
FNR : Arbitrary length small domain block cipher proposal

Sashank Dara, Scott Fluhrer
Cisco Systems Inc

email: {sadara,sfluhrer}@cisco.com

June 7, 2014

Abstract

We propose a practical flexible (or arbitrary) length small domain block cipher.
FNR can cipher small domain data formats like IPv4, Port numbers, MAC Addresses,
IPv6 address, any random short strings and numbers while preserving their input
length.

In addition to the classic Feistel networks, Naor and Reingold propose usage of
pair-wise independent permutation (PWIP) functions in first and last rounds of LR
constructions to provide additional randomness and security. But their PWIP functions
are based on Galois Fields. Representing GF(2n) for different input lengths would be
complicated for implementation. For this reason, the PWIP functions we propose are
based on random N X N Invertible matrices.

In this paper we propose the specification of FNR mode of encryption. Its prop-
erties, limitations. We provide possible example applications of this block cipher for
preserving formats of input types like IPv4 addresses, Credit card numbers. We provide
reference implementation’s experimental results and performance numbers in different
setups. FNR should be used only when deterministic encryption is needed. It does not
provide semantic security.

FNR denotes Flexible Naor and Reingold

1

FNR : small domain block cipher proposal Page 2

Contents

1 Introduction 3

2 Design Goals 3

3 Prior Art 4

4 Definitions 4

5 Design Choices 9

6 Properties 11

7 Security 11

8 Implementation And Performance 12

9 Test Vectors 13

10 Conclusions 14

11 Acknowledgments 16

List of Algorithms

1 FNR PwIP Algorithm . 6
2 FNR Inverse PwIP Algorithm . 7
3 FNR Encryption Algorithm . 8
4 FNR Decryption Algorithm . 10

List of Tables

1 Secrets . 13
2 Test Vectors for IPv4 Addresses . 15
3 Test Vectors for Credit Card numbers . 15

List of Figures

1 Two Round FNR . 9
2 Performance of IPv4 Addresses . 13
3 Performance of Credit Card Numbers . 14

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 3

1 Introduction

There is a compelling need for privacy of sensitive fields before data is shared with any
cloud provider, semi-trusted vendors, partners etc. For example network telemetry data,
transaction logs etc. are often required to be shared for benefiting from variety of Software
as Service applications. Such sensitive data fields are of prescribed and arbitrary lengths.
They are often part of well defined data formats like NetFlow, IPFIX etc. For example
Port(16), IPv4(32), MAC (48) , IPv6 (128) etc.

While designing privacy for sensitive fields, it may be desirable to preserve the length
of the inputs, in order to avoid any re-engineering of packet formats or database columns
of existing systems. Traditional AES-128/256 encryption would encrypt plain text (of any
smaller lengths) to result in a cipher text (a random string that is 128/256 bits). Expansion
of cipher text length may be undesirable for said reasons. Also AES is fixed length cipher,
input domains that are of smaller size need to be padded in order to perform encryption.

Small domain block ciphers are useful tool in designing privacy of sensitive data fields
of smaller length (<128 bits). In addition to the classic Feistel networks, Naor and Rein-
gold propose usage of Pair-Wise Independent Permutation (PWIP) functions in first and
last rounds of LR constructions to provide additional randomness and security. We pro-
pose usage of invertible matrices to provide a neat and generic way to achieve pair-wise
independence for any arbitrary length.

2 Design Goals

We intended to design a small domain block cipher that has below goals

Arbitrary length Input domains of variable lengths need to be supported. For example,
a system that consists of NetFlow would have different domains like IPv4, Port, IPv6
etc. all are of different lengths.

Key Length A system might contain multiple domains of various lengths. If the key size
is dependent on the input length, then managing key sizes of various lengths would
be cumbersome. For this reasons key sizes should not depend on input length.

Secure building blocks The building blocks used for such design should be considered
secure. For example techniques based on Feistel Networks of Luby Rackoff construc-
tions, Substitution and Permutation Networks of AES are considered good blue prints
for block cipher designs.

