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Abstract. The selection of points-of-interest in leakage traces is a fre-
quently neglected problem in the side-channel literature. However, it can
become the bottleneck of practical adversaries/evaluators as the size of
the measurement traces increases, especially in the challenging context
of masked implementations, where only a combination of multiple shares
reveals information in higher-order statistical moments. In this paper,
we describe new (black box) tools for efficiently dealing with this prob-
lem. The proposed techniques exploit projection pursuits and optimized
local search algorithms, work with minimum memory requirements and
practical time complexity. We validate them with two case-studies of un-
protected and first-order masked implementations in an 8-bit device, the
latter one being hard to analyze with previously known methods.

1 Introduction

The selection of Points-Of-Interest (POIs) in leakage traces is an important (and
not very discussed) problem in the application of Side-Channel Analysis (SCA)
attacks. When targeting unprotected implementations, the naive strategy that
is commonly used in the literature is to test all the time samples independently.
It raises two important challenges. First, how to combine these time samples
efficiently, in order to maximize the amount of information extracted from each
leakage trace? Second, how to extend this technique in the context of masked
implementations where the sensitive data is split into d shares manipulated in
different clock cycles (as it is typically the case in software), and only the combi-
nation of these shares’ leakage reveals key-dependent information – which makes
the complexity of an exhaustive analysis grow combinatorially with d?

Solutions to the first problem typically include dimensionality reduction tech-
niques such as PCA and LDA. These tools (introduced to SCA in [1, 22] and
recently revisited in [2, 4]) essentially project the leakage traces into a lower-
dimensional subspace that optimizes some objective function. Namely, PCA usu-
ally maximizes the variance between the mean leakage traces – i.e. the signal of
a first-order DPA, while LDA maximizes the ratio between inter-class and intra-
class variances – i.e. its Signal-to-Noise Ratio (SNR), essentially. Their main
advantage is to provide a principled and intuitive solution to the problem, since



the projection (i.e. eigenvectors) they produce indicate the POIs. Yet, they are
somewhat limited when moving to masked implementations for which the infor-
mation lies in high-order statistical moments, since their objective function is
based on a definition of signal that primarily captures first-order leakages1.

Solutions to the second problem are even sparser. To the best of our knowl-
edge, the usual reference for selecting POIs for masked implementations is the
educated guess proposed by Oswald et al. in [12] (i.e. an exhaustive search over
all d-tuples of time samples in a window selected based on engineering intuition).
Next, Reparaz et al. proposed an alternative solution exploiting Mutual Infor-
mation Analysis [6], that allows gaining a constant (but practically meaningful)
factor corresponding the the number of key hypotheses in the attack [19]. In
both cases, the proposed tools do not output a projection but a list of the most
useful POIs (i.e. d-tuples) in function of the (non-profiled) attack considered.

In this paper, we investigate the use of Projection Pursuits (PPs), as alterna-
tive tools for the selection of POIs in leakage traces [5]. Intuitively, PPs machine-
pick “interesting” low-dimensional projections of a high-dimensional data space
by numerically maximizing a certain objective function. They essentially work by
tracking the improvements (or lack thereoff) of the projection when modifying
it with small random perturbations. Their main advantage in our context is that
they can deal with any objective function, which naturally fits to the problem
of higher-order SCA. Their main drawback is (in general) their heuristic nature,
since the convergence of the method is not guaranteed and its complexity is
context-dependent. As a result, and in order to validate the interest of PPs in
our SCA context, we first applied them to the simple case of an unprotected
implementation of the AES. We show that different objective functions can be
efficiently used for this purpose, leading to powerful subspace-based attacks.

Next, we moved to the more challenging context of masking. In this case, we
combined the (linear) projection with an objective function exploiting higher-
order statistical moments. Initial experiments suggest that the straightforward
implementation of a PP algorithm is not efficient in detecting the POIs of such
protected implementations (especially as the number of useless dimensions in
the traces increases). The main reason is that as long as a d-tuple of POIs is
not present in the projection, the objective function essentially returns random
indications. Interestingly, we then show that an optimized PP algorithm exploit-
ing an improved local search could give excellent results even in this challenging
context. Intuitively, it works by looking for the best size and position of d win-
dows covering parts of the traces, again by iterating small random perturbations.
Our experiments suggest that we can recover POIs with significantly less calls to
the objective function than a exhaustive analysis. We further discuss the main
parameters influencing the success of such a detection method, and detail the
time vs. measurement complexity tradeoff resulting from these parameters.

