
FNR : Arbitrary length small domain block cipher proposal

Sashank Dara and Scott Fluhrer

Cisco Systems, Inc,
170 West Tasman Drive, San Jose,

CA 95314
{sadara,sfluhrer}@cisco.com

Abstract. We propose a practical flexible (or arbitrary) length small domain block cipher,
FNR encryption scheme. FNR denotes Flexible Naor and Reingold. It can cipher small
domain data formats like IPv4, Port numbers, MAC Addresses, Credit card numbers, any
random short strings while preserving their input length. In addition to the classic Feistel
networks, Naor and Reingold propose usage of Pair-wise independent permutation (PwIP)
functions based on Galois Field GF(2n). Instead we propose usage of random N×N Invertible
matrices in GF(2).

Keywords: Feistel Networks, Luby Rackoff, block ciphers, length preserving

1 Introduction

There is a compelling need for privacy of sensitive fields before data is shared with any cloud
provider, semi-trusted vendors, partners etc. Network telemetry data, transaction logs etc. are often
required to be shared for benefiting from variety of Software-as-Service applications like security
monitoring etc. Such sensitive data fields are of well defined data formats like NetFlow, IPFIX etc.
For example Port(16), IPv4(32), MAC (48) , IPv6 (128) etc.

While designing privacy for sensitive fields, it may be desirable to preserve the length of the
inputs, in order to avoid any re-engineering of packet formats or database columns of existing
systems. Traditional AES-128/256 encryption would encrypt plaintext (of any smaller lengths) to
result in a 128 bit ciphertext with the aid of padding. Expansion of ciphertext length may be
undesirable for said reasons.

Small domain block ciphers are useful tool in designing privacy of sensitive data fields of smaller
length (<128 bits). In addition to the classic Feistel networks, Naor and Reingold propose usage
of Pair-wise Independent Permutation (PwIP) functions based on Galois Field GF (2n) in first and
last rounds of LR constructions. It is proven to provide additional randomness and security. But
GF (2n) representations for arbitrary lengths of inputs is difficult in practice. We propose usage of
invertible matrices to provide a neat and generic way to achieve Pair-wise independence for any
arbitrary length.

2 Prior Art

Luby Rackoff Constructions are considered seminal work in formalizing secure block cipher design
[6]. They have been subjected to rigorous theoretical analysis and well laid security bounds are estab-
lished.

2 Sashank Dara and Scott Fluhrer

Fig. 1: Two Round NR

Further variable input length block ciphers have
been proposed in [3],[10]. These constructions
require multiple application of original block ci-
pher in order to make them arbitrary length
block ciphers. This makes them computation-
ally intensive and inefficient. Design of ciphers
for arbitrary domains were also proposed in [4].
The Prefix Cipher, Cycle Walking mentioned
in their work would be very expensive in prac-
tice. The Generalized Feistel Network approach
mentioned in their work uses DES as PRF. RC5
has features for arbitrary domain lengths but
it is patented. Elastic block cipher design has
been proposed in [5] but they are not subjected
to rigorous independent analysis.

Feistel Networks also form the founda-
tional blocks for Format Preserving Encryp-
tion(FPE). FPE has been studied rigorously
theoretically [2]. A white paper is available from
Voltage Inc. [13] which has good overview. A very good synopsis is given by Rogaway [11]. Few
modes of FPE have been recently proposed for NIST standardization [1].

Usage of Pair-wise Independent Permutations in LR constructions was first proposed by Naor
and Reingold [7] as shown in the figure 1. While their techniques are based on performing operations
in GF(2n) we propose to operate on invertible matrices. This makes our scheme flexible enough to
perform on any arbitrary input fields.

2.1 Definitions

2.2 Secrets

There are various secret keys used in FNR.

1. Key: A 128 bit long secret key, K, is needed. This is used internally by Pseudo Random Function
(PRF) i.e AES algorithm. This is generated by a good entropy source or derived by using good
key derivative function from a user supplied password.

2. Tweak: A tweak, T, is like salt or IV. In practice, A string is supplied by the user, as tweak,
which is then encoded as fixed length binary string using some cryptographic hash function.

3. A, B are two matrices. A is invertible binary matrix of N ×N dimension. B is binary vector of
1×N dimension. Where N denotes number of bits in the input. Both A,B should be uniformly
distributed and randomly generated.

