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Abstract. Constrained pseudorandom functions have recently been introduced independently by Boneh and
Waters [Asiacrypt’13], Kiayias et al. [CCS’13], and Boyle et al. [PKC’14]. In a standard pseudorandom function
(PRF) a key k is used to evaluate the PRF on all inputs in the domain. Constrained PRFs additionally offer
the functionality to delegate “constrained” keys kS which allow to evaluate the PRF only on a subset S of the
domain.

The three above-mentioned papers all show that the classical GGM construction [J.ACM’86] of a PRF from a
pseudorandom generator (PRG) directly gives a constrained PRF where one can compute constrained keys to
evaluate the PRF on all inputs with a given prefix. This constrained PRF has already found many interesting
applications. Unfortunately, the existing security proofs only show selective security (by a reduction to the
security of the underlying PRG). To get full security, one has to use complexity leveraging, which loses an
exponential factor 2N in security, where N is the input length.

The first contribution of this paper is a new reduction that only loses a quasipolynomial factor qlogN , where q is
the number of adversarial queries. For this we develop a novel proof technique which constructs a distinguisher
by interleaving simple guessing steps and hybrid arguments a small number of times. This approach might
be of interest also in other contexts where currently the only technique to achieve full security is complexity
leveraging.

Our second contribution is concerned with another constrained PRF, due to Boneh and Waters, which allows
for constrained keys for the more general class of bit-fixing functions. Their security proof also suffers from a
2N loss. We construct a meta-reduction which shows that any “simple” reduction that proves full security of
this construction from a non-interactive hardness assumption must incur an exponential security loss.
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1 Introduction

PRFs. Pseudorandom functions (PRFs) were introduced by Goldreich, Goldwasser and Micali [GGM86].
A PRF is an efficiently computable keyed function F : K × X → Y, where F(K, .), instantiated with a

random key K
∗← K, cannot be distinguished from a function randomly chosen from the set of all functions

X → Y with non-negligible probability.

Constrained PRFs. Recently, the notion of constrained PRFs (CPRFs) was introduced independently
in three papers by Boneh and Waters [BW13], Boyle, Goldwasser and Ivan [BGI14] and Kiayias, Pa-
padopoulos, Triandopoulos and Zacharias [KPTZ13].4

A constrained PRF is defined with respect to a set system S ⊆ 2X and supports the functionality
to “delegate” (short) keys that can only be used to evaluate the function F : K × X → Y on inputs
specified by a subset S ∈ S. Concretely, there is a “constrained” keyspace Kc and additional algorithms
F.constrain : K × S → Kc and F.eval : Kc × X → Y, which for all k ∈ K, S ∈ S, x ∈ S and kS ←
F.constrain(k, S), satisfy F.eval(kS , x) = F(k, x) if x ∈ S and F.eval(kS , x) = ⊥ otherwise.
? Research supported by ERC starting grant (259668-PSPC)
4 The name “constrained PRF” is from [BW13]; in [KPTZ13] and [BGI14] these objects are called “delegatable PRFs” and

“functional PRFs”, respectively. In this paper we follow the naming and notation from [BW13].



The GGM and the Boneh-Waters construction. All three papers [BW13,BGI14,KPTZ13] show
that the classical GGM construction [GGM86] of the PRF GGM : {0, 1}λ × {0, 1}N → {0, 1}λ from a
length-doubling pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}2λ directly gives a constrained PRF,
where for any key K and input prefix z ∈ {0, 1}≤N , one can generate a constrained key Kz that allows
to evaluate GGM(K,x) for any x with prefix z. This simple constrained PRF has found many applica-
tions; apart from those discussed in [BW13,BGI14,KPTZ13], it can be used to construct the so-called
“punctured PRF”, which is a key ingredient in almost all the recent proofs of indistinguishability obfus-
cation [SW13,BCPR13,HSW14].

Boneh and Waters [BW13] construct a constrained PRF for a much more general set of constraints,
where one can delegate keys that fix any subset of bits of the input (not just the prefix, as in GGM). The
construction is based on leveled multilinear maps [GGH13] and its security relies on a generalization of
the decisional Diffie-Hellman assumption.

Security of constrained PRFs. The security definition for normal PRFs is quite intuitive. One con-
siders two experiments – the “real” experiment and the “random” experiment – in which an adversary A
gets access to an oracle O(.), and finally outputs a bit. In the real experiment, O(.) implements the PRF
F(K, .) using a random key; in the random experiment, O(.) implements a random function. We require
that every efficient A outputs 1 in both experiments with (almost) the same probability.

Defining the security of constrained PRFs requires a bit more thought. We want to give an adversary
access not only to F(K, .), but also to the constraining function F.constrain(K, .). But now we cannot expect
the values F(K, .) to look random, as an adversary can always ask for a key KS ← F.constrain(K,S) and

then for any x ∈ S check if F(K,x)
?
= F.eval(KS , x).

Instead, security is formalized by defining the experiments in two phases. In the first phase, the
adversary gets access to the same pair of oracles F(K, .),F.constrain(K, .) in both the experiments. The
experiments differ only in a second phase, where the adversary chooses some challenge query x∗. In the
real experiment the adversary then obtains F(K,x∗), whereas in the random experiment she gets a random
value. Intuitively, when no efficient adversary can distinguish these two games, this means that the outputs
of F(K, .) look random on all points that the adversary cannot compute by herself using the constrained
keys she has received so far.

Selective vs. full security. In the above definition, we let the adversary choose the challenge input x∗

after getting access to the oracles. This is the notion one typically requires, and is called “full security”
or “adaptive security”. One can also consider a weaker “selective security” notion, where the adversary
must choose x∗ before getting access to the oracles.

The reason to consider selective security notions, not only here, but also for other objects like identity-
based encryption [BF01,BB04,AFL12] is that it is often much easier to achieve. Although there exists a
simple generic technique called “complexity leveraging”, which translates any selective security guarantee
into a security bound for full security, this technique (which really just consists of guessing the challenge)
typically loses an exponential factor (in the length of the challenge) in the quality of the reduction, often
making the resulting security guarantee meaningless for practical parameters.

1.1 Our Contributions

[BW13,BGI14,KPTZ13] only show selective security of the GGM constrained PRF, and [BW13] also only
give a selective security proof for their bit-fixing constrained PRF. In this paper we investigate the full
security of these two constructions. For GGM we achieve a positive result, giving a reduction that only

2



loses a quasipolynomial factor. For the Boneh-Waters bit-fixing CPRF we give a negative result, showing
that for a large class of reductions, an exponential loss is necessary. We elaborate on these results below.

A quasipolynomial reduction for GGM. To prove full security of GGM : {0, 1}λ×{0, 1}N → {0, 1}λ,
the “standard” proof proceeds in two steps (we give a precise statement in Proposition 3 of this paper).

1. A guessing step (a.k.a. complexity leveraging), which reduces full to selective security. This step loses
an exponential factor 2N in the input length N .

2. Now one applies a hybrid argument which loses a factor 2N .

Readers not familiar with hybrid arguments can find a simple application of this technique in Appendix A.

The above two steps transform an adversary Af that breaks the full security of GGM with advantage
ε into a new adversary that breaks the security of the underlying pseudorandom generator G (used to
construct the GGM function) with advantage ε/(2N · 2N ).

As a consequence, even if one makes a strong exponential hardness assumption on the PRG G, one
must use a PRG whose domain is Θ(N) bits in order to get any meaningful security guarantee.

The reason for the huge security loss is the guessing step, in which one basically guesses the challenge
x∗ ∈ {0, 1}N , which is correct with probability 2−N . To avoid this exponential loss, one must thus avoid
guessing the entire x∗. Our new proof also consists of a guessing step followed by a hybrid argument.

1. A guessing step, where (for some `) we guess which of the adversary’s queries will be the first one that
agrees with x∗ in the first ` positions.5 This step loses a factor q, which denotes the number of queries
made by the adversary.

2. A hybrid argument which loses a factor 3.

The above two steps only lose a factor 3q. Unfortunately, after one iteration of this approach we do not
get a distinguisher of G right away. Very informally, what we achieve is the following. We start with two
games which in some sense are at distance N from each other, and we end up with two games with are
at distance N/2. We can iterate the above process n := logN times to end up with games at distance
N/2n = 1. Finally, from any distinguisher for games at distance 1 we can get a distinguisher for the
PRG G with the same advantage. Thus, starting from an adversary against the full security of GGM with
advantage ε, we get a distinguisher for the PRG with advantage ε/(3q)logN .

We can combine this approach with the original proof, and this way obtain a quasipolynomial loss of
2q log q · (3q)logN−log log q. To give some numerical example, let N = 210 = 1024 and q = 232. Then we
get a loss of 2q log q · (3q)logN−log log q = 2 · 232 · 32 · (3 · 232)10−5 = 2198 · 35 ≤ 2206, whereas complexity
leveraging loses 2N2N = 21035.

Although our proof is somewhat tailored to the GGM construction, the general “fine-grained” guessing
approach outlined above might be useful to improve the bounds for other constructions (like CPRFs, and
even IBE schemes) where currently the only proof technique that can be applied is complexity leveraging.

A lower bound for Boneh-Waters and Hofheinz’s construction. We then turn our attention
to the bit-fixing constrained PRF of Boneh and Waters [BW13]. Also for this construction complexity
leveraging—losing an exponential factor—is the only known way to prove full security. We give strong
evidence that this is inherent.