1 Of course, a trivial solution would be to apply PCA/LDA to “product traces” con-
taining all the possible products of d-tuples, but this rapidly leads to unrealistic
memory requirements in the masked software context that we consider next.



Cautionary note. In general, a projection search algorithm can be evaluated
according to two orthogonal axes, namely its time and data complexity (i.e. how
many iterations and measurements do we need to obtain a projection?) or the
informativeness of its outputs (which relates to the data complexity of an attack
exploiting the projections obtained). Our focus is on the first aspect. We do not
provide a comparison with other projection’s informativeness (e.g. PCA, LDA
and the recent work in [11]) for the following two reasons. First, all these previ-
ous works were focused on the context of unprotected implementations. But it
has been shown in [9] that the objective functions of LDA (which improves over
PCA in terms of informativeness) and [11] are essentially equivalent in this case.
Hence a comparison of these (and our new) projection’s informativeness would
essentially conclude that they are equivalent as well in this case (up to statistical
artifacts). Second, none of these works naturally generalizes to the context of
higher-order leakages and masked implementations (which is our main contri-
bution). So there is essentially nothing to compare in this case2. Besides, and
since our focus is on time complexity issues, we will put ourselves in the most
challenging scenario, i.e. a black box analysis where no information about the
source code is available, and compare the gains of our optimizations over an ex-
haustive combinatorial search. Note that the application of [19] was not possible
in this context, because of a prohibitive time complexity. Quite naturally, and
despite we will not use it, any engineering intuition allowing an educated guess
– by focusing only on certain parts of the traces – could be exploited as well,
and would possibly allow combining our work with the one of Reparaz et al.

2 Background

Notations. We use capital letters for random variables, small caps for their
realizations, sans serif fonts for functions and calligraphic letters for sets.

2.1 Measurement setups

Our experiments are based on measurements of an AES implementation run by
an 8-bit Atmel AVR (AtMega 644p) microcontroller at a 20 MHz clock frequency.
We monitored the voltage variations across both a 22 Ω resistor and a 2 µH
inductance introduced in the supply circuit of our target chip. Acquisitions were
performed using a Tektronix TDS 7104 oscilloscope running at 625 MHz and
providing 8-bit samples. For concreteness, our evaluations focused on the leakage
of the first AES master key byte (but would apply identically to any other

2 More precisely, the results of Oswald and Paar in [11] are similar to ours in the first-
order setting. In fact, they can be viewed as a heuristic (computationally efficient)
analogue to LDA. But their application to the higher-order case would be difficult for
the same reasons as mentioned at the beginning of Section 4 for our (non-optimized)
projection search. In this respect, an important difference between this previous
work and ours is the separation between the objective functions and optimization
algorithms: we need to change both to deal with higher-order leakages efficiently.



enumerable target). Leakage traces were produced according to the following
procedure. Let x and s be our target input plaintext byte and subkey, and
y = x ⊕ s denote a key addition. For each of the 256 values of y, we generated
1000 unprotected encryption traces (resp. 500 for masked traces), where the rest
of the plaintext and key was random, i.e. we generated 256 000 (resp. 128 000)
traces in total, with plaintexts of the shape p = x||r1|| . . . ||r15, keys of the shape
k = s||r16|| . . . ||r30, and the ri’s denoting uniformly random bytes. In case of
masked implementations, additional uniform randomness was used to generate
the shares. In order to reduce the memory cost of our evaluations, we only stored
the leakage corresponding to the 2 first AES rounds (as the dependencies in our
target byte y = x⊕s typically vanish after the first round, because of the strong
diffusion properties of the AES). In the following, we will denote the 1000 (resp.
500) encryption traces obtained from a plaintext p including the target byte x
under a key k including the subkey s as: AESks(px) liy, with i ∈ [1; 1000] (resp.
i ∈ [1; 500]). Whenever accessing the points of these traces, we will additionally
use an argument t (for time), leading to liy(t). Our goal in the next sections is to
generate projections exhibiting the time samples that contain information about
y. Note that since we assume the plaintext to be known by the adversary (as
usual in SCAs), it directly translate into information about s – which typically
occurs during the key addition y = x⊕ s and S-box execution z = S(x⊕ s).