An,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 where ai,j ∈ {0, 1} ∀i, j ∈ {1 · · ·n} (1)

B1,n =
(
b1,1 b1,2 · · · b1,n

)
where b1,j ∈ {0, 1} ∀j ∈ {1 · · ·n} (2)

FNR : Arbitrary length small domain block cipher proposal 3

2.3 Pair-wise Independent Permutation (PwIP)

It is combinatorial construction to achieve a uniformly distributed permutation of given input.
It has the property that for any two distinct inputs x, y, and any two distinct outputs x1, y1, the
probability that x1=PwIP(x) and y1=PwIP(y) is uniform, that is, is 1/((2n)∗(2n−1)) independent
of x, y, x1, y1.

Let the input X be a binary vector of n bits length, considered as 1 X N matrix, then PwIPA,B(X)
as defined below gives a uniformly distributed permutation. The matrix operations ∗,⊕,÷ are
performed in GF(2). Also instead of bit-wise XOR operation, modular addition could be used too.

X1,n =
(
x1,1 x1,2 · · · x1,n

)
where x1,i ∈ {0, 1} ∀i ∈ {1 · · ·n} (3)

PwIPA,B(X) = (X ×A)⊕B where A,B are defined in 1 and 2 (4)

Inverse PwIP The inverse of such a PwIP is defined as follows. Note: In case modular addition
is used while performing PwIP, then Addition and Subtraction are same in Galois Field, GF(2).

PwIP−1
A,B(Y) = ((Y ⊕B)×A−1) (5)

2.4 Feistel Networks

Feistel is symmetric structure to construct block ciphers. One round of Feistel is a 2n bit permutation
δ, with an n bit round function as defined below

δf (L,R) = (R,L⊗ f(R)) where|L| = |R| = n (6)

An r round Feistel network is simply the composition of r one round Feistel structures, trans-
forming r n-bit functions f1, f2...fr into a 2n bit permutation.

δf1,f2....fr (L,R) = δ(f1) ◦ δ(f2) ◦δ(fr) (7)

The security of PRP constructed by a Feistel Network based scheme relies on security of under-
lying PRF (i.e round function) [6]. The security guarantee depends on ensuring a different round
function for each round. We propose using AES in ECB mode as the round function. Now to ensure
the output is distinct in each round, we could use unique round key or by ensuring the inputs to
the round function is distinct for each round. We achieve this by mixing a round const for each
round to the input to to PRF.

round constr = {0x00, 0x03, 0x0c, 0x0f, 0x30, 0x33, 0x3c} where r ∈ {1, 7} (8)

2.5 Encryption

The inputs to encryption algorithm are plaintext P, that needs to be encrypted, a secret key K, a
tweak T and the matrices A,B. The output of an encryption function is n bits of ciphertext C.

4 Sashank Dara and Scott Fluhrer

Algorithm 1: FNR Encryption Algorithm

Inputs : key k, char* tweak,Matrix A, Matrix B, bitvector plain, integer n
/* n is max number of bits and even */

Output: bitvector cipher
/* cipher and plain are of same bit length */

1 Function Encrypt(k, tweak, plain, n) is
2 begin
3 if (|plain| 6= n) then return ⊥;
4 bitvector d = PwIP (A,B,plain,n);
5 while i < r do
6 begin
7 left = d[0..n/2] ;
8 right = d[n/2 .. n-1] ;
9 left = right ;

10 right = left ⊗AESkey(round consti ‖ tweak ‖ right) ;
11 d = left ‖ right ;
12 i++;

13 end

14 bitvector cipher =PwIP (−1)(A,B,d,n);
15 return cipher;

16 end

Overview Input plaintext is subjected to PwIP to get a uniformly distributed permutation of the
same. This follows by a Feistel network of r = 7 rounds. The output of the Feistel network is
subjected to PwIP−1. The final output is then considered as ciphertext. The algorithm for the same
is described in Algorithm.1.

2.6 Decryption

The inputs to decryption algorithm are ciphertext C, secret key K, tweak T and the matrices A,B.
The output is plaintext P.

Overview The algorithm is very similar to encryption except that the processing is done in reverse
way. The algorithm for the same is described in Algorithm.2 . The differences with encryption
algorithm can be observed as shown in line 11

3 Security

Security of LR schemes under went rigorous analysis by the community over many years. Also usage
of PwIP is later proven to mitigate basic linear and differential cryptanalysis [14].

