A Security Proof of KCDSA using an extended
Random Oracle Model

Vikram Singh *

Abstract

We describe a tight security reduction to the discrete logarithm
problem for KCDSA under an extended Random Oracle Model. This
is achieved by generalising the signature scheme and producing a se-
curity proof for the generalised scheme. We require the application of
Randomized Hashing. We also introduce a Challenger to the Random
Oracle Model, who is external to the Simulator and Adversary. The
Challenger provides oracle returns for one hash function, and chal-
lenges which have a low probability of being met. On presentation of
a forged signature the Simulator either identifies an edge case which
allows solving of a challenge, or solves the discrete logarithm problem.
Hence the tight reduction.

Keywords: Cryptography, Provable Security, KCDSA, Tight Re-
duction, Discrete Logarithm Problem, Random Oracle Model

* vs778140gmail.com. Completed in 2008 based on studies at RWTH Aachen Uni-
versity, 2005-2007.

Contents
1 Introduction

2 The Generalised KCDSA Signature Scheme
21 Setup.
2.2 Key Generationo
2.3 Signature Generation
2.4 Signature Verificationo
2.5 Relationship with KCDSA

3 Security Proof of the Generalised KCDSA Algorithm
3.1 The Assumptions and Setup
3.2 The Simulator’s Responses
3.3 The Simulator’s Solution
3.4 Costing the Simulator

4 Conclusion

1 Introduction

This paper describes a tight security reduction to the discrete logarithm prob-
lem for a generalised KCDSA scheme (for which KCDSA and EC-KCDSA
are specific cases). The result may alternatively be interpreted as providing
a tight security proof for KCDSA under an extended Random Oracle Model
assumption. This result is not intended to promote a new signature scheme
but to add to the perceived security of KCDSA. For details of the KCDSA
algorithm see [1]. It may be assumed throughout that KCDSA is considered
with the method of Randomized Hashing applied.

This paper is divided into 4 sections. Section 2 describes the generalisa-
tion of KCDSA. Section 3 gives the tight reduction to the discrete logarithm
problem and Section 4 gives the conclusion.

2 The Generalised KCDSA Signature Scheme

2.1 Setup

The algorithm is performed in a cyclic group G of order ¢, generated by g.
Let elements of G have bit length [, and q be a l,-bit prime. The group is
viewed multiplicatively. Let IL be the space of [,-bit values and let the space
of possible messages be M.

Three hash functions are required:

H : Z,—L
Hy @ ZyxZi—1L
Hy : M—L

The hash functions H; and H, are related hash functions. The following
relationship holds, where y is the public key defined in Section 2.2 below:

" = g°y* = Hy(k) = Hy(e, s) (1)

A further extension function G is also required for applying Randomized
Hashing:

G : L—-M

For more details on this extension and Randomized Hashing see [2].

2.2 Key Generation

The private key is a random number z € Z;. The public key is y = g%.

3

2.3 Signature Generation

To sign a message m € M, the signer generates k € Z, randomly. The signer
computes r = Hq(k) and extends r to rv = G(r) € M. The signer computes:

e = r® Hy(rvédm) mod g
s = xzlk—e)€Z,

If s = 0, repeat the process. The signature of m is (r, s).

2.4 Signature Verification

To verify the signature, (m,r, s), the verifier first checks that s € Ly, r €L
and m € M. The Simulator then computes

e=r® H3;(G(r) ®m) mod q

The signature is valid if Hy(e, s) = r. This relation holds for a valid signature
as g°y° = g*, thus Hy(e,s) = Hi(k) =r

2.5 Relationship with KCDSA

We note that if Hy (k) = h(g*), Ha(e, s) = h(g°y®), Hs(m) = h(z||m) where z
is some hash of the public certificate data, this algorithm is the Randomized
Hashing version of KCDSA (or EC-KCDSA in an alternative group).

3 Security Proof of the Generalised KCDSA
Algorithm

This section describes a tight reduction of KCDSA to the discrete logarithm
problem. In this case, the discrete logarithm problem solved is recovery of
the secret x.

3.1 The Assumptions and Setup

This security proof uses the Random Oracle Model. The hash functions
may be chosen randomly from the set of all possible functions, given that
the property in Equation 1 holds. Figure 1 provides a pictorial explanation
of the setup along with brief descriptions of the values returned by oracle
requests.