2.2 Objective functions (aka evaluation metrics)

In order to “guide” the PP, we need to define criteria to determine whether some
modification of the projection is positive. Any SCA evaluation metric can be used
for this purpose. We list a few candidates in this section. In order to guarantee
their soundness, we focused on objective functions based on profiled distinguish-
ers (which allows mitigating biases due to incorrect a-priori choices of models –
given that the profiles are well estimated and based on sound assumptions).

CPA [3]. In a profiled Correlation Power Analysis, the adversary first estimates
the first-order moments corresponding to each value y from a vector of Np pro-

filing traces lpy, that we denote as m̂1
y = Ê(lpy), with Ê the sample mean operator.

This step is performed for each time sample independently, leading to m̂1
y(t).

Since there are 256 y values in our AES case study, it amounts to compute
256×Ns means, with Ns the number of samples per trace. Then, he computes
the correlation between these mean values and the samples coming from a vector
of test traces lty, leading to ρ̂(m̂1

y(t), lty(t)) with ρ̂ denoting Pearson’s coefficient.

SNR [8]. An alternative to CPA is the SNR defined at CT-RSA 2004 as:

ˆSNR(t) =
v̂ary

(
Ê
(
lty(t)

))
Êy

(
v̂ar
(
lty(t)

)) ,
with v̂ar the sample variance operator. Similarly to the correlation coefficient,
such a criteria is discriminant for first-order information (i.e. information lying in



the first-order moments of the leakage distribution). In order to deal with masked
implementations, we also need objective functions that capture more general
dependencies. In this context, a natural option is the information theoretic metric
introduced in [24] and later refined in [18]. Its sample definition is given by:

Î(S;X,L) = H[S]−
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑

liy∈Lt
Y

Prchip[l
i
y|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel is a probabilistic model estimated thanks to the set of profiling
traces (just as the 256×Ns mean values in the correlation case). Yet, comput-
ing such an objective function implies (constant but significant) performance
overheads, since it requires applying Bayes’ law and marginalizing over the key
hypotheses. Since the objective function will typically be applied after projection
in the following sections (i.e. in a univariate context), a cheaper alternative is to
exploit the following “Moments-Correlating Profiled DPA” (MCP-DPA):

MCP-DPA [10]. The attack features essentially the same steps as a profiled
CPA. The only difference is that the adversary will estimate dth-order moments
m̂d

y(t) with the profiling traces. In the following, we will be particularly interested
in the Moments against Moments Profiled Correlation (MMPC) criteria:

MMPC(t) = ρ̂(m̂d
y(t), m̃d

y(t)),

where m̃d
y(t) are another vector of moments, estimated with the test traces.

As detailed in [10], MCP-DPA is able to capture information in any statistical
moment, while enjoying the implementation efficiency of CPA (which is highly
beneficial in our context where the objective function is intensively used).

3 Projection pursuit against unprotected devices

In this section we investigate the application of PPs to the simple case of the
(unprotected) AES furious implementation available as open source from [14].
In this context, our goal is to find a projection vector α that will convert the Ns

samples of a leakage vector lty to a single (projected) sample λiy, that is:

λiy =

Ns−1∑
t=0

α(t) · liy(t),

such that univariate attacks exploiting the λiy’s will be most efficient. This es-
sentially requires to define an objective function that measures the “informative-
ness” of these samples. As mentioned in the previous section, this task is quite
easy when first-order information is available in the leakage traces: Pearson’s
correlation coefficient obtained from a CPA and Mangard’s SNR are natural
candidates – we will try them both in the next subsection. Following the equiv-
alence results in [9], they should provide similar results in this case (also similar
to the ones that would be obtained with an information theoretic metric).



3.1 Projection pursuit algorithm

The pseudo-code of our projection pursuit algorithm is given in Algorithm 1.

Algorithm 1 Projection Pursuit.

