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Abstract. Cache-based attacks are a class of side-channel attacks that are particularly effective in
virtualized or cloud-based environments, where they have been used to recover secret keys from crypto-
graphic implementations. One common approach to thwart cache-based attacks is to use constant-time
implementations, i.e. which do not branch on secrets and do not perform memory accesses that depend
on secrets. However, there is no rigorous proof that constant-time implementations are protected against
concurrent cache-attacks in virtualization platforms with shared cache; moreover, many prominent im-
plementations are not constant-time. An alternative approach is to rely on system-level mechanisms.
One recent such mechanism is stealth memory, which provisions a small amount of private cache for
programs to carry potentially leaking computations securely. Stealth memory induces a weak form of
constant-time, called S-constant-time, which encompasses some widely used cryptographic implemen-
tations. However, there is no rigorous analysis of stealth memory and S-constant-time, and no tool
support for checking if applications are S-constant-time.

We propose a new information-flow analysis that checks if an x86 application executes in constant-time,
or in S-constant-time. Moreover, we prove that constant-time (resp. S-constant-time) programs do not
leak confidential information through the cache to other operating systems executing concurrently on
virtualization platforms (resp. platforms supporting stealth memory). The soundness proofs are based
on new theorems of independent interest, including isolation theorems for virtualization platforms
(resp. platforms supporting stealth memory), and proofs that constant-time implementations (resp.
S-constant-time implementations) are non-interfering with respect to a strict information flow policy
which disallows that control flow and memory accesses depend on secrets. We formalize our results
using the Coq proof assistant and we demonstrate the effectiveness of our analyses on cryptographic
implementations, including PolarSSL. AES, DES and RC4, SHA256 and Salsa20.
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1 Introduction

Cache-based attacks are side-channel attacks in which a malicious party is able to obtain confidential data
through observing cache accesses of programs. They are particularly effective in cloud-based environments,
where hardware support is virtualized and shared among tenants. In such settings, a malicious tenant can
manage that an operating system under its control co-resides with the operating system which executes
the program that the attacker targets. This allows the attacker to share the cache with its victim and to
make fine-grained observations about its own cache hits and misses; using this knowledge, the attacker can
then successfully retrieve confidential data of the program. Cache-based attacks are widely applicable, but
are specially devastating against cryptographic implementations that form the security backbone of many
Internet protocols (e.g. TLS) or wireless protocols (e.g. WPA2). Known targets of cache-based attacks
include widely used implementations of AES, DES, ECDSA and RC4.

There are essentially two approaches for protecting oneself against cache-based attacks. The first approach
is to build implementations that do not leak information through the cache. One common strategy is to make
implementations constant-time*, i.e. do not branch on secrets and do not perform memory accesses that

4 The terminology is inherited from cryptography, where it is generally used for source level programs that do not
branch on secrets and do not perform array accesses with indices that depend on secrets. Because the property



which depend on secrets. There exist constant-time implementations of many cryptographic algorithms,
including AES, DES, RC4, SHA256, TEA, and Salsa20, and even RSA, as well as general techniques for
turning implementations of cryptographic algorithms constant-time. However, and quite astonishingly, there
is no rigorous proof that constant-time algorithms are protected to cache-based attacks when executed
concurrently on virtualization platforms with shared cache. Moreover, many cryptographic implementations
such as PolarSSL AES, DES, and RC4 make array accesses that depend on secret keys and are not constant-
time.

A second, more permissive approach, is to allow implementations that are not constant-time, but to deploy
system-level countermeasures that prevent an attacker from drawing useful observations from the cache. Some
these mechanisms are transparent to applications, but sacrifice performance: instances include flushing the
cache at each context switch [46] or randomizing its layout [48]. Other mechanisms are not transparent, and
must be used correctly, either via APIs or via compilers that enforce their correct usage. One lightweight
such mechanism is stealth memory [29, 32]; in contrast to many of its competitors, stealth memory can be
implemented in software, does not require any specific hardware and does not incur a significant performance
overhead. Informally, stealth memory enforces a locking mechanism on a small set of cache lines, called stealth
cache lines, saves them into (protected) memory and restores them upon context switches, thereby ensuring
that entries stored in stealth cache lines are never evicted, and do not leak information. From an abstract
perspective, memory accesses to stealth addresses, i.e addresses that map to stealth cache lines, become
“hidden” and have no visible effect. Thus, applications can perform memory accesses that depend on secrets
without revealing confidential information, provided these accesses are done on stealth addresses. This induces
a relaxation of constant-time, which we call S-constant-time: an implementation is S-constant-time if it does
not branch on secrets and only memory accesses to stealth addresses may depend on secrets. Although
early work on stealth memory suggests that several prominent cryptographic implementations meet the
requirements of S-constant-time, this class has not been considered formally before, and in particular, there
is no rigorous security analysis of S-constant-time algorithms, and no mechanism to ensure that assembly
code makes a correct usage of stealth addresses.

Our contributions We undertake a rigorous study of constant-time and S-constant-time implementations. We
prove that such implementations are protected against cache-based attacks in virtualized platforms where
their supporting operating system executes concurrently with other, potentially malicious, operating systems.
Moreover, we provide support for deploying constant-time or S-constant time applications, in the form of
type-based enforcement mechanisms on x86 implementations; the mechanisms are integrated into CompCert,
a realistic verified compiler for C [36]. Finally, we experimentally validate our approach on a set of prominent
cryptographic implementations. To achieve these goals, we make the following contributions:

1. We define an analysis for checking if x86 applications are constant-time. Our analysis is based on a type
system that simultaneously tracks aliasing and information flow. For convenience, we package our analysis
as a certifying compiler for CompCert. Our certifying compiler takes as input a C program whose confidential
data is tagged with an annotation High, and transforms the program into annotated x86 assembly code,
which can be checked for constant-time.

2. We provide the first formal proof that constant-time programs are protected against cache-based
attacks in virtualization platforms. The proof contemplates a very strong threat model with a malicious
operating system that controls the scheduler, executes concurrently with the operating system on which the
victim application runs, and can observe how the shape of the cache evolves throughout execution.

3. As a first key step in the proof, we prove that constant-time programs is non-interfering with respect
to an information flow policy which mandates that the control flow and the sequence of memory accesses
during program execution do not depend on secrets. The policy is captured using an operational semantics
of x86 programs where transitions are labelled with their read and write effects;

intends to characterize the behavior of program executions on concrete architectures, rather than in abstract
operational models, we focus on low-level languages, and on a variant of constant-time expressed in terms of
addresses (which consist of base addresses plus offsets) instead of arrays.



4. As a second key step in the proof, we prove isolation between operating systems in virtualization
platforms. The proof is based on a model of virtualization that accounts for virtual addresses, physical and
machine addresses, memory mappings, page tables, TLBs, and cache, and provides an operational semantics
for a representative set of actions, including reads and writes, allocation and deallocation, context and mode
switching, and hypercalls. The isolation theorem states that an adversary cannot distinguish between two
execution traces of the platform in which the victim operating system performs two sequences of actions
that have the same visible effects.

5. We extend our analysis and formal proofs to S-constant-time. As a significant contribution of the
extension, we obtain the first rigorous security analysis of stealth memory.

6. We formalize our results in the Coq proof assistant (over 50,000 lines of Coq). The formalization is
based on the first formal model of stealth memory. The model is a significant development in itself (over
10,000 lines of Coq) and is of independent interest;

7. We successfully evaluate the effectiveness of our framework on several cryptographic implementations,
including AES, DES, and RC4 from the PolarSSL library, and SHA256, Salsa20. Figure 11 provides a

summary of results.

