
The Hash Function “Fugue”

Shai Halevi William E. Hall Charanjit S. Jutla
IBM T.J. Watson Research Center

Abstract

We describe Fugue, a hash function supporting inputs of length upto 264 − 1 bits and
hash outputs of length upto 512 bits. Notably, Fugue is not based on a compression function.
Rather, it is directly a hash function that supports variable-length inputs.

The starting point for Fugue is the hash function Grindahl, but it extends that design to
protect against the kind of attacks that were developed for Grindahl, as well as earlier hash
functions like SHA-1. A key enhancement is the design of a much stronger round function
which replaces the AES round function of Grindahl, using better codes (over longer words)
than the AES 4× 4 MDS matrix. Also, Fugue makes judicious use of this new round function
on a much larger internal state.

The design of Fugue is proof-oriented: the various components are designed in such a way
as to allow proofs of security, and yet be efficient to implement. As a result, we can prove that
current attack methods cannot find collisions in Fugue any faster than the trivial birthday
attack. Although the proof is computer assisted, the assistance is limited to computing ranks
of various matrices.

1

Contents

1 Introduction 5

1.1 Speed estimates . 6

1.2 Statement of Expected Strength . 6

1.3 Statement of Advantages and Limitations . 7

1.4 Main Idea . 7

1.5 Super-Mix Transformation . 11

I Specification of Fugue 14

2 Basic Conventions 14

3 Galois Field GF(28) 15

4 Specification of Fugue-256 15

4.1 Substitution Box . 15

4.2 Super-Mix . 16

4.3 The Hash Function F-256 . 18

4.3.1 The Round Transformation R . 18

4.3.2 The Final Round G . 20

4.3.3 Initial State . 20

4.3.4 Hash Output . 20

4.3.5 Complete Specification of the Hash Function F-256 21

4.4 The Hash Function Fugue-256 . 21

4.5 Pseudo-Random Function PR-Fugue-256 . 22

4.6 Compression Function C-Fugue-256 . 22

4.7 Other Modes of Operation . 23

5 Specification of Parameterized Fugue 23

5.1 The parameterized function F[n, k, s, r, t] . 24

5.1.1 A Complete Specification of F[n, k, s, r, t] 26

5.2 Parameter Specifications for Different Output Lengths 27

5.3 Fugue-224 and related functions . 27

5.4 Fugue-384 and related functions . 27

2

5.5 Fugue-512 and related functions . 29

5.6 A Weaker Version of Fugue-256 . 31

II Implementation 32

6 Software and Hardware Efficiency 32

6.1 Implementing Fugue on 32-bit Machines . 32

6.2 Implementing Fugue on 64-bit Machines . 32

6.3 Implementing Fugue on 8-bit Architectures . 32

6.4 Hardware Implementations of Fugue . 34

6.5 Other Implementations of Fugue . 35

III Security Analysis 36

7 The Super-Mix Matrix and Related Linear Codes 36

7.1 Linear Codes . 36

7.2 Linear Codes Related to the Super-Mix Matrix N 37

7.3 Implications for the Differential Properties of SMIX 38

8 Diffusion Properties of Fugue-256 41

8.1 Diffusion of input bytes . 41

8.2 Diffusion of state bytes . 43

8.3 Diffusion in the TIX-less rounds G1 . 43

8.4 Diffusion in the entire final transformation G . 46

9 Properties of the S-Box 46

10 Differential Analysis of Fugue-256: Internal Collisions 48

10.1 Backward Evolution of the Internal State . 48

10.1.1 Round Zero . 49

10.1.2 Introducing Tables 8 and 9 . 50

10.1.3 Round −1 . 53

10.1.4 Round −2 . 53

10.1.5 Round −3 . 54

3

10.1.6 Round −4 . 54

10.1.7 Summing it up . 54

10.2 Differential Attacks . 56

10.2.1 Pure differential Attacks . 56

10.2.2 More Realistic Differential Attacks . 60

10.2.3 Beyond Random Initial State . 62

10.2.4 The Length-Padding in Fugue-256 . 63

10.3 A Tighter Analysis for Theorem 10.2 . 64

11 Differential Analysis of Fugue-256: External Collisions 65

12 Various other Properties of Fugue-256 69

12.1 Pre-Image Resistance of Fugue-256 . 69

12.2 Second Pre-Image Resistance of Fugue-256 . 69

12.3 Strength of MD-Mode usage of C-Fugue-256 . 71

12.4 Analysis of PR-Fugue-256 as a PRF . 71

12.4.1 Linear Cryptanalysis . 72

12.4.2 Differential Cryptanalysis . 72

12.5 PR-Fugue-256 as a Universal Hash Function . 74

13 Other Security Considerations 77

13.1 A Meet-in-the-Middle Attack on Fugue . 77

13.2 Side-channel Cryptanalysis Attacks . 78

14 Cryptanalysis of wFugue-256 78

15 Strength of Fugue-224, Fugue-384 and Fugue-512 81

15.1 Collision Resistance of F-224 . 81

15.2 Collision Resistance of F-384 . 81

15.3 Collision Resistance of F-512 . 82

16 On the Choice of the Matrix M 83

4

1 Introduction

Most hash functions to date are designed using the Merkle-Damgard paradigm [14, 6]: one first
designs a compression function for fixed-length messages, and then extends it to variable-length
messages by iterating the compression function for every block of the input.

This style of design has some drawbacks however: The most obvious problem is the message
extension property of Merkle-Damgard, and over the years we have seen many other “generic”
attacks, such as Joux’s multi-collisions attack [8], Herding attacks [12], etc. At the heart of all
these attacks lies the fact that the Merkle-Damgard paradigm is “wasteful” by design: having
worked hard on hashing one block of the message, the design throws out all the internal state
that was developed and leaves only the compressed output as a chaining variable for the next
iteration.

A different approach for designing hash functions is to keep a larger evolving internal state, and
to insert a “block” of the message into the state per iteration while applying a round function,
and then keeping the entire state. After the whole message is processed, an extensive final
transformation is applied to the state, and finally a part of the end state is used as the output.

One example of this style of design is the Grindahl hash function by Knudsen et al. [13]. For
example, Grindahl-256 maintains an internal state in the form of a 4 × 13 matrix of bytes, and
for each four-byte word of the input it first uses the input word to replace one of the columns,
and then applies a transformation to the entire state. The transformation in Grindahl consists of
essentially applying the round function of AES to the 13-column state. By relying on the AES
round function, Grindahl inherits the efficiency and implementation flexibility of AES. Also the
significant cryptanalytical effort that was invested in AES and its round function can be brought
to bear on the security of Grindahl.

However, there are significant differences between block ciphers and hash functions, and the
latter admit many new types of attacks. Indeed, many new types of attacks were introduced in
the last few years for hash functions, including “message modification” [22, 23], “control/neutral
bits” [3], “auxiliary differentials” [9], etc.. In particular, recent cryptanalysis of Grindahl due to
Peyrin [20] suggests that the security of Grindahl is not as high as intended.

In Fugue we adopted the Grindahl approach of maintaining a large evolving state and using
AES-like primitives to evolve it. To counter the risk of having to consider all the new types of
attacks, we adopted in Fugue a proof-based approach to its design. That is, we designed the
various components of Fugue to allow proofs of security. The main tools that we use in Fugue are
the following:

• A larger state. For example, Fugue-256 uses a 4× 30 matrix for its internal state.

• A souped-up variant of the AES round function [16, 5]. We still use the byte-substitution
of AES, but we replace the linear Column-Mix with a Super-Mix operation. Recall that
column-MIX operates on just one column. The Super-Mix operation, while being similar
to column-MIX, also manages to affect the other three columns with little extra work (see
Fig 4 in Section 1.5 and also see Section 4.2). This operation can be viewed as multiplying

5

a 16-byte vector by a 16 × 16 matrix, and we show that this matrix induces a number of
MDS or nearly-MDS codes.

• Judicious use of the round function. In Fugue we do not apply the round function uniformly
to the entire state. Rather, in each iteration we only apply the round function to select areas
of the state, using cheap XOR operations to mix some other parts of the state, and yet other
parts are left alone and not modified at all. We used a proof-guided approach to the decision
of where to apply the round function and what parts of the state to mix using XORs. That
is, we applied whatever operation was needed for the security claims to be provable.

As a result, Fugue is not only very secure, but quite efficient as well. The performance of
Fugue-256 on contemporary machines is on par with SHA-256 (but Fugue can utilize parallelism
much better than SHA-256). At the same time, we can prove that current attack techniques (in-
cluding the techniques of Peyrin) do not apply to Fugue. Namely, we prove that using differential
cryptanalysis with message modification and control/neutral byte analysis cannot be used to find
collisions in Fugue any faster than a trivial birthday attack. We emphasize here that the proof is
not based on ruling out certain possible attack scenarios by brute force search, but by a rigorous
proof encompassing a whole range of strategies.

1.1 Speed estimates

The estimated (or measured) performance of Fugue-256 on 32-bit platforms, 64-bit platforms,
8-bit platforms and hardware platforms are given in Part II of this document (Page 29). In all
cases, the performance of Fugue-256 is on par with that of SHA-256. The speed of Fugue-224
is the same as Fugue-256, while the speed of Fugue-348 is about 66% of Fugue-256, and the
speed of Fugue-512 is about 50% of Fugue-256. The speed of a weak variant of Fugue-256, called
wFugue-256, is about twice that of Fugue-256.

1.2 Statement of Expected Strength

We expect that the best attacks against Fugue are the generic ones. That is, the best collision
attack against Fugue-X will have work factor of 2X/2, and the best pre-image and second-pre-
image attacks will have work factor of 2X . Also, we expect that the best distinguishing attack
against PR-Fugue-X will have work factor 2X . A detailed analysis of the security of Fugue is
provided in Part III of this document (Section 7).

As for the weak version wFugue-256, our analysis suggests that limited-space attacks (say,
upto 296 bits) cannot find collisions in wFugue-256 with probability better than 2−96. Here too
we expect that the best attack has work factor of 2128, but as opposed to Fugue-256 we cannot
prove this work factor for wFugue-256.

6

1.3 Statement of Advantages and Limitations

Fugue inherits the flexible implementation profile of AES, so we expect that it can be implemented
in many different environments. It can also be used with essentially any output size of upto 512
bits (in multiples of 32 bits), although in this document we only specified the required output
sizes of 224, 256, 384 and 512. Another advantage of Fugue is the ability to share sub-components
with AES (since we are using the same S-box).

But the biggest advantage of Fugue is its security. As we said before, Fugue comes with a
proof of security, showing that current attack techniques cannot be used against it.

1.4 Main Idea

Since there is no secret key in a hash construct, in order to achieve a collision, an adversary
can follow the development of the state for two different inputs and stop early, or backtrack and
modify the inputs adaptively. In fact, since the initial state is fixed, it might even be able to
pre-compute a strategy for this backtracking in a table. Further, since not all of the input can
be consumed into the state at one time, the input is incorporated into the state incrementally,
which gives the adversary another adaptive strategy to choose the later inputs as a function of
the current state(s).

The problem of starting from a fixed initial state is much easier to handle, as from a hash func-
tion design perspective one could make the state transformations non-linear enough, so that such
initial strategies either require huge tables, say of size greater than 296 bits, or are computationally
in-effective, beyond a few rounds of initial input blocks.

However, the second problem of countering a multi-input-block adaptive collision attack is
more difficult, as partial collisions obtained in the previous round can be used to adaptively
choose inputs in the next round to achieve even better partial collisions, till one actually finds a
full collision.