α = initialize();
repeat Nr times

r = rand index(Ns);
αnew = max search(@fobj ,Lp,α, r,Nit);
α = αnew;

end

It essentially repeats (Nr times) the selection of a random index r followed by a
maximization of the objective function for the corresponding time sample, based
on the set of profiling traces Lp (which contains traces for all the intermediate
values y). For this purpose, the max search() function consists in successive
parabolic interpolations (illustrated in Appendix A, Figure 4), which works in
two iterated steps. We first look for samples that enclose the extremum as follows.
From a a starting point x1, we add a ∆ in the direction that increases fobj (blue
plain curve) to get x2. Then, we keep adding ∆’s until finding x3 such that y3 <
y2 (see Figure 4.a). As the weights assigned to each time sample are between 0
and 1, we typically take ∆’s corresponding to a couple of percents (e.g. 0.1 in our
experiments) and repeat such additions at most 1/∆ times. Then, based on these
three points, we start interpolating (as in the dashed red curve of Figure 4.b-
c). This process is iterated Nit times, during which we replace the “oldest” x-
point by the x-coordinate (xv) of the parabola vertex (y-values are re-computed
accordingly). The new α(t) gets its value from the median x-value at the end of
the last iteration. In our experiments, Nit = 3 iterations were enough to get a
good approximation of the maximum. This method has the advantage of being
very fast to compute and to converge. Note finally that the number of repetitions
Nr should ideally be larger than the number of samples Ns (e.g. twice, typically),
because some weights benefit from being re-adjusted after the modification of
other α(t)’s. Yet, when applied in the context of an unprotected implementation,
the time complexity of Algorithm 1 was never a practical limitation (it typically
corresponded to a couple of minutes of computations in our experiments).

3.2 Experimental results

We implemented the PP algorithm for both the CPA and SNR objective func-
tions, and targeted the first AES key byte for illustration. For each of the 256
values of y = x ⊕ s, we measured Np = Nt = 50 traces for the CPA objective
function, and Nt = 100 traces for the SNR one, each of them made of Ns = 1500
time samples. We set Nr, Nit and ∆ as just explained (to 3000, 3 and 0.1, re-
spectively). The projections obtained in both cases are given in Appendix A,



Figure 5, for illustration. As expected, they are very similar. We then computed
success rates to compare the quality of the projections obtained with the most
informative sample (i.e. a univariate TA), over 2000 independent experiments.
These results show the effectiveness of the projections as they need only 7 traces
to get a 90% success rate, against 28 traces for the univariate TA. It also con-
firms that both objective functions are indeed equivalent in this case. It is finally
interesting to compare our findings with the results in [23] that target a similar
implementation (with very similar success rate for the univariate TA). In par-
ticular, we see that the univariate attack based on the single sample provided
by our projections leads to approximately the same data complexities as the
hexavariate template attack taking (heuristic) advantage of all the POIs in this
previous work. This informally confirms the quality of our projection.
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Fig. 1. Template attack success rates against unprotected device

4 Projection pursuit against masked implementations

As mentioned in introduction, the straightforward application of Algorithm 1 in
the case of (first-order secure) masked implementations does not provide success-
ful results. Intuitively, this is because this algorithm works by modifying time
samples one at a time, while in the context of a masked implementation, we
require at least one meaningful d-tuple of samples to be active in the projection
for an objective function to output relevant information. In the following, we
describe how to optimize PP algorithms to take this constraint into account.

4.1 Optimized projection pursuit algorithm

The main tool used in our following optimization is local search, which is a col-
lection of iterative methods that are efficient for quickly finding good solutions
to optimization problems (note that the previous PP algorithm can be viewed
as a simple local search). Despite heuristic, it generally works more efficiently
than exhaustive analyses. Furthermore, local search has very limited storage re-
quirements. For example, in our context, it exploits the leakage traces directly



– which is a significant advantage compared to heuristics exploiting “product
traces” as mentioned in footnote 1. A good reference to these methods is [7].
Their working principle is simple: they always keep a solution (called the cur-
rent solution) as well as the best solution found since the beginning of the search.
At each iteration of the algorithm, the current solution is perturbed, giving a
set of new solutions, called its neighborhood. One of the neighboring solutions is
then selected and replaces the current solution. The algorithm terminates when
its convergence criterion is met (e.g. number of iterations without improvement,
time limit, etc.). Intuitively, such an approach to optimization exploits diversifi-
cation and intensification. The first aims at exploring a large and diverse search
space, while the second intends to improve the current solution. The combination
of those ideas is expected to find global optima without falling into local ones.

