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Abstract. Masking is one of the most popular countermeasures to mitigate side-channel
analysis. Yet, its deployment in actual cryptographic devices is well known to be challeng-
ing, since designers have to ensure that the leakage corresponding to different shares is
independent. Several works have shown that such an independent leakage assumption may
be contradicted in practice, because of physical effects such as “glitches” or “transition-
based” leakages. As a result, implementing masking securely can be a time-consuming
engineering problem. This is in strong contrast with recent and promising approaches
for the automatic insertion of countermeasures exploiting compilers, that aim to limit
the development time of side-channel resistant software. Motivated by this contrast, we
question what can be hoped for these approaches – or more generally for masked software
implementations based on careless assembly generation. For this purpose, our first con-
tribution is a simple reduction from security proofs obtained in a (usual but not always
realistic) model where leakages depend on the intermediate variables manipulated by the
target device, to security proofs in a (more realistic) model where the transitions between
these intermediate variables are leaked. We show that the cost of moving from one context
to the other implies a division of the security order by two for masking schemes. Next,
our second and main contribution is to provide an exhaustive empirical validation of this
reduction, based on two microcontrollers, several (handwritten and compiler-based) ways
of generating assembly codes, with and without “recycling” the randomness used for shar-
ing. These experiments confirm the relevance of our analysis, and therefore quantify the
cost of lazy engineering for masking.

1 Introduction

Masking is a widely deployed countermeasure to protect block cipher implementations against
side-channel attacks. It works by splitting all the sensitive variables occurring during the com-
putations into d + 1 shares. Its security proofs (such as given, e.g. for the CHES 2010 scheme
of Rivain and Prouff [24]) ensure the so-called dth-order property, which requires that every
tuple of at most d intermediate variables in the implementation is independent of any sensitive
variable. Ensuring this property (ideally) guarantees that the smallest key-dependent statisti-
cal moment in the leakage distribution is d + 1. It has been shown (in different, more or less
specialized settings [5, 9, 20, 27]) that the data complexity of side-channel attacks against such
implementations increases exponentially with the number of shares. More precisely, in the usual
context of (close to) Gaussian noise, this data complexity is proportional to (σ2

n)d, with σ2
n the

noise variance. In practice though, security proofs for masking heavily rely on an independence
assumption. Namely, the (ideal) hope is that the leakage function manipulates the shared in-
termediate variables independently. Whenever this assumption is not fulfilled, all bets are off
regarding the security of the implementation. For example, a leakage function that would re-
combine the different shares would directly lead to an implementation that is as easy to attack as



an unprotected one. As a result, the main question for the proofs in [5, 9, 20] to provide concrete
security improvements is whether this assumption is respected in practice.

Unfortunately, experiments have shown that the independent leakage assumption does not
always hold in actual hardware and software. Many physical defaults can be the cause of this
issue. For hardware implementations, glitches are a well-identified candidate [14]. For software
implementations, the problem more frequently comes from memory transitions (e.g. captured
by a Hamming distance model) [7]. From this empirical observation, different strategies could be
followed. One can naturally try to enforce independent leakages at the hardware or software level,
but current research rather concludes negatively in both cases [7, 16]. A more promising approach
is to deal with the problem at the algorithmic level. For example, threshold implementations
and solutions based on multi-party computations can provide “glitch-freeness” [19, 25]. But the
first solution is rather specialized to hardware devices (see, e.g. [4, 17] for applications to the
AES), while the second one implies strong performance overheads [11]. In the following, we
pursue a third direction for the software case, and investigate the security guarantees that can
be obtained if we simply ignore the problem.

For this purpose, we start by formalizing the types of leakage functions that can be encoun-
tered in practice (namely value-based vs. transition based, generic vs. specific). As any formal-
ization effort, we do not claim that it perfectly corresponds to actual measurements. Yet, we will
show that it captures some important physical defaults to a sufficient extent for our conclusions
to be supported by practical experiments. Next, our first contribution is to provide a couple of
reductions from security claims obtained for one type of leakage functions to security claims for
another type. Our most interesting result shows that a dth-order security proof obtained against
value-based leakages leads to a bd2cth-order security proof against transition-based ones. As the
main question for such reductions to be relevant is whether they can be confirmed by actual im-
plementations, our second and main contribution is to provide a comprehensive analysis of two
case-studies of masked software (namely, in an Atmel AVR and an 8051 microcontrollers). More
precisely, we show empirical evidence that implementations masked with two shares and proved
first-order secure against value-based leakages are insecure in our devices with transition-based
leakages, while three-share ones are indeed first-order secure in the same context. Furthermore,
we show that our conclusions hold both for handwritten assembly codes and for C code compiled
with various flags. We also study the impact of recycled randomness in these case studies. We
finally combine these security analyses with an evaluation of the performance overheads due to
the increased number of shares needed to reach a given masking order, and to sub-optimally
compiled codes.