Leveraging hardware support Modern processors support AES at assembly level (say
AES-NI of Intel and AMD). Such provisions should be leveraged for faster software
implementations.

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 4

Supporting software platforms Due to the advances in cloud computing technology,
privacy of smaller data fields may need to be implemented in variety of software
platforms. For example browsers that run Java, JavaScript, thin clients based on
REST interfaces etc. apart from ubiquitous C, CPP implementations. For this
reason, variety of software platforms should be easily supportable.

Intellectual Property Free Either the building blocks that are used in the block cipher
design or the block cipher itself should be free from any intellectual property rights.

3 Prior Art

Luby Rack off Constructions are considered seminal work in formalizing secure block cipher
design [7]. They have been subjected to rigorous theoretical analysis and well laid security
bounds are established.

Further variable input length block ciphers have been proposed in [3],[11]. These con-
structions require multiple application of original block cipher in order to make them
arbitrary length block ciphers. This makes them computationally intensive and inefficient.
Design of ciphers for arbitrary domains were also proposed in [4]. The Prefix Cipher, Cycle
Walking mentioned in their work would be very expensive in practice. The Generalized
Feistel Network approach mentioned in their work uses DES as PRF. RC5 has features for
arbitrary domain lengths but it is patented. Elastic block cipher design has been proposed
in [5] but they are not subjected to rigorous independent analysis.

Feistel Networks also form the foundational blocks for Format Preserving Encryp-
tion(FPE). FPE has been studied rigorously theoretically [2]. A white paper is available
from Voltage Inc. [13] which has good overview. A very good synopsis is given by Rogaway
[12]. Few modes of FPE have been recently proposed for NIST standardization [1].

Usage of pair-wise Independent Permutations in LR constructions was first proposed
by Naor and Reingold [8]. While their techniques are based on performing operations in
GF(2n) we propose to operate on invertible matrices. This makes our scheme light weight
and flexible enough to perform on any arbitrary input fields.

4 Definitions

4.1 Secrets

There are various secret keys used in FNR. Some of them are user supplied, some are
internally generated for the usage of the algorithms.

Key A 128 bit long secret key, K, is needed. This is used internally by Pseudo Random
Function (PRF) i.e AES algorithm. This is generated by a good entropy source or derived
by using good key derivative function from a user supplied password.

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 5

Tweak A tweak, T, is like salt or IV. It should be nearly n/2 bits length, where n is
number of input bits. In practice, a small character string is supplied by the user, as tweak,
which is then encoded as fixed length binary string appropriately.

A, B are two matrices. A is invertible binary matrix of N X N dimension. B is binary
matrix of 1 X N dimension. Where N denotes number of bits in the input. Both A,B
should be uniformly distributed.

An,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ax,y ∈ {0, 1} ∀x, y ∈ {1 · · ·n} (1)

B1,n =
(
b1,1 b1,2 · · · b1,n

)
bx,y ∈ {0, 1} ∀x, y ∈ {1 · · ·n} (2)

4.2 Inputs and Outputs

FNR, like any other block cipher, has two operations encryption and decryption. There
are three inputs and an output for both of these operations. Typically the size of Plain
text P is n bits such that n is in between 32 to 128 bits. Integer, Character strings are
encoded as bit vectors before encryption.

4.2.1 Encryption

The inputs are Plain text P, that needs to be encrypted, a secret key K, a tweak T. The
output of an encryption function is n bits of cipher text C.

4.2.2 Decryption

The inputs are cipher text C, secret key K, tweak T. The output is plain text P.

4.3 Notation

Our notation follows that of Recommendation for Block Cipher Modes of Operations [6].
A block cipher encryption that takes inputs key K , tweak T, numerical constants A,B
and a numerical plain text X is denoted by FNR.Encrypt(K,T,X). The function returns
a numerical string Y as output that is of same length as X. The decryption function is
similarly denoted as FNR.Decrypt(K,T,Y) and it returns the plain text X .