3.1 Round Functions

If assume that the AES output for any given input is uniformly distributed, that means that the AES
output bits we actually use in the Feistel will be independent between even and odd rounds (even

FNR : Arbitrary length small domain block cipher proposal 5

Algorithm 2: FNR Decryption Algorithm

Inputs : key k, char* tweak,Matrix A, Matrix B, bitvector cipher, integer n
/* n is max number of bits and even */

Output: bitvector plain
/* both cipher and plain are n bits */

1 Function Decrypt(k, tweak, cipher, n) is
2 begin
3 if (|cipher| 6= n) then return ⊥;
4 /* perform pair wise permutation */

5 bitvector d = PwIP (A,B,cipher,n);
6 while i < r do
7 begin
8 left = d[0..n/2] ;
9 right = d[n/2 .. n-1] ;

10 left = right ;
11 right = left ⊗AESk(round const(r−i) ‖ tweak ‖ right)
12 d = left ‖ right ;
13 i++ ;

14 end
15 /* perform inverse of permutation */

16 bitvector plain = PwIP (−1)(A,B,d,n);
17 return plain;

18 end

if the attacker could engineer a collision with probability 1; the fact that the collision probability
between even and odd round is actually considerably smaller turns out to be irrelevant). As we add
the round constants as defined in equation.8 as last byte to the input to AES

3.2 Round Count

A minimum of 7 rounds are needed to mitigate adaptive chosen plaintext and chosen ciphertext
attacks due to Patarin’s proof [9].

The security measure of block ciphers is based on the probability with which an attacker can
distinguish the ciphertext from a random text. Although our PwIP is different from theirs, without
loss of generality, detailed proof given in [7] holds good for FNR.

If r is round count, n is number of bits of input domain, m is number of queries an attacker
needs to make, then the security measure for FNR, is defined as in Equation.9.

(r/2 ∗m2/2(1−1/r)∗n)where r ≥ 4 (9)

It is to be noted that without the use of PwIP functions the security measure of pure Feistel
Networks due to Patarin’s proof [8] is defined as in Equation.10

5 ∗ (m3)/(2n) (10)

So for example an input domain of 32 bits and round count of 7, it requires approximately 8757
pairs of plaintext and ciphertext. Where as without the use of PwIP functions attacker just needs
around 950 pairs of plaintext and ciphertext.

6 Sashank Dara and Scott Fluhrer

4 Implementation

4.1 Feistel Network

Our reference implementation is slightly different from most implementations of LR, in that we
don’t divide the block into two separate halves; instead, we use the even bits as one half and the
odd bits as other half, and we don’t swap them; instead, we alternate between rounds which half
we use as the input to our random function, and which half we XOR the output of the random
function into. Since we have an odd number of rounds (r = 7), this all works out.

Nits: if the block we’re encrypting has an odd number of bits, this is strictly speaking an
unbalanced Feistel (if unbalanced only by a single bit). In addition, if we’re encrypting a single bit,
this really isn’t a Feistel at all (because one half is empty).

4.2 Performance

The performance of the algorithms have been benchmarked in Figure.2. The graphs are plotted for
both AES and AES-NI instructions as options for internal PRP. The benchmarking is performed
an virtual machine that runs Ubuntu 12.4 with 8 GB RAM on an Intel Sandy Bridge Generation
of Processor’s with 4 vCPU’s. The source code is available under LGPLv2[12].

(a) IPv4 Addresses (b) Credit Card Numbers

Fig. 2: Performance of FNR

4.3 Test Vectors

For generating the below test vectors, the key used is ‘0000000000000000’ and tweak used is ‘tweak-
is-string’. Tweak is an arbitrary length string which is expanded into a fixed length form. Note that
even though same secrets are used, the results might vary due to the choice of A,B Matrices used
in PwIP function.

The test vectors for various IPv4 Addresses, Credit Card numbers are given in Table.1 and
Table.2. Each IPv4 is ranked as 32 bit integer before it is encrypted, the resultant ciphertext is a 32
bit integer which is de-ranked into a dotted notation. Each CC number is ranked as 15 digit number
by dropping the LUHN CHECKSUM. The ranked integer is then encrypted to get a ciphertext that
is again 15 digit number. Such integer is de-ranked by appending a LUHN CHECKSUM at the end
into a valid Credit card number.