Besides their theoretical interest, we believe these conclusions are important for security
engineers, since they answer a long standing open question regarding the automated insertion of
countermeasures against side-channel attacks. Our proofs and experiments suggest that a single
C code of a masked block cipher can indeed provide concrete security on two different devices,
at the cost of an artificially increased number of shares. The overheads caused by this increased
order correspond to the “cost of lazy engineering” suggested by our title, which is to balance
with the significant gains in terms of development time that automation allows. As a result and
maybe most importantly, these results validate an important line of research trying to exploit
compilers to replace the manual insertion of countermeasures by expert developers [3, 18, 23].
Our findings suggest that such an approach is well founded for masking.



2 Definitions

Following previous works on masking, we denote any key-dependent intermediate variable ap-
pearing in an unprotected implementation as a sensitive variable. Taking the example of the
secure multiplication of two shared secrets in Algorithm 1, x and y are sensitive variables.
We further denote as intermediate variables the set of all the variables appearing in a masked

Algorithm 1 SecMult: secure multiplication of two shared secrets x and y [24].

Require: Shares (xi)i and (yi)i satisfying ⊕ixi = x and ⊕iyi = y
Ensure: Shares (wi)i satisfying ⊕iwi = x× y
1: for i from 0 to d do
2: for j from i + 1 to d do
3: ri,j ∈R GF (2n)
4: rj,i ← (ri,j ⊕ xi × yj)⊕ xj × yi
5: end for
6: end for
7: for i from 0 to d do
8: wi ← xi × yi
9: for j from 0 to d, j 6= i do

10: wi ← wi ⊕ ri,j
11: end for
12: end for

implementation. These intermediate variables should not be sensitive if masking is well imple-
mented, since each share should be independent of the key in this case. For example, the set of
intermediate variables in Algorithm 1 is given by:

V = {xi} ∪ {yi} ∪ {ri,j} ∪ {xi × yj} ∪ {ri,j ⊕ xi × yj}
∪ {xj × yi} ∪ {(ri,j ⊕ xi × yj)⊕ xj × yi} ∪ {xi ⊕ yi}
∪ {xi × yi ⊕i−1j=0 [(ri,j ⊕ xi × yj)⊕ xj × yi]⊕dj=i+1 ri,j}. (1)

The security proof of the masking scheme in [24] (and following works) was typically obtained
for value-based leakage functions that we define as follows:

Definition 1 (Value-based leakage functions). Let V be a set of intermediate variables
and L(.) = Ld(.) +N be a leakage function made of a deterministic part Ld(.) and an (additive)
random noise N . This leakage function is value-based if its deterministic part can only take
values v ∈ V as argument.

By contrast, the flaws in [7] come from the fact that the software implementation considered by
the authors was leaking according to a Hamming-distance model. The following transition-based
leakage functions aim at formalizing this issue:

Definition 2 (Transition-based leakage functions). Let V be a set of intermediate variables
and T := {v ⊕ v′ | ∀v, v′ ∈ V} ∪ V be the set of all the transitions between these intermediate
variables. A leakage function L(.) is transition-based if its deterministic part Ld(.) can only take
values t ∈ T as argument.

Note that this type of transitions, based on the bitwise XOR between the values v and v′,
is motivated by practical considerations (since it generalizes the Hamming distance model).



Yet, even more general types of transitions, e.g. the concatenation v||v′, would not change our
following conclusions – it would only make the bound of Theorem 1 more tight in certain cases
(see next).

We further define generic vs. specific leakage functions as follows:

Definition 3 (Generic leakage functions). A value-based (resp. transition-based) leakage
function associated with an intermediate variable v ∈ V (resp. transition t ∈ T ) is generic if its
deterministic part is a nominal mapping from this variable to a leakage variable ld ∈ Ld, such
that the set of deterministic leakages Ld has the same cardinality as the set of values V (resp.
transitions T ).

The identity mapping is a typical example of generic leakage function1.

Definition 4 (Specific leakage functions). A value-based (resp. transition-based) leakage
function associated with an intermediate variable v ∈ V (resp. transition t ∈ T ) is specific if its
deterministic part is a mapping from this variable to a leakage variable ld ∈ Ld, such that the set
of deterministic leakages Ld has smaller cardinality than the set of values V (resp. transitions
T ).

The frequently considered Hamming weight and distance functions are typical examples of spe-
cific (value-based and transition-based) leakage functions.

3 Reductions

From these definitions, a natural question is whether a proof of security obtained within one
model translates into a proof in another model. As we now detail, three out of the four possible
propositions are trivial (we recall them for completeness). The last one is more intriguing and
practically relevant.

Lemma 1. A proof of dth-order side-channel security obtained within a generic model implies
a proof of dth-order security in a specific model.

Proof. This directly derives from Definitions 3 and 4. By moving from one to the other, we only
reduce the amount of information provided to the adversary (since we reduce the cardinality of
the set of possible deterministic leakages).

Lemma 2. A proof of dth-order security obtained within a specific model does not imply a proof
of dth-order security in a generic model.

Proof. A counterexample can be found in [12] for low-entropy masking schemes.

Lemma 3. A proof of dth-order side-channel security obtained within a transition-based model
implies a proof of dth-order security in a value-based model.