Along with the Feistel constructions we use special functions called Pair-wise Indepen-
dent Permutations (PwIP) to provide additional security. The function PwIP takes input
a random numerical string X of n bits length. Along with predefined binary matrices A,B
to output a uniformly distributed permutation of n bits H. So it can be represented as

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 6

FNR.PwIP(A,B,X) and output of which is H. An inverse function FNR.PwIP −1(A,B,H)
reverses such permutation and outputs X.

4.4 Preliminaries

4.4.1 Pair-wise Independent Permutations (PwIP)

Pair-wise Independent Permutations (PwIP) are combinatorial constructions to achieve a
uniformly distributed permutation of given input. A pairwise independent permutation is
a permutation that has the property that, assuming a random (uniformly distributed key),
that any two distinct inputs A, B, and any two distinct outputs X, Y, the probability that
X=PWIP(A) and Y=PWIP(B) is uniform, that is, is 1/((2n) ∗ (2n−1) independent of A,
B, X, Y.

The below function actually achieves stronger Three-way Independent Permutation cri-
teria, for three distinct inputs A, B, C, and three distinct outputs X, Y, Z, the probability
that X=PWIP(A), Y=PWIP(B), Z=PWIP(C) is independent of A, B, C, X, Y, Z

Let the input X be a binary vector of n bits length, considered as 1 X N matrix, then
fA,B(X) as defined below gives a uniformly distributed permutation. The matrix operations
∗,⊕,÷ are performed in GF(2). Also instead of bit-wise XOR operation, modular addition
could be used too.

X1,n =
(
x1,1 x1,2 · · · x1,n

)
xi,j ∈ {0, 1} ∀i, j ∈ {1 · · ·n} (3)

fA,B(X) = (X ×A)⊕B (4)

The algorithm for the same is defined in Algorithm.1.

Algorithm 1: FNR PwIP Algorithm

Inputs : Matrix A, Matrix B, bitvector input
Output: bitvector output

1 Function PwIP(A, B, input, n) is
2 /* bitvectors input and outputs are 1XN matrices */

3 if ((A is not Invertible) then return ⊥;
4 else
5 /* 1 X N multiplied by N X N results in 1 X N matrix */

6 output = MATRIX MULT (X, A) ;
7 output = MATRIX ADD (B, X) ;
8 return output ;

9 end

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 7

4.4.2 Inverse PwIP

The above uniformly distributed permutation can be un-permuted. The inverse of such a
PwIP is defined as follows. Note: In case modular addition is used while performing PwIP,
then Addition and Subtraction are same in Galois Field, GF(2).

f−1
A,B(Y) = ((Y ⊕B)×A−1) (5)

The algorithm for the inverse PwIP is defined in Algorithm.2.

Algorithm 2: FNR Inverse PwIP Algorithm

Inputs : Matrix A, Matrix B, bitvector input
Output: bitvector output

1 Function Inverse-PwIP(A, B, input, n) is
2 /* bitvectors input and outputs are 1XN matrices */

3 if (A is not invertible) then return ⊥;
4 else
5 C = MATRIX INVERSE(A) ;
6 output = MATRIX ADD(B, input, n) ;
7 output = MATRIX MULT (output, C) ;
8 return output;

9 end

4.5 Encryption

4.5.1 Overview

Input plain text is subjected to PwIP to get a uniformly distributed permutation of the
same. This follows by a Feistel network of r rounds (the figure 1 shows only two rounds
for simplicity). The number of rounds r is 7, detailed discussions is given in later sections
5, 7.1. The output of the Feistel network is subjected to PwIP−1. The final output is then
considered as cipher text.

4.5.2 Algorithm

The algorithm for the same is described in Algorithm.3

4.6 Decryption

4.6.1 Overview

The algorithm is very similar to encryption except that the processing is done in reverse
way.