2 Setting

Our first step is to define static analyses for enforcing constant-time (and variants) on x86 programs. Our
analysis is built on top of CompCert [36], a formally verified, optimizing C compiler that generates reasonably
efficient assembly code for x86 platforms (as well as PowerPC and ARM). In addition to being a significant
achievement on its own, CompCert provides an excellent platform for developing verified static analyses. We
take specific advantage of two features of CompCert: i. its memory model, which achieves a subtle and effective
compromise between exposure to machine-level representation of memory and tractability of formal proofs,
and is ideal for reasoning about properties that relate to sequences of memory accesses; ii. its sophisticated
compilation chain, which involves over 15 passes, and about 10 intermediate languages, which are judiciously
chosen to provide compact representations on which program analyses can be verified.

Our goal is to implement static analyses for checking whether programs perform conditional jumps or
memory accesses that depend on secrets, and to derive strong semantical guarantees for the class of programs
accepted by one of our analyses. In order to obtain meaningful results, it is important that our analyses are
performed on intermediate representations towards the end of the compilation chain, rather than source C
programs; indeed, some compilation passes in the compiler middle-end (typically at RTL level) may typically
modify and reorder memory accesses and hence a constant-time C program could well be transformed into
a non constant-time x86 program, or vice-versa. Therefore, we settle on defining our analysis on one of
the final intermediate forms. A natural representation for reasoning about sequences of memory accesses is
Mach, the last-but-final intermediate language in the compilation chain. The Mach language is used after
passes that may introduce new memory accesses (such as register allocation, branch tunneling and layout of
the activation records for procedure calls), and immediately before generation of assembly code. Hence the
sequence of memory accesses at Mach and assembly levels coincide. Moreover, Mach has a compact syntax,
which is important to reduce proof effort. On the other hand, the Mach language does not enjoy a control
flow graph representation, which is a drawback for performing static analyses. We therefore adopt a minor
variant of Mach, which we call MachIR, that retains the same instruction set as Mach but makes explicit the
successor(s) of each instruction. MachIR is an idoneous representation for building verified static analyses
about sequences of memory accesses of programs.

Syntaxr A MachIR program p is represented by a (partial) map of program nodes to instructions, i.e. as an
element of N — I. Each instruction carries its successor(s) node(s) explicitly. The most basic instructions
are op(op,r,r,n) (register r is assigned the result of the operation op on arguments r; next node is n)
that manipulates registers and goto(n) (unconditional jump to node n) and cond(c, 7, Nypen, Neise) (condi-
tional jump; next node is Npen Or nese depending on the boolean value that is obtained by evaluating
condition ¢ on arguments r) that offer basic control flow instructions. Memory is manipulated trough load



N> n CFG nodes

R> T register names
S> S global variable names
A > addr =

| based(S) based addressing

| stack(d) stack position

| indexed indexed addressing
0> op:u=

| addrof(addr) symbol address

| move register move

| arith(a) arithmetic operation
I >instr :

op(op,r,r,n) register operation

load<(addr,r,r,n) memory load
storec(addr, r,7,n) memory store

goto(n) static jump

cond(¢, 7, Nthen, Neise) conditional static jump

Fig. 1. Instruction set

(load¢(addr, r,r,n): register r receives the content of the memory at an address that is computed with
addressing mode addr and arguments r; next node is n) and store (storec(addr, v, r,n): the content of the
register r is stored in memory at an address that is computed with addressing mode addr and arguments r;
next node is n) operations. ¢ describes the type of memory chunk that is accessed (of size 1, 2 or 4 bytes).
Addressing based(S) (resp. stack(d)) directly denotes the address of a global symbol (resp. of the stack mem-
ory block). Pointer arithmetic is performed through addressing mode indexed. Additional instructions are
used to access the activation record of a procedure call, and to perform the call. Figure 1 gives an excerpt
of the language instruction set.

Semantics Values are either numeric values Vnum(i) or pointer values Vptr(b,d) with b a memory block
name and § a block offset. We let &SP denote the memory block that stores the stack. A state (n,p, p) is
composed of the current CFG node n, the register bank p € R — Val and the memory p € Mem, where
Mem is the CompCert type of memories.

The operational semantics is given by judgments of the form:

EPLNEY

The semantics is implicitly parameterized by a program p. Informally, the judgment above says that executing
the program p with state s leads to a state s’, and has visible effect a, where a is either a read effect read x
(with z an address), or a write effect write x, or the null effect (). Note that effects model the addresses that
are read and written, but not their value. Figure 2 presents selected rules of the semantics. Note that an
instruction like storey(stack(d), [], r, n’) will assign the four stack positions 6, d + 1, § + 2 and ¢ + 3.

3 A Type System for Constant-Time

This section introduces a type-based information flow analysis that checks whether a MachIR program
is constant-time, i.e. its control flow and its sequence of memory accesses do not depend on secrets. To
track how dependencies evolve during execution, the information flow analysis must be able to predict
the set of memory accesses that each instruction will perform at runtime. However, instructions such as
store. (indexed, [r1; 2], , n’) do not carry this information. The standard solution to recover this information is



p[n] = op(op,r,r,n’)
(s py 1) &y (', plr = [op](p, )], 1)
p[n] = load¢ (addr, v, r,n) [addr](p, ) = Vadar  f[Vadar]s =V

(n, p, ) (M (n', p[r — v], 1)

p[n] = store. (addr, r,r,n") [addr](p, ) = vaddr store(p, S, Vadar, p(T)) = 1
(1, p, 1) (n',p, 1)

/

write vaqqar
—_—

Fig. 2. Mach IR semantics (excerpts)

p(n) = op(op, 7,7, )
Xpbkn:t=71[r—7(r)
p(n) = load¢(addr, r,r,n) PointsTo(n, addr, ) = Symb(S) 7(r) = Low
Xnbkn:1=71r— XuS))
p(n) = load¢(addr, r, r,n") PointsTo(n, addr, r) = Stack(d)
Xpbn:r=rr—=7r@)U---UT(0+¢—1)]
p(n) = storec(addr,r,r,n’) PointsTo(n, addr, r) = Symb(S) 7(r) = Low 7(r) E Xn(S)
XpnbEn:Tt=>171

p(n) = storec(addr, r,r,n") PointsTo(n, addr, r) = Stack(d)
Xpbkn:ir=710—7(r),....,.0 +c— 1 7(r)]

p(n) = goto(n')
XnbEn:Tt=1

Fig. 3. Information flow type system for constant-time

to let the information flow analysis use the results of another static analysis that performs these computations.
There are several possible choices that achieve different trade-offs between expressiveness, precision, and
simplicity. We opt for a conventional points-to [7] analysis. A similar analysis has already been formalized
for the CompCert toolchain [41], but it targets a different language (RTL) and makes a different trade-off
between efficiency and precision; we use our own formalization here.

Alias (points-to) type system The definition of the alias type system is given in Appendix A. For the purpose
of understanding the rest of the paper, it is sufficient to know that the type system computes statically the
points-to information PointsTo(n, addr,r) at every node n for a memory access with an addressing mode
addr and arguments r. Hence, if node n contains an instruction load.(addr, r, r,n’) or store.(addr,r,r,n'),
we have a prediction, at compile time, of the targeted memory address. In this context, a so-called points-to
information is one of the following:

— Symb(S), which represents pointer values Vptr(b, §) such that b is equal to the memory address &S of
the global variable S;

— Stack(d), which represents the pointer value Vptr(&SP, §).
For example, if a store instruction store (indexed, [ry; 2], 7, n’) is performed at node n when r; contains
Vptr(&S, 8) and ry contains the integer 16, the points-to static analysis may safely predict PointsTo(n, addr, r)
Symb(S), because the accessed pointer is Vptr(&S, 24).