Proof. Similarly to Lemma 1, this directly derives from Definitions 2 and 1. By moving from
one to the other, we only reduce the amount of information provided to the adversary (since we
reduce the input range of the leakage function).

We will need the following lemma to prove our last result.

1 This definition differs from the one of “generic power model” in [2] since it relates to the leakage
function, while the latter one relates to the adversary’s model.



Lemma 4. The information obtained from any subset of at most bd2c elements in a set T can
be obtained from a subset of d elements in a set V.

Proof. Let ST ⊂ T such that #(ST ) < bd2c. We show that ∃ SV ⊂ V such that #(SV) < d, and
ST can be built from SV as follows (with #(.) the cardinality of a set). ∀t ∈ ST , if t ∈ V, then
SV = SV ∪ {t}, else ∃ v, v′ ∈ V such that t = v ⊕ v′ and SV = SV ∪ {v, v′}. Since #(ST ) < bd2c,
and we add at most 2 elements in SV per element in ST , we directly have that #(SV) < d.

It directly leads to the following theorem:

Theorem 1. An dth-order secure implementation against value-based leakage functions is bd2cth-
order secure against transition-based leakage functions.

Proof. If there existed a subset of transitions ST with less than bd2c elements which can be used
to mount a successful side-channel attack, then there would exist a subset SV with less than
d elements that can be used to mount a successful side-channel attack as well. As this second
attack is impossible by hypothesis, such a set ST cannot exist and the implementation is at least
bd2cth-order secure.

This bound is tight for Boolean masking. If x = v0 ⊕ v1 ⊕ . . . vd−1 ⊕ vd, we can see that
x = t0 ⊕ · · · ⊕ tb d2 c

, with ti = v2i ⊕ v2i+1 for 0 ≤ i < bd2c and tb d2 c
= vd if d even, and

tb d2 c
= vd−1 ⊕ vd if d is odd. By contrast, it is not tight for other types of masking schemes

such as inner product or polynomial [1, 22]. However, it would be tight even for those masking
schemes in the context of concatenation-based transitions (i.e. if using v||v′ rather than v ⊕ v′
in Definition 2).

4 Experiments

In view of the simplicity of Theorem 1, one can naturally wonder whether it captures real-world
situations. That is, is it sufficient for a careless designer to double the security-order to obtain
some guarantees for his masked implementations. In the rest of the paper, we investigate this
question in various practically-relevant scenarios. For this purpose, we will focus on secure S-box
computations. As explained in [24], this is usually the most challenging part of a masked block
cipher. In the case of AES that we will consider next, the method exploits a representation of
the S-box with power functions in GF(28) ≡ GF(2)[x]/x8+x4+x3+x+1 (see Algorithm 2). We
will implement it for two key additions followed by two inversions (see Algorithm 3). Note that
we are aware that the masked inversion scheme proposed by Rivain and Prouff exhibits a small
bias as presented by Coron et. al. in [8]. As will be discussed later in the paper, the existence of
this issue does not affect our results and conclusions.

Concretely, we made several implementations of Algorithm 3, which is complex enough to
exercise registers, ALU, RAM and ROM. Note that we provide input plaintext and key bytes
to the implementations in d + 1 shares each. This ensures that the device does not process
unmasked variables, unless the shares are explicitly combined by the implementation, which is
highly relevant for our testing procedure. We investigate the impact of the following parameters.

– Programming language: we contrast handwritten assembly (ASM) and compiled C code.
For both ASM and C we implemented straightforwardly with little attention to secure the
implementations.

– Device architecture: we provide results for an Atmel AVR and for an 8051 compatible mi-
crocontroller.



Algorithm 2 SecInv: secure inversion of a shared secret x in GF(28).

Require: Shares (xi)i satisfying ⊕ixi = x
Ensure: Shares (yi)i satisfying ⊕iyi = x−1

1: for i from 0 to d do zi ← x2
i

2: end for
3: RefreshMasks(z0, z1, . . . , zd)
4: (yo, y1, . . . , yd)← SecMult((z0, z1, . . . , zd), (x0, x1, . . . , xd))
5: for i from 0 to d do wi ← y4

i

6: end for
7: RefreshMasks(w0, w1, . . . , wd)
8: (yo, y1, . . . , yd)← SecMult((y0, y1, . . . , yd), (w0, w1, . . . , wd))
9: for i from 0 to d do yi ← y16

i

10: end for
11: (yo, y1, . . . , yd)← SecMult((y0, y1, . . . , yd), (w0, w1, . . . , wd))
12: (yo, y1, . . . , yd)← SecMult((y0, y1, . . . , yd), (z0, z1, . . . , zd))

Algorithm 3 Masked key addition and inversion.