In the design of Fugue, our aim is to prove that no matter how good a partial collision is
obtained, finding a full collision, even with adaptive input control, is an extremely low probability
event. A key design feature is a new maximum distance separable (MDS) linear code, which is
extremely efficient to encode. Recall that even AES’s mixing is based on an MDS code, though
the length of that code is only 8 bytes (in standard form it has 4 message bytes, and 4 parity
bytes), and its minimum distance is 5. Our MDS code has length 16 bytes, and has minimum
distance 13.

Before we explain how these codes are used, we give a simple overview of Fugue-256 in Fig 1.
The internal state is of size 30 words (each word being 32 bits). Further, it has two types of
rounds: the input rounds, and the final round. In each input round, only one word of input is
consumed. After all the inputs are iteratively consumed, a final extensive round of non-linear
transformations is performed, before outputting a subset of the state as the hash value.

Thus, one can obtain a collision either by finding a collision in the 30 word state itself after
some input rounds, in which case it is called an internal collision, or by finding a collision in

7

Initial State (30 Words)

Process

Next State

Iterate

Final Internal State

Final Stage

Output

M1

Mi

Figure 1: Fugue-256 Structure

the subset of the state that is output at the end of the final round, in which case it is called an
external collision.

In this introduction, we will mainly focus on internal collisions, as the choice of input words in
each input round may allow one to converge on an internal collision, and hence it may seem as a
simpler problem than finding external collisions. Further, we will consider a simplified version of
Fugue for the moment, so as to illustrate the collision resistance property of Fugue. This simplified
version is shown in Fig 2, where we consider a differential trail, i.e. all quantities shown in the
figure are differentials. A round begins by replacing the first column of the 30 column state by
an input word. Next, the 30 column state is rotated to the right by three columns. After that,
the processing focuses on just the left four columns, and just as in AES, replaces all 16 bytes
using an (invertible, but non-linear) S-Box substitution. This is followed by an invertible linear
transformation on these four columns over GF(28).

As can be seen in Fig 2(f), we are considering a round which led to an internal collision, i.e.
all zero differences. This implies, and as is shown in the figure, that in state (e) the second,
third and the fourth columns must have zero differences. Assume that in state (b) there are some
non-zero differences. Then, since both the S-box and the linear transformation are invertible,
it follows that in state (e), one of the ∆b’s must be non-zero. Thus, we have a situation that
the linear transformation on the four left columns of state (d) led to one non-zero column and
three zero columns in state (e). Consider an error-correcting linear code with 12 parity check
equations, such that these equations are the ones which compute the 12 output bytes of the linear

8

transformation corresponding to the right three columns. Then, the four left columns in state (d)
form a codeword in this code.

The linear transformation we use in Fugue has the property that this code is an MDS code,
and hence has minimum distance 13 (note that the dimension of the code is 16− 12, as it has 12
linearly independent parity check equations, and hence its maximum possible minimum distance
is 16−(16−12)+1 = 13). Thus, in state (d) there were at least 13 non-zero byte differences, which
means that at least 13 S-Box substitutions in state (c) were on pairs of bytes whose differences
were non-zero, and hence assuming that the S-Box had good differential properties, achieving
internal collision has low probability.

Notice that, this implies that the linear transformation we use is not the same as the AES
linear transformation (which is built out of AES’s MixColumn and Row Rotations), as the AES
linear transformation does not have this MDS property over 16 byte length codes. In the next
sub-section we describe how our linear transformation is built and how it remains highly efficient.

One might wonder, if we can extend the above argument of using an MDS code to modify,
say, eight columns of the state. If such an MDS code can be obtained, then that would imply a
minimum distance of 32 - (32-28)+1 = 29. However, finding MDS codes of such large length, i.e.
much more than 16 bytes, is a difficult task, especially since we want the codes to be extremely
efficient to encode. However, what we do show is that for each t ≥ 0, there is an efficient linear code
of length (4+3t)×4, such that it has dimension four, and minimum distance (4+3t)×4−(t+1)×3 =
13 + 8t.

Before, we describe how this is accomplished, we remark that we use these codes to scale
security against internal collisions, as well as external collisions, both within a fixed hash output
length, and through different hash lengths. So, as an example, we consider the case t = 1. Thus,
we want a code of length 28 bytes (or elements of GF(28)). We build this code by composition.
Thus, we start with a linear transformation of 16 bytes to 16 bytes, given by a 16× 16 matrix N
of GF(28) elements, which transforms a 16 byte (column) vector u to u′ by multiplication on the
left, i.e.

u′ = N · u

The subset of vectors u, which under the linear transformation N result in vectors with the last
12 bytes zero, form a linear code, whose parity check equations are given by the last 12 rows of
N. Suppose, this 12 × 16 sub-matrix has the property that all its 12 × 12 sub-matrices are non-
singular, then a simple application of linear algebra shows that the linear code is MDS. Hence,
every non-zero vector u in this subset can have at most three zero bytes.

If we start with vectors of 28 bytes, denoted u[0..27], we first apply the linear transformation
N to 16 bytes u[12..27], say resulting in u′[12.27]. Next, we apply the same transformation N on
16 bytes u[0..11], u′[12..15], say resulting in u′′[0..15]. Now consider the linear transformation N
which takes 28 bytes u[0..27] to 28 bytes u′′[0..15], u′[16..27]. Then, N has the desired property.
First note that the transformation is invertible, and hence if its input is non-zero, then so is it’s
output. If we are considering non-zero inputs which lead to outputs with all but the first four
bytes zero, then the first four bytes of the output must be non-zero, i.e. u′′[0..3] is non-zero, and
u′′[4..15] and u′[16..27] are zero. Thus, from the MDS property of N, it follows that there are

9

∆a0 0 0 0
∆a1 0 0 0
∆a2 0 0 0
∆a3 0 0 0

0 0 ∆u0 ∆v0 ∆w0

0 0 ∆u1 ∆v1 ∆w1

0 0 ∆u2 ∆v2 ∆w2

0 0 ∆u3 ∆v3 ∆w3

∆x0 0 0 0
∆x1 0 0 0
∆x2 0 0 0
∆x3 0 0 0

0 0 ∆u0 ∆v0 ∆w0

0 0 ∆u1 ∆v1 ∆w1

0 0 ∆u2 ∆v2 ∆w2

0 0 ∆u3 ∆v3 ∆w3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∆u0 ∆v0 ∆w0 ∆x0

∆u1 ∆v1 ∆w1 ∆x1

∆u2 ∆v2 ∆w2 ∆x2

∆u3 ∆v3 ∆w3 ∆x3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∆ũ0 ∆ṽ0 ∆w̃0 ∆x̃0

∆ũ1 ∆ṽ1 ∆w̃1 ∆x̃1

∆ũ2 ∆ṽ2 ∆w̃2 ∆x̃2

∆ũ3 ∆ṽ3 ∆w̃3 ∆x̃3

Replace first column with input word

Rotate to the right by three columns

S-Box substitution on left 4 columns

linear transformation on left 4 columns

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∆b0 0 0 0
∆b1 0 0 0
∆b2 0 0 0
∆b3 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Replace first column with input word

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: One Round of “Simplified Fugue” leading to an Internal Collision

10

Input

Output

N

N

Figure 3: The composite linear transformation N

at most three bytes zero amongst u[0..11] and u′[12..15] combined. Thus, u′[12..15] is non-zero.
Moreover, u′[16..27] is zero, and hence again by the MDS property of N, it follows that there are at
most three bytes zero in u[12..27]. Thus, there are at most 6 bytes zero in u[0..27]. Thus, the linear
code whose parity check equations are the (28 − 4) rows of the 28 × 28 matrix representing the
linear transformation N, has minimum distance 28−6 = 22. The composite linear transformation
is illustrated in Figure 3.

We now describe how an efficient linear transformation like N is obtained.

1.5 Super-Mix Transformation

If the linear transformation N is implemented by just the (left) matrix multiplication by N, it is
likely to be extremely in-efficient, unless it is very sparse. Even if it is sparse, one may need to
store GF(28) multiplication tables corresponding to all the different entries in N. Finally, there
remains the question of determining such a sparse matrix with the required MDS property. A
brute force search over such matrices seems intractable.

Our approach starts with the AES mixing transformation [16], which is a linear transformation
from vectors of four GF(28) elements to vectors of four GF(28) elements, and is given by a 4× 4
matrixM over GF(28). In fact, AES does indeed do a 16 byte to 16 byte linear transformation, but
does so by just independently transforming groups of four bytes by M. Thus, this transformation
is not even close to having the MDS property we require of N.

11

















M00 M10 M20 M30

M01 M11 M21 M31

M02 M12 M22 M32

M03 M13 M23 M33

















⊗

















u0 v0 w0 x0

u1 v1 w1 x1

u2 v2 w2 x2

u3 v3 w3 x3

















=



















T0[u0]+
T1[u1]+
T2[u2]+
T3[u3]

T0[v0]+
T1[v1]+
T2[v2]+
T3[v3]

T0[w0]+
T1[w1]+
T2[w2]+
T3[w3]

T0[x0]+
T1[x1]+
T2[x2]+
T3[x3]



















T2[v2]

AES:

Fugue (hint):

Fugue (detail):

T0[u0]

T1[u1]

T2[u2]

T3[u3]

T0[v0]

T1[v1]

T2[v2]

T3[v3]

T0[w0]

T1[w1]

T2[w2]

T3[w3]

T0[x0]

T1[x1]

T2[x2]

T3[x3]

Figure 4: AES Column Mix vs. Fugue Super-Mix

12

The AES 4 × 4 transformation however has a nice property that it can be implemented with
four 8-bit to 32-bit tables. Thus, let v be a four byte column vector 〈v0, v1, v2, v3〉. Let M’s four
columns be called M0, M1, M2, and M3. Then,

M · v = v0 ·M0 + v1 ·M1 + v2 ·M2 + v3 ·M3

Thus, if we pre-compute a 32-bit value table T0, with 256 entries indexed by i, corresponding to
i ·M, and similarly pre-compute T1, T2 and T3, then

M · v = T0[v0] + T1[v1] + T2[v2] + T3[v3]

which is implemented with four table lookups and three 32-bit exclusive-or operations.

In Fugue, the 16 byte to 16 byte linear transformation is obtained as follows (see figure 4).
The 16 bytes are first viewed as a 4 × 4 matrix of bytes V, which is same as how the 16 byte
state is represented in AES. In other words, the AES mixing transformation can be seen as a
matrix multiplication, i.e. V′ = M · V. However, as noticed above, that mixes the columns
in V independently. Instead, in Fugue, the contribution of each byte in the input matrix V to
the output matrix V′ is to both its column, and its row (except for the diagonal entries, which
continue to affect only their columns). Thus, using the alternate interpretation of the previous
paragraph, the contribution of a byte v2 in a column of V is not only T2[v2] to its column in the
output, but also T2[v2] transposed, to its row in the output. The row in this case is row two, as
v2 is from row two of V.

Although, one can derive some intuition of why this leads to good mixing, it is not true that
all matrices M yield the 16 byte transformation N as desired, namely with the MDS property
mentioned above. Indeed, the AES mixing matrix does not satisfy this property. However, a
straightforward brute force search over all circulant 4 × 4 matrices yield many such matrices
which result in an MDS N. However, we picked the first one with some more desirable properties,
as will become clear later. We later indicate in Section 16 the exact criterion used.