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 8

Algorithm 3: FNR Encryption Algorithm

Inputs : key k, char* tweak, bitvector plain, integer n
/* n is max number of bits and even */

Output: bitvector cipher
/* cipher and plain are of same bit length */

1 Function Encrypt(k, tweak, plain, n) is
2 begin
3 /* Assumption: A, B Matrices are available as

defined in 1, 2 */

4 if |plain| > n then return ⊥;
5 else if |plain| < n then
6 begin
7 prepend ’0’ to plain such that |plain| = n;
8 end
9 /* perform uniform distributed permutation */

10 bitvector d = pwip(A,B,plain,n);
11 /* perform r rounds of Feistel network */

12 while i < r do
13 begin
14 left = d[0..n/2] ;
15 right = d[n/2 .. n-1] ;
16 left = right ;
17 right = left ⊗AESkey(i ‖ tweak ‖ right) ;
18 d = left ‖ right ;
19 i++;

20 end
21 /* perform inverse of permutation */

22 bitvector cipher = inverse-pwip(A,B,d,n);
23 return cipher;

24 end

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 9

Figure 1: Two Round FNR

4.6.2 Algorithm

The algorithm for the same is described in Algorithm.4 . The differences with encryption
algorithm can be observed as shown in line 13

5 Design Choices

Feistel Networks Luby Rackoff constructions based on Feistel Networks are subjected
to rigorous theoretical analysis over many years. The principles underlying construc-
tions of PRPs from a PRFs are widely accepted. Also their length preserving property
makes them ideal choice for designing arbitrary length block ciphers.

Pairwise Independent Permutations Better security bounds were proven to be achiev-
able by usage of PwIP in [8]. But their choice of performing operations in GF(2n)
makes it difficult to define exact GF representations for arbitrary length ciphers. For
this reason we propose performing GF operations in invertible matrices.

Round Functions The security of PRP constructed by a Feistel Network based scheme
relies on security of underlying PRF (i.e round function) [7]. AES in ECB mode
when performed only on a single block is considered a good PRF. Also using AES

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 10

Algorithm 4: FNR Decryption Algorithm

Inputs : key k, char* tweak, bitvector cipher, integer n
/* n is max number of bits and even */

Output: bitvector plain
/* both cipher and plain are n bits */

1 Function Decrypt(k, tweak, cipher, n) is
2 begin
3 /* Assumption: A,B Matrices are available

as defined in 1, 2 */

4 if (|cipher| 6= n) then return ⊥;
5 /* perform pair wise permutation */

6 bitvector d = pwip(A,B,cipher,n);
7 /* perform r rounds of Feistel network */

8 while i < r do
9 begin

10 left = d[0..n/2] ;
11 right = d[n/2 .. n-1] ;
12 left = right ;
13 right = left ⊗AESrk(r−i)

((r − i) ‖ tweak ‖ right)
14 d = left ‖ right ;
15 i++ ;

16 end
17 /* perform inverse of permutation */

18 bitvector plain = inverse-pwip(A,B,d,n);
19 return plain;

20 end

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 11

as round function one can leverage the underlying hardware support. Thus 2 of the
design goals laid can be met by using AES.

Tweak Since the input domains are very small in nature, support of tweak would add
additional randomness. Adding user supplied tweak string along with the iteration
count is the simplest form tweak.

Rounds A minimum of 7 rounds are needed to mitigate adaptive chosen plain text and
chosen cipher text attacks due to Patarin’s proof [10]. More rounds may be preferred
for input domains of smaller size.

6 Properties

6.1 Advantages

No length expansion The length of plain text and cipher text is same. No expansion
in cipher text facilitates avoiding re-engineering of packet formats, database columns
etc.

Range Preservation The encryption function results in the cipher which is in the same
range of input values. This aides in designing format preservation of input domains.

Arbitrary Length The design does not mandate any fixed input lengths. FNR is flexible
for input domains that are ≥ 32 bits and ≤ 128 bits

Key Length The key length is not dependent on the input length and rather depends on
underlying PRF (in this case AES-128/256).

6.2 Disadvantages

Performance The usage of matrices might add performance over head.

No Integrity FNR does not provide authentication and integrity.

Deterministic FNR does not provide any semantic security.

7 Security

Security of LR schemes under went rigorous analysis by the community over many years.
Also usage of pwip is later proven to mitigate basic linear and differential cryptanalysis
[14].