Require: Shares (p0i )i, (p
1
i )i, (k

0
i )i, (k

1
i )i satisfying ⊕ip

0
i = p0,⊕ip

1
i = p1,⊕ik

0
i = k0,⊕ik

1
i = k1; with

k0 fixed and k1 6= k0 fixed
Ensure: Shares (c0i ), (c1i ) satisfying ⊕ic

0
i = (p0 ⊕ k0)−1,⊕ic

1
i = (p1 ⊕ k1)−1

1: for i from 0 to 1 do
2: for j from 0 to d do
3: xj ← pij ⊕ ki

j

4: end for
5: (ci0, . . . , c

i
d)← SecInv(x0, . . . , xd)

6: end for

– Compiler flags: we assess the impact of compiler flags. We compiled the C code with default
options and with several combinations of flags that influence the degree of optimization as
well as the order in which registers are assigned.

– Masking order: we implemented everything for d = 1 (2 shares) and for d = 2 (3 shares).
– Mask re-use: since randomness is expensive on low cost microcontrollers an implementer

might decide to re-use random masks. We contrast implementations that use fresh random-
ness for the processing of each input byte (initial masking, SecMult, RefreshMasks) and
implementations that recycle the randomness from the processing of the first byte for the
processing of the second byte. Since our microcontrollers do not have an internal source of
randomness, we provide uniformly distributed random numbers from the measurement PC.

4.1 Implementation details

Our main target platform is an AVR ATmega163 microcontroller in a smart card body. It
internally provides 16 kBytes of flash memory and 1 kByte of data memory. Implementations
are processed by avr-gcc (ver. 4.3.3) from the WinAVR tools (ver. 20100110).

The implementation of the secure inversion of Algorithm 2 requires support for arithmetic in
the finite field GF(28). Field addition/subtraction can be straightforwardly performed via the
bitwise exclusive-or (XOR) operator. Multiplication over GF(28) is however more complex to
implement. We choose to develop this operation by using an approach based on the so-called
log and alog tables [28]. At the cost of storing 2 × 256 = 512 bytes, this technique allows to
compute the product of two non-zero field elements with mainly three table lookups. If either of
the inputs is zero, the result is simply zero. Despite being very efficient for software platforms,



this technique has a major drawback: checking whether any of the inputs is zero can lead to
exploitable timing or power leakages. To overcome this issue we select an SPA-resistant variant
of the log and alog technique proposed in CHES 2011 by Kim et al. [13]. As illustrated in
Algorithm 4, the security of this algorithm relies on avoiding the use of if / else statements.
Instead, the return value of the routine is given by the product of r (the outcome of the log

and alog lookups) and the result of a logical evaluation (a&&b) dependent on both inputs.

Algorithm 4 SPA-resistant multiplication over GF(28) [13].

Require: Field elements a, b ∈ GF(28), log and alog tables
Ensure: Field element a× b ∈ GF(28)
1: (c, s) = log[a] + log[b] /* c holds carry bit, s the lower 8 bits */
2: r = alog[c + s]
3: return (a&&b) · r /* && indicates logical AND condition */

Assembly. Our assembly implementations are tailored to the target AVR architecture and
optimized for speed. We have developed codes for each of the tested masking orders, i.e. one for
d = 1 and one for d = 2. Our routine for field multiplication takes 22 cycles. More than a third
of this time is devoted to achieve a constant flow of operations to securely implement line 3 in
Algorithm 4. Both log and alog tables are stored in program memory. All raisings to the power
of two are implemented as lookup tables in program memory. While this requires the storage
of 3 × 256 = 768 bytes, it results in a significant performance increase. Further speed-ups are
achieved by aligning all tables on a 256 byte boundary (0x100). This ensures all addresses of
the cells differ only in the lower byte and allows for more efficient handling of pointers.

C language. One of the goals of our experiments is to devise and evaluate platform-independent
C code. Declaring and accessing program memory arrays in AVR requires the use of special
attributes in avr-gcc2. Consequently, we cannot take advantage of storing lookup tables in
program memory and the implementation becomes more restricted in terms of storage than
its ASM counterpart. Our C routine for multiplication over GF(28) follows the code given in
Algorithm 4. The two log and alog tables take half of the available space in RAM. Because of
this we opt to perform field squarings as field multiplications, i.e. without using lookup tables.
This saves 768 bytes of memory arrays with respect to the assembly implementations, but results
in larger execution times and more randomness requirements.

4.2 Testing procedure

The security evaluation of cryptographic implementations with respect to side-channel attacks is
a topic of ongoing discussions and an open problem. Since long, implementations are evaluated
(in academia) by testing their resistance to state-of-the-art attacks. However, it is well known
that this is a time-consuming task with potentially high data and computational complexity. In
addition, an implementation that resists known attacks may still have vulnerabilities that can be
exploited by new attacks. Hence, this style of evaluation can lead to a false sense of security, but
it also stimulates improvements of the state-of-the-art. In 2009, Standaert et al. [26] proposed
a framework for the evaluation of cryptographic implementations w.r.t. side-channel attacks.
For univariate analysis (i.e. analysis of each time sample separately), their information-theoretic
metric shows how much information is available to an attacker in a worst-case scenario. It directly