Acknowledgements. We would like to thank Hugo Krawczyk for several helpful discussions.

13

Part I

Specification of Fugue

2 Basic Conventions

Bits, Bytes, and Numbers. This document is mostly stated in terms of bytes, which are
represented in hexadecimal notation (e.g., 80 is a byte corresponding to the decimal number
128). A sequence of bytes is always denoted with the first byte on the left, for example 00 01 80
is a sequence of three bytes, with the first being 00, the second 01, and the last 80.

When considering bits, we follow the big-endian convention set by NIST and consider the
most-significant bit as the first bit in a byte. (For example, the byte 80 represents a single 1
bit followed by seven 0 bits.) In a few places we need to talk also about multi-byte integers,
and in these cases we also use big endian convention, namely the first byte in a representation of
an integer is the most significant byte. (For example, a three-byte representation of the decimal
number 384 = 256 + 128 is the same sequence 00 01 80 from above.)

Matrices, Columns, and Words. Throughout this document we view the internal state of the
hash function Fugue as a matrix with byte entries. We use the following notations for matrices:
For an m×n matrix M , the rows are numbered 0 to m−1 (and displayed top to bottom), and the
columns will be numbered 0 to n− 1 (and displayed left to right). The i-th row of M is denoted
M i, and the j-th column of M is denoted Mj . The element in the i-th row and j-th column of M
(which is a byte) is denoted M i

j . A sub-sequence of columns of a matrix M , numbered i through
j, will be denoted by Mi..j.

Very often in this document we view a column in a matrix as a fundamental unit, and we call
it a Word. Since the state-matrices that we consider have four rows, then a word in this document
is always a four-byte entity.

We view the bytes in a matrix in column order, where in each columns the bytes are ordered
from top (index 0) to bottom (index m− 1). For example, the following 4× 3 matrix

A =









00 04 08
01 05 09
02 06 0a
03 07 0b









is represented as the sequence of bytes 00 01 02 03 04 05 06 07 08 09 0a 0b, and its second
column is the word A1 = 04 05 06 07.

14

3 Galois Field GF(28)

The Galois Field GF(28), is the finite field of 256 elements, whose elements are represented as bytes
and have one to one correspondence with degree-7 binary polynomials. The mapping from bytes
to binary polynomials is given by considering the least significant bit of the byte as representing
the free coefficient, and in general the i’th least-significant bit as the coefficient of xi. For example,
the byte 13 (corresponding to the bit sequence 00010011) represents the polynomial x4 + x+ 1,
and the byte 3c (binary 00111100) represents the polynomial x5 + x4 + x3 + x2.

The additive unity of the field is the zero polynomial, i.e. 00, and the multiplicative unity of
the field is the polynomial 1, i.e. 01. Throughout this specification, the field multiplication will
be polynomial multiplication modulo the irreducible polynomial

x8 + x4 + x3 + x+ 1.

As an example, when multiplying the byte corresponding to 8-bit binary number a7a6...a0 (or
the polynomial a7x

7+a6x
6+...+a0) by the byte 02 (i.e. the polynomial x), we get the polynomial

a6x
7+a5x

6+a4x
5+(a3⊕a7)x

4+(a2⊕a7)x
3+a1x

2+(a0⊕a7)x+a7, where ⊕ is the exclusive-or
operation. (In other words, multiplying a byte a by 02 in GF(28), we get 2 × a when a < 80,
and (2× a)⊕ 1b otherwise.)

Below and throughout the document we use “·” to denote field multiplication in GF(28), and
“+” to denote field addition in GF(28)(which is the same as exclusive-or). The same symbols
will be used to denote multiplication and addition of matrices or vectors over GF(28), as well as
scalar multiplication of field elements with matrices or vectors over GF(28). As is common in
many programming languages x+= y will denote the assignment x = x+ y.

4 Specification of Fugue-256

The main component in the hash function Fugue (called “SMIX” below) is a mapping from 16
bytes to 16 bytes, which resembles the round functions of the block cipher AES [16]. As in AES,
it is sometimes convenient to view the 16 bytes as a 4× 4 matrix (but we will also view them just
as a column vector of 16 bytes). Also as in AES, the SMIX mapping is a permutation, consisting
of byte-substitution followed by a linear transformation. (However, in Fugue we never need to
compute the inverse map.)

4.1 Substitution Box

The substitution box (S-box) that is used in Fugue is identical to the one used in AES. The S-box
is a non-linear permutation over bytes, which is composed of two mappings: The first map treats
the 8-bit quantity as an element of GF(28) (as specified in section 3), and takes the multiplicative
inverse if the element is non-zero, and otherwise just maps to 00. The second map, treats the
resulting GF(28) element as an 8-bit bit vector and performs the following affine transformation

15

(over GF(2)).
























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

















































x0
x1
x2
x3
x4
x5
x6
x7

























+

























0
1
1
0
0
0
1
1

























The S-box is explicitly given in the appendix in Table 12.

4.2 Super-Mix

Similarly to the AES round function, the SMIX transformation in Fugue takes a 4× 4 matrix of
bytes, passes each byte through the S-box transformation, and then applies a linear transformation
to the result. This linear transformation is called the “Super-mix” transformation. A major
difference between Fugue and AES is that in AES each column of the matrix is mixed separately
(via the Column Mix transformation), whereas in Fugue there is cross-mixing between the column.
As described later in this document, the Super-Mix in Fugue utilizes stronger codes (over longer
words) than the 4-byte MDS code of AES, thus providing better diffusion and better protection
against differential attacks (at a modest cost).

The linear transformation in Fugue is called the “Super-Mix”. It can be viewed as putting the
16 bytes in one column vector and multiplying it by the 16 × 16 matrix N that is specified in
Equation 3 below. To better understand this transformation, it helps to see how it can be built
from a simpler 4× 4 matrix (denoted M). Like in AES, the matrix M will be a circulant matrix,
but Fugue uses a different matrix than the 4× 4 Column Mix matrix of AES. Specifically, we use

M =









01 04 07 01
01 01 04 07
07 01 01 04
04 07 01 01









(1)

As a warm-up, consider the procedure that one would use to implement an AES-like Column
Mix transformation, and later we explain how to modify this procedure to get the Super-Mix of
Fugue. Let us denote the input 4 × 4 matrix by U. Given the input matrix U and the mixing
matrix M, the AES Column Mix procedure is just V = M · U, i.e. a straightforward matrix
multiplication over GF(28). Thus, the j-th column of V can be obtained from the j-th column
of U as the sum

Vj = U0
j ·M0 + U1

j ·M1 + U2
j ·M2 + U3

j ·M3 =
3

∑

i=0

Ui
j ·Mi.

16

In Super-Mix, each of the terms Ui
j · Mi is not only added to the output column Vj , but if

i 6= j then it is also transposed and added to the output row Vi. Then (again similarly to AES),
we apply a “row shift” operation to the matrix, in which the i-th row is rotated to the left by
i positions. Namely, given a 4× 4 input matrix U we compute:

Super-Mix(U) = ROL









M ·U +









∑

j 6=0U
0
j 0 0 0

0
∑

j 6=1U
1
j 0 0

0 0
∑

j 6=2U
2
j 0

0 0 0
∑

j 6=3U
3
j









·MT









(2)

where

• MT is the transpose of the matrix M, i.e. (MT)ij = Mj
i ,

• the transformation “ROL” takes a 4 × 4 matrix, and rotates the i-th row to the left by i
bytes, i.e. ROL(W)ij = Wi

(j−i)mod 4

In other words, if W denotes the intermediate matrix before the “ROL” transformation in
Super-Mix(U), then

Wi
j =

∑

k

(Mi
k ·U

k
j) +Mj

i · (
∑

k∈[0..3],k 6=i

Ui
k)

Equivalently, the Super-Mix transformation is given by (left) multiplication by the following
16× 16 matrix N, when the 4× 4 matrix of input (and output) is considered as a 16-byte column
vector, with the (i + 4j)-th byte of the vector corresponding to the byte in the i-th row and the
j-th column of the matrix (i.e. the input and output matrices are scanned column-wise).

N =





































































1 4 7 1 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 1 4 7 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 7 1 1 4 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 4 7 1 1

0 0 0 0 0 4 7 1 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 4 7 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 7 1 0 4
4 7 1 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 7 0 0 0 6 4 7 1 7 0 0 0
0 7 0 0 0 0 0 0 0 7 0 0 1 6 4 7
7 1 6 4 0 0 7 0 0 0 0 0 0 0 7 0
0 0 0 7 4 7 1 6 0 0 0 7 0 0 0 0

0 0 0 0 4 0 0 0 4 0 0 0 5 4 7 1
1 5 4 7 0 0 0 0 0 4 0 0 0 4 0 0
0 0 4 0 7 1 5 4 0 0 0 0 0 0 4 0
0 0 0 4 0 0 0 4 4 7 1 5 0 0 0 0





































































(3)

17

N−1 =





































































15 49 16 bc bf ca 76 f5 a5 2f 2b 57 b2 3c 3d 45
9c be 59 df 56 a9 de fe 26 f5 8c fb 77 c0 2a 39
e2 15 45 16 96 1f a6 3b 4d f7 f4 91 4b f4 a1 c1
5e fd 69 6f ca 2a 3e f6 9f a7 c6 5b cf cf 62 31

6f 5e fd 69 f6 ca 2a 3e 5b 9f a7 c6 31 cf cf 62
bc 15 49 16 f5 bf ca 76 57 a5 2f 2b 45 b2 3c 3d
df 9c be 59 fe 56 a9 de fb 26 f5 8c 39 77 c0 2a
16 e2 15 45 3b 96 1f a6 91 4d f7 f4 c1 4b f4 a1

45 16 e2 15 a6 3b 96 1f f4 91 4d f7 a1 c1 4b f4
69 6f 5e fd 3e f6 ca 2a c6 5b 9f a7 62 31 cf cf
16 bc 15 49 76 f5 bf ca 2b 57 a5 2f 3d 45 b2 3c
59 df 9c be de fe 56 a9 8c fb 26 f5 2a 39 77 c0

be 59 df 9c a9 de fe 56 f5 8c fb 26 c0 2a 39 77
15 45 16 e2 1f a6 3b 96 f7 f4 91 4d f4 a1 c1 4b
fd 69 6f 5e 2a 3e f6 ca a7 c6 5b 9f cf 62 31 cf
49 16 bc 15 ca 76 f5 bf 2f 2b 57 a5 3c 3d 45 b2





































































Figure 5: The matrix N−1

The Super-Mix transform is invertible, as verified by a computer program that yielded the
inverse for N as described in Figure 5.

4.3 The Hash Function F-256

In this section we specify the hash function F-256 that underlies Fugue-256. The function F-256
takes as input a byte string of length multiple of four bytes, and an initial vector (IV) of 32 bytes,
and outputs a hash value of 32 bytes. The hash function F-256 maintains a state of 30 four byte
columns, starting with an initial state, which is set using the IV.

The input stream of 4m bytes (m ≥ 0) is parsed as m four-byte words, and fed one word
at a time into a round transformation R that modifies the state. After all the input has been
processed, the state undergoes another transformation by a final round G. Subsequently, eight
columns of the state are used as the output of F-256.

4.3.1 The Round Transformation R

The round transformation R takes a 30 column state S, and one four-byte word I = I0I1I2I3,
and produces a new 30 column state. Using the notation specified in Section 2, the 30 column
state can be identified with a 4× 30 matrix (e.g. the first column of the state being S0, etc.).