When applied to masking, one key element has to be taken into account by
optimizations. Namely, the sensitive variables are split into d shares and the
objective function should not be informative as long as a meaningful d-tuple of
shares is not present in the projection. Besides, in practice it frequently happens
that dimensions near a POI also contain valuable information. These two facts
motivate the way we designed our improved search algorithm as follows. First,
we consider a projection vector containing d windows of non-zero weights (all
the others being zero) and denote a group of successive dimensions as a window.
The weights inside these windows are uniform. In this context, and since local
search only considers local modifications of the current solution, the information
given by the objective function will return essentially random indications (so no
reliable information) if this current solution does not cover the d shares. On the
contrary, when the windows spans a d-tuple of shares, the objective function
can be used to refine the current solution. For this reason, our optimized PP
algorithm will be split into two parts next denoted as find sol and improve sol.
The find sol phase probes the search space with large windows and a lot of
randomness until it has good indication that the windows span the d-tuples of
shares. In order to detect that the windows span these d-tuples, we use two sets of
profiling traces (Lp

tr and Lp
va, where tr stands for training and va for validation).

Then, the improve sol phase refines those windows. The find sol phase thus puts
more emphasis on diversification and the improve sol, on intensification.

The pseudocodes of the optimized PP algorithm using local search are given
in Algorithms 2, 3 and 4. These algorithms depend on various parameters: some
of them will be explicitly discussed as they hold important intuitions, the remain-
ing ones – next denoted as technical parameters (TP) – will be fixed according
to state-of-the-art strategies. Our main tool is the optimized PP Local Search

function (Algorithm 2). As just explained, it organizes the search in two main
steps. The first one is the find sol phase which returns a first candidate pro-
jection α (after Nf

r repetitions). If this first step is successful, the improve sol
phase is repeated N i

r times to refine the solution. The find sol phase is described
in Algorithm 3. At each iteration, it randomly selects d windows of length Wlen

with non-zero weights (function random window). All the neighbors of the solu-
tion are then computed with the function get neighbors FS. Each neighbor is



Algorithm 2 Optimized projection pursuit algorithm using local search.

optimized PP Local Search(d,Wlen, Tdet,TP:=TP’∪ TP’’)
(i,α) = find sol phase(d,Wlen, Tdet,TP’);
if(α 6= null)

return improve sol phase(α,TP’’);
end

end

constructed by moving one of the windows left or right (if we see the projection
vector as a row vector). The lengths of the moves considered are small multiples
of the window length (as set by the num hops parameter). During the compu-
tation of the neighbors, the collisions between windows are avoided in order to
keep d distinct windows. Next, the best neighbor is selected as the neighbor hav-
ing the maximal evaluation of fobj on the set Lp

tr. This best neighbor is finally
tested to detect if a d-tuple of shares is spanned by the windows. The detection
is based on a threshold Tdet on the objective function that will be discussed in
the next section. In order to dodge the randomness of the objective function
when the d shares are not spanned, this threshold has to be exceeded on both
the training and validation sets of traces Lp

tr, Lp
va. If those two conditions are

met, the projection vector is returned with the number of iterations to find it.

Algorithm 3 Find solution phase.

find sol phase(d,Wlen, Tdet,TP’)