2 See http://www.nongnu.org/avr-libc/user-manual/pgmspace.html



corresponds to the success rate of a (univariate) template attack adversary and captures infor-
mation present in any statistical moment of the leakage distributions. For multivariate analysis
(i.e. joint analysis of time samples) the technique relies on heuristics regarding the selection of
time samples, just as well as all state-of-the-art attacks. The technique has strong requirements
w.r.t. data and computational complexity. For our evaluations, computing the metric is beyond
feasible, but it would also be inappropriate as we are interested in testing specific statistical
moments of the measured distributions for evidence of leakage (while a worst-case evaluation
typically exploits all the statistical moments jointly). We therefore adopt the relatively novel
approach to evaluation called leakage detection. Contrary to the classical approach of testing
whether a given attack is successful, this approach decouples the detection of leakage from its
exploitation. And contrary to the IT metric, this approach can be tuned in order to evaluate
specific statistical moments of the measured distributions.

For our purpose we use the non-specific t-test based fixed versus random leakage detection
methodology of [6, 10]. It has two main ingredients: first, chosen inputs allow to generate two sets
of measurements for which intermediate values in the implementation have a certain difference.
Without making an assumption about how the implementation leaks, a safe choice is to keep
the intermediate values fixed for one set of measurements, while they take random values for
the second set. The test is specific, if particular intermediate values or transitions in the imple-
mentation are targeted (e.g. S-box input, S-box output, Hamming distance in a round register,
etc.). This type of testing requires knowledge of the device key and carefully chosen inputs. On
the other hand, the test is non-specific if all intermediate values and transitions are targeted
at the same time. This type of testing only requires to keep all inputs to the implementation
fixed for one set of measurements, and to choose them randomly for the second set. Obviously,
the non-specific test is extremely powerful. The second ingredient is a simple, robust and effi-
ciently computable statistical test to determine if the two sets of measurements are significantly
different (to be made precise below).

In our experiments, all implementations receive as input 4(d + 1) shares (p0i )i, (p1i )i, (k0i )i,
(k1i )i of the plaintext and key bytes. The (unshared) key bytes (k0, k1) are fixed with k0 6= k1.
We obtain two sets of measurements from each implementation. For the first set, we fix the
values p0 = k0 and p1 = k1 such that, without masking, the input of the inversion function
would be zero, which is likely to be a “special” case. Indeed, all the intermediate results through
the exponentation to the power of 254 would be zero. We denote this set Sfixed. For the second
set, the values of p0 and p1 are drawn at random from uniform. We denote this set Srandom. Note
that we obtain the measurements for both sets interleaved (one fixed, one random, one fixed,
on random, etc.) to avoid time-dependent external and internal influences on the test result. A
power trace covers the execution of steps 1 to 6 in Algorithm 3.

We then compute Welch’s (two-tailed) t-test:

t =
µ(Sfixed)− µ(Srandom)√
σ2(Sfixed)
#Sfixed

+ σ2(Srandom)
#Srandom

, (2)

(where µ is the sample mean, σ2 is the sample variance and # denotes the sample size) to
determine if the samples in both sets were drawn from the same population (or from populations
with the same mean). The null hypothesis is that the samples in both sets were drawn from
populations with the same mean. In our context, this means that the masking is effective.
The alternative hypothesis is that the samples in both sets were drawn from populations with
different means. In our context, this means that the masking is not effective.



At each point in time, the test statistic t together with the degrees of freedom ν, computed
with the Welch-Satterthwaite equation:

ν =
(σ2(Sfixed)/#Sfixed + σ2(Srandom)/#Srandom)2

(σ2(Sfixed)/#Sfixed)2/(#Sfixed − 1) + (σ2(Srandom)/#Srandom)2/(#Srandom − 1)
, (3)

allow to compute a p value to determine if there is sufficient evidence to reject the null hypothesis
at a particular significance level (1− α). The p value expresses the probability of observing the
measured difference (or a greater difference) by chance if the null hypothesis was true. In other
words, small p values give evidence to reject the null hypothesis.

As in any evaluation, one is left with choosing a threshold to decide if an observed difference
is significant or not. Further, also this type of evaluation is limited by the number of measure-
ments at hand. In case the test does not show sufficient evidence of leakage, repeating the same
evaluation with more measurements might do. For all experiments performed in this work, we
select a threshold of ±5 for the t-statistic. More details on how we derive this value are provided
in Appendix A.

4.3 Security results

We measure the power consumption of the AVR platform as the voltage drop over a 50 Ohm
shunt resistor placed in the GND path. For all code evaluations we set the device’s clock at
3.57 MHz and the oscilloscope’s sampling rate at 250 MS/s. Results are presented in form of
plots of t-values on the y-axis and time on the x-axis. Recall that the t-test is applied to each
time sample individually. Superposed, we plot a threshold of ±5 for the t-statistic. For clarity, an
auxiliary trigger signal is inserted on the upper part of the figure to indicate the beginning and
the end of each byte’s processing, i.e. masked key addition followed by masked field inversion.