Information flow type system Next, we define an information flow type system for constant-time. As usual,
we consider a lattice of security levels L = {Low, High} with Low T High. Initially, the user declares a set
X,? C S of high variables.

Programs are assigned types (X}, T'), where X, € S — L is a global type, and T € N— (N+R) — L is
a mapping from program nodes to local types. X} is a flow-insensitive global type which assigns a security



level X3 (S) for every global variable S € S. T is a flow-sensitive local type which assigns for every offset
d € N the security level T'[n](d) of the stack cell at address Vptr(&SP,d) and node n, and for every register
r € R its security level T'[n](r) at node n. Formally, the type system manipulates judgments of the form:

XpbEn:m=m

where X, is a global type, n is a node, and 77 and 75 are local types, i.e. 71,72 € (N4 R) — L. The type
system enforces a set of constraints on Xg, X, and T. Typing rules are given in Figure 3; we note 7(r) for
I_lrer T(’I") .

The rule for op(op, r,r,n') simply updates the security level of r with the supremum of the security
levels of r.

There are two rules for load (addr, r,r,n’). The first one considers the case where the value is loaded
from a global variable S. In this case, the typing rule requires that all registers are low, i.e. 7(7) = Low, as
we want to forbid memory accesses that depend on a secret. The security level of the register r is updated
with the security level X}, (S) of the variable. The second rule considers the case where the value is loaded
from a stack position at offset §. In this case, our type system conservatively requires that the memory access
is constant (and statically predicted by the alias type system). In this case, no information is leaked. Note
that the security level of the register r is set to the maximum of 7(¢),...,7(d + ¢ — 1). Indeed, the security
level of 7(0) models the level of the 8-bits value at position J; if the load is performed with a memory chunk
of size strictly bigger than 1, several 8-bits value will be accessed. Our type system takes care of this subtlety.

The two typing rules for store are similar to the rules for load. If the store is performed on a global variable,
we again require 7(7) = Low to make sure the dereferenced pointer does not leak secrets. The constraint
7(r) C X,(S) propagates the security level of the stored value. For a store on a stack offset, we again make
sure to consider enough stack offsets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs). A program p is constant-time with respect to a set of variables
XD, written X)) & p, if there exists (Xp,,T) such that for every S € X)), X,(S) = High and for all nodes n
and all its successors n’, there exists T such that

Xpbn:Tn)=7 AN TCT(N)
where C is the natural lifting of T from L to types.

We automatically infer X; and T using Kildall’s algorithm.

4 Soundness of Constant-Time Type System

We capture the soundness of the static analyses with respect to two distinct non-interference properties.
The first property is cast relative to the operational semantics of MachIR (or equivalently x86) programs,
and capture a passive and non-concurrent attacker. This property is similar to non-interference results as
they arise in the literature on language-based security, and serves as a key step towards the second property.
The latter is cast relative to the operational semantics of a virtualization platform, and captures an active
and adaptive adversary. For the sake of readability, this section defines the security policies, relate them
informally to existing threat models, and provide informal soundness statements. Formalization details are
deferred to Section 6 and to the appendices.

4.1 Language-level security

Our first soundness result establishes a non-interference property based on the semantics of MachIR pro-
grams. We assume given for every pair (X}, 7) consisting of a global type and a local type an equivalence
relation ~x,  on states. Informally, two states s and s are equivalent if they have the same program counter,



and their bank registers and memory mappings coincide on their low part. Given a typing derivation for p
with witness (X, T, equivalence can be extended to traces® of p as follows:

0—80&81&82&)83...
’ ! !

/I Q /I a !/ a !

0 —SO(_(’)sl(_l)ch_?}S?,...

are equivalent, written 6 ~x, 7 ¢, iff i = 0... a; = aj and s; ~x, (pc,) 5, Where pc; denotes the program
counters of s; and s} (which in particular must coincide).

We say that a program p verifies LL non-interference w.r.t. X, written LLNI X0 (p), iff every two traces
6 and 6’ obtained by executing p from two initial states s and s’ verify: /

! /
§ Xy T(peo) S = O~x, 10

Note that the definition is implicitly parametrized by (X, T).

LL non-interference accurately captures the intended goal of constant-time: indeed, it ensures that pro-
grams have the same control flow and perform the same sequence of memory accesses for every pair of
executions starting from equivalent initial states.

Proposition 1 (Language-level security for constant-time).
If X' = p then LLNIxo (p).

This first result proves security against a weak, passive attacker, which can observe the sequence of memory
accesses and program counters during program execution, but cannot observe the program memory, or inter-
leave the program’s execution with execution of code of its choice. Although we do not establish a connection
formally, this model is closely related to a system-level attacker model, called the non-concurrent attacker
model. In this model, the attacker is a malicious operating system o, that co-resides with the operating
system o, on which the victim program executes. The attacker initially performs some computations, for
instance to set the cache in a state of his choice. Then, the hypervisor performs a context switch and makes
the victim operating system active, so that the victim program executes uninterruptedly. Upon termination
of the victim program execution, the hypervisor performs a context switch; the attacker becomes active
again, and tries to guess from its accumulated observations the secret material, e.g. the secret cryptographic
keys, manipulated by the victim program.

4.2 System-level security

Our second soundness theorem establishes a non-interference property for a much stronger model, called
the concurrent attacker model. The setting of this attacker model is similar to the non-concurrent attacker
model, and considers a virtualization platform with a malicious operating system o, and the victim operating
system o, on which a victim program p executes. However, this model assumes that the attacker is both
active and adapative. More explicitly, o, and o, execute concurrently under a scheduler controlled by o,
which decides at each step to execute a sequence of steps of its choice, to force resolution of a pending
hypercall, or to switch context in order to give control to the victim o,. Furthermore, the attacker o, can
observe finely the structure of the cache during execution, but cannot read into the memory of o,, or read in
the cache the values of entries belonging to o,. At each step, the attacker o, can use its previous observations
to decide how to proceed. This model significantly generalizes the non-concurrent attacker model captured
by language-level security and in particular captures the class of access-driven attacks, in which the attacker
makes fine-grained observations about the sequence of cache hits and misses.

Formally, we model the attacker model on top of an operational semantics of the virtualization plaform.
The semantics is built on top of a rich memory model that accounts for virtual, physical, and machine

5 We allow infinite traces. Later, we introduce partial traces, which are necessarily finite. Moreover, we assume that
so and s; are initial states, i.e. their program counter is set to a distinguished entry point pco.



addresses, memory mappings, page tables, TLBs (translation lookaside buffers), and VIPT (virtually indexed
physically tagged) cache. Formally, the semantics is modelled as a labelled transition system:

toot

where t,t range over states and b is an action. Informally, a labelled transition as above indicates that the
execution of the action b by o in an initial state ¢ leads to a new state ¢’. Figure 7 provides a representative set
of actions considered, including reads and writes, extending or restricting memory mappings, (un)registering
memory pages, context and mode switching, and hypercalls. Each action b has an effect eff(b); see Figure 7
for examples of effects. As in the language-level setting, the visible effects of reads and writes record the
addresses that are read and written, but not their value.