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 12

7.1 Round Count

The security measure of block ciphers is based on the probability with which an attacker
can distinguish the cipher text from a random text. Although our PwIP is different from
theirs, without loss of generality, detailed proof given in [8] holds good for FNR.

If r is round count, n is number of bits of input domain, m is number of queries an
attacker needs to make, then the security measure for FNR, is defined as in Equation.6.

(r/2 ∗m2/2(1−1/r)∗n)where r ≥ 4 (6)

It is to be noted that without the use of pwip functions the security measure of pure Feistel
Networks due to Patarin’s proof [9] is defined as in Equation.7

5 ∗ (m3)/(2n) (7)

So for example an input domain of 32 bits and round count of 7, it requires approximately
8757 pairs of plain text and cipher text. Where as without the use of PwIP functions
attacker just needs around 950 pairs of plain text and cipher text.

A performance trade-off exists depending on the underlying implementation of AES. If
AES execution of each round is based on implementation of a software library, performing
more rounds may be costlier. Where as if AES execution is at assembly level instruction,
as supported by few modern processors, the performance over head may be very negligible.

7.2 Brute force attacks

Luby Rackoff constructions provided a neat way to construct a secure PRP from a secure
PRF [7]. The strength of such PRP is based on underlying PRF. In FNR mode the PRF
being AES, the strength of FNR is as secure as AES. For this reason exhaustive search on
key space of AES is best known attack on FNR.

7.3 Measures

Sound key management practices may mitigate attacks based on stealing keys. In situ-
ations where key management is not available, generating key from password based key
derivative function like PBKDF2 is suggested than hard-coding the keys in the software
code. Access control measures to the encryption/decryption oracles (devices that perform
the operations) would mitigate attackers from learning the known plain and cipher text
pairs.

8 Implementation And Performance

The software implementation of Feistel networks is pretty straightforward. Matrix oper-
ations are crucial to the overall performance of the implementation. It is also suggested

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 13

Key Tweak

“0000000000000000” “tweak-is-string”

Table 1: Secrets

that AES operations being supported at assembly level by processors can be leveraged for
better performance.

The reference implementation has been benchmarked to measure the performance of
the algorithms in Figure.2 and Figure.3. The graphs are plotted for both AES and AES-
NI instructions as options for internal PRP. The X-axis represents the number of records
encrypted and Y-axis represents the time taken in seconds. The benchmarking is performed
an virtual machine that runs Ubuntu 12.4 with 8 GB RAM on an Intel Sandy Bridge
Generation of Processor’s with 4 vCPU’s.

Figure 2: Performance of IPv4 Addresses

9 Test Vectors

Note the inputs key and tweak are character strings in Table.1. Tweak is an arbitrary
length string which is expanded into a fixed length form. Note that even though same
secrets mentioned Table.1 are used, the results might vary due to the choice of A,B Matrices
used in PWIP function.

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 14

Figure 3: Performance of Credit Card Numbers

9.1 IPv4 addresses

The test vectors for various IPv4 Addresses are given in Table.2 . Each IPv4 is ranked as
32 bit integer before it is encrypted, the resultant cipher text is a 32 bit integer which is
de-ranked into a dotted notation.

9.2 Credit card numbers

The test vectors for various credit card numbers are given in Table.3. Each CC number
is ranked as 15 digit number by dropping the LUHN CHECKSUM. The ranked integer is
then encrypted to get a cipher text that is again 15 digit number. Such integer is de-ranked
by appending a LUHN CHECKSUM at the end into a valid Credit card number.

10 Conclusions

In this paper we proposed a flexible and practical arbitrary block domain cipher. We
provide the reference implementation’s performance results, test vectors. Also we provided
examples of how to preserve formats of few data types like IPv4 addresses and Credit
card numbers. Our work is flexible variant of Naor and Reingold’s work. To be precise
we propose usage of Triple Wise Independent Functions. We recommend using this block
cipher for domain sizes 32 bits to 128 bits. Different techniques need to be used to achieve
good security for inputs less than 32 bits or greater than 128 bits

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 15

Plain Text Cipher Text

Raw(Dotted) Ranked(Integer) Raw(Integer) De-ranked(Dotted)