TP’:={Nf
r ,num hops}

i=0;

repeat Nf
r times

α = random window(d,Wlen);
neighborhood = get neighbors FS(α,num hops);
best neighbor = max(@fobj ,neighborhood ,Lp

tr);
if fobj(best neighbor ,Lp

tr) > Tdet & fobj(best neighbor ,Lp
va) > Tdet

return (i + 1, best neighbor);
end
i++;

end
end

If the find sol phase was able to find a solution spanning the d shares, the ob-
jective function is informative enough to allow a second (intensification) step, and
the improve sol phase (in Algorithm 4) is run for N i

r iterations. At each iteration,
the entire neighborhood is constructed with the function get neighbors IS.
Each neighbor results from the shift (left or right) of one window or the resizing
of all the windows (i.e. we keep the same size for all windows). The move steps



considered are given in move steps, and the resize steps in resize steps. The size
of the windows is constrained to remain between min WS and max WS. The
selection of the neighbor is then performed by select neighbor, as a random
neighbor amongst the Nn best neighbors. Using this selection strategy allows
the search to avoid being trapped into local optima, ensuring a sufficient diver-
sification. The search also memorizes the best projection vector obtained since
the beginning of the phase in αbest. This is mandatory as it is allowed to select
projection vectors that decrease the objective function. Eventually, the variable
num stagn records the number of iterations without any improvement of the best
solution αbest. Once num stagn is larger than max stagn or when the number of
iterations reaches Nr = Nf

r +N i
r, the search returns the best solution αbest.

Algorithm 4 Improve solution phase.

improve sol phase(α,TP’’)

TP’’:={N i
r,move steps, resize steps,minWS ,maxWS , Nn,max stagn}

αbest = α;

Repeat N i
r times

neighborhood = get neighbors IS(α,move steps, resize steps,minWS ,maxWS);
α = select neighbor(@fobj ,Lp

tr, Nn);
if fobj(α,Lp

tr) > fobj(αbest,Lp
tr)

αbest = α;
num stagn = 0;

else
num stagn + +;

end

if num stagn > max stagn
return αbest;

end
end
return αbest;

end

As far as the technical parameters are concerned, we first set the number
of hops (num hops) in the find sol phase to allow the windows covering all the
dimensions of the traces. It enables an iteration to find a covering set of win-
dows when one window is incorrectly placed. Next, in the improve sol phase,
the more move steps (move steps) and resize steps (resize steps), the quicker
the algorithm converges towards the optimal windows, but the longer each iter-
ation is. We found that a good tradeoff in our context was to use move steps of
1, 3 or 5 dimensions and resize steps of 1 dimension. Those settings allow the
iterations to be fast while still covering a large part of the search space around
the solution found by the find sol phase. The min WS parameter typically de-
pends on the sampling rate of the oscilloscope used in the attack: we set it to 5
which corresponds to half a cycle in our experiments, based on the intuition that



dimensions next to a POI may also contain information. max WS was then cho-
sen as 2*Wlen, reflecting that this information can be spread on multiple clock
cycles. Finally, a max stagn value of 50 allows the local search to stop when it is
unlikely to further improve the quality of the windows. And given the low span
of the moves and the resizes, an exploration parameter Nn of 3 is enough to
escape local optima and still converge towards the optimal solution.

4.2 Simulated experiments

We now discuss the setting of the more intuitive parameters Wlen and Tdet
together with the performance gains obtained thanks to our optimized PP al-
gorithm. In view of their heuristic nature, these questions are best investigated
with simulated examples, where we can play with some important parameters of
leaking implementations. For this purpose, we will consider a first-order masked
S-box where the adversary receives Ni pairs of leakage variables of the form:

L1
i = HW(S(x⊕ s)⊕m) +R1

i ,

L2
i = HW(m) +R2

i , (1)

where HW is the Hamming weight function, S the AES S-box, x a plaintext byte,
s a key byte, m a secret random mask, and R1

i , R2
i are normally distributed noise

variables with variance σ2
n (1 < i ≤ Ni). For simplicity, we make sure that the

Ni samples corresponding to the two shares are not overlapping. Next to these
2×Ni informative samples, we finally add Ns − 2×Ni random samples Nj , so
that Ns is the total number of samples in our simulated traces.