Then, we model the attacker as a function 2 that takes as input a partial trace and returns either a tag v
if the attacker lets the victim operating system perform the next step of execution, or an action of its choice
that it will execute in the next step. Since the choice of the attacker can only depend on its view of the
system, we define an equivalence relation ~ on partial traces, and require that 2l is compatible with ~, i.e.
A(0) = A(#’) for every partial traces 8 and 6" such that § ~ 8'. Equivalence between partial traces is defined
from equivalence ~ on states (itself defined formally in Section 6):

0 =t Loy ty ity b2y Oty
P g1 by g by b b1
N A N AL I N e N

are equivalent, written 6 ~ ¢, iff n = n’, and for i =0...n — 1, t; ~ t, and if the active OS of ¢; is o, then
eff(b;) = eff(b}) else if the active OS of ¢; is o, then b; = b}.

Given an attacker 20 and a victim program p, one can define the concurrent execution (2 || p)[t] of A
and p with initial state ¢; informally, (20 || p)[¢] is the system trace that interleaves execution of p by o,
and adversarially-chosen code by o, according to the adversarially-chosen scheduling policy—both captured
in the definition of . Formally, (2 || p)[t] is defined recursively: given a partial trace 6 for the concurrent
execution, one computes 2A(#) to determine whether the next action to be executed is the attacker action
(), in case 2A() # v, or the next step in the execution of p, in case 2A(0) = v.

Given a program p and a set of initial secrets X,?, we define an equivalence relation ~ X0 on system states;
the relation is implicitly parameterized by a mapping of MachIR (or equivalently x86) states to platform
states. We say that a program p verifies SL non-interference w.r.t. an initial set of high variables X}, written
SLNIx, (p), iff for every attacker 2 and initial states ¢ and ¢’

[t~xg Nt~ ] = (A )] ~ (2] P[]

Proposition 2 (System-level security for constant-time).
If X) & p then SLNIX}?(p).

5 Extensions to S-constant-time programs

We now outline an extension of the results of the previous section that accounts for stealth memory. Informally
stealth memory provides a distinguished set of stealth addresses such that reading or writing from these
addresses has no visible effect. We reflect this property of stealth memory by relaxing the type system to
allow secret-dependent memory accesses on stealth addresses. The modified typing rules now involve a set
X, of addresses that must be mapped to stealth memory. The main typing rules are now given in Figure 4.
Note that there is no requirement that stealth addresses are high; in practice, stealth addresses often store
public tables.

Definition 2 (S-constant-time). A program p is S-constant-time with respect to a set of variables X}
and a set of stealth addresses X5, written X, X)) = p, if there exists (Xp,,T) such that for every S € X},
X1 (S) = High and for all nodes n and all its successors n', there exists T such that

X, Xpbn:Tn)=17 N TCT(n)



p(n) = load. (addr, r,r,n’) PointsTo(n, addr, r) = Symb(S) 7(r) = High = S e X,
X, XnbEn:7m=71[r—7(r)UXn(S)]

p(n) = storec(addr, r,r,n")
PointsTo(n, addr,r) = Symb(S) 7(r) = High = S € X, T(r)Ur(r) C Xi(S)
X, XnbFn:rm=1

Fig. 4. Information flow type system for S-constant-time

p[n] = load¢(addr, r,r,n’) [addr](p, r) = Vaddr Vaddr & Xs W[Vaddr]s = v

(n, p, p) £824 vaar (0, p[r 1 0], pr)

p[n} = store<(add7’, r,r, n/) [[add’f‘ﬂ (p7 'r) = Vaddr Vaddr é Xs store(M7 S, Vaddr, p(r)) =Lu
) write vaqar (
R —

/

(1, py 1 ', p, i)
p[n] = load¢(addr, r,r,n’) [addr](p, ) = Vaddr Vaddr € X W[Vadar]c = v
(n,p 1) Ly (0, plr = ], )
p[n] = storec(addr, r,r,n") [addr](p, r) = vadar Vaddr € Xs store(p, S, Vadar, p(T)) = 1
(n,p,p) & (0, p, 1)

!

Fig. 5. Modified IR semantics (excerpts)

where T 1is the natural lifting of T from 1L to to types.

We automatically infer X, X and T using Kildall’s algorithm.

Memory-trace non-interference is extended to the setting of stealth memory simply by considering a
modified labelled operational semantics (see Figure 5) where accessing variables in X has no visible effect;
the notion of state equivalence remains unmodified. Below we let LLNIx X0 denote the resulting policy.

Proposition 3 (Language-level security for S-constant-time).
If X5, X)) = p then LLNIx, xo(p).

Given a program p, a set of initial secrets X}, and a set of stealth addresses X, we define an equivalence
relation ~ xo on system states; the relation is implicitly parameterized by a mapping of MachIR (or equiva-
lently x86) states to platform states that map elements of X to stealth addresses. We say that a program
p verifies SL non-interference w.r.t. an initial set of high variables X} and a set of stealth addresses Xj,
written SLNIXS’Xg (p), iff for every attacker 2 and initial states ¢ and ¢':

[txg Nt~ ] = (A p)[H ~ (A p)[E]

Proposition 4. [System-level security for S-constant-time/
If X, X? + p then SLNIXS,Xg(p).

6 Formalization of Proposition 4

In this section, we outline the formalization of the proof of system-level security for S-constant-time. We
first describe our model of virtualization; then we state an isolation theorem; finally, we sketch how SL
non-interference follows.

Simplifications We make several simplifications. The most relevant ones are listed next: i. we take an abstract
view of page tables as mappings; ii. we abstract away implementation details such as encoding and size of
values, and assume given an abstract type Value of values with a distinguished element | to denote undefined
values; iii. we consider a single stealth address; iv. we do not model registers. These simplifications do not
have any impact on the security analysis.



Policies Our model and henceforth results are parameterized by a write policy and a replacement policy
for the cache. They can be instantiated respectively to write back and write through, and to all typical
replacement policies, such as LRU, pseudo-LRU or LFU.

Memory model States (SLST) are modelled as 6-tuples that respectively store data about operating sys-
tems and about the active operating system, the memory, the hypervisor mapping, the cache and the TLB
(translation lookaside buffer); the formal definition appears in Figure 6.

There are three levels of address spaces: virtual addresses, which are handled by guest operating systems
(OSs) and processes, physical addresses, a software abstraction used to provide the illusion of hardware
memory to each guest OS and machine addresses, which refer to actual hardware memory. Some virtual and
machine addresses are marked as stealth.

Va, Pa, Ma virtual, physical and machine address
(ON][¢ OS identifier

HC == new | del | lswitch| pin | unpin | none hyper calls
OSData == Pa x HC OS data
GuestOSs  ::= OSId — OSData guest OSs
OSActivity := running | waiting exec modes
ActiveOS ::= OSId x OSActivity active OS
PageContent := RW (Value) | PT'(Va — Ma) | none page content
PageOwner := Hyp | OS(0SId) | none page owner

Page := PageContent x PageOwner x Bool memory page
Memory = Ma — Page memory map
HyperMap ::= OSIld — Pa — Ma hypervisor map
CacheData := Va x Ma — Page cache data
Cachelndex := Va — Index cache index
CacheHistory := Index — Hist cache history
Cache ::= CacheData x Cachelndex x CacheHistory VIPT cache

TLB ==Va — Ma TLB

SLST ::= GuestOSs x ActiveOS x HyperMap x Memory x Cache x TLB System level state

Fig. 6. System level state

The first component of a state records for each OS, drawn from a set OSld of OS identifiers: i. a physical
address pointing to its current page table; ii. its pending hypercall. Hypercalls are priviledged functionalities
exported by the hypervisor to the guest OSs; there is at most one pending hypercall per OS.