Assembly. We begin by evaluating the AVR assembly implementation corresponding to the
masking order d = 1 (two shares). The results are shown in Figure 1. The first input byte is
processed until time sample ≈ 3×104, while processing of the second byte starts at time sample
≈ 4 × 104. The left plot corresponds to the implementation with fresh randomness. The right
plot is the result for recycled randomness. Both experiments are performed using a set of 1 000
measurements: 500 corresponding to Sfixed and 500 corresponding to Srandom.
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Fig. 1. T-test evaluation. Assembly, d = 1. Left: fresh randomness, 1k traces. Right: recycled random-
ness, 1k traces. Clear evidence of first-order leakage.

Figure 1 shows clear excursions of the t-test statistic beyond the defined thresholds, rejecting
the null hypothesis. This indicates the existence of obvious univariate first-order leakage, in the



form of identical patterns in each byte processing. There is no appreciable difference between
using fresh versus recycled randomness. The outcome of this first experiment is however not
surprising: as our platform is known to leak transitions, a (straightforward) implementation
with masking order d = 1 is likely to be vulnerable to univariate attacks (see, e.g. [7] for similar
findings). Perhaps more important, the results of the evaluation serve to validate the soundness
of our testing methodology.

The situation changes when we evaluate the case d = 2 (three shares), as illustrated in
Figure 2. Even by increasing the number of measurements to 10 000, the t-test fails to reject
the null hypothesis for both scenarios. This indicates that any attack exploiting univariate first-
order information (i.e., mean traces for each unshared value) is expected to fail, since there
is no information about intermediate values in the first statistical moment. Interestingly, this
result shows a first constructive application of Theorem 1. Starting with an implementation with
second-order security in a value-based leakage model, we are able to achieve first-order security
on a device with a transition-based leakage behavior. Finally, note that all our claims regarding
the evaluation for d = 2 are restricted to first-order scenarios. In fact, attacks exploiting second
or higher statistical moments are expected to succeed in breaking the implementation. We
addressed this issue in more detail in Appendix B (together with the previously mentioned
flaw exhibited at FSE 2013). Besides, and as already mentioned, all evaluations are inherently
limited to the number of measurements at hand. In this respect, one may imagine that more
measurements would allow detecting a first-order leakage. Yet, we note that in all our following
experiments, whenever we claim no evidence of first-order leakages, second-order leakages were
identified with confidence. This suggests that even if first-order leakages could be detected, their
informativeness would be limited compared to second-order ones.
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Fig. 2. T-test evaluation. Assembly, d = 2. Left: fresh randomness, 10k traces. Right: recycled random-
ness, 10k traces. No evidence of first-order leakage.

C language. A natural follow-up question is whether the results obtained so far hold for the case
of C implementations. In the following we evaluate the results of our platform-independent C
code. For the first set of tests we initially switch off the avr-gcc compiler flags for optimization,
i.e. we use the option -O0.

Figure 3 shows the results obtained for the case d = 1 (two shares). As expected, the
evaluation of the d = 1 implementation on our AVR platform indicates univariate first-order
leakage. This result is consistent with its assembly counterpart. The main difference is that the
absolute magnitude of the t-test at time samples beyond the ±5 threshold is smaller, probably
due to the leakage being more scattered. After all, code resulting from compiling C is expected



to be more sparse code than concise, hand-crafted assembler. Illustrative of this effect is also the
considerable increase in length of our measurements, from 70 000 samples to 1 200 000 samples.
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Fig. 3. T-test evaluation. C, no flags, d = 1. Left: fresh randomness, 1k traces. Right: recycled random-
ness, 1k traces. Clear evidence of first-order leakage.

The results obtained for d = 2 (three shares) are given in Figure 4. Here we observe a
substantial difference between the fresh randomness and recycled randomness scenarios. While
the left plot does not exhibit excursions beyond the threshold, the right plot does unexpectedly
suggest clear univariate leakage. In fact, the t-test trace shows a particular pattern not bound
to a few time samples. Rather differently, it gradually increases over time and it only appears
during the second half of the trace, i.e. during the processing of the second input byte with
recycled randomness.
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Fig. 4. T-test evaluation. C, d = 2. Left: fresh randomness, 10k traces. Right: recycled randomness, all
C, 10k traces. Evidence of first order leakage.

We have verified that these results are caused by a non-constant time behavior of our com-
piled code. Although our C routines are written following seemingly constant-time and SPA-
resistant algorithms [13], the avr-gcc compiler generates code with conditional execution paths.
More specifically, the compiler transforms the boolean evaluation a&&b into a series of TST (test
for zero and minus) and BREQ (branch if equal) commands in assembly, regardless of the choice
of compiler flags. This results in variable execution times (and flow) depending on the values of
the input(s). From this, we conclude that the pseudo-code given in Algorithm 4 is equivalent



to the original use of if / else statements, and therefore fails in providing resistance against
SPA.