192.168.1.0 3232235776 2676870780 159.141.206.124

192.168.1.1 3232235777 2129658955 126.240.4.75

192.168.1.2 3232235778 3505438271 208.240.190.63

192.168.1.3 3232235779 3073749301 183.53.177.53

192.168.1.4 3232235780 2962433103 176.147.36.79

192.168.1.5 3232235781 1726684009 102.235.27.105

192.168.1.6 3232235782 344899540 20.142.191.212

192.168.1.7 3232235783 2172459699 129.125.26.179

192.168.1.8 3232235784 257448048 15.88.88.112

192.168.1.9 3232235785 1699298390 101.73.60.86

Table 2: Test Vectors for IPv4 Addresses

Plain Text Cipher Text

Raw Ranked Raw De-ranked

4556584414106354 455658441410635 975846115884519 9758461158845197

4486224784662570 448622478466257 716640796278824 7166407962788248

4929883910358398 492988391035839 665162088006340 6651620880063403

4929880239524890 492988023952489 932731766659682 9327317666596825

4916550835157636 491655083515763 949857941349711 9498579413497119

4486508454953164 448650845495316 297883963574671 2978839635746717

4929374350260880 492937435026088 233324444317587 2333244443175870

4486811141966098 448681114196609 595721797141331 5957217971413317

4916855430912917 491685543091291 173658071436224 1736580714362241

4024007179621627 402400717962162 756355301132583 7563553011325836

Table 3: Test Vectors for Credit Card numbers

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 16

11 Acknowledgments

We sincerely thank Dr. David McGrew, Anthony Grieco, Dr.Zulfikar Ramzan, for their
crucial suggestions, improvements in our work. The reference implementation is written
by Scott Fluhrer and demo applications were written by Kaushal Bhandankar.

c© 2014 Cisco Systems, Inc. All Rights Reserved

FNR : small domain block cipher proposal Page 17

References

[1] M Bellare, P Rogaway, and T Spies. The ffx mode of operation for format-preserving
encryption (draft 1.1). february, 2010. Manuscript (standards proposal) submitted to
NIST.

[2] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-
preserving encryption. In Selected Areas in Cryptography, pages 295–312. Springer,
2009.

[3] Mihir Bellare and Phillip Rogaway. On the construction of variable-input-length ci-
phers. In Fast Software Encryption, pages 231–244. Springer, 1999.

[4] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Topics in
CryptologyCT-RSA 2002, pages 114–130. Springer, 2002.

[5] Debra Lee Cook. Elastic block ciphers. PhD thesis, Columbia University, 2006.

[6] Morris Dworkin. Recommendation for block cipher modes of operation. methods and
techniques. Technical report, DTIC Document, 2001.

[7] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[8] Moni Naor and Omer Reingold. On the construction of pseudorandom permutations:
Lubyrackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

[9] Jacques Patarin. Improved security bounds for pseudorandom permutations. In Pro-
ceedings of the 4th ACM conference on Computer and communications security, pages
142–150. ACM, 1997.

[10] Jacques Patarin. Luby-rackoff: 7 rounds are enough for 2 n (1- ε) security. In Advances
in Cryptology-CRYPTO 2003, pages 513–529. Springer, 2003.

[11] Sarvar Patel, Zulfikar Ramzan, and Ganapathy S Sundaram. Efficient constructions of
variable-input-length block ciphers. In Selected Areas in Cryptography, pages 326–340.
Springer, 2005.

[12] Phillip Rogaway and Davis Tweet. Format-preserving encryption. 2010.

[13] Terence Spies. Format preserving encryption. Unpublished white paper, www. voltage.
com Database and Network Journal (December 2008), Format preserving encryption:
www. voltage. com, 2008.

[14] Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryp-
tology, 16(4):249–286, 2003.

c© 2014 Cisco Systems, Inc. All Rights Reserved

	Introduction
	Design Goals
	Prior Art
	Definitions
	Design Choices
	Properties
	Security
	Implementation And Performance
	Test Vectors
	Conclusions
	Acknowledgments