The second component of a state stores the current active operating system (ActiveOS) together with its
activity mode. The active OS is either running or waiting for a hypercall to be resolved.

The third component of the state stores the platform memory (Memory). The memory is modelled as a
function from machine addresses to memory pages; contrary to separation kernels, pages are allocated on
demand. Each page contains: .i an owner (PageOwner); .ii a flag indicating whether the page can be cached
or not%; .iii a content (PageContent). A page owner is either the hypervisor or a guest OS; pages may not
have owners. The page content is either a readable/writable value or an OS page table. Page tables are used
by guest OSs for mapping the virtual addresses used by running applications to machine addresses. Neither
applications nor guest OSs have permission to read or write page tables; these actions can only be performed
by the hypervisor.

6 To properly deal with the problems posed by aliasing in VIPT caches, pages mapped by two different virtual
addresses are flagged as non-cacheable.
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The fourth component of the state stores the hypervisor mapping (HyperMap). This mapping is used to
translate physical page addresses to machine page addresses and is under control of the hypervisor, which
can allocate and deallocate machine memory.

The fifth component of the state stores a Virtually Indexed Physically Tagged (VIPT) data cache (Cache).
The cache is used to speed up data fetch and store, and consists of a collection of data blocks or cache lines
that are accessed by cache indices. The cache consists of: i. a bounded map” from pairs of virtual and machine
addresses to memory pages, ii. a history (used by the replacement policy) and, iii. a static mapping from
virtual addresses to cache indices. Each entry is tagged with a machine address. This avoids the need of
flushing the cache on every context switch. Since caches are usually set associative, there are many virtual
addresses that map to the same index. All data that is accessed using the same index is called a cache line
set. We select one cache index and one particular virtual address (stealth_va) in its cache line set for stealth
use. All other virtual addresses in that cache line set are reserved and cannot be used either by the guest
operating systems or the hypervisor. It is relatively straightforward to extend the definitions to a set of
stealth addresses.

The final component of the state stores the Translation Lookaside Buffer (TLB), which is used to improve
virtual address translation speed. The TLB is modelled as a bounded map from virtual to machine addresses.
It is used in conjunction with the current page table of the active OS to speed up translation of virtual to
machine addresses. The TLB is flushed on context switch and updates are done simultaneously in the page
table, so its management is simpler than the cache (we do not need to record the TLB access history, as it
is not necessary to write back evicted TLB entries).

State invariants The model formalizes a notion of valid state that captures several well-formedness conditions,
and an exclusion property, which is crucial for proving isolation, and ensures that stealth and non-stealth
addresses cannot be mapped to the same cache line set. Both properties are preserved by execution; for
exclusion, this is achieved by a careful treatment of allocation in the operational semantics.

Platform semantics Figure 7 lists some representative actions and their effects. Figures 8 and 9 present,
respectively, the semantics of two important actions: write and new_sm. The complete semantics of the
virtualization platform is presented in [12].

We use some helper functions to manipulate the components of the state. These functions are explained
in the description of the actions semantics. There is, for example, a function cache_add that is used to add
entries in the cache. It returns the new cache and an optional entry selected for replacement. The function
cache_add is parameterized by an abstract replacement policy that determines which elements are evicted
from a full cache, and guarantees that the inertia property, as defined in [32], holds for the cache: when
adding an entry to the cache in a virtual address va, if an eviction occurs, the evicted address is in the same
cache line set as va.

Attacker model and state equivalence We let the attacker observe: i. its current page table; ii. its pending
hypercalls; iii. the identity of the active operating system; iv. its activity when active; v. its own read-
able/writable memory pages; vi. the values of its own cache entries; vii. the memory layout of the victim, as
defined by the page metadata (owner and cacheable status) of the victim memory pages; viii. the layout of
the non-stealth part of the cache; ix. the cache history. The attacker cannot, however, directly read, write, or
observe page table or the hypervisor mappings (either its own or the victim). This is because these mappings
are maintained by the hypervisor, and guest OSs have no access to them. Moreover, the attacker cannot
observe the values held in the memory or cache entries of the victim. This very strong adversary model
captures the kind of attacks we are interested in: if two states differ in one of these observable components,
the execution of an action might replace an attacker entry in the cache, potentially leading to a cache-based
attack. On the other hand, we prove that if an action is executed in two states that are equivalent from the
attacker’s view, the attacker cache entries are equal in the resulting states.

7 A bounded map is a finite map whose domain must have size less than some fixed positive constant.
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[ACTION

‘INFORMAL DESCRIPTION

|[EFFECT

read va

Guest OS reads virtual address va

0 if va is Stealth
read va otherwise

write va val

Guest OS writes value val in va

0 if va is Stealth
write va otherwise

new va pa Hypervisor extends the non stealth memory of the active OS

with va — ma new va pa
del va Hypervisor deletes mapping for va from current memory mapping

of the active OS del va
new_sm stealth_va pa|Hypervisor extends the stealth memory of the active OS

with stealth_va — ma 0
switch o Hypervisor sets o to be the active OS switch o
lswitch pa Hypervisor changes the current memory mapping of the active OS

to be pa lswitch pa
hcall c An OS requires privileged service ¢ to be executed by the hypervisor|hcall ¢
chmod The hypervisor gives the execution control to the active OS chmod

page_pin pa t

The memory page that corresponds to pa is registered and
classified with type ¢

page_pin pa t

page_unpin pa

The memory page of the active OS that
corresponds to pa is un-registered

page_unpin pa

Fig. 7. Selected actions and their effects

Action write va val

Guest OS writes value val in va

Rule

aos_act =

mem[ma’ := pg'][ma := (RW val,0S aos,b)]po = mem’

(aos, running) get_page_mem(t,va) = (ma, pg) pg = (RW _, 0S8 aos,b)
cache_add(cache, va, ma, (RW wval, OS aos, b)) = (cache’, (ma’, pg’))
tiblva := ma] = tIb’

aos_act =

t = (oss, aos_act, hyp, mem, cache, tlb)

JTite va val (oss aos_act, hyp, mem’, cache’, tib')

(aos, running) get_page_mem(t,va) = (ma, pg) pg = (RW _,0OS aos,b)
cache_add(cache, va, ma, (RW wval, OS aos,b)) = (cache’, 1)

mem[ma = (RW wval, OS ao0s,b)]]por = mem’ tiblva := ma] = b

t = (oss, aos_act, hyp, mem, cache, tlb)

MIite va val, (oss, aos-act, hyp,mem’, cache’, tlb)

Precondition

The action write va val requires that the active OS aos is running. Furthermore, the virtual address va is mapped to

a machine address ma and a readable/writable page pg in the current page table of the active OS (get_page_mem).

Postcondition

There are two rules for the write action, one in which an entry is evicted from the cache when the written page
is added, and the other in which no entry is evicted. In both cases the resulting state differs in the value val of
the page associated to the pair (va,ma) in the cache cache, and in the TLB tib. If cache_add returns an entry
(ma’, pg’) that was evicted from the cache, the memory in ma’ is updated with pg’. The final value in memory of
the page in ma is dependent on the write policy in use (mem|ma := page]po; updates the page in ma with page in

write-through policies, and it leaves it unchanged in write-back ones).