Note that it is unclear whether this leakage due to time variations can be exploited by
univariate first-order attacks. While any practically exploitable first-order leakage will show up
in the t-test curve, the contrary is not true, i.e. not all leakage identified by the t-test may be
practically exploitable. In order to confirm the identified origin of the leakage, we implement a
new C routine for multiplication in GF (28) that does not directly evaluate the boolean condition
a&&b. Instead, our code follows a series of time-constant operations which are equivalent to the
boolean statement. The results obtained from evaluating this code are depicted in Figure 5.
No obvious leakage is observed in either of the two scenarios, verifying that the shapes in
Figure 4 are indeed caused by misalignments due to timing differences. As a downside, note
that the performance of our platform-independent SPA-resistant code degrades significantly.
The number of samples per measurement increases from 2 500 000 to 8 500 000, which in turn
makes our analyses more difficult to carry out.
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Fig. 5. T-test evaluation. C, d = 2, secure routine for multiplication in GF (28). Left: fresh randomness,
10k traces. Right: recycled randomness, 10k traces. No evidence of first-order leakage.

These results are interesting since they moderate the applicability of Theorem 1 for compiled
codes. That is, while this theorem nicely predicts the impact of transition-based leakages on the
the security order of our implementations, it does not prevent the existence of other flaws due
to a careless implementation leading to data-dependent execution times. That is, whenever
taking advantage of compilers, designers should still pay attention to avoid such SPA flaws, e.g.
by ensuring constant-time implementations. Note that this remains arguably easier task than
ensuring DPA security, which therefore maintains the interest of our theorem even in this case.

Compiler options. A relevant scenario for the security evaluation of C code is to determine
the impact of compiler flags. To this end, we provide in Appendix C the security evaluation for
different compilation processes with avr-gcc. In particular, we analyze the effects for different
degrees of optimization (flag -O) and for different assignment of registers (flag -morder). As can
be seen in Figures 8, 9 and 10, these changes do not significantly affect our security conclusions.
They do have however quite strong impact on the performance, in terms of both code size and
cycle count. A detailed summary of the performance figures for each of the 30 combinations of
compiler flags and masking orders is provided in Appendix D.

Other platforms. A final question of interest is to confirm whether the previous results hold
for different devices than AVR. To this end, we perform a second set of experiments for the C
implementations on an 8051 processor. Our results confirm that this is indeed the case, albeit



with certain differences regarding the t-statistic shape and the number of traces required to
achieve sound results. Because of space restrictions, this analysis is provided in Appendix E.

5 Concluding remarks

Confirmed by numerous experiments, the results in this paper first suggest a simple and nat-
ural way to convert security proofs obtained against value-based leakage models into security
guarantees of lower order against transition-based ones. As a result, they bring a theoretical
foundation to recent approaches to side-channel security, trying to automatically insert coun-
termeasures such as masking in software codes. From a pragmatic point of view though, this
positive conclusion should be moderated. On the one hand, just looking at the security or-
der, we see that compiled codes can bring similar guarantees as handwritten assembly. On the
other hand, reaching such a positive result still requires paying attention to SPA leakages (e.g.
data-dependent execution times). Furthermore, compiled codes generally imply significant per-
formance overheads. Yet, we hope that our results can stimulate more research in the direction
of design automation for side-channel resistance, combining low development time and limited
implementation overheads.
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A On the choice of the t-test threshold

Our testing methodology requires to set a threshold value to choose whether an observed differ-
ence in means of the two sets is significant or not. Typical significance levels in statistics are 0.05
and 0.00001 [15]. However, here we aim at choosing the threshold in a less arbitrary, data-driven
way. To this end, we run a test “random-vs-random”. In this test, measurements in both groups
come from the same population (population of traces with random plaintext) so we know that
the null hypothesis is true. We compute the t-statistic based on a random partition into two
groups, keep its largest absolute value and repeat the experiment 200 times each iteration with
a random partition into two sets. The highest absolute t-value we observed was 5.6088. The fact
that this value is so large can be attributed to the fairly long duration of the traces (5 million of
time samples each). In light of this, we selected a more conservative significance threshold of 5.

For orientation, note that for large sample sizes observing a single t-value with absolute value
greater than 4.5 approximately corresponds to a 0.001% probability of the null hypothesis being
true [10].

B Bivariate leakage

To test for bivariate second-order leakage, we note that the t-test methodology can be extended
to test the population means of “pre-processed” traces. In particular, to test bivariate second-
order leakage one can extend the traces by feeding all possible tuples of time samples (i.e. pairs
for d = 1, triples for d = 2) from each trace through a suitable combination function (e.g.,
centered product [5, 21]), and then run the t-test on these extended traces. If the traces do not
exhibit first-order leakage, and the extended traces do exhibit first-order leakage, this means
that the traces exhibit second-order leakage.

In Figure 6 we depict the result of a bivariate second-order leakage detection test on the
Assembly, d = 2 implementation with fresh randomness, run for the two time sample windows
displayed in Figure 7. A t-statistic with absolute value less than 5 is a white pixel and non-white
pixels mean a T-value greater than 5. The results clearly show evidence of second-order bivariate
leakage, scattered over hundreds of time samples. The largest t-value from this plot is 10.3.