Concretely, we prove that every “simple” reduction (which runs the adversary once without rewinding;
see Section 5.2) of the full security of this scheme from any decisional (and thus also search) assumption
must lose an exponential factor. Our proof is a so-called meta-reduction [BV98,Cor02,FS10,Fis12], showing

5 This guessing is somewhat reminiscent of a proof technique from [HW09].
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that any reduction that breaks the underlying assumption when given access to any adversary that breaks
the CPRF, could be used to break the underlying assumption without the help of an adversary.

This impossibility result is similar to existing results, the closest one being a result of Lewko and
Waters [LW14] ruling out security proofs without exponential loss for so-called “prefix-encryption” (which
satisfies some special properties). Other related results are those of Coron [Cor02] and Hofheinz et al.
[HJK12], which show that security reductions for certain signature schemes must lose a factor polynomial
in the number of signing queries.

The above impossibility proofs are for public-key objects, where a public key exists that uniquely
determines the input/output distribution of the object. This property is crucially used in the proof,
wherein one first gets the public key and then runs the reduction, rewinding the reduction multiple times
to the point right after the public key has been received.

As we consider a secret-key primitive, the above approach seems to be inapplicable. We overcome this
by observing that for the Boneh-Waters CPRF we can initially make some fixed “fingerprint” queries,
which then uniquely determine the remaining outputs. We can therefore use the responses to these fin-
gerprint queries instead of a public key as in [LW14].

Hofheinz has (independently and concurrently with us) investigated the adaptive security of bit-fixing
constrained PRFs [Hof14]. He gives a new construction of such PRFs which is more sophisticated than the
Boneh-Waters construction, but for which he can give a security reduction that only loses a polynomial
factor. The main tool that allows Hofheinz to overcome our impossibility result is the use of a random
oracle H(.). Very informally, instead of evaluating the PRF on an input X, it is evaluated on H(X) which
forces an attacker to make every query X explicit. Unfortunately, this idea does not work directly as it
completely destroys the structure of the preimages, and thus makes the construction of short delegatable
keys impossible. Hofheinz’s construction deals with this problem using several other ideas.

2 Preliminaries

For a ∈ N, we let [a] = {1, 2, . . . , a} and [a]0 = {0, 1, . . . , a}. With {0, 1}≤a =
⋃
i≤a{0, 1}i we denote the

set of bitstrings of length at most a, including the empty string ∅. Ua denotes the random variable with
uniform distribution over {0, 1}a. X‖Y denotes the concatenation of the bitstrings X and Y . For sets
X ,Y, we denote with F [X ,Y] the set of all functions X → Y. F [a, b] is short for F [{0, 1}a, {0, 1}b]. For
x ∈ {0, 1}∗, we denote with xi the i-th bit of x, and with x[i . . . j] the substring xi‖xi+1‖ . . . ‖xj .

Definition 1 (Indistinguishability). Two distributions X and Y are (ε, s)-indistinguishable, de-
noted X ∼(ε,s) Y , if no circuit D of size s can distinguish them with advantage greater than ε, i.e.,

X ∼(ε,s) Y ⇐⇒ ∀D, |D| ≤ s : |Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ε .

X ∼δ Y denotes that the statistical distance of X and Y is δ (i.e., X ∼(δ,∞) Y ), and X ∼ Y denotes that
they have the same distribution.

The following definition measuring how “close” sets (that differ in one element) are, will be useful in
defining neighboring hybrids in our hybrid arguments.

Definition 2 (Neighboring sets). For k ∈ N+, sets S,S ′ ⊂ N0 are k-neighboring if

1. S∆S ′ := (S ∪ S ′) \ (S ∩ S ′) = {d} for some d ∈ N0, i.e., they differ in exactly one element d.
2. d− k ∈ S.
3. ∀i ∈ [k − 1] : d− i 6∈ S.
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Definition 3 (PRG). An efficient function G : {0, 1}λ → {0, 1}2λ is an (ε, s)-secure (length-doubling)
pseudorandom generator (PRG) if

G(Uλ) ∼(ε,s) U2λ .

Definition 4 (PRF). A keyed function F : K × X → Y is an (ε, s, q)-secure pseudorandom function
if for all adversaries A of size at most s making at most q oracle queries∣∣PrK←K[AF(K,.) → 1]− Prf←F [X ,Y][A

f(.) → 1]
∣∣ ≤ ε .

Constrained pseudorandom functions. Following [BW13], we say that a function F : K × X → Y is
a constrained PRF for a set system S ⊆ 2X , if there is a “constrained” keyspace Kc and algorithms

F.constrain : K × S → Kc and F.eval : Kc ×X → Y ,

which for all k ∈ K, S ∈ S, x ∈ S and kS ← F.constrain(k, S) satisfy F.eval(kS , x) =

{
F(k, x) if x ∈ S

⊥ otherwise

That is, F.constrain(k, S) outputs a key kS that allows to evaluate F(k, .) on all x ∈ S.

Informally, a constrained PRF F is secure, if no efficient adversary can distinguish F(k, x∗) from
random, even given access to F(k, .) and F.constrain(k, .) which he can query on all x 6= x∗ and S ∈ S
where x∗ 6∈ S, respectively. We will always assume that S contains all singletons, i.e., ∀x ∈ X : {x} ∈ S;
this way we do not have to explicitly give access to F(k, .) to an adversary, as F(k, x) can be learned by
querying for kx ← F.constrain(k, {x}) and computing F.eval(kx, x).

We distinguish between selective and full security. In the selective security game, the adversary must
choose the challenge x∗ before querying the oracles. Both games are parametrized by the maximal number
q of queries the adversary makes, of which the last query is the challenge query.

Expsel
CPRF(A,F, b, q)

K
∗← K , Ŝ := ∅ , c := 0

x∗ ← A

AO(.)

C0
∗← Y , C1 := F(K,x∗)

A gets Cb
b̃← A

if x∗ ∈ Ŝ return 0

return b̃

Expfull
CPRF(A,F, b, q)

K
∗← K , Ŝ := ∅ , c := 0

AO(.)

x∗ ← A

C0
∗← Y , C1 := F(K,x∗)

A gets Cb
b̃← A

if x∗ ∈ Ŝ return 0

return b̃

Oracle O(S)
c := c + 1
if c = q − 1 return ⊥
Ŝ := Ŝ ∪ S
kS ← F.constrain(K,S)
return kS

For atk ∈ {sel, full} we define A’s advantage as

AdvatkF (A, q) = 2
∣∣Prb←{0,1}[Expatk

CPRF(A,F, b, q) = b]− 1
2

∣∣ (1)

and denote with

AdvatkF (s, q) = maxA,|A|≤s Adv
atk
F (A, q)

the advantage of the best q-query adversary of size at most s.

Definition 5 (Selective and full security of CPRFs). A constrained PRF F is

– selectively (ε, s, q)-secure if AdvselF (s, q) ≤ ε and

– fully (ε, s, q)-secure if AdvfullF (s, q) ≤ ε.
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Remark 1 (CCA1 vs. CCA2 security). In the selective and full security notion, we assume that the chal-
lenge query x∗ is only made at the very end, when A has no longer access to the oracle (this is reminiscent
of CCA1 security). All our positive results hold for stronger notions (reminiscent to CCA2 security) where
A still has access to O(.) after making the challenge query, but may not query on any S where x∗ ∈ S.

Remark 2 (Several challenge queries). We only allow the adversary one challenge query. As observed by
[BW13], this implies security against any t > 1 challenge queries, losing a factor of t in the distinguishing
advantage, by a standard hybrid argument.

Using what is sometimes called “complexity leveraging”, one can show that selective security implies full
security, but the distinguishing advantage drops by a factor of the domain size |X |. The following is proved
in Appendix B.1.

Lemma 1 (complexity leveraging). If the constrained PRF F : K × X → Y is (ε, s, q)-selectively
secure, then it is (ε|X |, s′, q)-fully secure (where s′ = s−O(log |X |)), i.e.,

AdvfullF (s′, q) ≤ |X | · AdvselF (s, q) .

3 The GGM Construction

The GGM construction, named after its inventors Goldreich, Goldwasser, and Micali [GGM86], is a
construction of a keyed function GGMG : {0, 1}λ × {0, 1}∗ → {0, 1}λ from any length-doubling PRG
G : {0, 1}λ → {0, 1}2λ, defined as

GGM(K∅, X) = KX where ∀Z ∈ {0, 1}≤N−1 : KZ‖0‖KZ‖1 = G(KZ) . (2)

[GGM86] shows that when the inputs are restricted to {0, 1}N , GGMG(K, .) is a secure PRF if G is a
secure PRG. Their proof is one of the first applications of the so-called hybrid argument.6 The proof loses
a factor of q ·N in distinguishing advantage (where q is the number of queries).

Proposition 1 (GGM is a PRF [GGM86]). If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then
(for any N, q) GGMG : {0, 1}λ × {0, 1}N → {0, 1}λ is an (ε, s, q)-secure PRF with

ε = εG · q ·N s = sG −O(q ·N · |G|)

We will not give a proof of this proposition here; however it follows from Proposition 2 below, for which we
do give a proof sketch. In his book [Gol01] Goldreich presents several generalizations of GGM, including a
variant which is secure even if we allow the entire domain {0, 1}∗ as inputs. Here, we’d like to mention that
the original GGM construction is a secure “prefix-free” PRF as defined below. The reason for presenting
this variant of GGM here is so we can later, in Remark 3, discuss why this variant of GGM does not
already imply security of GGM as a constrained PRF. Instead of the number q of points queried by the
adversary, the security of a prefix-free PRF with domain {0, 1}∗ is parametrized by the sum m of the
bitlengths of all queries.