18

The transformation R is best specified by the way it modifies the state S using the input
word I. It consists of the following sequence of steps (all of which are described below):

TIX(I);ROR3;CMIX;SMIX;ROR3;CMIX;SMIX;

• The step TIX(I) (short for xor, truncate, insert and xor) stands for the following sequence
of steps:

S10 += S0;

S0 = I (i.e., Si
0 = Ii for i = 0, 1, 2, 3);

S8 += S0;

S1 += S24.

• The step ROR3 just rotates the state to the right by three columns, i.e. simultaneously
set Si = Si−3, where the subscript subtraction is performed modulo 30.

• The step CMIX, which stands for column mix, is

S0 += S4; S1 += S5; S2 += S6;

S15 += S4; S16 += S5; S17 += S6;

• The step SMIX, just operates on the first four columns of the state, which can be viewed as
a 4×4 matrix W. First, each byte of the matrix W undergoes an S-box substitution. Next,
the resulting matrix undergoes the Super-Mix linear transformation. Thus, if S-Box[W]
denotes the matrix obtained by substituting each byte Wi

j by S-box[Wi
j], then SMIX

stands for
S0..3 = Super-Mix(S-box[S0..3]).

(Recall that the additions above are addition of vectors of four bytes in GF(28), and hence is same
as 32-bit exclusive-or.) The sequence of steps ROR3;CMIX;SMIX will also be referred to as a
sub-round. Thus, a round in F-256 can be seen as a TIX step followed by two sub-rounds.

19

4.3.2 The Final Round G

The final round G takes a 30 column state S and produces a final 30 column state. It is best
described by how it affects the state S, which is as follows.

repeat 5 times

{

ROR3;CMIX;SMIX

ROR3;CMIX;SMIX

}

repeat 13 times

{

S4 += S0;S15 += S0;ROR15;SMIX;

S4 += S0;S16 += S0;ROR14;SMIX;

}

S4 += S0;S15 += S0;

whereRORn stands for rotating the state S to the right by n columns, i.e. simultaneously setting
Si = Si−n for all i = 0..29, and the subtraction in the subscript is modulo 30.

4.3.3 Initial State

The state S is initialized by setting its first 22 columns to zero, and the last 8 columns to the
given IV. That is, the 32-byte IV is parsed as 8 four-byte words IV0, . . . ,IV7, and for all j = 0...7
we set S22+j = IVj . (In matrix notations, we set S0..21 = 0 and S22..29 =IV.)

4.3.4 Hash Output

After the final round G, the following stream of eight words of the state S is output as the hash
value.

S1 S2 S3 S4 S15 S16 S17 S18.

Note that the first word in the output is S1, and not S0. For example, if the final state begins
with the five columns below









00 04 08 0c 10
01 05 09 0d 11
02 06 0a 0e 12 . . .
03 07 0b 0f 13









then the first 16 bytes of the output would be

04 05 06 07 08 09 . . . 12 13

20

4.3.5 Complete Specification of the Hash Function F-256

On input a stream of 4m bytes (m ≥ 0) that are parsed as m four-byte words P1, P2,...,Pm, and
the initial vector of 32 bytes (parsed as 8 four-byte words IV0, IV1,...,IV7), the hash function
F-256 operates as follows.

for j = 0..21, Sj = 0;

for j = 0..7, Set S(22+j) = IVj.

for i = 1..m

{ TIX(Pi);

repeat 2 times {ROR3;CMIX;SMIX; }

}

repeat 10 times {ROR3;CMIX;SMIX; }

repeat 13 times

{ S4 += S0;S15 += S0;ROR15;SMIX;

S4 += S0;S16 += S0;ROR14;SMIX;

}

S4 += S0;S15 += S0;

Output S1 S2 S3 S4 S15 S16 S17 S18.

4.4 The Hash Function Fugue-256

The hash function Fugue-256 takes as input bit sequences of arbitrary length, upto 264−1 bits, and
returns a 256-bit output. It computes the output by padding the input with zeros to a multiple
of 32-bits (four bytes), parsing it as a sequence of bytes, appending an 8-byte representation of
the original input length, and applying F-256 to the result, along with a fixed initial vector (IV).
The fixed IV that is used by Fugue-256 is defined (in matrix notations) as

IV256 =









e9 66 e0 d2 f9 fb 91 34
52 71 d4 b0 6c f9 49 f8
bd 13 f6 b5 62 29 e8 c2
de 5f 68 94 1d de 99 48









That is, the first word in IV256 is IV2560 = e9 52 bd de, the second word is IV2561 =
66 71 13 5f , and so on upto the last word IV2567 = 34 f8 c2 48. This fixed IV was ob-
tained by running F-256 with an all-zero IV and the one-word input 00 00 01 00 (representing
the decimal number 256).

In more details, let the input to Fugue-256 be a bit sequence X of length n bits (n ≤ 264 − 1).
We first append to X sufficiently many 0-bits to make its length a multiple of 32. That is, if n is

21

a multiple of 32 then append nothing, otherwise append 32 − (n mod 32) zero bits.1

Let the resulting (possibly padded) string of bits be denoted X ′, and we view X ′ as a sequence
of m bytes (in big-endian convention), X ′ = B0B1 . . . Bm−1, where m is a multiple of four. Next,
the length n is represented as an eight-byte integer (in big-endian convention) and appended to
X ′, to form the encoded stream X ′′ (of length m+ 8 bytes). Then, F-256 is applied to the input
X ′′ and the fixed IV value IV256 from above, returning a 32-byte output. This output is viewed
as a 256-bit value (using again big-endian convention) and returned as the output of Fugue-256.

Example. Consider the 35-bit input

X = 10101001 10111000 11000111 11010110 010

We append to it 29 zero bits to form a 64-bit padded stream

X ′ = 10101001 10111000 11000111 11010110 01000000 00000000 00000000 00000000

which is viewed as an 8-byte stream X ′ = a9 b8 c7 d6 40 00 00 00. Next, the bit-length 35
(hexadecimal 23) is represented as an eight-byte integer and appended to X ′ to form the encoded
stream

X ′′ = a9 b8 c7 d6 40 00 00 00 00 00 00 00 00 00 00 23

and F-256 is applied to X ′′.

4.5 Pseudo-Random Function PR-Fugue-256

The function PR-Fugue-256 takes as input a binary string of length between 0 and 264 − 1, and a
key of length 32 bytes, and produces as output a 32 byte value. Just as in Fugue-256, the input
is first padded with zero bits to a length multiple of 32 bits, then the length of the original input
is appended as an 8-byte integer, before running F-256 on the resulting encoded stream. The
only difference between PR-Fugue-256 and Fugue-256 is that PR-Fugue-256 calls the underlying
function F-256 using the 32-byte key as the IV value, instead of the fixed IV value IV256.

4.6 Compression Function C-Fugue-256

We define the compression function C-Fugue-256 as a backward-compatibility mode for applica-
tions that must use a compression function in a Merkle-Damgard mode. We stress that this is
not the optimal way of using Fugue (from both performance and security perspectives), but it
still offers an appropriate drop-in substitution for applications that need it.

1Note that as specified in Section 2 (and in accordance with the convention set in the Known-Answer-Test
document from NIST), if the length of X is not an integral number of bytes then the padding to byte boundaries
is done by adding zero bits in the least significant bit-positions of the byte.

22

The function C-Fugue-256 takes as input a binary string of length exactly 512 bits and an
initial vector of 32 bytes, and produces an output of 32 bytes. The input is treated as a stream of
64 bytes, and the output of C-Fugue-256 is just the output of F-256 on this input and the given
initial vector. (Note that the input is not padded, as it is already of the correct length.)

4.7 Other Modes of Operation

Fugue-256 can be used as a drop-in replacement for SHA-256 in many other modes of operation, in-
cluding HMAC [17] and randomized hashing [18], without resorting to the backward-compatibility
mode C-Fugue-256. For example, HMAC-Fugue-256 takes an input X and key K, and computes

HMAC-Fugue-256(K,X) = Fugue-256(K ⊕ opad | Fugue-256(K ⊕ ipad | X))

We note that when the key is 32-byte long, then PR-Fugue-256 is a more efficient way of using
Fugue to get a pseudo-random function.

5 Specification of Parameterized Fugue

The hash function Fugue-256 that was defined in the previous section is just once instance of
a parameterized design. In this section we present this parameterized design, and call out the
specific parameter setting for Fugue-224, Fugue-256, Fugue-384, and Fugue-512, as required by
NIST (as well as a weakened version of Fugue-256 that may be more amenable to cryptanalysis).
In its most generic form, an instance of Fugue depends on the following five parameters:

Output size n: the number of four-byte words in the output of Fugue, which is also the number
of four-byte words in the IV. In this document we assume that n ≤ 16 (i.e., the output size
can be at most 512 bits).2 For example, for Fugue-256 we have n = 8.

Work load k: the number of sub-rounds per round transformation. Recall that for every four-
byte input word we apply a round transformation consisting of several sub-rounds (where the
main component of a sub-round is the nonlinear SMIX permutation). Hence the parameter k
specifies the word-load factor, i.e., how many SMIX-es we apply per four-byte input word.
In Fugue-256 we have k = 2.

State size s: the number of four-byte columns in the internal state. We require that s be divisible
by 3 and by ⌈n/4⌉, and moreover that s ≥ max(6k, 2n). In Fugue-256 we have s = 30.

TIX-less rounds r: the number of rounds in the first phase of the final transformation G. These
rounds are the same as the round-transformationR that is used to process the inputs, except
that they contain no TIX step. In Fugue-256 we have r = 5.

2There is no technical reason that forbids longer outputs, but the specification becomes increasingly awkward
for longer outputs.

23

Final rounds t: the number of rounds in the second phase of the final transformation G. In
Fugue-256 we have t = 13.

5.1 The parameterized function F[n, k, s, r, t]

The parameterized hash function F[n, s, k, r, t] takes an input stream of 4m bytes (for somem ≥ 0)
and an IV of 4n bytes. Just like F-256, it begins by initializing a 4×s state matrix S using the IV,
then applies one round transformation R for every four-byte input word (in order), then applies
a final transformation G (which itself consists of two transformations — G1 and then G2), and
finally outputs part of the resulting final state. Below we denote the m four-byte input words by
P0, P1, . . . , Pm−1 and the n IV words by IV0,IV1, . . . ,IVn−1.

Initialize State.

For j = 0 to s− 1− n, set Sj = 0.
For j = 0 to n− 1, set Ss−n+j = IVj.

The Round Transformation R[s,k](P):

TIX[s, k](P);
Repeat k times:

{ ROR3;CMIX[s];SMIX; }
where

• The step SMIX is same as that defined for F-256, and is independent of the parameters.

• ROR3 is same as before, i.e. simultaneously set Si = Si−3, for all i = 1 to (s-1). In general
RORn will stand for simultaneously setting Si = Si−n, for all i = 1 to (s-1). All arithmetic
of the column indices of the state S is done modulo s.

• The step TIX[s, k](P) takes one four-bytes work of input P , and is defined as follows:

S6k−2 += S0;

S0 = P ;

S8 += S0;

For i = 0 to k − 2 step 1 :

S3i+1 += Ss−3k+3i

Note that, if k is one, then the loop is not executed at all.