Simulator

Compal'e Solution to DLP,
- Challenge 1 or
Challenge 2

Sign
‘\ rand eea a,
/ J

[/ 4 % Adversary
k

(m

\
Challenge: 1,2
Sets: q, B

Public
Values

-kl

TN

Forgery
(M, R, S)

{
©
<

®

3

Challenger

Figure 1: A Security Proof Diagram of Generalised KCDSA

In this security proof there are three components to consider. Firstly,
there is an Adversary who is capable of forging a message given (other)
message signatures, the public data and the output of the hash functions.
The Simulator provides the responses to the Adversary’s hash and signature
queries. Assume that the Adversary makes)y, hash queries to H;, Q¢ hash
queries to G and @), signature queries.

In an extension to the usual setup, there is also a Challenger. The Simula-
tor may choose the output of Hy, Hy, G and the signature queries. However,
the Simulator must forward Hj3 queries to the ‘external’ Challenger. The
Challenger provides the responses to the Simulator’s Hs queries. The pur-
pose of the Challenger in the security proof is to absorb the low probability
edge cases wherein an Adversary’s forgery does not enable the Simulator to
solve the hard problem (in our case, the discrete logarithm problem).

The Challenger is thus named because it issues the following challenges
to the Simulator:

Challenge 1: Given a random subset of L, a = {ao, ..., aqy, -1}, of size Qnu,
find u € M such that Hz(u) = a;, for some 1.

Challenge 2: Given a random subset of M, 8 = {bo, ..., bg,—1}, of size @, find
v € M such that H3(v) = Hs3(b;) and v # b;, for some 1.

As Hj is viewed as a random oracle which is unknown to the Simulator,
it may be assumed that solving Challenge 1 or Challenge 2 has probability
QH;—:QS for each Hj3 hash query, which can easily be controlled to be a low

probability.

3.2 The Simulator’s Responses

The Simulator’s responses to queries from the Adversary are defined in this
section. This will allow us to determine which problems the Simulator can
solve, given presentation of a forgery. In order to define correct responses
a comparison table is needed. The purpose of this table is to ensure that
Equation 1 is satisfied in the Simulator’s responses to hash and signature
queries. An example table is given in Table 1.

Type w g Power y Power | Return Val
H, g° €0 0 to
Hl gel €1 0 tl
HQ 962 y52 €9 S9 tQ
Sign g%y*? es S3 t3
H,y g €4 0 T4
Hy g%y €5 55 U5

Table 1: A comparison table excerpt for H; and Hsy queries

The w column of the table is consulted with every query to the hash
functions H; and Hsy; the table holds the inputs and outputs already given
for these hash functions. If no entry is found, a new entry is submitted to
the table. For a signature query, the ‘g Power’ column is queried and a new
entry corresponding to the H, input and output is added to the table.

The values that are returned with each query are now listed. To begin
slet 1 =35 =0:

H,(k): Simulator calculates w = g* and consults the comparison table.
If w is not present, returns random ¢ € Z, and adds (H;,w,k,0,t)
to the table. Otherwise returns corresponding ¢ (to w) listed in
table.

Hs(e,s): Simulator calculates w = ¢g°y® and consults the comparison table.
If w is not present, returns ¢t = e ® a;, increments 7, and adds
(Ha,w,e,s,t) to the table. Otherwise returns corresponding ¢ (to
w) listed in table.

Hs(m): Simulator requests response from Challenger and returns that
response.

G(r): Simulator checks if r has been previously submitted. If so, the
previously returned value is returned. Else, the Simulator re-
turns a random value rv € M.

Sign(m): Simulator chooses r € L that has not been submitted to the
G oracle. Simulator sets G(r) = b; @ m, and calculates e =
r @ H3(G(r) @ m) mod ¢q. Simulator searches for e in the ‘g
Power’” column. For each e, = e found, the Simulator adds
the corresponding s, to a set I'. The Simulator then picks an
s randomly from the set Z,\I'. The Simulator increments j,
adds (Sign,g°y®,e,s,r) to the comparison table, and provides the
signature (r,s) to the Adversary.

To conclude, note that each response will appear random to the Adversary
as required by the Random Oracle Model.