Definition 6 (PF-PRF). A keyed function F : K×{0, 1}∗ → Y is an (ε, s,m)-secure prefix-free pseu-
dorandom function (PF-PRF) if for all adversaries A of size at most s making queries of total bitlength
at most m, but where no query can be a prefix of another query,∣∣∣Pr

K
∗←K[AF(K,.) → 1]− Prf←R[{0,1}∗,Y][A

f(.) → 1]
∣∣∣ ≤ ε .

6 The first application is in the “probabilistic encryption” paper [GM84].
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Proposition 2 (GGM is a PF-PRF). If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for
any m) GGMG : {0, 1}λ × {0, 1}∗ → {0, 1}λ is an (ε, s,m)-secure PF-PRF with

ε = εG ·m s = sG −O(m · |G|)

We prove this proposition in Appendix B.2.7

3.1 GGM is a Constrained PRF

As observed recently by three different works independently [BW13,BGI14,KPTZ13], the GGM construc-
tion can be used as a constrained PRF for the set Spre defined as

Spre = {Sp : p ∈ {0, 1}≤N} where Sp = {p‖z : z ∈ {0, 1}N−|p|} .

Thus, given a key Kp for the set Sp, one can evaluate GGMG(K, .) on all inputs with prefix p. Formally,
the constrained PRF with key K = K∅ is defined using (2)

GGMG.constrain(K∅, p) = GGMG(K∅, p) = Kp GGMG.eval(Kp, x = p‖z) = GGMG(Kp, z) = Kx .

Remark 3. One might be tempted to think that the fact that GGM is a PF-PRF (Proposition 2), together
with the fact that constrained-key derivation is simply the GGM function itself, already implies that it is
a secure constrained PRF. Unfortunately, this is not sufficient, as the (selective and full) security notions
for constrained PRFs do allow queries that are prefixes of previous queries

The selective security of this construction can be proven using a standard hybrid argument, losing only a
factor of 2N in the distinguishing advantage.

Proving full security seems much more challenging, and prior to our work it was only known how to
achieve full security by complexity leveraging (cf. Lemma 1), which loses an additional exponential factor
2N in distinguishing advantage, as stated in Proposition 3 below.

Remark 4. In the proof of Proposition 3 and Theorem 1 we will slightly cheat, as in the security game
when b = 0 (i.e., when the challenge output is random) we not only replace the challenge output Kx∗ , but
also its sibling Kx∗[1...N−1]x∗N , with a random value. Thus, technically this only proves security for inputs

of length N−1 (as we can e.g. simply forbid queries x‖0, x ∈ {0, 1}N−1, in which case it is irrelevant what
the sibling is, as it will never be revealed). The proofs without this cheat require one extra hybrid, which
requires a somewhat different treatment than all others hybrids and thus would complicate certain proofs
and definitions. Hence, we chose to not include it. The bounds stated in Proposition 3 and Theorem 1 are
the bounds we get without this cheat.

Proposition 3. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for any N, q) GGMG : {0, 1}N →
{0, 1}λ is a

1. selectively (ε, s, q)-secure constrained PRF for Spre, where

ε = εG · 2N s = sG −O(q ·N · |G|)
7 Note that if we drop the restriction that queries must be prefix-free, the construction is trivially insecure, as from y =
GGMG(K,x) one can compute y′ = GGMG(K,x‖z) for any z, thus y′ is not pseudorandom given y.
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2. fully (ε, s, q)-secure constrained PRF for Spre, where

ε = εG · 2N2N s = sG −O(q ·N · |G|)

Full security as stated in item 2. of the proposition follows from selective security (item 1) by complexity
leveraging as explained in Lemma 1. To prove selective security, we consider two games H0 and H2N−1 that
correspond to the real and random selective-security games. We then define hybrid games H1, . . . ,H2N−2
by embedding random values along the path K∅,Kx∗1

, . . . ,Kx∗[1...N−1],Kx∗ , so that from any distinguisher
for two consecutive games Hi, Hi+1, we get a distinguisher for the PRG G with the same advantage. (See
Appendix B.3 for proof details.)

This hybrid argument only loses a factor 2N in distinguishing advantage, but complexity leverag-
ing loses a huge factor 2N . In the next section we show how to prove full security avoiding such an
exponential loss.

4 Full Security with Quasipolynomial Loss

Theorem 1. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for any N, q) GGMG : {0, 1}N →
{0, 1}λ is a fully (ε, s, q)-secure constrained PRF for Spre, where

ε = εG · (3q)logN s = sG −O(q ·N · |G|)

At the end of this section we will sketch how to combine the proof of this theorem with the standard
complexity leveraging proof from Proposition 3 to get a better loss of ε = εG · 2q log q · (3q)logN−log log q.

Neighboring sets with low weight. Let N = 2n be a power of 2. Below we construct 3n + 1 subsets
S〈0〉, . . . ,S〈10n〉 ⊂ {0, . . . , N}, which we will use in the proof of Theorem 1. It will be convenient to work
with ternary numbers, which we will represent as strings of digits from {0, 1, 2} within angular brackets
〈. . .〉. We denote repetition of digits as 0n = 0 . . . 0 (n times). Addition will also be in ternary, e.g.,
〈202〉+ 〈1〉 = 〈210〉.

We define the first and last set, with index 3n = 〈10n〉, as

S〈0〉 := {0} and S〈10n〉 := {0, N} . (3)

The remaining intermediate sets are defined recursively as follows. For ` = 0, . . . , n, we define the `-th
level of sets to be all the sets of the form S〈?0n−`〉 (i.e., whose index in ternary ends with (n − `) zeros).
Thus, S〈0〉 and S〈10n〉 are the (only) 0-level sets.

Let SI ,SI′ be two consecutive `-th level sets, by which we mean that I ′ = I+〈10n−`〉. By construction,
these sets will differ in exactly one element {d} (i.e., SI ∪ {d} = SI′ or SI′ ∪ {d} = SI). Then the two
(`+ 1)-level sets between the `-level sets SI ,SI′ are defined as

SI+〈10n−(`+1)〉 := SI ∪ {d− N
2`+1 } and SI′−〈10n−(`+1)〉 := SI′ ∪ {d− N

2`+1 } . (4)

A concrete example for N = 2n = 23 = 8 is illustrated in Figure 1 (where the blue nodes of HI correspond
to SI).

An important fact we will use is that consecutive `-th level sets are N/2`-neighboring (cf. Definition 2);
in particular, consecutive n-th level sets (4 consecutive sets are illustrated at the bottom of Figure 1) are
1-neighboring, i.e.,

∀I ∈ {〈0〉, . . . , 〈2n〉} : SI ∆SI+〈1〉 = {d} and d− 1 ∈ SI . (5)

8



H〈0〉

H〈100〉

H〈200〉

H〈1000〉

0 1 2 3 4 5 6 7 8

0 41 2 3 5 6 7 8

0 4 81 2 3 5 6 7

0 81 2 3 4 5 6 7

H〈200〉

H〈210〉

H〈220〉

H〈1000〉

0 4 81 2 3 5 6 7

0 2 4 81 3 5 6 7

0 2 81 3 4 5 6 7

0 81 2 3 4 5 6 7

H〈210〉

H〈212〉

H〈212〉

H〈220〉

0 2 4 81 3 5 6 7

0 2 3 4 81 5 6 7

0 2 3 81 4 5 6 7

0 2 81 3 4 5 6 7

Fig. 1. Concrete example (n = 3) illustrating the iterative construction of hybrids in Theorem 1.

Proof of Theorem 1. Below we prove two lemmata (2 and 3) concerning the games defined in Figure 2,
from which the theorem follows quite immediately. As the games and the lemmata are rather technical,
we first intuitively explain what is going on, going through a concrete example as illustrated in Figure 1.

To prove the theorem, we assume that there exists an adversary Af that breaks the full security of
GGMG with some advantage ε, and from this, we want to construct a distinguisher for G with advantage
at least ε/(3q)n. Like in the proof of Proposition 3, we can think of the two games Af distinguishes as the
games where we let Af query GGMG, but along the path from the root K∅ down to the challenge Kx∗ we
use either G or random values, as defined by the sets S〈0〉 = {0} and S〈10n〉 = {0, N}, respectively (i.e.,
in both cases the root K∅ is random, and in one game also the final output Kx∗ is uniform). We will call
these two games H∅〈0〉 and H∅〈10n〉, corresponding to the games defined in Figure 2 (with P = ∅ and I = 〈0〉
and 〈10n〉, respectively), and as just explained, they satisfy

H∅〈0〉 ∼ Expfull
CPRF(Af ,GGM

G, 0, q) H∅〈10n〉 ∼ Expfull
CPRF(Af ,GGM

G, 1, q)

And thus, if Af breaks the full security of GGMG with advantage ε then

|Pr[H∅〈0〉 = 1]− Pr[H∅〈10n〉 = 1]| ≥ ε . (6)

In the proof of Proposition 3 we were able to “connect” the real and random experiments H0 and H2N−1
via intermediate hybrids H1, . . . ,H2N−2, such that from a distinguisher for any two consecutive hybrids
we can build a distinguisher for G with the same advantage.