24

• The definition of CMIX[s] is:

S0+ = S4; Ss/2 + = S4;

S1+ = S5; Ss/2+1+ = S5;

S2+ = S6; Ss/2+2+ = S6;

The final transformation G consists of a first phase G1 followed by second phase G2. The
first phase consists just of r rounds of TIX-less round transformations, namely:

• G1[k, s, r]: Repeat rk times: { ROR3; CMIX[s]; SMIX; }

The second phase needs some more explanation: Recall that F[n, k, s, r, t] needs to produce 4n
bytes of output, which it does by using n of the columns in the final state. These n columns are
partitioned into groups of four, and each group is taken from a different part of the state. Below
we denote the number of groups of four columns by N = ⌈n/4⌉ (and recall that we require that
the number of columns s is divisible by N).

If we need only four (or less) columns (N = 1) then we take S1..4 or a prefix of them. If we
need 5-8 columns (N = 2) then we take S1..4S s

2
.. s
2
+3 or a prefix of them. Similarly to get 9-12

columns (N = 3) we take S1..4S s
3
.. s
3
+3S 2s

3
.. 2s

3
+3 (or a prefix), etc.

Roughly speaking, a round of G2 applies SMIX to each of the above groups (with some
additional mixing), and rotates the entire state by one columns to the left.3 The additional
mixing roughly takes the leftmost column that resulted from the previous SMIX and adds it to
one columns in each of these groups. A more accurate description follows:

• G2[n, s, t]: Denote the number of groups as above by N = ⌈n/4⌉, and also denote p = s/N :

– If N = 1 then:

Repeat t times: { S4 += S0; ROR(s− 1); SMIX; }
S4 += S0;

– If N = 2 then:

Repeat t times: { S4 += S0; Sp += S0; ROR(p); SMIX;
S4 += S0; Sp+1+= S0; ROR(p− 1); SMIX; }

S4 += S0; Sp += S0;

– If N = 3 then:

Repeat t times: { S4 += S0; Sp += S0; S2p += S0; ROR(p); SMIX;
S4 += S0; Sp+1+= S0; S2p += S0; ROR(p); SMIX;
S4 += S0; Sp+1+= S0; S2p+1+= S0; ROR(p− 1); SMIX; }

S4 += S0; Sp += S0; S2p += S0;

3More accurately, we apply SMIX one column left of these groups, for example to S0..3 rather than S1..4.

25

– If N = 4 then:

Repeat t times:
{ S4 += S0; Sp += S0; S2p += S0; S3p += S0; ROR(p); SMIX;

S4 += S0; Sp+1+= S0; S2p += S0; S3p += S0; ROR(p); SMIX;
S4 += S0; Sp+1+= S0; S2p+1+= S0; S3p += S0; ROR(p); SMIX;
S4 += S0; Sp+1+= S0; S2p+1+= S0; S3p+1+= S0; ROR(p− 1); SMIX;

}
S4 += S0; Sp += S0; S2p += S0; S3p += S0;

Output. After the transformation G2, the output of F[n, k, s, r, t] consists of the columns
S1..4Sp..p+3S2p..2p+3 ... Namely, if n ≤ 4 then we just output S1..n, and if n > 4 then we output
as follows:

Output S1..4 ;
For i = 1 to N − 2, Output Sip .. ip+3 ;
Output as many of the columns Ss−p .. s−p+3 as needed

5.1.1 A Complete Specification of F[n, k, s, r, t]

With the above description, the complete specification of F[n, k, s, r, t] is as follows: On input
consisting of m four-byte words (m ≥ 0), denoted P0, P1, . . . Pm−1, and an initial vector of n
four-byte words, denoted IV0,IV1,...,IVn−1, the hash function F[n, s, k, r] maintains a 4× s state
matrix S and operates as follows:

For j = 0..(s − n− 1), Sj = 0;

For j = 0..(n − 1), S(s−n+j) = IVj.

For i = 1..m

{ TIX[s, k](Pi);

Repeat k times : {ROR3;CMIX[s];SMIX; }

}

G1[k, s, r];

G2[n, s, t];

If n ≤ 4 then Output S1..n;

else

Output S1..4;

For i = 1..(N − 2){ Output Sip .. ip+3; }

Output as many of the columns Ss−p .. s−p+3 as needed.

26

5.2 Parameter Specifications for Different Output Lengths

For the output lengths that are required by NIST, we specify the following setting of parameters:

• F-224 is F[n = 7, s = 30, k = 2, r = 5, t = 13].

• F-256 is F[n = 8, s = 30, k = 2, r = 5, t = 13].

• F-384 is F[n = 12, s = 36, k = 3, r = 6, t = 13].

• F-512 is F[n = 16, s = 36, k = 4, r = 8, t = 13].

In general, we recommend state size s = 30 for n ≤ 8, and s = 36 for n ∈ [9, 16]. In addition,
we define a weak version of F-256 (denoted wF-256) as F[n = 8, s = 30, k = 1, r = 5, t = 5]. Note
that the size of the state remains the same, but the work-load (i.e., number of SMIX-es per input
word) is cut to just one rather than two. The number of rounds in the second phase of the final
transformation G is also reduced to 5 from 13.

5.3 Fugue-224 and related functions

The function F-224 is exactly the same as the function F-256, except that the output is truncated
to the first 28 bytes. In other words, instead of outputting S1..4S15..18, the output of F-224 is only
S1..4S15..17.

The hash function Fugue-224 does the padding on the given input just as Fugue-256 does, but
uses a different fixed initial value. Specifically, the fixed initial value IV224 is defined (in matrix
notations) as

IV224 =









f4 62 ee e0 a1 9a bd
c9 86 39 74 12 43 8d
12 f7 e0 e3 7c d2 67
0d 57 1c cb 62 15 9a









That is, the first word in IV224 is IV2240 = f4 c9 12 0d, the second word is IV2241 =
62 86 f7 57, and so on upto the last word IV2247 = bd 8d 67 9a. This IV was obtained by
running F-224 with an all-zero IV and the one-word input 00 00 00 e0 (representing the decimal
number 224).

5.4 Fugue-384 and related functions

Recall that the function F-384 was defined as F[12, 36, 3, 6, 13]. Below we provide an explicit
specification for this function: F-384 takes as input a stream of 4m bytes (for some m ≥ 0) and
an initial vector IV of 48 bytes, and produces an output of 48 bytes, using a 4× 36 internal state
matrix. The the relevant basic transformations of the state are as follows:

27

1. TIX(I) is the following sequence of steps:

S16 += S0;

S0 = I;

S8 += S0;

S1 += S27; S4 += S30; .

2. The transformation CMIX is

S0 += S4; S1 += S5; S2 += S6;

S18 += S4; S19 += S5; S20 += S6;

On input of a stream of m 4-byte words (m ≥ 0) P1, P2 . . . , Pm, and an initial vector of 12
four-byte words IV0,IV1,...,IV11, the hash function F-384 operates as follows.

For j = 0..23, set Sj = 0;

For j = 0..11, set S(24+j) = IVj .

For i = 1..m

{ TIX(Pi);

Repeat 3 times : {ROR3;CMIX;SMIX; }

}

Repeat 18 times : {ROR3;CMIX;SMIX; }

Repeat 13 times :

{

S4+ = S0; S12+ = S0; S24+ = S0; ROR12; SMIX;

S4+ = S0; S13+ = S0; S24+ = S0; ROR12; SMIX;

S4+ = S0; S13+ = S0; S25+ = S0; ROR11; SMIX;

}

S4+ = S0; S12+ = S0; S24+ = S0;

Output S1..4S12..15S24..27

The function Fugue-384 takes as input a binary string of length between zero and 264 − 1,
and outputs a stream of 48 bytes. The input string is padded and length-encoded just as for
Fugue-256 (see Section 4.4), and the function F-384 is invoked on the encoded stream of bytes
(of length multiple of 4), and the following fixed initial vector IV384:

IV384 =









aa 31 a0 00 21 74 fa 47 e5 a9 bc 5c
61 25 1d 60 5e 1b 69 3e 02 9c 95 10
ec 2e b4 09 f4 5e 3e b0 ae 25 51 95
0d 1f c7 85 4a 9c 9a 40 8a e0 7c a1









28

This fixed IV was obtained by running F-384 with an all-zero IV and the one-word input
00 00 01 80 (representing the decimal number 384).

The function PR-Fugue-384, takes as input a binary string of length between 0 and 264 − 1,
and a key of length 48 bytes, and produces as output a 48 byte value. The input is first padded
and length-encoded, just as for Fugue-384, and then the function F-384 is invoked on this encoded
input, along with the given key as the 48 byte IV. The output of this invocation of F-384, is the
output of PR-Fugue-384.

The function C-Fugue-384, takes as input a binary string of length exactly 512 bits, and an
initial vector of 48 bytes, and produces an output of 48 bytes. The input is treated as a stream
of 64 bytes, and the output of C-Fugue-384 is same as the output of F-384 on this input, and the
given initial vector. Note that the input is not padded, as it is already of the correct length.

5.5 Fugue-512 and related functions

Recall that the function F-512 was defined as F[16, 36, 4, 8, 13]. Below we provide an explicit
specification for this function: F-512 takes as input a stream of 4m bytes (for some m ≥ 0) and
an initial vector IV of 64 bytes, and produces an output of 64 bytes, using a 4× 36 internal state
matrix. The the relevant basic transformations of the state are as follows:

1. TIX(I) is the following sequence of steps:

S22 += S0;

S0 = I;

S8 += S0;

S1 += S24; S4 += S27; S7 += S30;

2. The transformation CMIX is

S0 += S4; S1 += S5; S2 += S6;

S18 += S4; S19 += S5; S20 += S6;

29

On input of a stream of m 4-byte words (m ≥ 0) P1, P2 . . . , Pm, and an initial vector of 16
four-byte words IV0,IV1,...,IV15, the hash function F-512 operates as follows.

For j = 0..19, set Sj = 0;

For j = 0..15, set S(20+j) = IVj.

For i = 1..m

{ TIX(Pi);

Repeat 4 times : {ROR3;CMIX;SMIX; }

}

Repeat 32 times : {ROR3;CMIX;SMIX; }

Repeat 13 times :

{

S4+ = S0; S9 + = S0; S18+ = S0; S27+ = S0; ROR9; SMIX;

S4+ = S0; S10+ = S0; S18+ = S0; S27+ = S0; ROR9; SMIX;

S4+ = S0; S10+ = S0; S19+ = S0; S27+ = S0; ROR9; SMIX;

S4+ = S0; S10+ = S0; S19+ = S0; S28+ = S0; ROR8; SMIX;

}

S4+ = S0; S9+ = S0; S18+ = S0; S27+ = S0;

Output S1..4S9..12S18..21S27..30

The function Fugue-512 takes as input a binary string of length between zero and 264 − 1,
and outputs a stream of 64 bytes. The input string is padded and length-encoded just as for
Fugue-256 (see Section 4.4), and the function F-512 is invoked on the encoded stream of bytes
(of length multiple of 4), and the following fixed initial vector IV512:

IV512 =









88 e6 c5 ac d9 b6 06 4a aa dd ca 43 25 95 da e1
07 16 d3 9a 15 ee e8 92 c6 b2 e6 7f ea 1f 6e 3e
a5 af e4 b0 f1 cc 02 ef e2 13 58 20 78 dd d1 35
7e 75 db 27 17 54 0b d1 c9 98 38 3f e7 d6 1d 67









This fixed IV was obtained by running F-512 with an all-zero IV and the one-word input
00 00 02 00 (representing the decimal number 512).

