling. Namely, the double indexing
implementation exhibits larger average values of ρ̂r ≈ 0.86, compared to ρ̂r ≈ 0.5
for the randomized execution path one. This intuitively matches the expectations
for these two designs, since the first one is based on the repeated exploitation of a
single register, while the randomized execution path inherently requires traveling
through the different resources of the target device. In view of the performances
listed in Table 1, this leads to a clear security vs. performance tradeoff.

Fig. 7. Correlation between resources. Left: rand. exec. path. Right: double indexing.

We then launched experiments against these two implementations (with and
without exploiting direct permutation leakages). In order to exhibit the impact of
indirect leakages, we first analyzed an intermediate scenario, where the template
mean values follow exactly the patterns of our target device, but we arranged the



noise levels of all the leakage samples so that their SNR was fixed to a constant
value. As expected and illustrated in Figures 8 and 9, the implementation based
on double indexing allows a better security bound in this case.

Fig. 8. Template attacks against the randomized execution path implementation
(ρ̂r=0.5, ρ̂t=0.99, SNR=2). Left: with direct leakages. Right: without direct leakages.

Fig. 9. Template attacks against the double indexing implementation (ρ̂r=0.86,
ρ̂t=0.84, SNR=2). Left: with direct leakages. Right: without direct leakages.

We then considered the leakage samples with their actual noise level, as mea-
sured experimentally. It turned out (see Figures 10 and 11) that for the exploited
samples, the SNR of the double indexing implementation was larger, hence can-
celing its advantage over the randomized execution path implementation. The
exact reason of this observation is hard to state with confidence (we assume the
additional memory manipulation of intermediate values in the double indexing
implementation may be in cause). But this last experiment confirms the sub-
tle dependencies between our two parameters on the concrete security level of
an implementation. Since the leakage models are admittedly hard to control in
cryptographic devices, this suggests that ensuring a large enough noise level may
be the most reliable way to ensure large enough security levels in practice.

Discussion. The previous results are worth a couple of words of interpretation
as we now detail. First, from a pragmatic complexity point-of-view, the values
of the security bounds obtained may not be sufficient (as the enumeration of
up to 250 keys is reachable by determined adversaries and improved attacks
and measurement strategies can probably be deployed). Yet, the very fact of
being security-bounded is already a significant improvement compared to most
state-of-the-art countermeasures (e.g. the combination of masking and shuffling).



Fig. 10. Template attacks against the rand. execution path implementation (ρ̂r=0.5,
ρ̂t=0.99, variable SNR). Left: with direct leakages. Right: without direct leakages.

Fig. 11. Template attacks against the double indexing implementation (ρ̂r=0.86,
ρ̂t=0.84, variable SNR). Left: with direct leakages. Right: without direct leakages.

Combined with the simulated results in the previous section, showing that it is
possible to improve these bounds with higher noise or less informative indirect
leakages, we believe this section confirms that SPRFs lead to an interesting fam-
ily of protected implementations, that are certainly worth further investigation.
In particular, we conjecture that combining it with a commercial security chip
(including some hardware countermeasures) could already lead to much better
concrete results. Furthermore, the best exploitation of time-dependent resource
leakages is a nice research scope as well. In this respect, it is finally worth men-
tioning that the constructive investigation of the similarities between leakage
models as we envision here is different (more demanding) than the destructive
one in collisions attacks. That is, while a single sample showing good similarity
is enough for these attacks to succeed, we need to guarantee that all of them are
similar (for resource-based indirect leakages) or different (for time-based indirect
leakages) – which also raises interesting characterization challenges.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts
by the European Commission through the ERC project 280141 (CRASH).

References

1. Michel Abdalla, Sonia Beläıd, and Pierre-Alain Fouque. Leakage-resilient symmet-
ric encryption via re-keying. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES, volume 8086 of LNCS, pages 471–488. Springer, 2013.



2. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
LNCS, pages 13–28. Springer, 2002.

3. Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the ran-
dom delay countermeasure of CHES 2009. In Mangard and Standaert [14], pages
95–109.

4. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions
and side-channel attacks on feistel networks. In Tal Rabin, editor, CRYPTO,
volume 6223 of LNCS, pages 21–40. Springer, 2010.

5. François Durvaux, Mathieu Renauld, François-Xavier Standaert, Löıc van Olde-
neel tot Oldenzeel, and Nicolas Veyrat-Charvillon. Efficient removal of random
delays from embedded software implementations using hidden markov models. In
Stefan Mangard, editor, CARDIS, volume 7771 of LNCS, pages 123–140. Springer,
2012.

6. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293–302. IEEE Computer Society, 2008.

7. Benôıt Gérard and François-Xavier Standaert. Unified and optimized linear colli-
sion attacks and their application in a non-profiled setting: extended version. J.
Cryptographic Engineering, 3(1):45–58, 2013.

8. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In FOCS, pages 464–479. IEEE Computer Society,
1984.

9. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti Yung,
and Feng Bao, editors, ACNS, volume 3989 of LNCS, pages 239–252, 2006.

10. Stéphanie Kerckhof, François-Xavier Standaert, and Eric Peeters. From new tech-
nologies to new solutions exploiting FRAM memories to enhance physical security.
to appear in the proceedings of CARDIS 2013, LNCS, vol xxxx, pp yyy-zzz, Berlin,
Germany, November 2013.

11. Paul C. Kocher. Leak resistant cryptographic indexed key update. US Patent
6539092.

12. Stefan Mangard. Hardware countermeasures against DPA ? a statistical analysis of
their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of LNCS,
pages 222–235. Springer, 2004.

13. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all -
all for one: unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, 2011.

14. Stefan Mangard and François-Xavier Standaert, editors. Cryptographic Hardware
and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara,
CA, USA, August 17-20, 2010. Proceedings, volume 6225 of LNCS. Springer, 2010.

15. Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards super-
exponential side-channel security with efficient leakage-resilient PRFs. In Prouff
and Schaumont [16], pages 193–212.

16. Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of LNCS. Springer, 2012.

17. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Mangard and Standaert [14], pages 413–427.

18. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and
shuffling for software implementations of block ciphers. In Christophe Clavier and
Kris Gaj, editors, CHES, volume 5747 of LNCS, pages 171–188. Springer, 2009.



19. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. In
Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pages 99–134. Springer, 2010.

20. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of LNCS, pages 126–141. Springer, 2013.

21. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of LNCS, pages 740–757. Springer, 2012.

22. Yu Yu and François-Xavier Standaert. Practical leakage-resilient pseudorandom
objects with minimum public randomness. In Ed Dawson, editor, CT-RSA, volume
7779 of LNCS, pages 223–238. Springer, 2013.

A Additional figures

Fig. 12. Template attacks with uniform prior and indirect resource-based leakages, in
the high noise scenario (i.e. σ2

n = 10). Left: ρr = 0.75. Right: ρr = 0.99.

Fig. 13. Template attacks with uniform prior and indirect time+resource-based leak-
ages (ρr=0.75), in the high noise scenario (i.e. σ2

n=10). Left: ρt=0.99. Right: ρt=0.75.