We did this by using random values (instead of applying G) in some steps along the path from the
root K∅ to the challenge Kx∗ . Here we cannot use the same approach to get hybrids in between H∅〈0〉 and

H∅〈10n〉, as these games consider full (and not selective) security where we learn x∗ only at the very end,

and thus “the path to x∗” is not even defined until the end of the experiment.
We could reduce the problem from the full to the selective setting by guessing x∗ at the beginning like

in the proof of Lemma 1, but this would lose us a factor of 2N , which is what we want to avoid.
Instead of guessing the entire x∗, we will guess something easier: During the experiment H〈0〉, we have

to compute at most q children Kz‖0‖Kz‖1 = G(Kz) of nodes at level N/2 − 1, i.e., z ∈ {0, 1}N/2−1. One
of these Kz satisfies z = x∗[1 . . . N/2 − 1], and thus lies on the path from the root K∅ to the challenge

Kx∗ (potentially this happens at the very last query xq = x∗). We randomly guess qN/2
∗← [q] for which

invocation of G this will be the case. Note that we have to wait until Af makes its last query xq = x∗
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Experiment HPI
// I ∈ {〈0〉, . . . , 〈10n〉}
// P = {p1, . . . , pt} ⊆ {1, . . . , N − 1}
// SI ⊆ P ∪ {0, N}, SI as in eq.(15).

∀x ∈ {0, 1}≤N : Kx := ⊥
K∅

∗← {0, 1}λ
// initialize counters

∀j = 1 . . . N − 1 : cj = 0
// make a random guess for each
// element in P = {p1, . . . , pt}

∀j ∈ [t] : qpj
∗← [q]

// below Af can make exactly q distinct
// oracle queries x1, . . . , xq. The last
// (challenge) query xq = x∗ must be in {0, 1}N .

A
O(.)
f

b̃← Af

// only if guesses qp1 , . . . , qpt were

// correct return b̃, otherwise return 0
if ∀p ∈ P : x∗[1 . . . p− 1] = zp−1 then

return b̃
else return 0 fi

O(x = x[1 . . . `])
// return Kx if it is already defined

if Kx 6= ⊥ then return Kx fi
// get parent of Kx recursively

Kx[1...`−1] := O(x[1 . . . `− 1])
// increase counter for level `− 1

c`−1 = c`−1 + 1
// compute Kx and its sibling using G, unless its parent
// Kx[1...`−1] is a node which we guessed will be on the
// path from K∅ and Kx∗ and as ` ∈ P we must use a
// random value at this level OR this is the challenge
// query xq = x∗ and N ∈ I, which means the answer
// to the challenge is random

if (` ∈ P and c`−1 = q`−1) OR (x = xq and N ∈ I)

Kx[1...`−1]‖0‖Kx[1...`−1]‖1
∗← U2λ

// store this node to later check if guess
// was correct
z`−1 = x[1 . . . `− 1]

elseif x = xq and N ∈ I

else
Kx[1...`−1]‖0‖Kx[1...`−1]‖1 := G(Kx[1...`−1])

fi
return Kx

Fig. 2. Definition of the hybrid games from the proof of Theorem 1. The sets SI are as in Equations (3) and (4). The hybrid
HPI is defined like the full security game of a q-query adversary Af against the constrained PRF GGMG, but where we “guess”,
for any value in p ∈ P, at which point in the experiment the node at depth p on the path from the root K∅ to the challenge
Kx∗ is computed (concretely, the guess is that it’s the cp−1th time we compute the children of an p− 1 level node, we define
the p level node Kx∗[1...`] on the path). At a subset of these points, namely SI , we embed random values. The final output
is 0 unless all guesses were correct, in which case we forward Af ’s output.

before we know if our guess was correct. If the guess was wrong, we output 0; otherwise we output Af ’s

output. The experiment just described corresponds to the hybrid H
{N/2}
〈0〉 as defined in Figure 2.

The games H
{N/2}
〈0〉 and H

{N/2}
〈10n〉 behave exactly like H∅〈0〉 and H∅〈10n〉, except for the final output, which

in the former two hybrids is set to 0 with probability 1 − 1/q, and left unchanged otherwise (namely, if

our random guess qN/2
∗← [q] turns out to be correct, which we know after getting x∗). This implies

Pr[H
{N/2}
〈0〉 = 1] = Pr[H∅〈0〉 = 1] · 1q and Pr[H

{N/2}
〈10n〉 = 1] = Pr[H∅〈10n〉 = 1] · 1q ,

and with (6)

|Pr[H
{N/2}
〈0〉 = 1]− Pr[H

{N/2}
〈10n〉 = 1]| ≥ ε/q . (7)

What did we gain? We paid a factor q in the advantage for aborting when our guess qN/2 was wrong.
What we gained is that now we can assume that we know x∗[1 . . . N/2], i.e., the node halfway in between
the root and the challenge (as, if the guess is wrong, we output 0 anyway).

We use this fact to define two new hybrids H
{N/2}
〈10n−1〉, H

{N/2}
〈20n−1〉 which are defined like H

{N/2}
〈0〉 , H

{N/2}
〈10n〉 ,

respectively, but where the children of Kx∗[1...N/2−1] are uniformly random instead of being computed by
applying G to Kx∗[1...N/2−1].
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In Figure 1 (top left) we illustrate the path from K∅ to Kx∗ in the hybrids H
{4}
〈0〉 , H

{4}
〈100〉, H

{4}
〈200〉, H

{4}
〈1000〉

assuming the guessing was correct (a node with label i corresponds to Kx∗[1...i], blue nodes are sampled
at random, and green ones by applying G to the parent).

By (7) we can distinguish the first from the last hybrid with advantage ε/q, and thus there are

two consecutive hybrids in the sequence H
{N/2}
〈0〉 , H

{N/2}
〈10n−1〉, H

{N/2}
〈20n−1〉, H

{N/2}
〈10n〉 that we can distinguish with

advantage at least ε/(3q). For concreteness, let us fix parameters N = 8 = 23 = 2n as in Figure 1 and
assume that this is the case for the last two hybrids in the sequence, i.e.,

|Pr[H
{4}
〈200〉 = 1]− Pr[H

{4}
〈1000〉 = 1]| ≥ ε/(3q) . (8)

The central observation here is that the above guessing step (losing a factor of q) followed by a hybrid
argument (losing a factor of 3) transformed a distinguishing advantage ε for two hybridsH∅〈0〉, H

∅
〈1000〉 which

have random values embedded along the path from K∅ to Kx∗ on positions defined by N -neighboring sets
(cf. Definition 2) S〈0〉,S〈1000〉, into a distinguishing advantage of ε/(3q) for two hybrids that correspond
to N/2-neighboring sets, e.g. S〈200〉 and S〈1000〉.

We can now iterate this approach, in each iteration losing a factor 3q in distinguishing advantage,
but getting hybrids that correspond to sets of half the neighboring distance. After n = logN iterations
we end up with hybrids that correspond to 1-neighboring sets, and can be distinguished with advantage
ε/(3q)n. We will make this formal in Lemma 3 below. From any distinguisher for (hybrids corresponding
to) two 1-neighboring sets we get a distinguisher for G with the same advantage, as formally stated in
Lemma 2 below. Let’s continue illustrating the approach using the hybrids illustrated in Figure 1.

Recall that we assumed that we can distinguish H
{4}
〈200〉 and H

{4}
〈1000〉 as stated in eq.(8). We need to

embed hybrids corresponding to the sets S〈210〉,S〈220〉 in between. Since S〈200〉∆S〈1000〉 = {4}, by eq.(4)

for ` = 1, we construct S〈200〉+〈10〉 = S〈200〉 ∪ {4 − 8
22

= 2} and S〈1000〉−〈10〉 = S〈1000〉 ∪ {2} (see top right
of Figure 1). We add this new element {2} to the “guessing set” {4}, at the price of losing a factor q in
distinguishing advantage compared to eq.(8):

|Pr[H
{2,4}
〈200〉 = 1]− Pr[H

{2,4}
〈1000〉 = 1]| ≥ ε/(3q2) . (9)

We can now consider the sequence of hybrids H
{2,4}
〈200〉 , H

{2,4}
〈210〉 , H

{2,4}
〈220〉 , H

{2,4}
〈1000〉. Two consecutive hybrids can

be distinguished with advantage ε/(32q2); assume this is the case for the middle two.

|Pr[H
{2,4}
〈210〉 = 1]− Pr[H

{2,4}
〈220〉 = 1]| ≥ ε/(32q2) . (10)

Now S〈210〉∆S〈220〉 = {4}, and 4− 8/23 = 3, so we add {3} to the guessing set losing another factor q:

|Pr[H
{2,3,4}
〈210〉 = 1]− Pr[H

{2,3,4}
〈220〉 = 1]| ≥ ε/(32q3) , (11)

and can now consider the games H
{2,3,4}
〈210〉 , H

{2,3,4}
〈211〉 , H

{2,3,4}
〈212〉 , H

{2,3,4}
〈220〉 as shown at the bottom in Figure 1.

Two consecutive hybrids in this sequence can be distinguished with advantage at least 1/3 of the advantage
we had for the first and last hybrid in this sequence, let’s assume this is the case for the last two, then:

|Pr[H
{2,3,4}
〈212〉 = 1]− Pr[H

{2,3,4}
〈220〉 = 1]| ≥ ε/(33q3) . (12)

We have shown the existence of two games HPI and HPI+〈1〉 (what P and I are exactly is irrelevant for the

rest of the argument) that can be distinguished with advantage ε/(3q)n. By the following lemma (proven
in Appendix B.4), this implies that we can break the security of G with the same advantage.
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Lemma 2. For any I ∈ {〈0〉, . . . , 〈2n〉},P ⊂ {1, . . . , N−1} where SI ∪SI+〈1〉 ⊆ P∪{0, N} (so the games

HPI+〈1〉, H
P
I are defined) the following holds. If

|Pr[HPI = 1]− Pr[HPI+〈1〉 = 1]| = δ

then G is not a (δ, s)-secure PRG for s = |Af | −O(q ·N · |G|).