The function PR-Fugue-512, takes as input a binary string of length between 0 and 264 − 1,
and a key of length 64 bytes, and produces as output a 64 byte value. The input is first padded
and length-encoded, just as for Fugue-384, and then the function F-512 is invoked on this encoded
input, along with the given key as the 64 byte IV. The output of this invocation of F-512, is the
output of PR-Fugue-512.

The function C-Fugue-512, takes as input a binary string of length exactly 512 bits, and an
initial vector of 64 bytes, and produces an output of 64 bytes. The input is treated as a stream

30

of 64 bytes, and the output of C-Fugue-512 is same as the output of F-512 on this input, and
the given initial initial vector. Note that the input is not padded, as it is already of the correct
length.

5.6 A Weaker Version of Fugue-256

Recall that the function wF-256 was defined as F[8, 30, 1, 5, 5]. Below we provide an explicit
specification for this function: F-256 takes as input a stream of 4m bytes (for some m ≥ 0) and
an initial vector IV of 32 bytes, and produces an output of 32 bytes, using a 4× 30 internal state
matrix. The the relevant basic transformations of the state are as follows:

1. TIX(I) is the following sequence of steps: S4 += S0; S0 = I; S8 += S0;.

2. The transformation CMIX is: S0..2 += S4..6; S15..17 += S4..6;

On input of a stream of m 4-byte words (m ≥ 0) P1, P2 . . . , Pm, and an initial vector of 8
four-byte words IV0,IV1,...,IV7, the hash function F-256 operates as follows.

For j = 0..21, set Sj = 0;

For j = 0..7, set S(22+j) = IVj;

For i = 1..m

{ TIX(Pi);

ROR3;CMIX;SMIX;

}

Repeat 5 times : {ROR3;CMIX;SMIX; }

Repeat 5 times :

{

S4+ = S0; S15+ = S0; ROR15; SMIX;

S4+ = S0; S16+ = S0; ROR14; SMIX;

}

S4+ = S0; S15+ = S0;

Output S1..4S15..18

31

Part II

Implementation

6 Software and Hardware Efficiency

6.1 Implementing Fugue on 32-bit Machines

The main construct in Fugue is the SMIX step. It itself is composed of the non-linear S-Box,
and the Super-Mix linear transformation. Fugue has been designed, with ideas from AES to get
a fast implementation on 32-bit machines. Indeed, the S-Box substitution followed by the linear
transformation can be pre-computed in four 32-bit tables of 256 entries each. From the high
level description of the Super-Mix transformation in Section 1.5, it should be clear how these four
tables can be used to implement a highly optimized version of Fugue.

Moreover, since Fugue over different hash lengths, can be defined in a parameterized fashion,
with the same underlying building blocks, and namely SMIX, the optimized implementations
scale nicely. The performance figures for 32-bit Intel Machines are shown in Table 1, and compared
with Brian Gladman’s highly optimized SHA-2 implementations [2].

One of the main limitations on Intel’s 32-bit machines is the limited availability of general
purpose registers. Therefore, an assembly inline C code, which instructs the machine to reserve
registers for specific tasks in the Super-Mix transformation can lead to a much better implemen-
tation than just an ANSI C implementation in older machines.

6.2 Implementing Fugue on 64-bit Machines

Our optimized implementation of Fugue for 32-bit Intel Architectures, runs fairly well on the 64-
bit Intel Architectures. We have not yet capitalized on the 64-bit word size, although we suspect
that the ANSI C implementation does take advantage of the extra general purpose registers.

6.3 Implementing Fugue on 8-bit Architectures

Implementing Fugue on an 8-bit processor is rather straightforward. We can use more or less the
same implementation as for AES, with only small changes to account for the differences between
the AES round function and the SMIX of Fugue.

The RAM requirements include the 120-byte state of Fugue-256 or Fugue-224 (or a 144-byte
state for Fugue-384 and Fugue-512), a few more counters and indexes, and 16-20 bytes for scratch
calculations, all of which should fit comfortably in under 200 bytes of RAM.

In terms of performance, the similarity between the SMIX of Fugue and the AES round
function makes is easy to relate the performance of Fugue to that of AES. Specifically, in AES
each byte (after the S-box substitution) is multiplied by 1, 2, and 3 (over GF(28)) and these

32

Table 1: Various Software Implementation Speeds (MBytes/sec)

No. of Input bytes 256 1K 16K

X86 32†

SSE C Fugue-256 Intel (WIN) Compiler v11.11 55 85 100
ANSI C Fugue-256 Intel (WIN) Compiler v11.11 55 75 92

Visual Studio 20082 40 65 70

ANSI C Fugue-384 Intel (WIN) Compiler v11.11 27 45 60
ANSI C Fugue-512 Intel (WIN) Compiler v11.11 23 37 45

ANSI C SHA-256b Intel (WIN) Compiler v11.13 126

X86 64†

ANSI C Fugue-256 icc v11.1(LINUX)4 64 100 114

ANSI C Fugue-384 icc v11.1 (LINUX)4 36 57 64
ANSI C Fugue-512 icc v11.1(LINUX)4 32 42 48.5

ANSI C SHA-256b icc v11.1 (LINUX)4 138
† Intel Core 2 T7700 (65nm) 2.4GHz
b Brian Gladman’s Code [2]
1 icl /O2 /arch:ia32
2 cl /O2 /Oy
3 icl /O2 /arch:SSSE3
4 icc -O3

33

different multiples are xor-ed into four different bytes. In SMIX, each byte is multiplied by 1,4,
and 7 and these different multiples are usually xor-ed into seven different bytes (except the bytes
on the diagonal that are only xor-ed into four bytes). Fugue has some additional overhead since
one may need to explicitly perform the row-shift (at least occasionally), we need also to implement
the CMIX operation (which consists of 24 byte-xors) and the TIX operation (consisting of four
byte movements and 12 to 24 byte-xors), and we also need some index manipulation to implement
the column-rotate operations. (On the other hand, we do not have the key-add operation that
takes 16 byte-xors in AES and of course we do not have to implement key-scheduling.)

All in all, comparing an implementation of Fugue to an AES implementation that pre-computes
the key-schedule, we believe that a sub-round of Fugue should take less that twice the cycles of
an AES round function. Hence the final transformation G of Fugue-256 and Fugue-224 (which
consists of 5 + 13 × 2 = 36 applications of SMIX) should take about the same time as AES-256
encryption of five blocks (using an implementation that pre-computes the key-scheduling), and
the round transformation (that consists of two SMIX-es) should take about 25% of the time
of one AES-256 encryption. Using these estimates, we conclude that computing the underlying
F-256 on a 16-byte message will be about six times slower than computing AES-256 on the same
message, whereas for long messages the speed of F-256 will approach that of AES-256.

In [11] it was reported that an implementation of AES-128 on the 8-bit 6805 CPU core would
take about 15000 cycles to encrypt one block, including the time for key-setup. Assuming that
without the key-schedule we will have 10000 cycles for AES-128 encryption (or 14000 for AES-
256 encryption), and using our estimate from above for the relative speed of Fugue vs. AES, we
estimate that hashing a 128-bit message with Fugue-256 would take about 84000 cycles on the
same 6805 CPU core. For longer messages, the performance of Fugue will improve to less than
20000 cycles per sixteen bytes of message.

6.4 Hardware Implementations of Fugue

We implemented Fugue-256 in the Hardware Design Language Verilog, and optimized the im-
plementation for three different memory-speed tradeoffs. The Verilog code can be complied into
gates using various synthesis tools. In our case, we targeted the IBM Standard Cell Library for
IBM’s Copper (Cu-8, 90nm, bulk silicon) technology. We then used approximation tools to esti-
mate the actual cell count required to implement these various tradeoffs. For comparison sake,
we also implemented SHA-256 with the same library and for the same technology.

The estimated cell count, the number of flip-flops, the clock speed possible, ad the resulting core
speed, and the asymptotic hash speed per word of input are shown in Table 2. The implementa-
tions of Fugue-256 include three main variants: (a) all four columns of the SMIX transformation
are handled together (SUPER4), (b) SMIX transformation is handled two columns at a time
(SUPER2), and (c) SMIX transformation is handled one column at a time. Further, the basic
S-Box, which is identical to the AES S-Box, and which is the most expensive component to imple-
ment, can have various implementations. The suffix “ P” in the Table refers to the IBM data path
library cells to optimize S-Box lookups. The suffix “ F” refers to a similar implementation but

34

Table 2: Hardware Estimates for Various Fugue-256 and SHA-256 Implementations

Core #Cells #Flip-flops Clocks/step Clock Speed Core Speed Hash Speed

F-256: (clk/smix) (ns/clk) (ns/smix) (ns/word)
SUPER4 P 109854 1002 1 1.15 1.15 2.3
SUPER4 F 108990 1002 1 1.30 1.30 2.60
SUPER4 L 73774 1002 1 2.00 2.00 4.00
SUPER2 R 67465 1228 3 1.15 3.45 6.90
SUPER2 L 65062 1131 2 2.00 4.00 8.00
SUPER1 R 60420 1181 5 1.15 5.75 11.50
SUPER1 L 59216 1132 4 2.00 8.00 16.00

SHA-256: (clk/step) (ns/clk) (ns/step) (ns/word)
HASHCORE 46685 1114 2 1.30 2.60 10.4

with a different tradeoff. The suffix “ L” refers to a composite field arithmetic implementation of
the AES S-Box [21]. The suffix “ R” refers to a pipelined implementation of the composite field
implementation.

6.5 Other Implementations of Fugue

We expect Fugue implementations to benefit from many of the current trends in computer archi-
tectures. Specifically, below we comment briefly about the inherent parallelizability of Fugue and
the potential for significant speedup using Multi-media extension to common architectures.

Parallelism. Just like the AES round function, the Fugue SMIX operation consists of sixteen
nearly-independent threads. Namely, each of the sixteen bytes that are involved can be used
independently to compute a 16-byte vector (with upto seven non-zero bytes) and the result of the
SMIX transformation is just the xor of all these sixteen vectors. A multi-threaded architecture
can take advantage of this inherent parallelism by assigning different input bytes to different
threads.

Advanced byte-manipulation. Fugue implementations will also benefit from architectures
such as AltiVec or SSE that allow parallel lookups and byte permutations in vectors. Using these
tools was reported to allow an order of magnitude improvement for the software performance of
the AES-based Whirlpool [7], and the performance gains for Fugue should similar. In fact, Fugue
stands to benefit even more from byte-permutation instructions than AES, since the SMIX
transformation includes also a matrix-transpose operation (and an explicit row-shift).

35

Part III

Security Analysis

7 The Super-Mix Matrix and Related Linear Codes

The 16× 16 matrix N representing the Super-Mix linear transformation is associated with some
linear codes that will be useful in the analysis of Fugue. Specifically, viewing (some of) the rows
of N as parity check equations leads to linear codes that are either MDS or close to it. Recall
that a linear code of dimension k and length n (i.e., an [n, k]-code) has a minimum distance of at
most n− k+1, and a linear code that attains this minimum distance is called maximum distance
separable, or MDS code. Below we provide some background on linear codes and then discuss
the codes that are associated with the Super-Mix matrix N.

7.1 Linear Codes

An [n, k] linear code over a field F is given by n− k linearly independent parity check equations
over F in n variables. Representing these equations by a (n− k)× n parity check matrix H, the
corresponding code C consists of all the column vectors c of length n such that H · c = 0. Since
the rank of H is at most n−k, there must exist a non-zero column vector c of weight n−k+1 (or
less) such that H · c = 0. Hence the minimum distance of C is at most n− k+1. (We remind the
reader that the weight of a vector is the number of non-zero entries in it, and for linear codes the
minimum distance of a code is same as the minimum weight of its non-zero codewords.) Moreover,
if H has any (n− k)× (n− k) sub-matrix of less than full rank, then there is a non-zero vector c
of weight at most n−k such that H · c = 0. It follows that the minimum distance of C is n−k+1
if and only if every (n − k) × (n − k) sub-matrix of H is of full rank. As we mentioned above,
such codes are called MDS.