Fig. 8. Semantics of action write
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Action new_sm stealth_va pa

Hypervisor extends the stealth memory of the active OS with stealth_-va — ma

Rule
aos_act = (aos, waiting) oss[aos] = (pa’, New stealth_va pa)
get_page_hyp(t, aos, pa) = (ma, pg) pg = (RW _,0S8 aos,true)
—memory_alias(mem, stealth_va, ma) get_page_hyp(t, aos,pa’) = (ma’, cpt) cpt[stealth_va] =
’ / / ! / /
osslaos := (pa’, None)] = oss cpt[stealth_va := ma] = cpt mem[ma’ := cpt']| = mem

cache_add(cache, stealth_va, ma, pg) = (cache’, ) tib[stealth_va := ma] = tlb’
(new,sm stealth-va pa (

t = (oss, aos-act, hyp, mem, cache, tlb) o0ss’, aos_act, hyp, mem', cache’, tib")

Precondition
The action new_sm stealth_va pa requires that the active OS aos is waiting for the hypervisor to extend its current
page table cpt with stealth_va. The physical address pa maps to the machine address ma and page pg in the
hypervisor mapping of aos (get_page_hyp). This page pg must be readable/writable and cacheable. Also, no page
table can map a virtual address to ma (no memory_alias), and stealth_va is not mapped in ¢pt. This is needed in
order to guarantee that the stealth page pg in ma is always cached and that no aliased pages are cached.
Postcondition

textbfPostcondition In the resulting state, the pending hypercall of aos is removed. The current page table cpt and
tlb are updated with the mapping of stealth_va to ma. Furthermore, the new stealth page is immediately stored
in cache.

Fig. 9. Semantics of action new_sm

Dynamic allocation is a known difficulty when reasoning about state equivalence; in our setting, the
difficulty manifests itself in the definition of equivalence for memory and hypervisor mappings. In an object-
oriented setting, this difficulty is normally solved using partial bijections [9]. However, we model both memory
allocation and deallocation via the pin and unpin actions; unfortunately, the partial bijection approach
breaks in this setting® and we do not know any formal proof of soundness of an information flow type syetm
for a language with allocation and deallocation. Fortunately, we can define state equivalence without using
partial bijections; instead, we rely on the hypervisor mapping physical addresses, which are the same in both
executions.

Formally, state equivalence ~ is defined as the conjunction of four equivalence relations for OS informa-
tion, cache history, hypervisor mapping, and memory mapping. The first two relations are straightforward.
We define equivalence of hypervisor mappings below; equivalence of memory is defined similarly.

Definition 3 (Equivalence of hypervisor mappings). Two states t and t' have equivalent hypervisor
mappings for the attacker (t ~"P t') if for every physical address pa, readable/writable page pg and machine
address ma:

— if get_page_hyp(t, 04, pa) = (ma, pg), there exists ma’ such that get_page_hyp(t', 04, pa) = (ma’, pg);
— if get_page_hyp(t,o0,,pa) = (ma,pg), and no page table maps stealth_va to ma, then there exists ma’
such that get_page_hyp(t’, 0,,pa) = (ma',pg’), where pg and pg’ are equal except in their contents;

and reciprocally for t'.

Figure 10 provides a pictural representation of the equivalence: we require that the attacker read-
able/writable pages are the same for hyp and hyp’. Furthermore, the layout of the non-stealth memory
pages of the victim must be the same (non-stealth pages should have the same owner, and same cacheable
flag, but arbitrary value).

8 The approach requires that the partial bijection grows during execution. With deallocation, one would require that
the final partial bijection is a superset of a subset of the original one, which is vacuous.
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Fig. 10. Equivalence of hypervisor mappings

Unwinding lemmas The equivalence relation ~ is kept invariant by the execution of a victim stealth action.
Furthermore, if the same attacker action or two victim actions with the same effect are executed in two
equivalent states, the resulting states are also equivalent. These results are variations of standard unwinding
lemmas [42]. In the sequel, we write ¢°» and ¢°* respectively to denote states where o, and o, are the active
operating system.

Lemma 1 (o, step-consistent unwinding). Assume s7* & s}, and s5* & sh. If s1 ~ so then s} ~ sb.

Lemma 2 (o, step-consistent unwinding). Assume sJ* % s}, and s3° 2y sh. If eff(a) = eff(a’) and
$1 ~ S2, then s} ~ sb.

The proofs of these lemmas critically rely on the inertia property of cache [32]: upon adding a virtual address
to the cache, the evicted virtual address, if any, is in the same cache line set as the added one; and on the
exclusion property: the hypervisor ensures that guest operating systems can only allocate virtual addresses
that are not in the same cache line set as the stealth virtual addresses.

Isolation We first define a relation to capture that two traces perform the same sequence of actions from
the attacker’s view:

eff(by) = eff(by) O =~ Oy O ~ O,
9 b, O &ty b2 0, t7* b O = 15 by Oy

We then define equivalence of traces:

t1 ~ta O1~ 6Oy ti ~tyg O~ Oy
t(ljv cb_1>@1 Nt;” cb_2>@2 ti“ i}@l th“ i}@g

Theorem 1 (OS isolation). Let © and @' be execution traces such that © = O'. Ift; ~ t}, with t; and t}
the first states of traces © and O’ respectively, then © ~ @', i.e. © and O’ are indistinguishable traces for
the attacker system o,.

The proof of the theorem follows from the unwinding lemmas by co-induction on the execution traces.

System-level security for S-constant-time We define a relation between MachIR instructions and system-
level actions, such that an instruction is related to an action if they have the same effect. In order to do
this we use a mapping from language variables to virtual addresses that guarantees that program variables
marked as stealth by the type system are mapped to stealth addresses in the platform. The relation between
instructions and actions is naturally extended to programs and traces. With this extended relation, we
define the concurrent execution of an attacker and a victim program (( || p)[t]), and state Proposition 4.
The proof of this proposition is a direct consequence of Theorem 1, and shows that S-constant-time programs
are protected to cache-based attacks in virtualization platforms.

7 Evaluation

We have successfully applied our approach to a representative set of cryptographic implementations, including
some that are vulnerable to cache-based attacks on common platforms, and constant-time algorithms that

14



were specifically designed to avoid such attacks. In all cases, we picked standard and publicly available
implementations of the constructions, and after very minor modifications of the code?, compiled them using
CompCert, and run our certified stealth verifier on the MachIR (or equivalently x86) programs output by
the compiler. Figure 11 summarizes the list of examples analyzed, and provides in each case the number
of variables marked as stealth, and the amount of stealth memory that is required to execute the program
securely. The remaining of this section provides a brief explanation of each example considered.

ExaMPLE LOC CT SCT STEALTH CACHE (KB)
Salsa20 1077 v
SHA256 419 V
TEA 0 Vv
AES 744 v 4
Blowfish 279 x VvV 4
DES 836 x V 2
RC4 164 x VvV 0.25
Snow 757 X 6

A tick in the CT or SCT column respectively indicates whether programs are constant-time or S-constant-time.
For the latter, the last column gives the amount of stealth cache required to run the application. All constant-time
applications are also S-constant-time with OKB stealth cache.

Fig. 11. Experimental results

AES Advanced Encryption Standard (AES) is a symmetric encryption algorithm that was selected by NIST
in 2001 to replace DES. AES is now used very widely and is anticipated to remain the prevailing blockcipher
for the next 20 years. Although NIST claimed the selected algorithm resilient against side-channels, AES is a
prominent example of an algorithm in which the sequence of memory accesses depend on the cryptographic
key.