Lemma 3. For ` ∈ {0, . . . , n− 1}, any consecutive `-level sets SI ,SI′ (i.e., I, I ′ ∈ {〈0〉, . . . , 〈10n〉} are of
the form 〈?0n−`〉 and I ′ = I + 〈10n−`〉) and any P for which the hybrids HPI , H

P
I′ are defined (which is

the case if SI ∪ SI′ ⊆ P ∪ {0, N}), the following holds. If

|Pr[HPI = 1]− Pr[HPI′ = 1]| = δ (13)

then for some consecutive (`+ 1)-level sets J and J ′ = J + 〈10n−`−1〉 and some P ′

|Pr[HP
′

J = 1]− Pr[HP
′

J ′ = 1]| = δ/(3q) .

The proof of Lemma 3 is in Appendix B.5. The theorem now follows from Lemmata 2 and 3 as follows.
Assume a q-query adversary Af breaks the full security of GGMG with advantage ε, which, as explained in
the paragraph before eq.(6), means that we can distinguish the two 0-level hybrids H∅〈0〉 and H∅〈10n〉 with

advantage ε. Applying Lemma 3 n times, we get that there exist consecutive n-level hybrids HPI , H
P
I+〈1〉

that can be distinguished with advantage ε/(3q)n, which by Lemma 2 implies that we can break the
security of G with the same advantage ε/(3q)n. This concludes the proof of Theorem 1.

To reduce the loss to 2q log q ·(3q)n−log log q as stated below Theorem 1, we use the same proof as above,
but stop after n − log log q (instead of n) iterations. At this point, we have lost a factor (3q)n−log log q,
and have constructed games that are (log q)-neighboring. We can now use a proof along the lines of the
proof of Proposition 3, and guess the entire remaining path of length log q at once. This step loses a factor
q2 log q (a factor q = 2log q to guess the path, and another 2 log q as we have a number of hybrids which
is twice the length of the path).

5 Impossibility Result for Prefix-Fixing Boneh-Waters PRF

In this section we show that we cannot hope to prove full security without an exponential loss for another
constrained PRF, namely the one due to Boneh and Waters [BW13].

5.1 The Boneh-Waters Constrained PRF

Leveled κ-linear maps. The Boneh-Waters constrained PRF [BW13] is based on leveled multilinear
maps [GGH13,CLT13], of which they use the following abstraction:

We assume a group generator G that takes as input a security parameter 1λ and the number of levels
κ ∈ N and outputs a sequence of groups (G1, . . . ,Gκ), each of prime order p > 2λ, generated by gi,
respectively, such that there exists a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ κ} with

∀a, b ∈ Zp : ei,j(g
a
i , g

b
j) = g ab

i+j .

(For simplicity we will omit the indices of e.) Security of the PRF is based on the following assumption:
The κ-multilinear decisional Diffie-Hellman assumption states that given the output of G(1λ, κ) and

(g1, g
c1
1 , . . . , g

cκ+1

1 ) for random (c1, . . . , cκ+1)
∗← Zκ+1

p , it is hard to distinguish (gκ)
∏
j∈[κ+1] cj from a random

element in Gκ with better than negligible advantage in λ.
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The Boneh-Waters bit-fixing PRF. Boneh and Waters [BW13] define a PRF with domain X =
{0, 1}N and range Y = Gκ, where κ = N + 1. The sets S ⊆ X for which constrained keys can be derived
are subsets of X where certain bits are fixed; a set S is described by a vector v ∈ {0, 1, ?}N (where ‘?’
acts as a wildcard) as Sv := {x ∈ {0, 1}N | ∀i ∈ [N ] : (vi = ?) ∨ (xi = vi)}.

The PRF is set up for domain X = {0, 1}N by running G(1λ, N + 1) to generate a sequence of groups
(G1, . . . ,GN+1). We let g denote the generator of G1. Secret keys are random elements

k = (α, d1,0, d1,1, . . . , dN,0, dN,1) ∈ Z2N+1
p =: K

and the PRF is defined as
F : K ×X → Y (k, x) 7→ (gN+1)

α
∏
i∈[N ] di,xi

F.constrain(k, v): On input a key k = (α, {di,b}i∈[N ], b∈{0,1}) and v ∈ {0, 1, ?}N describing the constrained
set, output the key

(
v,K, {Di,b}i∈[N ]\V, b∈{0,1}

)
, with V := {i ∈ [N ] | vi 6= ?} the set of fixed indices

and

K := (g|V |+1)
α
∏
i∈V di,vi Di,b := gdi,b for i ∈ [N ] \ V, b ∈ {0, 1}

F.eval(kv, x): Let kv = (v,K, {Di,b}i∈[N ]\V, b∈{0,1}), where V = {i ∈ [N ] | vi 6= ?}.
– If for some i ∈ V : xi 6= vi then return ⊥ (as x is not in Sv).

– If |V | = N then output K (as Sv = {v} and K = F(k, v)).

– Else, compute T := (gN−|V |)
∏
i∈[N ]\V di,xi via repeated application of the bilinear maps to the

elements Di,xi = gdi,xi for i ∈ [N ] \ V and output e(T,K) = (gN+1)
α
∏
i∈[N ] di,xi = F(k, x).

In [BW13] it is shown how to use an adversary breaking the constrained PRF for N -bit inputs with
advantage ε(λ) to break the (N + 1)-multilinear decisional Diffie-Hellman assumption with advantage
1
2N
· ε(λ). In the next section we show that this is optimal in the sense that every simple reduction from

a decisional problem must lose a factor which is exponential in the input length N .

5.2 Adaptive Security of the Boneh-Waters CPRF

Lewko and Waters [LW14], following earlier work [Cor02,HJK12], show that it is hard to prove full security
for hierarchical identity-based encryption (HIBE) [HL02] schemes if one can check whether secret keys
and ciphertexts are correctly formed w.r.t. the public parameters. In particular, they show that a simple
black-box reduction (that is, one that just runs the attacker once without rewinding; see below) from a
decisional assumption must lose a factor that is exponential in the depth of the hierarchy. We adapt their
proof technique to show that a proof of full security of the Boneh-Waters PRF with constrained keys for
prefix-fixing must lose a factor that is exponential in the length of the PRF inputs.

The proof idea in [LW14] is the following: Assume that there exists a reduction which breaks a
challenge with some probability δ after interacting with an adversary that breaks the security notion with
some probability ε. Define a concrete adversary A, which, after receiving the public parameters, guesses a
random identity id at the lowest level of the hierarchy and then queries the keys for all identities except
id, checking whether they are consistent with the parameters. By rewinding the reduction to the point
after it output the parameters and simulating A again, choosing a fresh random identity id′, one can now
simulate a successful adversary by using a key for id′ from the first run. It is crucial that the keys can be
verified w.r.t. the parameters. The reduction can thus be used to break the challenge by simulating the
adversary. We formally define decisional problems and simple reductions, following [LW14].
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Definition 7. A non-interactive decisional problem Π = (C,D) is described by a set of challenges
C and a distribution D on C. Each c ∈ C is associated with a bit b(c), the solution for challenge c. An
algorithm A (ε, t)-solves Π if A runs in time at most t and

Pr
c
D←−C

[
b(c)← A(c)

]
≥ 1

2 + ε .

Definition 8. An algorithm R is a simple (t, ε, q, δ, t′)-reduction from a decisional problem Π to break-
ing unpredictability of a CPRF if, when given black-box access to any adversary A that (t, ε, q)-breaks
unpredictability, R (δ, t′)-solves Π after simulating the unpredictability game once for A.

We show that every simple reduction from a decisional problem to unpredictability for the Boneh-
Waters CPRF must lose at least a factor exponential in N , where unpredictability is defined as follows:

Definition 9. Consider the following experiment for a constrained PRF (F,F.constrain,F.eval):

– The challenger chooses k
∗← K;

– A can query F.constrain for sets Si;
– A wins if it outputs (x,F(k, x)) with x ∈ X and x /∈ Si for all queried Si.

The CPRF is (ε, t, q)-unpredictable if no A running in time at most t making at most q queries can
win the above game with probability greater than ε.

Since for superpolynomial-size domains X , unpredictability follows from pseudorandomness (without
any security loss), our impossibility result holds a forteriori for pseudorandomness. In particular, this
precludes security proofs for the Boneh-Waters CPRF using the technique from Section 4.

Instead of checking validity of keys computed by the reduction w.r.t. the public parameters, as in
[LW14], we show that after two concrete constrained-key queries, the secret key k used by the reduction
is basically fixed (the two received keys are thus a “fingerprint” of the secret key). Moreover, correctness
of any other key can be verified w.r.t. to this fingerprint thanks to the multilinear map. We define an
adversary A that we can simulate by rewinding the reduction: After making the fingerprint queries, A
chooses a random value x ∈ X and queries keys which allow it to evaluate all other domain points, checking
every key is consistent with the fingerprint. By rewinding the reduction to the point after receiving the
fingerprint and choosing a different x′ 6= x, we can break security by using one of the keys obtained in a
previous run to evaluate the function at x′.

Theorem 2. Let Π(λ) be a decisional problem such that no algorithm running in time t = poly(λ) has an
advantage non-negligible in λ. Let R be a simple (t, ε, q, δ, t′) reduction from Π to unpredictability of the
Boneh-Waters prefix-constrained PRF with domain {0, 1}N , with both t, t′ polynomial in λ, and q ≥ N−1.
Then δ vanishes exponentially as a function of N (up to terms that are negligible in λ).