Setting the detection threshold An important parameter in Algorithm 3 is
the threshold value used to decide whether an improvement of the objective func-
tion is significant. In this context, a particularly convenient feature of the MMPC
criteria (defined in Section 2.2) is that it gradually tends to one as the number
of measurements used in the detection increases. That is, given that the order
of the statistical moment (e.g. d = 2 in our current simulations) and number of
measurements used in the detection is sufficient, this criteria always reaches high
values. Intuitively, it is because the MMPC relates to the statistical confidence
we have in our estimated moments rather than their informativeness (see [10] for
a discussion). As a result, and using such an objective function, we are able to set
the detection threshold Tdet in a completely black box manner (i.e. independent
of the implementation details). Indeed, the only thing we have to guarantee is
that the MMPC as computed by the objective function is significant in front of
the one that would be obtained by chance, for non-informative samples. But this
essentially depends on the size of the target operations. For example, the corre-
lation between random 256-element vectors is (roughly) Gaussian-distributed3

with mean zero. And the probability that MMPC > 0.2 by chance in this case
is already below the one corresponding to three σ’s (i.e. below 0.1%). Of course,

3 More precise estimates can be obtained with Fisher’s Z transform.



one can expect slight deviations from such an ideal behavior (e.g. so-called ghost
peaks leading to non-zero mean MMPC for non-informative samples), but our
next experiments will confirm that setting Tdet to 0.2 is generally good.

Impact of Wlen, σ
2
n and Ni on the detection success. Given a detection

threshold set as just explained, we can now evaluate the impact of different pa-
rameters on the success of our find sol phase. In particular, the noise variance
σ2
n, number of informative pairs of samples in the traces Ni and window length
Wlen are important in this respect. As just explained, we know that given a large
enough number of measurements, the MMPC criteria should become larger than
0.2 for the informative samples. But it also means that if this number of measure-
ments is not sufficient, the moments used in MCP-DPA will not be sufficiently
well estimated and the detection may fail. As usual, the main parameter influ-
encing the estimation complexity is the noise variance σ2

n. Yet, since we apply
the objective function after projection in our PP algorithm, the size of the win-
dow Wlen also matters here. Indeed, adding Wlen samples with noise variance
σ2
n implies a larger noise variance Wlen × σ2

n after projection. This is typically
illustrated in the left part of Figure 2, where we see the impact of increasing
Wlen for two noise levels (σ2

n = 0.1 in the top figure, σ2
n = 2 in the bottom one).

That is, for too large noise variances or window lengths, the estimation of the
MMPC criteria is not good enough to take good decisions (i.e. is below Tdet). In
other words, more measurements are needed in this case for the PP algorithm
to output meaningful results. Interestingly, we also see in the right part of the
figure that adding meaningful samples in the traces (i.e. increasing Ni) quite
significantly mitigates the impact of large window lengths. So intuitively, traces
with multiples POIs available will better benefit from our proposed method.

Time complexity. The previous results suggest that the complexity of PP
algorithms is essentially a tradeoff between time and measurement complexities.
That is, increasing the windows length should decrease their time complexity4,
but increases the noise after projection, and so the number of measurements
needed to estimate the MMPC criteria with sufficient confidence. This is typically
illustrated in the left part of Table 1, where we also see the benefit of having
more informative samples in the traces (i.e. increasing Ni). Furthermore, the
right part of the table highlights the impact of increasing the size of the traces
Ns. As in a combinatorial search, the time complexity of the PP algorithm
should increase quadratically with it (more generally, it depend on Nd

s with d the
number of shares in the masking scheme). Yet, increasing Wlen or Ni can make
this increase quasi-linear for some (not too large) values of Ns. Besides, note that
Table 1 includes all the constant factors related to the technical parameters in the
previous section, which sometimes amortizes these asymptotic predictions. Note
also that this table counts the calls to the objective function for readability, but

4 At most linearly since the benefit of increasing the window length Wlen saturates
whenever it is not negligible in front of the number of samples in the traces Ns.
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Fig. 2. Incidence of the window length Wlen on the information detection.

this count is not fully reflective of the PP’s time complexity when changing the
size of the profiling sets Lp

tr and Lp
va, since larger sets also increase the complexity

of each evaluation of the objective function. Yet, thanks to the parallelism of
MCP-DPA attacks, the impact of these increases was limited in our experiments,
leaving us with strong concrete results, as the next section will show.

Ns = 1000
Ni

5 10

Wlen

10 7306 4681
20 3920 3008
30 3266 2782
50 - 2138
100 - 1020
150 - -

Ns

500 1000 2000

Wlen = 50, Ni = 10 905 2138 4673

Table 1. Impact of Wlen, Ni and Ns on the average number of fobj calls.