Most applications of AES require that encryption and decryption be very efficient; therefore, the AES
specification advises using S-boxes and other lookup tables to bypass expensive operations, such as arithmetic
in the field GF(28). As a result of using S-boxes, most AES implementations are vulnerable to cache-based
attacks, and fail to comply with even the weakest security guarantees. In 2005, Bernstein [17] reports on
a simple timing attack which allows to recover AES keys by exploiting the correlation between execution
time and cache behavior during computation. Shortly afterwards, Tromer, Osvik, and Shamir [46] report on
several cache-based attacks against AES, including an effective attack that does not require knowledge of the
plaintexts or the ciphertexts. Further improvements are reported by Bonneau and Mironov [19], Aciigmez,
Schindler and Kog [2], and Canteaut, Lauradoux and Seznec [21]. More recently, Bangerter, Gullasch and
Krenn [30] report on a new cache-based attack in which key recovery is performed in almost real-time, and
Ristenpart et al [40] show that cache-based attacks are not confined to closed systems, and can be realized
in cloud architectures based on virtualization.

As a testcase for our approach, we have applied stealth verification to the PolarSSL implementation of
AES. Stealth verification is able to prove that 4kB of stealth memory is sufficient to execute AES securely.

DES and BlowFish Data Encryption Standard (DES) and BlowFish are symmetric encryption algorithms
that were widely used until the advent of AES. They are designed under the same principles as AES, and
their implementation also relies on S-boxes. Cache-based attacks against DES and BlowFish are reported
by Tsunoo et al [47] and Kelsey et al [31] respectively. We have applied stealth verification to PolarSSL
implementations of both algorithms; again, our tool proves that only a small amount of stealth memory
(resp. 2kB and 4kB) is required for the programs to execute securely.

9 We have modified some examples to declare some arrays as global. This is a consequence of the relative coarseness
of the alias analysis, and could be solved by formalizing a more precise value analysis.
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SNOW Snow is a stream cipher used in standards such as the 3GPP encryption algorithms. Its implemen-
tation relies on table lookups for clocking its linear feedback shift register (LFSR). Cache-based attacks
against SNOW-—and similar LFSR-based ciphers—are reported by Leander, Zenner, and Hawkes [35]. We
have applied stealth verification on a ECRYPT implementation of SNOW; our tool proves that SNOW can
be executed securely with 6kB of stealth memory.

RC/ RC4 is a stream cipher introduced by Rivest in 1987 and used in cryptographic standards such as SSL
and WPA. Tt is based on a pseudo-random generator that performs table lookups. Chardin, Fouque and
Leresteux [22] present a cache-based attack against RC4. Analyzing the PolarSSL implementation of RC4
with stealth verification proves that the program can execute securely with only 0.25kB of stealth memory.

TEA, Salsa20, SHA256 We have applied stealth verification to some cryptographic algorithms that carefully
avoid performing table lookups with indices dependent on secrets: Tiny Encryption Algorithm, a block cipher
designed by Needham and Wheeler; Salsa20, a stream cipher designed by Bernstein, and SHA256. For the
latter, we consider the input to be secret, with the intention to demonstrate that SHA256 is suitable to be
used in password hashing. In all cases, stealth verification establishes that the programs are secure without
using stealth memory.

8 Related work

Side-channel attacks in cryptography Kocher [34] presents a pratical timing attack on RSA and suggests
that many vectors, including the cache, can be exploited to launch side-channel attacks. Aciigmez and
Schindler [1] demonstrate that not only data cache, but also instruction cache attacks are also effective. Over
the last decade, researchers have developed abstract models of cryptography that capture side-channels, and
developed constructions that are secure in these models, see e.g. [28] for a survey.

Analysis tools for cache-based attacks To our best knowledge, the first automated checker for constant-time
is due to Adam Langley'®. However, there is no formal publication attached to the implementation, no proof
of soundness and no extensive evaluation.

CacheAudit [26] is an abstract-interpretation based framework for estimating the amount of leakage
through the cache in straightline x86 executables. CacheAudit has been used to show that several applications
do not leak information through the cache and to compute an upper bound for the information leaked through
the cache by AES. These guarantees hold for a single run of the program, i.e. in the non-concurrent attacker
model. A follow-up [14] provides an upper bound for the leakage of AES in the concurrent attacker model;
the result is stated in an abstract setting, and under some restrictions. The results of [14] cannot be used to
assert the security of constant-time programs against concurrent cache attacks.

Language-based protection mechanisms There has been significant work to develop language-based protection
methods against side-channel attacks. Agat [3] defines an information flow type system that only accepts
statements branching on secrets if the branches have the same pattern of memory accesses, and a type-
directed transformation to make programs typable. Molnar et al [38] define the program counter model,
which is equivalent to path non-interference, and give a program transformation for making programs secure
in this model. Coppens et al [24] use selective if-conversion to remove high branches in programs. Zhang et
al [49] develop a contract-based approach to mitigate side-channels. Enforcement of contracts on programs
is performed using a type system, whereas informal analyses are used to ensure that the hardware comply
with the contracts. They prove soundness of their approach. However, they do not consider the concurrent
attacker model and they do not provide an equivalent of system-level non-interference. Stefan et al [45] also
show how to eliminate cache-based timing attacks, but their adversary model is different.

More recently, Liu et al [37] define a type system that an information flow policy called memory-trace
non-interference in the setting of oblivious RAM. Their type system has similar motivations has ours, but
operates on source code and deals with a different attacker model.

10 See https://github.com/agl/ctgrind/.
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OS wverification OS verification is an active field of research, with an increasing emphasis of machine-checked
proofs [44]. One recent breakthrough is the machine-checked refinement proof of an implementation of the
seL4 microkernel [33]. Subsequent machine-checked developments prove that seL4 enforces integrity, au-
thority confinement [43] and intransitive non-interference [39]. The formalization does not model cache nor
side-channel attacks.

Dam et al [25] formally verify information flow security for a simple separation kernel for ARMv7. The
verification is based on an extant model of ARM in HOL, and relates an ideal model in which the security
requirements hold by construction with a real model that faithfully respects the system behavior. Extending
the approach to handle the cache is left for further work.

Our model of virtualization is inspired from recent work [11] which proves isolation in an idealized model
of virtualization with a shared cache. However their model is based on a virtually indexed virtually tagged
(VIVT) cache and assumes that the cache implements a write through policy, and is flushed upon context
switch; thanks to these assumptions, the cache is always consistent with the memory of the current operating
system. This coincidence allows lifting without much difficulty the isolation result of earlier work [10], which
does not consider the cache. In particular, the unwinding lemmas of [10] can be used mutatis mutandis,
without the need to be reproved in this extended setting. In comparison, our notion of state equivalence is
significantly more involved, and as a result the proof of isolation is far more complex.

Stealth memory Stealth memory is introduced in [29] as a flexible system-level mechanism to protect against
cache-based attacks. This flexibility of stealth memory is confirmed by a recent implementation and practical
evaluation [32]. The implementation, called StealthMem, is based on Microsoft Hyper-V hypervisor, and is
reasonably efficient (around 5% overhead for the SPEC 2006 benchmarks and less than 5% for cryptographic
algorithms). Both [29, 32] lack a rigorous security analysis and language-based support for applications.

Verified cryptographic implementations There is a wide range of methods to verify cryptographic implemen-
tations: type-checking, see e.g. [18], deductive verification, see e.g. [27], code generation, see e.g. [20] and
model extraction, see e.g. [4]. However, these works do not consider side-channels. Recently, Almeida et al [5]
extend the EasyCrypt framework [13] to reason about the security of C-like implementations in idealized
models of leakage, such as the Program Counter Model, and leverage CompCert to carry security guarantees
to executable code; moreover they, instrument CompCert with a simple check on assembly programs to ensure
that a source C program that is secure in the program counter model is compiled into an x86 program that
is also secure in this model.