The proof can be found in Appendix C.
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A Hybrid Proofs

In this section we show a simple application of the hybrid technique to prove security (i.e., the pseu-
dorandomness of the output) of the “stream-cipher” we get when iterating a pseudorandom generator.
The simple proofs in this section already exemplify some of the techniques that we’ll use in the proof of
Proposition 3 and Theorem 1.

Given a function G : {0, 1}λ → {0, 1}2λ, we define the function SCG : N× {0, 1}λ → {0, 1}∗ as

SCG(N,K0) = (X1, . . . , XN ), where for i ≥ 1 : (Ki, Xi)← G(Ki−1) .
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Fig. 3. The left picture shows the evaluation of SCG
{0,4,5,8}(8). The output is X1, . . . , X8. The arrows indicate the evaluation of

G, e.g., (K1, X1)← G(K0). The blue values are sampled uniformly at random. The right picture illustrates the corresponding
compact representation we will use.

For S ⊂ N0 = {0, 1, . . .}, we denote with SCG
S(N) the random variable that has the output distribution of

SCG(N,K0) instantiated with a random key K0, but where for every i ∈ S, the output in the i-th round
is replaced with a uniformly random value, i.e.,

for N ∈ N,S ⊂ N0 : SCG
S(N)→ (X1, . . . , XN ) (14)

where K0
∗← {0, 1}λ and for i ≥ 1

{
(Ki, Xi)← G(Ki−1) if i 6∈ S
(Ki, Xi)

∗← {0, 1}2λ otherwise

It will be convenient to require that 0 is always contained in S (which makes sense as K0 is always
random). In Figure 3 we illustrate the evaluation of SCG

{0,4,5,8}(8). Note that

SCG
{0}(N) ∼ SCG(N,Uλ) and SCG

{0,...,N}(N) ∼ UNλ .

Definition 10. SCG : N× {0, 1}λ → {0, 1}∗ is (N, ε′, s′)-pseudorandom if no circuit of size s′ can dis-
tinguish with advantage greater than ε′ the first N blocks of output of SCG from random when instantiated
with a random key, i.e.,

SCG(N,Uλ) ∼(ε′,s′) UNλ

We say that SCG is (N, ε′, s′) next-block pseudorandom if, for any N ′ ≤ N , no circuit of size s′ can
distinguish the N ′-th output block from random given the first N ′ − 1 blocks, i.e.,

SCG(N ′, Uλ) ∼(ε′,s′) SC
G
{0,N ′}(N

′) ∼ SCG(N ′ − 1, Uλ)‖Uλ .

For 1-neighboring we simply say neighboring. To prove the (next-block) pseudorandomness of SCG we
will use a hybrid argument. By the following lemma, two neighboring hybrids (by which we mean
SCG
S(N),SCG

S′(N) for neighboring S,S ′) are indistinguishable if G is pseudorandom.

Lemma 4. For any N ∈ N+ and two neighboring sets S ⊂ S ′ ⊆ [N ]

G(Uλ) ∼(ε,s) U2λ ⇒ SCG
S(N) ∼(ε,s′) SC

G
S′(N)

where s′ ≈ s−N |G|.

Proof. We assume w.l.o.g. that |S ′| > |S|. Given a PRG challenge C ∈ {0, 1}2λ, we can sample a variable
X s.t.

X ∼ SCG
S(N) if C ∼ G(Uλ) but X ∼ SCG

S′(N) if C ∼ U2λ

as follows. Let d ∈ S ′ be the (unique) element not in S. Now sample SCG
S(N) as in (14), except that in

the d-th step we use (Kd, Xd) := C. (Note that (Kd−1, Xd−1) is random as per 2. in Definition 2.) Thus,
from any distinguisher for SCG

S(N) and SCG
S′(N), we get a distinguisher for the PRG G with the same

advantage. ut
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Fig. 4. The hybrids H0, . . . , HN (for N = 8) are as defined in the proof of Proposition 5. The proof of Proposition 6
additionally uses the hybrids HN+1, . . . , H2N−1.

We will also use the triangle inequality for indistinguishability

Proposition 4. Consider any random variables H0, H1, . . . ,HN then

H0 6∼(ε,s) HN ⇒ ∃i ∈ [N ] : Hi−1 6∼( ε
N
,s) Hi

Proposition 5. If G : {0, 1}λ → {0, 1}2λ is an (ε, s)-secure PRG, then SCG is (N, ε′, s′) pseudorandom
with

ε′ = ε ·N s′ ≈ s−N |G|

Proof. Consider the hybrids H0, . . . ,HN where Hi = SCG
[i]0

(N) (as illustrated in Figure 4 for N = 8; the

hybrids H9, . . . ,H15 in the figure are not needed in this proof). Assume for contradiction that SCG
{0}(N)

is not (εN, s′) indistinguishable from SCG
[N ]0

(N), i.e.,

H0 6∼(εN,s′) HN .

Then by Proposition 4, for some i ∈ [N ]

Hi−1 6∼(ε,s′) Hi .

Since [i− 1]0 and [i]0 are neighboring sets, applying Lemma 4, we get,

G(Uλ) 6∼(ε,s′+N |G|) U2λ ,

contradicting (ε, s)-security of G. ut

Proposition 6. If G : {0, 1}λ → {0, 1}2λ is an (ε, s)-secure PRG, then SCG is (N, ε′, s′) next-block
pseudorandom with

ε′ = ε · 1
2N−1 s′ ≈ s− (2N − 1)|G|

We omit the proof as it is almost identical to the proof of Proposition 5, except that we use hybrids H0

to H2N−1 (not just HN ) as illustrated in Figure 4.
Here each hybrid Hi corresponds to the variable SCG

Si(N), for S0, . . . ,S2N−1 ⊆ [N ] where S0 =
{0},S2N−1 = {0, N} and for any i, the sets Si−1 and Si are neighboring. Concretely,

S0 = {0}
Si = {0, 1, . . . , i} for i ∈ {1, . . . , N} (15)

Si = {0, 1, . . . , 2N − i− 1, N} for i ∈ {N + 1, . . . , 2N − 2}
S2N−1 = {0, N}
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B Omitted Proofs

B.1 Proof of Lemma 1

From any adversary Af against the full security of F we can construct an adversary As (of basically the
same size) against the selective security of F losing a factor of |X | in the advantage, i.e.,

AdvselF (As, q) = 1
|X | · Adv

full
F (Af , q) (16)

as follows. As initially simply outputs a random x′
∗← X in the selective security game. It then runs A

O(.)
f ,

which outputs some x∗. If x∗ = x′ then As uses Af for the rest of the experiment, i.e., it forwards Cb to
Af , and then returns the bit b̃ that Af outputs. If x∗ 6= x′ then As answers with b̃ = 0. Thus, As outputs
0 with probability 1− 1

|X | , and whatever Af outputs otherwise. Let ε (possibly negative) be such that

Prb←{0,1}
[
Expfull

CPRF(Af ,F, b, q) = b] = 1
2 + ε . (17)

Then

Pr
b←{0,1}

[Expsel
CPRF(As,F, b, q) = b

]
= Pr

b←{0,1}

[
Expsel

CPRF(As,F, b, q) = b | x∗ = x′
]
Pr[x∗ = x′] +

Pr
b←{0,1}

[
Expsel

CPRF(As,F, b, q) = b | x∗ 6= x′
]
Pr[x∗ 6= x′]

= Prb←{0,1}[Expfull
CPRF(Af ,F, b, q) = b] · 1

|X | + 1
2 ·
(
1− 1

|X |
)

=
(
1
2 + ε

)
1
|X | + 1

2 ·
(
1− 1

|X |
)

= 1
2 + ε

|X |

By (1) this means 2|ε| 1
|X | = AdvselF (As, q); on the other hand (1) and (17) give 2|ε| = AdvfullF (Af , q), which

proves (16).

B.2 Proof of Proposition 2

We consider two hybrid games H0 and Hm, which will correspond to the experiments

H0 ∼ AF(K,.) and Hm ∼ Af(.) where K
∗← K, f ∗← R[X ,Y] .

For the ease of describing the higher hybrids, we describe H0 as follows. In H0 we begin by initially
defining Kx = ⊥ for all x ∈ {0, 1}∗ and then sampling K∅

∗← K. We then invoke A, who makes queries
x1, x2, . . . (of total length at most m), where we answer each query x[1 . . . `] with Kx which is defined
as follows: determine the largest `′ s.t. Kx[1...`′] 6= ⊥, and then for j = `′ + 1 to ` recursively define
Kx[1...j−1‖0]‖Kx[1...j−1‖1] := G(Kx[1...j−1]). The final output of H0 is whatever A finally outputs. We just

emulated F(K, .) for A, and thus H0 ∼ AF(K,.).
Now for any i ≥ 0, we define the experiment Hi to be the same as the experiment H0, except that we

replace the outputs of the first i invocations of G with uniformly random values. We have Hm ∼ Af(.), as
all the outputs A gets in Hm are uniformly random, exactly like the outputs of f(.).