4.3 Measured experiments

The previous simulated experiments suggest that an optimized PP algorithm can
be an efficient way to find POIs in the leakage traces of masked implementations.
We now would like to confirm this hope in front of a real case-study. For this



purpose, we will consider the actual measurements of a first-order masked AES
S-box based on table lookups [16, 21]5. For every pair of input/output masks
(m, q), it pre-computes an S-box S∗ such that:

S∗(x⊕ s⊕m) = S(x⊕ s)⊕ q.

Since this pre-computation is part of the adversary’s measurements, it leads to
quite memory-consuming traces of Ns = 30, 000 samples (which would be a
challenging target for a combinatorial search). Furthermore, we verified empir-
ically that our implementation does not lead to any (easy-to-detect) first-order
information leakage, by running template attacks for all the time samples, and
making sure that the success rate remained negligible (which should be guar-
anteed by the use of independent masks m and q, in order to prevent leakages
based on the transitions between the the S-box input and output).

We then used a sets of 500 profiling traces per template (i.e. 500 × 256 in
total), and different sets of 1500 test traces in order to evaluate the success
and efficiency of our POI detection tool. We used a detection threshold of 0.2
as previously discussed, and selected a window length Wlen of 25, correspond-
ing to approximately two clock cycles in our measurements: this is the only
physical intuition used in our experiments. With these parameters, the local
search algorithm was able to return a solution within an average of 12 000 calls
to fobj (roughly corresponding to 7 minutes of execution time on our desktop
computer). We then repeated this search multiple times in order to find several
pairs of informative windows. We finally used these windows to launch multivari-
ate (Gaussian) template attacks using 2, 4 and 8 dimensions. For this purpose,
we selected the smallest windows (which turned out to contain 5 samples) and
exploited their mean leakages (so each pair of window provided us with 2 dimen-
sions). The results of these attacks are illustrated in Figure 3 and confirm that
our tool successfully detected POIs in this challenging case6. Interestingly, we
see that the gain due to increased dimensionalities vanishes when moving from 4-
dimension templates to 8-dimension ones. We conjecture that this mainly relates
to estimation issues. Note anyway that, as mentioned in introduction, these at-
tacks are not aimed to be optimal from the data complexity point-of-view (since
we have no guarantee to find the most informative samples). Our main goal was
to provide a time-efficient POI detection tool, in a black box setting. To the best
of our knowledge, previous methods for this purpose would not have been able
to deal with 30,000-sample traces without an educated guess (the product traces
mentioned in footnote 1 would correspond to 10Gb of memory per trace).

5 This choice was mainly selected in view of the difficulty of obtaining first-order secure
implementations based on other standard masking schemes such as [20].

6 For convenience, and in order to limit our measurement needs, we estimted a 4th-
order success rate which corresponds to an adversary able to enumerate 232 keys.
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5 Conclusions

In this work we proposed an efficient method for finding POIs in the leakage
traces of cryptographic implementations. We exploit a combination of PP and
local search for this purpose, and discussed the how to adapt it to the side-
channel cryptanalysis problem. One of the main advantages of the method is its
genericity, as it can be applied to any implementation, by simply adapting its
objective function. Besides, it has very low memory requirements compared to
state-of-the-art solutions and (although heuristic) works in practical time com-
plexity. We applied our basic and optimized PP algorithms to two case studies
of unprotected and 2-share masked implementations to validate our claims. Ex-
tending the optimized version to more shares would be straightforward, since
this number of shares (i.e. d) is a parameter in our search algorithms.

Among the interesting open problems, we believe investigating the informa-
tiveness of the projected samples obtained with PP in the context of protected
implementations is promising – since it was essentially left out of our analysis so
far. Different approaches could be considered for this purpose. One would be to
further refine the projection vectors, possibly based on an information theoretic
objective function that would better reflect the resulting attacks’ data complex-
ity. Another one would be to exploit non-linear projections, e.g. inspired by the
“product combining” that is frequently used in second-order DPA [17, 25]. Yet,
preliminary results suggest that such non-linear projections may be hard(er) to
exploit because the addition of non-informative samples when computing the
objective function has higher impact on the (non-Gaussian) noise in this case.
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