Note that at FSE 2013, Coron et. al. presented a flaw in the masking scheme of Rivain and
Prouff presented at CHES 2010 implemented in this paper [8]. In the case of d = 2, they show
that there exists a bias between two variables belonging to the SecMult and Refresh routine.
However, the bias is so small that even in a simulated environment with 1 million traces and no
noise it is not exploitable. The bias only becomes relevant when the SNR is poor (SNR < 1/8).
In contrast, the bivariate second-order leakage detected in our implementation using 10k traces
from Figure 6 is quite strong and can be detected in multiple different windows. Hence, we are
not exploiting the (weak) bivariate leakage from [8] but a much stronger leakage arising from
the specific leakage behavior of our platform, as we aim to analyze in this paper.



Fig. 6. T-test on the combination of two time samples from two time windows, as in Figure 7, shown
onto the bi-dimensional region. Time flows from upper left corner to lower right.
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Fig. 7. Exemplary power trace for assembler, d = 2, fresh randomness, with two time windows high-
lighted in black. These two time windows exhibit bivariate leakage as Figure 6 shows.



C Compiler options
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Fig. 8. T-test evaluation. C, d = 2. -O1. Left: fresh, right: recycled randomness
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Fig. 9. T-test evaluation. C, d = 2. -O2. Left: fresh, right: recycled randomness
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Fig. 10. T-test evaluation. C, d = 2. -O3. Left: fresh, right: recycled randomness



D Implementation results

In order to complement our security analyses, Table 1 shows the performance results of our
various implementations. As one may expect, the implementations leading to a better speed vs.
memory trade-off are programmed in assembly. The fastest C implementations (with flag -O3)
are ten times slower than their assembly counterpart. Recall that due to data memory con-
straints, C implementations perform field squaring as field multiplication. In addition, achieving
a time and flow constant implementation of Algorithm 1 in C is more complex than in assembly.
In fact, while a multiplication over GF (28) in assembly takes 22 cycles, the fastest one achieved
in C (again with flag -O3) requires 150 cycles. This explains the great difference in performance
numbers.

Table 1. Implementation results for masking order d = 1 (left) and d = 2 (right).

Language Flags
ROM Speed

(bytes) (cycles)

ASM n/a 2 820 627

C -O0 2 806 38 005

C -O1 1 776 18 611

C -O2 1 626 17 677

C -O3 3 866 5 017

C -Os 1 606 17 722

C -morder1 -O0 2 926 38 116

C -morder1 -O1 1 770 18 341

C -morder1 -O2 1 630 17 669

C -morder1 -O3 3 874 5 017

C -morder1 -Os 1 610 17 714

C -morder2 -O0 2 818 38 487

C -morder2 -O1 1 780 18 645

C -morder2 -O2 1 634 17 939

C -morder2 -O3 3 868 5 029

C -morder2 -Os 1 614 17 984

Language Flags
ROM Speed

(bytes) (cycles)

ASM n/a 3 588 1 168

C -O0 2 886 72 880

C -O1 1 956 35 752

C -O2 2 018 35 083

C -O3 4 310 11 211

C -Os 2 002 35 443

C -morder1 -O0 3 006 73 018

C -morder1 -O1 1 952 35 247

C -morder1 -O2 2 024 35 071

C -morder1 -O3 4 318 11 051

C -morder1 -Os 2 010 35 443

C -morder2 -O0 2 898 73 056

C -morder2 -O1 1 958 35 809

C -morder2 -O2 2 030 35 600

C -morder2 -O3 4 312 11 139

C -morder2 -Os 2 014 35 960

E Confirmation of our results on an 8051-compatible platform.

In this setup, both program and data memory are provided as external components. We process
our C implementations using the Keil C51 toolchain (v9.02) and setting the compiler flags to
speed optimization. The ASIC core is clocked at 7 MHz and the sampling rate of the oscilloscope
is set at 250 MS/s. Power measurements are obtained by capturing the voltage drop over a
50 Ohm resistor in the Vdd path.

The evaluation results are illustrated in Figure 11 for the case of fresh randomness. The left
plot depicts the outcome of the t-test for d = 1 (2 shares). The existence of univariate first-order
leakage is confirmed by clear peaks appearing symmetrically along the processing of each byte.
The shape of the excursions beyond the ±5 threshold is different than the one obtained for
the AVR. Also, we require to run the t-test evaluation with a larger number of measurements
in order to clearly detect first-order leakage. As usual in the context of empirical evaluations,
such a situation is hard to explain formally. Nevertheless, we believe two main reasons are the
cause for this. First, the more noisy nature of the measurement setup. And second, the less
leaky behavior of the targeted 8051 core. For the sake of completeness, we present the results for



d = 2 (3 shares) in the right plot of Figure 11. Similar to AVR, there is no evidence of first-order
leakage after processing 10 000 traces. Although we expect second-order leakage to be present
in these measurements, we have not attempted to detect it. The reason for this is the expensive
computation and storage required to jointly process all possible samples pairs within such long
traces (of millions of time samples).

Fig. 11. T-test evaluation. C, 8051 platform, fresh randomness. Left: d = 1, 10k traces. Right: d = 2,
10k traces. First-order leakage visible only in the left plot.