FNR : Arbitrary length small domain block cipher proposal 7

Plain Text Cipher Text

Raw(Dotted) Ranked(Integer) Raw(Integer) De-ranked(Dotted)

192.168.1.0 3232235776 2676870780 159.141.206.124

192.168.1.1 3232235777 2129658955 126.240.4.75

192.168.1.2 3232235778 3505438271 208.240.190.63

192.168.1.3 3232235779 3073749301 183.53.177.53

192.168.1.4 3232235780 2962433103 176.147.36.79

Table 1: Test Vectors for IPv4 Addresses

Plain Text Cipher Text

Raw Ranked Raw De-ranked

4556584414106354 455658441410635 975846115884519 9758461158845197

4486224784662570 448622478466257 716640796278824 7166407962788248

4929883910358398 492988391035839 665162088006340 6651620880063403

4929880239524890 492988023952489 932731766659682 9327317666596825

4916550835157636 491655083515763 949857941349711 9498579413497119

Table 2: Test Vectors for Credit Card numbers

5 Conclusions

In this paper we proposed a flexible and practical arbitrary block domain cipher. We provide the
reference implementation’s performance results, test vectors. Also we provided examples of how
to preserve formats of few data types like IPv4 addresses and Credit card numbers. Our work is
flexible variant of Naor and Reingold’s work. We recommend using this block cipher for domain
sizes 32 bits to 128 bits. FNR does not provide authentication and integrity. FNR does not provide
any semantic security when used in ECB mode (like all other deterministic modes)

6 Acknowledgments

We sincerely thank our colleagues Dr. David McGrew, Anthony Grieco, Dr.Zulfikar Ramzan, for
their crucial suggestions, improvements in our work. Also we acknowledge exhaustive comments,
corrections and suggestions from Dr. Praveen Gauravaram (Tata Consultancy Services Innovation
Labs), Dr. Kapali Viswanathan (Hewlett-Packard), Dr. Saugat Majumdar (Aruba Networks).

The reference implementation is written by Scott Fluhrer and demo applications were written
by Kaushal Bhandankar. Many bug fixes, patches, code review performed by our colleagues Olve
Maudal, Anand Verma, Mohit Kumar and Abhishek Singh.

References

1. M Bellare, P Rogaway, and T Spies. The ffx mode of operation for format-preserving encryption (draft
1.1). february, 2010. Manuscript (standards proposal) submitted to NIST.

8 Sashank Dara and Scott Fluhrer

2. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving encryption.
In Selected Areas in Cryptography, pages 295–312. Springer, 2009.

3. Mihir Bellare and Phillip Rogaway. On the construction of variable-input-length ciphers. In Fast
Software Encryption, pages 231–244. Springer, 1999.

4. John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Topics in CryptologyCT-
RSA 2002, pages 114–130. Springer, 2002.

5. Debra Lee Cook. Elastic block ciphers. PhD thesis, Columbia University, 2006.
6. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom

functions. SIAM Journal on Computing, 17(2):373–386, 1988.
7. Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Lubyrackoff

revisited. Journal of Cryptology, 12(1):29–66, 1999.
8. Jacques Patarin. Improved security bounds for pseudorandom permutations. In Proceedings of the 4th

ACM conference on Computer and communications security, pages 142–150. ACM, 1997.
9. Jacques Patarin. Luby-rackoff: 7 rounds are enough for 2 n (1- ε) security. In Advances in Cryptology-

CRYPTO 2003, pages 513–529. Springer, 2003.
10. Sarvar Patel, Zulfikar Ramzan, and Ganapathy S Sundaram. Efficient constructions of variable-input-

length block ciphers. In Selected Areas in Cryptography, pages 326–340. Springer, 2005.
11. Phillip Rogaway and Davis Tweet. Format-preserving encryption. 2010.
12. Scott Fluhrer Sashank Dara. Reference Implementation of FNR. https://github.com/sashank/

libfnr, 2014.
13. Terence Spies. Format preserving encryption. Unpublished white paper, www. voltage. com Database

and Network Journal (December 2008), Format preserving encryption: www. voltage. com, 2008.
14. Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryptology, 16(4):249–286,

2003.