Below we will also be interested in codes that are not MDS, but almost-MDS, i.e. where the
minimum distance is close to n − k + 1. Recalling that the minimum distance of C equals the
size of the smallest non-empty set of columns that are NOT linearly independent, motivates the
following definitions:

Definition 7.1 Fix an [n, k] linear code C with a parity-check matrix H, and an integer m ≤ n−k.
The min-rankm of C is the minimum rank among all (n− k)×m sub-matrices of H. We further
define maxmin-rank(C) as the largest m for which min-rankm = m.

Observing that min-rankm = m if and only if every size-m subsets of columns of H is linearly
independent, we have the following lemma:

Lemma 7.2 The minimum distance of a linear code C is exactly maxmin-rank(C) + 1.

36

Below we will sometimes find it useful to consider also min-rankm for integers m larger than
the minimum distance of C. Specifically, we use it to bound the number of codewords in C with
certain specified indexes fixed to zero.

Lemma 7.3 Let C be a [n, k]-code, let I be some fixed subset of the indexes 1 through n, and
denote m = n− |I|. Then the dimension of the linear subspace L = {c ∈ C : ci = 0 for all i ∈ I}
is at most m−min-rankm(C).

Proof : Below we denote by cI the vector c restricted to the indexes in I, and by cĪ the vector
c excluding all the indexes in I. Consider now H, the (n − k) × n parity-check matrix of C. We
denote by HI the sub-matrix of H consisting only of the columns corresponding to indexes in I,
and by HĪ we denote the sub-matrix obtained by excluding all these columns.

Clearly for every vector c we have H · c = HI · c
I +HĪ · c

Ī , which means that when cI = 0 then
H · c = HĪ · c

Ī . Hence we can re-write our linear subspace as L = {c : cI = 0 and HĪ · c
Ī = 0}.

Moreover, since the entries corresponding to I must be fixed to zero, then this space has the same
dimension as its projection on Ī, namely

dim(L) = dim
({

cĪ : HĪ · c
Ī = 0

})

Now, HĪ is an (n − k) ×m sub-matrix of H, so it has rank at least min-rankm(C), which means
that its null space has dimension at most m−min-rankm(C). �

7.2 Linear Codes Related to the Super-Mix Matrix N

Recall that we view the input (and output) of the Super-Mix transformation alternatively as a
4 × 4 matrix or a 16-element column vector (which is left-multiplied by the 16 × 16 matrix N).
The mapping between these representations is done by scanning the 4× 4 matrices column-wise.

One of the key properties of the Super-Mix is that if a non-zero output has three zero columns,
then the corresponding input has very few zeroes among its 16 bytes. This can be phrased as a
coding property by using sub-matrices of the Super-Mix matrix N as parity check matrices. More
generally, we look at linear codes corresponding to the output of the Super-Mix having one, two,
or three zero columns.

Three zero columns. We first define four length-n linear codes over GF(28), each correspond-
ing to one of the four columns in the output of the Super-Mix being zero. Specifically, for
m = 0, 1, 2, 3 we denote by Īm the indexes corresponding to all bytes except the ones in column
m, when scanning the 4× 4 output matrix column-wise.

Ī0 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
Ī1 = {0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15}
Ī2 = {0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15}
Ī3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

37

With these notations, the linear subspaces of inputs to the Super-Mix that result in all but one
of the columns of the output being zero are

C0 = {c : NĪ0 · c = 0}

C1 = {c : NĪ1 · c = 0}

C2 = {c : NĪ2 · c = 0}

C3 = {c : NĪ3 · c = 0}

(4)

(where NX is the sub-matrix of N consisting of only the rows indexed by X).

Since N is non-singular then all the parity check equations are linearly independent, hence
all of these codes have dimension 4 (i.e., they are all [16, 4] codes). Further, we used computer
program to find the minimum distance of these codes, and found that C0 is an MDS code, namely
it has minimum distance 16− 4 + 1 = 13. The code C1, C2 and C3 are almost MDS, in the sense
that their minimum distance is 12.

Two zero columns and one zero column. In the analysis of Fugue we also consider some
specific subsets one two or one output columns that are zero. The codes corresponding to these
subsets are defined similarly to the code of the three-zero-columns above. Specifically, we set:

Ī0,1 = { 8, 9, 10, 11, 12, 13, 14, 15}
Ī1,2 = { 0, 1, 2, 3, 12, 13, 14, 15}
Ī0,1,2 = {12, 13, 14, 15}

where ĪS indexes all the bytes except the ones in the columns corresponding to S, and then define
the linear codes:

C0,1 = {c : NĪ0,1 · c = 0}

C1,2 = {c : NĪ1,2 · c = 0}

C0,1,2 = {c : NĪ0,1,2 · c = 0}

(5)

Clearly, C0,1 and C1,2 are [16, 8]-codes and C0,1,2 is a [16, 12]-code, and we found their minimum
distances to be 6,7, and 2, respectively. We also used a computer program to find the min-rankm
values for all these codes for all values of m from the maxmin-rank and up. These are summarized
in Table 3.

Finally, we mention, that the 4× 4 matrix M in section 4.2, which is the alternate to the AES
mixing matrix, continues to be an MDS matrix, i.e. it has the nice Mix-Column properties of
AES. In other words, for any non-zero (column) vector v of four GF(28) elements, the number of
non-zero entries in v and the vector (M · v) together, is at least 5.

7.3 Implications for the Differential Properties of SMIX

The codes Ci and their properties are used extensively in the differential analysis of Fugue. Here
we provide some illustrative examples of their use, more details are found in Section 10.

38

Table 3: Min-Rankm values for Various Linear Codes

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C0 - - - - - - - - - - - 12 12 12 12 12

C1 - - - - - - - - - - 11 11 12 12 12 12

C2 - - - - - - - - - - 11 11 12 12 12 12

C3 - - - - - - - - - - 11 11 12 12 12 12

C0,1 - - - - 5 5 6 6 7 7 8 8 8 8 8 8

C0,2 - - 3 3 4 4 5 6 7 7 7 8 8 8 8 8

C0,3 - - - - 5 5 6 6 7 7 7 8 8 8 8 8

C1,2 - - - - - 6 6 7 7 7 8 8 8 8 8 8

C1,3 - - - - 5 5 6 6 7 7 8 8 8 8 8 8

C2,3 - - 3 3 4 5 6 6 7 7 7 8 8 8 8 8

C0,1,2 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4
† The shaded entries are maxmin-ranks (i.e., one less than the corresponding minimum distances).

Example 1: three zero output columns. Consider the situation just before the successful
conclusion of a collision-finding attack: the attacker provided two different messages that induced
an almost-collision on the internal state of Fugue: only one column is different between the two
internal states, and this difference will be written over in the next TIX step.

Looking at the last SMIX operation in processing the two messages, the four output columns
for the first message are called v = [v0, v1, v2, v3], and for the second message v′ = [v′0, v

′
1, v

′
2, v

′
3].

The column that will be written over in the next TIX are v0 and v′0, so we know that these are
the only columns that differ between these two states. Namely we have v0+v′0 6= 0 but vi+v′i = 0
for i = 1, 2, 3.

Let us denote the corresponding input columns to this last SMIX step for the two messages
by u = [u0, u1, u2, u3] and u′ = [u′0, u

′
1, u

′
2, u

′
3], and the columns after byte-substitution but before

the linear Super-Mix are denoted û = [û0, û1, û2, û3] and û′ = [û′0, û
′
1, û

′
2, û

′
3], respectively. Since

Super-Mix is linear, then we know that

N · (û+ û′) = v + v′ = [v0 + v′0 0 0 0]

Therefore û+ û′ (when viewed as a byte-vector) belongs to the code C0, that has minimum weight
13. In other words, and at least 13 of the bytes must differ between û and û′ and at most three
bytes can be the same. Since the S-box is a permutation, then the same applies also to the byte
vectors u and u′, namely they agree in at most 3 bytes. This implies in particular that all the
four-byte words u0 + u′0, u1 + u′1, u2 + u′2, and u3 + u′3 must be non-zero.

39

Moreover, the above argument also implies that in the last SMIX step, the S-box was applied
to at least 13 non-zero differences, yet the attacker was able to make the output difference in all
these 13 (or more) non-zero positions somehow “hit” a codeword of C0.

Example 2: Counting zeros in the SMIX input. The argument from above about “hitting”
a C0 codeword can be sharpened further: Suppose that the attacker was able to freely choose the
input difference u+ u′, how should it go about choosing this difference? In particular, how many
bytes should u and u′ agree on (from the attacker’s perspective)?

The argument above says that u + u′ can have at most 3 zero bytes, but they can have less.
A-priory it may seem that having u and u′ agree on exactly three bytes would be the best choice
for the attacker: Zero input difference is always mapped by the S-box to zero output difference,
whereas obtaining any other input/output difference would take some work, so maximizing the
number of zeros in the input sounds like a good strategy.

However, recall that the attacker does not need to “hit” one particular output difference of
the S-box, all it needs is any codeword of C0. Moreover, from Table 3 we can get bounds on the
number of C0 codeword that have zeros in any fixed set of positions. In particular, we get the
following bounds:

• If u and u′ agree on exactly three bytes (say, in positions i1, i2, i3), then the attacker needs to
“hit” C0 codewords that equal zero in these three positions. Looking up the entry in Table 3
corresponding to C0 and m = 16 − 3 = 13, we see that min-rank13(C0) = 12. Applying
Lemma 7.3 we get that dimension of these codewords is at most 13 − 12 = 1. Hence there
are at most 256 such codewords.

• If u and u′ agree on exactly two bytes (say, in positions i1, i2), then the attacker needs to
“hit” C0 codewords that equal zero in these two positions. Looking up the entry in Table 3
corresponding to C0 andm = 16−2 = 14, we see that min-rank14(C0) = 12, so the dimension
of these codewords is at most 14− 12 = 2. Hence there are at most 216 such codewords.

• Similarly, if u and u′ agree on exactly one byte then we check that min-rank15(C0) = 12,
and conclude that the attacker must “hit” a codeword taken from a space of dimension at
most 15− 12 = 3, so there are at most 224 such codewords.

• If u and u′ disagree on all bytes then the dimension of codewords is 4 (which is the entire
code) and we have 232 codewords.

Given these bounds, we can now use the following heuristic to determine the best strategy for
the attacker: since the best non-zero differential characteristic of the AES S-box has probability
2−6, we assign “probability” of 2−6k for hitting any particular codeword with k non-zero bytes.
Hence by choosing three zero-bytes in u+u′ the attacker can get the “probability” of hitting a C0

codeword as high as 256×2−6×13 = 2−70. By choosing a two-byte-zero difference it can be as much

40

as 216−6×14 = 2−68, one-byte-zero gives 224−6×15 = 2−66, and all non-zero gives 232−6×16 = 2−64.
Hence the “optimal strategy” for the attacker may be to choose u+u′ to be non-zero everywhere.4

8 Diffusion Properties of Fugue-256

An important advantage of the SMIX transformation of Fugue over the AES round function is
that the Super-Mix transformation entails stronger mixing than the Column-Mix of AES (since
the four columns are not mixed independently). This results in very strong diffusion properties, on
which we elaborate in this section. All the data in this section was obtained by running computer
programs that track the diffusion of bytes through the execution of F-256.