It follows that if A can distinguish F(K, .) from a random function (i.e., distinguish H0 from Hm) with
advantage ε, there are two hybrids Hi, Hi+1 s.t.

|Pr[1← Hi]− Pr[1← Hi+1]| ≥ ε
m

Using this, we can distinguish the output G(Uλ) from a random U2λ with the same advantage: given a
challenge C, simulate the experiment Hi up to the (i+ 1)-th invocation of G, and replace its output with
C. If C = U2λ, this emulates experiment Hi+1, and if C = G(Uλ), this emulates the experiment Hi.
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Experiment Hi

∀x ∈ {0, 1}≤N : Kx := ⊥
K∅

∗← {0, 1}λ
x∗ ← As

// below, As can make max. q queries
// and last query must be x∗

A
O(.)
s

b̃← As

return b̃

O(x = x[1 . . . `])
// return Kx if it is already defined

if Kx 6= ⊥ then return Kx fi
// get parent of Kx recursively

Kx[1...`−1] := O(x[1 . . . `− 1])
// compute Kx and its sibling using G, unless x[1 . . . `− 1] is a prefix
// of x∗ and |x| ∈ Si, in this case use random values.

if x[1 . . . `− 1] = x∗[1 . . . `− 1] and ` ∈ Si then

Kx[1...`−1]‖0‖Kx[1...`−1]‖1
∗← U2λ

else
Kx[1...`−1]‖0‖Kx[1...`−1]‖1 := G(Kx[1...`−1])

if
return Kx

Fig. 5. Definition of the hybrid games H0, . . . , H2N−1 from the proof of Proposition 3, where Si are as in eq.(15).

B.3 Proof of Proposition 3

Full security (as stated in Item 2.) follows from selective security (as stated in Item 1.) by complexity
leveraging as in Lemma 1.

To prove selective security, we will use hybrid games H0, . . . ,H2N−1 as formally defined in Figure 5.
By inspection we see that the first and last hybrids defined in Figure 5 are exactly the real and random
selective security game, i.e.,

H0 ∼ Expsel
CPRF(As,GGM

G, 0, q) and H2N−1 ∼ Expsel
CPRF(As,GGM

G, 1, q)

The other hybrids correspond to games where we sometimes use uniformly random values instead the
output of G on the path from the root K∅ to the challenge output Kx∗ . More precisely, in Hi we use
random values in the j-th step along the path computing the output for x∗ for all j ∈ Si, with Si as in
eq.(15) and illustrated in Figure 4.

From any distinguisher for two neighboring hybrids Hi, Hi+1 we get a distinguisher for G with the
same advantage as follows. Si and Si+1 differ by exactly one element d (and d − 1 ∈ Si, d − 1 ∈ Si+1).
Given a PRG challenge C, simulate the experiment Hi up to the point where O(.) (as in Fig.5) is queried
for the first time on a query x where x[1 . . . d− 1] = x∗[1 . . . d− 1]. At this point, we embed the challenge

Kx[1...d−1]‖0‖Kx[1...d−1]‖1 := C. Depending on whether C
∗← G(Uλ) or C

∗← U2λ, this will simulate either
the experiment Hi or Hi+1 (when i < N) and Hi+1 or Hi (when i ≥ N), respectively. Thus, we can
break the security of G with the same advantage we have in distinguishing Hi from Hi+1. As there are
2N hybrids, we loose a factor 2N − 1; the reason we stated a loss of 2N in the proposition is explained
in Remark 4.

B.4 Proof of Lemma 2

By eq.(5), SI and SI+〈1〉 differ by exactly one element d ∈ {1, . . . , N − 1}. Assume that d ∈ SI+〈1〉 (the
case where d ∈ SI is symmetric).

Given a PRG challenge C ∈ {0, 1}2λ, we simulate the game HPI+〈1〉, but at the point where in O(.), the

if clause “if ` − 1 ∈ P and c`−1 = q`−1” evaluates to true for ` = d, we set Kx[1...`−1]‖0‖Kx[1...`−1]‖1 := C

(instead of assigning it a random value). If the challenge was sampled as C
∗← U2λ then we still simulated

the game HPI+〈1〉. But if C
∗← G(Uλ), we simulated HPI . Thus, from any distinguisher for HPI and HPI+〈1〉,

we get a distinguisher for the PRG G with the same advantage.
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B.5 Proof of Lemma 3

Let P ′ = P ∪ {a}, where a is the element additionally contained in the (` + 1)-level sets SI+〈10n−`−1〉,

SI+〈20n−`−1〉 between SI and SI′ (i.e., the element d−N/2`+1 in eq.(4)). Adding an element to the guessing
set P, simply decreases the probability of outputting 1 by a factor of q, thus with eq.(13):

|Pr[HP
′

I = 1]− Pr[HP
′

I′ = 1]| = |Pr[HPI = 1] · 1q − Pr[HPI′ = 1] · 1q | = δ/q (18)

Now we can consider the sequence of consecutive (` + 1)-level sets HP
′

I , HP
′

I+〈10n−`−1〉, H
P ′
I+〈20n−`−1〉, H

P ′
I′ .

By eq.(18) and a standard hybrid argument, two of these can be distinguished with advantage δ/(3q) as
required.

C Proof of Theorem 2

Our proof follows the one from [LW14], with the main difference that we check consistency of the oracle
replies w.r.t. the answers of the fingerprint queries, whereas Lewko and Waters check consistency w.r.t.
the public parameters.

Without loss of generality, we assume that the adversary makes exactly q = N − 1 queries. We first
construct an attacker A that (t, ε,N − 1)-breaks unpredictability of the prefix-constrained PRF for any
given ε in some time t not necessarily polynomial in λ. We then show how this attacker can be simulated
in polynomial time.

An inefficient attacker. We start with constructing a hypothetical attacker A, which wins the unpre-
dictability game with probability ε for any given ε. A first makes two queries for constrained keys which
will serve as a “fingerprint” of the secret key used by the challenger. A then picks a random value x which
cannot be evaluated with the obtained keys. Next, it queries keys with which it can evaluate the PRF
at all points in the domain except x and its sibling (i.e., (x1, . . . , xN−1, xN ), where we let xi := 1 − xi).
It checks whether the received keys are consistent with the fingerprints and if so, it computes the PRF
value at x under the secret key defined by the fingerprint (a step which may not be efficient); otherwise
it aborts.

Phase 1 (Fingerprinting): A starts by making two constrained-key queries for v1 := (0, ?, . . . , ?) and
v2 := (1, 0, ?, . . . , ?). Upon receiving the respective keys

(K1, {Di,b}i∈[2,N ],b∈{0,1}) ∈ G2 ×G2(N−1) and (K2, {D′i,b}i∈[3,N ],b∈{0,1}) ∈ G3 ×G2(N−2) ,

A aborts if Di,b 6= D′i,b for any i ∈ [3, N ], b ∈ {0, 1}. A also aborts if D2,0 = 1G (as in this case, K2 does
not uniquely fix the value α · d1,1 of the challenger’s secret key; see below). Otherwise, A stores the values
(K1,K2, {Di,b}i,b).
Phase 2 (All-but-x): Next, A picks a random value x′ ∈ {0, 1}N−2, defines x = 11‖x′ and makes the
following queries:

vi = (1, 1, x3, . . . , xi−1, xi, ?, . . . , ?) for 3 ≤ i ≤ N − 1 (19)

Note that the keys for v1, v2 and {vi}i∈[3,N−1] let A evaluate the PRF at any point different from x and
its sibling.

Let the i-th answer be ki = (Ki, {D(i)
j,b}j∈[i+1,N ],b∈{0,1}) ∈ Gi+1×G2(N−i). A makes the following checks;

if any of them fail, A aborts:
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Check 1: For all i ∈ [3, N − 1], j ∈ [i+ 1, N ], b ∈ {0, 1} : D
(i)
j,b

?
= Dj,b (with Dj,b obtained in Phase 1).

Check 2: For all i ∈ [3, N − 1] : e(Ki, D2,0)
?
= e(K2, D2,1, . . . , Di−1,xi−1,Di,xi

).

These checks ensure that the keys are consistent with the fingerprint keys, in particular:

Lemma 5. For all i ∈ [2, N − 1], b ∈ {0, 1}, let di,b ∈ Zp be such that Di,b = gdi,b and let d′1,0 and d′1,1 be

such that K1 = g
d′1,0
2 and K2 = g

d′1,1·d2,0
3 . Since d2,0 6= 0 (otherwise A aborted in Phase 1), these values are

uniquely defined. Moreover, for all i ∈ [3, N − 1] for which Check 2 holds, we have

Ki = g
d′1,1·d2,1·d3,x3 ···di−1,xi−1

·di,xi
i+1 .

Proof. Let γi be such that Ki = gγii+1 for i ∈ [3, N − 1]. The check ensures that

g
d′1,1·d2,0·d2,1···di−1,xi−1

·di,xi
i+2 = e(K2, D2,1, . . . , Di−1,xi−1 , Di,xi) = e(Ki, D2,0) = g

γi·d2,0
i+2 ,

which, since d2,0 6= 0, yields γ = d′1,1 · d2,1 · · · di−1,xi−1 , di,xi and proves the claim. ut

Phase 3 (Solve challenge): If all received keys passed the checks then A uses the values d′1,1, d2,1, d3,x3 ,
. . . , dN,xN , defined by the received keys as in Lemma 5 to compute the following (which we show is the
PRF value at x):

y = g
d′1,1·d2,1·

∏
i=3,N di,xi

N+1

(this step may not be efficient). A then flips a biased coin which yields β = 1 with probability ξ :=
ε · (1− 1

p)−1. If β = 1 then A outputs y; otherwise it aborts.
We show that A (t, ε,N − 1)-breaks unpredictability: A makes N − 1 key queries. The value y is the

PRF value of x: To see this, let k∗ = (α∗, {d∗i,b}i∈[N ],b∈{0,1}) be the secret key chosen by A’s challenger.
If k∗ is used to answer the fingerprint queries then with d′1,0, d

′
1,1, d2,0, d2,1, . . . defined as in Lemma 5 we

have

– For all i ∈ [2, N ], b ∈ {0, 1} : di,b = d∗i,b;
– and d′1,0 = α∗ · d∗1,0, d′1,1 = α∗ · d∗1,1.