3.3 The Simulator’s Solution

Let us assume that after a time period 7, the Adversary produces a forgery,
(M, R, S), with probability e. If the forgery is valid (and M has been previ-
ously submitted to the signing Oracle) then we have that:

Hy(R® H3(G(R)® M) modgq, S)=R (2)

Set E=R® H3(G(R)® M) mod q.

Either the Adversary already knows that the output of Hs is R, or the Ad-
versary has guessed. The probability that the forger has successfully guessed
the output of the hash is around 27%. Otherwise, R is a ‘Return Val’ in the
comparison table, say R = t,,. If g°»y** # g¥y°, the return value must also be

7

found for another table entry or else the Adversary has guessed. So we may
assume that g®y*" = ¢gFy°. The Simulator now considers the corresponding
‘Type’ of t,.

If ‘Type’ is Hy, then noting that S # 0 and so e, # FE gives:

S
e, — F

Tr =

and hence the discrete logarithm problem (DLP) is solved by the Simulator.
If ‘Type’ is Ho, then if F # e,,:
S — s,
e, — F
and hence the DLP is solved by the Simulator. Otherwise, £ = e,, S = s,
and by construction, Hy(E,S) = E @ a; = R for some ¢, by virtue of being

the forgery, thus e,, = R @® a; for this i. Hence R @ H3(G(R) ® M) = R® a;
and thus

Tr =

Therefore Challenge 1 is solved.
Finally, if ‘Type’ is Sign, then again if E # e, the DLP is solved by the
Simulator. Otherwise F = e,, thus:

By construction G(R) = m & b; for some j, hence:
Hs(b; @m @& M) = Hs(b))

As m # M, Challenge 2 is solved.
Thus the Simulator either solves the DLP, Challenge 1 or Challenge 2.

3.4 Costing the Simulator

The Simulator only fails if either the G oracle has been exhausted (Qg+Q; >
2la) so a suitable r cannot be found, or that a particular e has been used for
all s (Qp, > 2), so s may not be found. These both require sufficiently
many queries that we may assume that neither can occur. Hence we can
assume that the simulator does not fail. The Simulator either solves the
DLP, Challenge 1 or Challenge 2.

The probability that Challenge 1 or Challenge 2 is solved with)y, hash

queries is approximately W Thus the probability of solving the
DLP is:
~ Qny(Qm, + Qs)

€>¢€
2lq

(3)

Let 79 be the time required to perform group exponentiation in G. So the
Simulator requires the following time to complete:

T=7+70(Qu, +2Qu, + 2Q;) (4)

Thus the security of the signature scheme is tightly reduced to the DLP
because the probability of the Simulator solving DLP given a forgery is high,
and the time required is little more than required by the forging Adversary.

4 Conclusion

This paper has described a tight security reduction for a generalised KCDSA
scheme with Randomized Hashing to the discrete logarithm problem. Thus
security parameters for the two problems can be tightly related. The result
is achieved by adding an external Challenger to the Random Oracle Model,
which allows the cases where the Simulator doesn’t solve the discrete loga-
rithm problem to be absorbed within low probability challenges.

The purpose of the paper is not to propose a new scheme, but to analyse
the security of the existing KCDSA scheme. As such, there are two ways the
result could be viewed:

1. The result can be seen as a security proof for KCDSA with the Random
Oracle Model assumption. An oracle in the model has been extended
to encompass not only the usual hash function but also the input ex-
ponentiation. However, this does not invalidate the model.

2. The result could be seen as irrelevant to the KCDSA signature scheme.
When related to KCDSA, the model assumes that only exponentiations
of g and y may be hashed, and this is clearly not the case in the proof.

We would argue that the second of these is a flawed argument: one could
deconstruct any hash function by removing the first few steps of the hash
and in doing so, the model under which one is working is ignored. However,
to argue this point, one is arguing that the Random Oracle Model is flawed,
which may be true, but no more so than when used with any other signature
scheme. We would argue that this paper suggests that KCDSA is as ‘prov-
ably’ secure as any other scheme with a security proof in the Random Oracle
Model.

References

[1] Chae Hoon Lim. The revised version of
KCDSA. Unpublished ~ Manuscript — available from
http://dasan.sejong.ac.kr/ ~chlim/pub/kedsal.ps, 2000.

2] Quynh Dang. Randomized Hashing Digital Signatures. NIST
Draft Special Publication 800-106, 2007.

10