Verified compilation and analyses CompCert [36] is a flagship verified compiler that has been used and
extended in many ways; except for [5], these works are not concerned with security. Type-preserving and
verifying compilation are alternatives that have been considered for security purposes; e.g. Chen et al [23]
and Barthe et al [16] develop type-preserving compilers for information flow.

Formal verification of information flow analyses is an active area of research; e.g. Barthe et al [15] and
Amtoft et al [6] formally verify type-based and logic-based methods for enforcing information flow policies
in programs. More recently, Azevedo et al [8] formally verify a clean-slate design that enforces information
flow.

9 Final remarks

Constant-time cryptography is an oft advocated solution against cache-based attacks. In this work, we have
developed an automated analyzer for constant-time cryptography, and given the first formal proof that
constant-time programs are indeed protected against concurrent cache-based attacks. Moreover, we have
extended our analysis to the setting of stealth memory; to this end, we have developed the first formal
security analysis of stealth memory. Our results have been formalized in the Coq proof assistant, and our
analyses have been validated experimentally on a representative set of algorithms.
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A Alias type system

We first define the set alias of alias information. An element of alias is of one of the forms: i. Num, which
represents only a numerical value; ii. Symb(S), which represents either a non-pointer value, or a pointer value
that points to the variable S; iii. Stack(d), which represents either a non-pointer value, or Vptr(&SP, §). We
do not consider dynamic allocation and analyse only one single procedure where all function calls have been
inlined. Hence Symb(S) and Stack(d) are the only symbolic informations we need. Alias informations are
partially ordered with Num C Symb(S) and Num C Stack(d). This partial order is lifted to alias maps by the
standard pointwise lifting.
Programs are assigned types of the form:

AeN—= (S+N+R) — alias

where for every node n: i. A[n](S) gives the flow-sensitive points-to information of the global variable S € S;
ii. A[n](0) gives the flow-sensitive information of the stack cell at address Vptr(&SP,d) (6 € N); iii. A[n](r)
gives the flow-sensitive information of the register r € R.

The typing rules are given in Figure 12, and are mostly standard. Each load and store instructions require
two cases: one for stack access and one other for global variable access. For a load at node n, in a register
r and on a pointer value that points to a global variable S, we transfer the abstract content of A[n|(S) to
the abstract information A[n'](r) of the successor node n’. The treatment is similar for a load on a pointer
value that points to a stack position. For a store at node n, from a register r to a pointer value that points
to a stack position Vptr(&SP,d), we update the abstract content A[n/](d) of the successor node n’. If the
store is performed on a global variable, we only perform a weak update: A[n](S) must contain A[n](r) (the
content of the stored value), but also A[n](S) (the previous content), since the Symb(S) may represent several
concrete memory cells. The type system will reject some programs if a pointer value, at a specific program
point, may points-to a different symbol, depending on the path that has been followed to reach this point.
This restriction could be lifted by considering sets (rather than singletons) of symbolic addresses.

Definition 4 (Alias-well-typed programs). A program p is alias-well-typed with respect to a alias map
A, if AF n:p[n] holds for all nodes n in p, and at the initial node ng of the program, Alng] contains a
correct abstraction of the initial program memory.

We forge the initial abstraction of the memory by scanning the declaration of the global variables. If a
global is initialised with a numeric constant, its initial abstraction is Num. CompCert also allows to initialise
a global with the address of an other global variable S. In this case, the initial abstraction is Symb(S).

We note that the relative simplicity of our analysis is derived from the specific guarantees provided by
the CompCert memory model, and more particularly of the strong isolation between global variables. The
main complexity of our type system lies in its treatment of stack manipulation, which requires specific care
because the CompCert memory model does not enforce any separation guarantee for it. The type system
makes sure every access to the stack is performed through constant address in order to track finely this part
of the memory.
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alias ::=
| Num numerical value
| Symb(S) points to any cell allocated
for symbol &
| Stack(d) points to the 6" stack cell

Alindexed](a, [ri; r2])= A[+]([a(r1); a(r2)])
Alglobal(S)](a, r) = Symb(5)
Alstack(6)](a, []) = Stack(9)
= Num otherwise
Aladdrof (addr)](a, r) = Aladdr](a,r)
Almove](a,[r]) = a(r)
Alarith(a)](a, r) = Ala](a[r])

Aln][r — Alop](A[n], )] C A[n']
A n:op(op,r,r,n)
Aladdr](A[n], r) = Symb(S) Aln][r — A[n](S)] C A[n']
A n:loadc(addr,r,r,n)
Aladdr](A[n], ) = Stack(d)} A[n][r — Aln](8)] C A[n']
At n :loadc(addr,r,r,n')
Aladdr](A[n], r) = Symb(S) A[n][S — A[n](r) U A[n](S)] C A[n/]

A n:storec(addr, r, v, n)
Aladdr](A[n], r) = Stack(9) Aln][6 = A[n](r)] C A[n']
A n:store.(addr,r,r,n’)
Al[n] C A[n/] Aln] C A[nihen] A[n] C Alneise]

A n:goto(n') AF n:cond(c, T, Nhen, Neise)

Fig. 12. Alias type system
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VS, X1 (S) = Low = V4, Vs, u1[Vptr(b,i)]c = p2[Vptr(b, )]s

B ~x, M2
Vo, 7(6) = Low = pu1[Vptr(SP,d)]1 = p2[Vptr(SP, )1
H1 ~r 2
Vr, 7(r) = Low = pi(r) = p2(r)
p1 ~r p2

pP1 ~r P2 H1 ~r 2 H1 ~xg, 2
(n, p1, 1) ~xp,,7 (1, p2, 12)

Fig. 13. State equivalence relations

B Formalization of Proposition 3

State equivalence is defined according to the rules of Figure 13. Two states s1 = (n1, p1, 1) and sa(ng, p2, p2)
are equivalent with respect to a global type X}, and a local type 7, written s; ~x, - s2, iff n; = ng, and the
two memories pu; and po are global-equivalent with respect to X; and stack-equivalent with respect to the
local type 7, and if the two register banks p; and py are register-equivalent. Two memories p; and uo are
global-equivalent (p1 ~x, pe2) if for every low global variable S (i.e. X,(S) = Low), every load (whatever
offset and memory chunk) returns the same result for py and ps. They are stack-equivalent (py ~, pg) if
for each low stack offset 6 (i.e. 7(8) = Low), reading one byte in p1 (p1[Vptr(SP,0)]1) at this stack position,
gives the same result as reading one byte at the same position in ps (u2[Vptr(SP,d)]1). Two register banks
p1 and po are register-equivalent (py ~, pa) if they coincide on every low register r (7(r) = Low).

The proof of soundness of the type system relies on key unwinding lemma and a monotonicity lemma
(a.k.a. weakening lemma).

Lemma 3 (Unwinding). Let s1 and sy be two equivalent states, i.e. sty ~x, r sto. If the judgment type
Xp B n 7 = 7 holds at the common node n of s1 and so; if two steps are performed from each state
(s1 <2y s and so 22y s5) then the resulting states are equivalent (s} ~x, ~ sy and the effect a1 and as are
the same.

Lemma 4 (Monotonicity). If st; ~x, r sto and 7 C 7' holds then st1 ~x, - sta holds too.
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