This implies that y = g
α∗d∗1,1·d∗2,1·

∏
i=3,N d∗i,xi

N+1 = F (k∗, x). Note also that constructing the function value
this way (i.e., using the values defined by the first two replies) for any 11‖z 6= x, except for z =
(x1, . . . xN−1, xN ), leads to the same value as evaluating under the key kj with j = min{i|zi 6= xi}.

Finally, (with c, ξ as above)

Pr[F (k∗, x)← A] = Pr[F (k∗, x)← A | c = 1 ∧ d2,0 6= 0]ξ(1− 1
p)

+ Pr[F (k∗, x)← A | c = 0 ∨ d2,0 = 0](1− ξ(1− 1
p))

= 1 · ξ(1− 1
p) + 0 · (1− ξ(1− 1

p)) = ε

Breaking the assumption using R. Since the only random choices A makes are choosing x in Phase 2
and flipping the biased coin β at the end, we can assume that A draws its coins from a set Z × F , where
Z = {0, 1}N−2 is the set of possible strings x′, and F are the coins used to choose the value β.

As we consider simple reductions, R runs A once in a straight-line fashion. We use R to create an algo-
rithm B which solves Π. B does so by running the reductionR on a challenge and simulating the adversary
A constructed above, but running itself in polynomial time. B starts by passing the received challenge
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instance c ∈ C to R and simulates Phase 1 of attacker A and stores the received values (K1,K2, {Di,b})
(if A did not abort).

Next, B runs A’s interaction with the reduction in the second phase τ times. (We will fix τ later so
that it is polynomial in λ.) In each run B chooses fresh random coins for R and A. Thus, in the i-th

interaction, B picks an independent random value x(i), makes the queries v
(i)
j defined by x(i), as in (19),

and performs the consistency checks. If all checks pass, B stores the received values (K
(i)
3 , . . . ,K

(i)
N−1);

otherwise Run i is labeled an “aborting run”. If all τ runs were aborting runs then B terminates and
outputs a random guess.

If there was at least one non-aborting run, B chooses a random z′ ∈ {0, 1}N−2, defines z = 11‖z′ and
if for any x(i), we have (z1, . . . , zN−1) = (x1, . . . , xN−1) then B stops and outputs a random guess. Next,
B makes key queries for the values v3, . . . vN−1 derived from z, as in (19). It checks consistency of the
received keys and outputs a random guess if a check fails.

B picks a run i which was not aborting and lets j ∈ [3, N − 1] be the lowest index such that x
(i)
j 6= zj .

(This must exist, as otherwise, B would have aborted.) Since v
(i)
j is a prefix of z, B can use the key received

when querying v
(i)
j to compute the PRF value y at z.

As we have argued above, the value computed this way is perfectly consistent with the information
about the secret key fixed by the replies in Phase 1, meaning that B computes the same value as A would.
B flips a biased coin β and with probability ξ := ε · (1− 1

p)−1 outputs y.

Analyzing B’s success probability. Recall that C is the set of possible challenges for Π and that A’s
coins are drawn from Z × F . Let R = R1 × R2 be the set of possible random coins chosen by R, where
R1 are the coins used up to the answering of A’s fingerprint queries. Thus (c, r1) determines the values
(K1,K2, {Di,b}), and (r2, z, f) are the coins that are freshly chosen from R2×Z ×F in every rewind run.

We define W as the set of all tuples (c, r1, r2, z, f) such that when R is run with (r1, r2) and A is run
with (z, f) on the challenge c then A does not abort and R solves the challenge c. We partition W into
two sets according to a probability threshold ρ (which we will fix later) of a run not aborting when fixing
c and r1 and choosing the other coins freshly. Let T be the set of all (c, r1, r2, z, f) that lead to a run
aborted by A; define

U :=
{

(c, r1, r2, z, f) ∈W
∣∣ Prr′2,z′,f ′

[
(c, r1, r

′
2, z
′, f ′) /∈ T

]
≥ ρ
}

and V := W \ U .

We first show the following lemma:

Lemma 6. Pr[V ] ≤ ρ

Proof. First note that W ⊆ T (since for coins to be in W , A must not abort). This implies that

V =
{

(c, r1, r2, z, f) ∈W
∣∣ Prr′2,z′,f ′

[
(c, r1, r

′
2, z
′, f ′) /∈ T

]
< ρ
}

⊆
{

(c, r1, r2, z, f) ∈W
∣∣ Prr′2,z′,f ′

[
(c, r1, r

′
2, z
′, f ′) ∈W

]
< ρ
}
.

The lemma now follows because the probability of the latter set is strictly lower than ρ, since we have
the following:

For any sets X,Y and W ⊆ X×Y , the set Z := {(x, y) ∈W | Pry′←Y [(x, y′) ∈W ] < ρ} has Pr[Z] < ρ:
Let X1 = {x ∈ X | Pry′←Y [(x, y′) ∈W ] < ρ} and X2 = X1 \X. Then

Pr[(x, y) ∈ Z] =
∑
x∈X1

Pr
x′←X

[x′ = x] Pry′←Y [(x, y′) ∈ Z]︸ ︷︷ ︸
<ρ (since x ∈ X1)

+
∑
x∈X2

Pr
x′←X

[x′ = x] Pry′←Y [(x, y′) ∈ Z]︸ ︷︷ ︸
=0 (since x ∈ X2)

ut
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Next we define S as the set of all (c, r1, r2, z, f) so that R solves the challenge.

Lemma 7. If Π is computationally hard then Pr[T ] ·
∣∣Pr[S|T ]− 1

2

∣∣ is negligible in λ.

Proof. Consider an adversary B′ which runs R and simulates A up to Phase 3. If A has not aborted until
then, B′ outputs a random guess. If A aborted, it outputs whatever R outputs. B′ runs in polynomial
time and solves the challenge with probability 1

2(1− Pr[T ]) + Pr[S|T ] Pr[T ] = 1
2 + Pr[T ](Pr[S|T ]− 1

2).
Consider B′′, which behaves like B′ except that it outputs the complement, i.e., in case A aborts, B′′

outputs 0 if R outputs 1 and vice versa. B success probability is 1
2(1 − Pr[T ]) + (1 − Pr[S|T ]) Pr[T ] =

1
2 + Pr[T ](12 − Pr[S|T ]). Together this yields that Pr[T ] · |Pr[S|T ]− 1

2 | must be negligible. ut

The probability that R solves the challenge when running A once is the probability of solving it when A
does not abort plus the probability of solving it when A aborts:

Pr[W ] + Pr[T ] Pr[S|T ] = 1
2 + δ .

We have Pr[W ] = Pr[U ] + Pr[V ] < Pr[U ] + ρ (by Lemma 6), which together with Lemma 7 yields

1
2 + δ < Pr[U ] + ρ+ 1

2 Pr[T ] + negl(λ) . (20)

Let X(i)×F (i) denote the set of coins for A and R
(i)
2 denote the set of coins used by R during the i-th

run of R after answering the first two queries. Define Ti to be the set of those coins (c, r1, r
(i)
2 , x(i), f (i))

that lead to an aborting run. Let Ei be the event that zj = x
(i)
j for all j ∈ [3, N − 1].

Consider a set of coins (c, r1, {r(i)2 , x(i), f (i)}τi=1, r2, z, f) used by B during the overall computation,
including the rewinds. Note that B aborts the computation if and only if

∀i ∈ [1, τ ] : (c, r1, r
(i)
2 , x(i), f (i)) ∈ Ti or ∃i ∈ [1, τ ]∀j ∈ [3, N − 1] : x

(i)
j = zj ,

which corresponds to the coins being in the set
⋂τ
i=1 Ti ∪

⋃τ
i=1Ei. On the other hand, if (c, r1, r2, z, f) ∈

U ⊆W and if B does not abort then it solves the challenge. Thus B wins with probability at least

1

2
Pr[T ] +

∑
(c,r1,r2,z,f)∈U

Pr[(c, r1, r2, z, f)] ·
(

1− Pr
[ τ⋂
i=1

Ti ∪
τ⋃
i=1

Ei

∣∣∣ (c, r1, r2, z, f)
])

. (21)

By the union bound, we have

Pr
[⋃τ

i=1Ei
∣∣ (c, r1, r2, z, f)

]
≤ τ2−(N−3) . (22)

Since for fixed (c, r1), the events Ti are independent, we have

Pr
[⋂τ

i=1 Ti
∣∣ (c, r1, r2, z, f)

]
=
∏τ
i=1 Pr[Ti | (c, r1, r2, z, f)] ≤ (1− ρ)τ , (23)

where the last inequality follows from (c, r1, r2, z, f) being in U . By the union bound and from equations
(22) and (23), we have that (21) is greater than

1
2 Pr[T ] + Pr[U ]

(
1− τ2−(N−3) − (1− ρ)τ

)
≥ 1

2 Pr[T ] + Pr[U ]− 8τ2−N − (1− ρ)τ

≥ 1
2 + δ − ρ− 8τ2−N − (1− ρ)τ − negl(λ) ,

where the last inequality follows from (20).
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Setting ρ = δ
4 , and τ = λ

δ (which is polynomial in λ), the last term equals

1
2 + 3

4δ − 8λδ 2−N − [(1− δ
4)

1
δ ]λ − negl(λ) = 1

2 + 3
4δ − 8λδ 2−N − negl(λ) , (24)

since (1 − δ
4)

1
δ < 1 for all δ ∈ [0, 1]. We have showed that B’s probability of solving Π is at least (24),

which by the assumption that Π is computationally hard means that 3
4δ − 8λδ 2−N must be negligible in

λ, and therefore δ must be exponentially small as a function of N .
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