8.1 Diffusion of input bytes

One consequence of the strong mixing in Fugue is that each input byte in Fugue propagates very
quickly to the entire state. By the time that input word Pi is entered into F-256, the input bytes
from Pi−3 already influenced all the state bytes in a non-linear fashion.

This is illustrated in Table 4, where the diffusion of the third byte P 3 is depicted. (The byte
P 3 has the slowest initial diffusion among the four input bytes). This table follows the influence
of that input byte via three round functions (that include six SMIX-es). Before every SMIX, it
records for each byte of the state whether or not it is influenced by that input byte, and moreover
the “level of non-linearity” of that influence. Namely, if we write an expression for the value of that
state byte in terms of the input byte P 3 (with all the other relevant bytes treated as constants),
what is the largest level of nesting that the S-box[⋆] appears in this expression. Equivalently, if
we track all the paths through which the input byte P 3 influences that state-byte, what is the
largest number of SMIX-es that appear on any of these paths. A blank entry means that P 3 has
no influence over that state byte, a 0-entry means this state byte depends linearly on P 3 (i.e.,
B = linear(P 3)), 1-entry means that B = linear(P 3) + linear(S-box[linear(P3)]), etc.

Note the numbering scheme in this table, which we use often throughout this report: The last
SMIX is always denoted SMIX[0], and this is the SMIX just before a TIX step. The SMIX-
es just before the previous TIX steps are then denoted SMIX[−1], SMIX[−2], etc. The other
SMIX-es (i.e., the ones just after the TIX steps) are denoted SMIX[−0.5], SMIX[−1.5], etc.
The reason for this numbering scheme is that in our analysis we would often begin at the end
of a (presumably successful) collision attack that ends with a TIX step, and then examine how
the state evolves backward through the SMIX-es. We explicitly marked the location of the TIX
steps to make the notations easier to follow.

One can observe that before every other SMIX, the column S3 of the state does not depend

4This argument is a bit simplistic, ignoring the fact that most non-zero input/output differences only have
probability 2−7 or zero. It is possible to somewhat reduce the probabilities above using a more elaborate argument,
but we do not know how to improve them by much.

41

Table 4: Diffusion of input byte P 3 in F-256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

<TIX>Before SMIX[-3.5]

[0]

[1]

[2]

[3] 0 0

Before SMIX[-3]

[0] 1 1 1

[1] 1 1 1

[2] 1 1 1

[3] 1 0

<TIX>before SMIX[-2.5]

[0] 2 2 2 2 2 2 1 2 2 2 2 1

[1] 2 2 2 2 2 2 1 2 2 2 2 1

[2] 2 2 2 2 2 2 1 2 2 2 2 1

[3] 2 2 2 2 2 2 2 2 2 2

before SMIX[-2]

[0] 3 3 3 3 3 3 3 2 2 2 1 3 3 3 2 2 2 1

[1] 3 3 3 3 3 3 3 2 2 2 1 3 3 3 2 2 2 1

[2] 3 3 3 3 3 3 3 2 2 2 1 3 3 3 2 2 2 1

[3] 3 3 3 3 3 3 3 2 2 2 3 3 3 2 2 2

<TIX>before SMIX[-1.5]

[0] 4 4 4 4 4 4 3 3 3 2 2 2 4 4 4 4 3 3 3 2 2 2 1

[1] 4 4 4 4 4 4 3 3 3 2 2 2 4 1 4 4 4 3 3 3 2 2 2 1

[2] 4 4 4 4 4 4 3 3 3 2 2 2 4 4 4 4 3 3 3 2 2 2 1

[3] 4 4 4 4 4 4 3 3 3 2 2 2 4 4 4 4 3 3 3 2 2 2

before SMIX[-1]

[0] 5 5 5 5 5 5 5 4 4 4 3 3 3 2 2 5 5 5 4 4 4 3 3 3 2 2 2 1

[1] 5 5 5 5 5 5 5 4 4 4 3 3 3 2 2 5 5 5 4 4 4 3 3 3 2 2 2 1

[2] 5 5 5 5 5 5 5 4 4 4 3 3 3 2 2 5 5 5 4 4 4 3 3 3 2 2 2 1

[3] 5 5 5 5 5 5 5 4 4 4 3 3 3 2 2 5 5 5 4 4 4 3 3 3 2 2 2

<TIX>before SMIX[-0.5]

[0] 6 6 6 6 6 6 5 5 5 4 4 4 6 3 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

[1] 6 6 6 6 6 6 5 5 5 4 4 4 6 3 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

[2] 6 6 6 6 6 6 5 5 5 4 4 4 6 3 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

[3] 6 6 6 6 6 6 5 5 5 4 4 4 6 3 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

before SMIX[0]

[0] 7 7 7 7 7 7 7 6 6 6 5 5 5 4 4 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3

[1] 7 7 7 7 7 7 7 6 6 6 5 5 5 4 4 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3

[2] 7 7 7 7 7 7 7 6 6 6 5 5 5 4 4 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3

[3] 7 7 7 7 7 7 7 6 6 6 5 5 5 4 4 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3

<TIX>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Recorded for each state byte is the largest number of SMIX-es through which it is influenced by the input P 3.

42

on the input byte that we track. (Indeed that column is just set to equal the newer input word
from that round.) On the other hand, all the other input bytes into the SMIX-es are always
influenced by every input byte (with a monotonically increasing “level of non-linearity”).

8.2 Diffusion of state bytes

A related measure of diffusion is how state bytes influence each other through the round function.
This is tracked in Table 5. Starting from the state of F-256 just prior to an input word, this
table tracks how many of these “initial state bytes” influence (in a non-linear fashion) each byte
of the state at some later time. Namely, consider freezing the execution just after some SMIX,
and focusing on one particular byte of the state. The value of that byte can be written as some
expression involving all the “initial state bytes” and the input bytes that came later, and we
ask how many of these “initial state bytes” appear in the expression inside at least one S-box[⋆].
Equivalently, if we we track all the paths through which all these “initial state bytes” influences
the state-byte that we focus on, then how many of these initial bytes have paths of influence that
go through at least one SMIX.

Again, we can observe that the bytes that are output by an SMIX, are influenced by a rapidly
increasing number of the “initial state bytes”. Specifically, considering the SMIX transformation
just prior to TIX(Pi), the bytes that are output by this SMIX depend (non-linearly) on:

• 14 or more of the bytes from the state just prior to TIX(Pi−1),

• 41 or more of the bytes from the state just prior to TIX(Pi−2),

• 65 or more of the bytes from the state just prior to TIX(Pi−3),

• 89 or more of the bytes from the state just prior to TIX(Pi−4),

• 109 or more of the bytes from the state just prior to TIX(Pi−5).

8.3 Diffusion in the TIX-less rounds G1

When analyzing “external collisions” (cf. Section 10) and the properties of Fugue as a PRF, it
is also important to consider the diffusion properties of the final transformation G. We begin by
looking at the first phase of that final transformation, namely the five “TIX-less” rounds.

These rounds are tracked in Table 6. Starting right after the last TIX step and ending after
the end of the G1 transformation (i.e., after the five TIX-less rounds), this table records how
many “initial bytes” influence each of the “final bytes” (after G1), and with what “level of non-
linearity.” Specifically, the final bytes are listed column by column, and for each byte there are
three numbers: First is the number of initial bytes that this final byte depends on in a non-linear
fashion (i.e., via at least one SMIX). Next is the number of initial bytes that this final byte
depends on via at least five SMIX-es, and finally the number of initial bytes that it depends on

43

Table 5: Diffusion statistics of the round transformations R in F-256

After SMIX[-4.5]

6 5 5 2 0

6 5 2 5 0

6 2 5 5 0

3 6 6 6 0

After SMIX[-4.0]

18 17 17 14 5 5 2 0 0 0 0 0 0 0 0 5 5 2 0 0 0 0 0 0 0 0 0 0 0 0

18 17 14 17 5 2 5 0 0 0 0 0 0 0 0 5 2 5 0 0 0 0 0 0 0 0 0 0 0 0

18 14 17 17 2 5 5 0 0 0 0 0 0 0 0 2 5 5 0 0 0 0 0 0 0 0 0 0 0 0

15 18 18 18 6 6 6 0 0 0 0 0 0 0 0 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0

After SMIX[-3.5]

34 29 29 19 17 17 14 5 5 2 0 0 0 18 0 17 17 14 5 5 2 0 0 0 0 0 0 0 0 0

31 30 23 33 17 14 17 5 2 5 0 0 0 18 0 17 14 17 5 2 5 0 0 0 0 0 0 0 0 0

31 20 33 30 14 17 17 2 5 5 0 0 0 18 0 14 17 17 2 5 5 0 0 0 0 0 0 0 0 0

28 34 31 31 18 18 18 6 6 6 0 0 0 15 0 18 18 18 6 6 6 0 0 0 0 0 0 0 0 0

After SMIX[-3.0]

42 45 45 42 29 29 19 17 17 14 5 5 2 0 0 29 29 19 17 17 14 5 5 2 0 0 0 0 0 0

45 44 41 41 30 23 33 17 14 17 5 2 5 0 0 30 27 33 17 14 17 5 2 5 0 0 0 0 0 0

45 41 41 44 20 33 30 14 17 17 2 5 5 0 0 20 33 30 14 17 17 2 5 5 0 0 0 0 0 0

42 42 45 45 34 31 31 18 18 18 6 6 6 0 0 34 31 31 18 18 18 6 6 6 0 0 0 0 0 0

After SMIX[-2.5]

58 53 53 47 45 45 42 29 29 19 17 17 14 42 5 45 45 42 29 29 19 17 17 14 5 5 2 0 0 0

55 54 47 57 44 41 41 30 23 33 17 14 17 45 2 44 41 41 30 27 33 17 14 17 5 2 5 0 0 0

55 44 57 54 41 41 44 20 33 30 14 17 17 45 5 41 41 44 20 33 30 14 17 17 2 5 5 0 0 0

52 58 55 55 42 45 45 34 31 31 18 18 18 42 6 42 45 45 34 31 31 18 18 18 6 6 6 0 0 0

After SMIX[-2.0]

66 69 69 66 53 53 47 45 45 42 29 29 19 17 17 53 53 47 45 45 42 29 29 19 17 17 14 5 5 2

69 68 65 65 54 47 57 44 41 41 30 23 33 17 14 54 51 57 44 41 41 30 27 33 17 14 17 5 2 5

69 65 65 68 44 57 54 41 41 44 20 33 30 14 17 44 57 54 41 41 44 20 33 30 14 17 17 2 5 5

66 66 69 69 58 55 55 42 45 45 34 31 31 18 18 58 55 55 42 45 45 34 31 31 18 18 18 6 6 6

After SMIX[-1.5]

82 77 77 71 69 69 66 53 53 47 45 45 42 66 29 69 69 66 53 53 47 45 45 42 29 29 19 17 17 14

79 78 71 81 68 65 65 54 47 57 44 41 41 69 23 68 65 65 54 51 57 44 41 41 30 27 33 17 14 17

79 68 81 78 65 65 68 44 57 54 41 41 44 69 33 65 65 68 44 57 54 41 41 44 20 33 30 14 17 17

76 82 79 79 66 69 69 58 55 55 42 45 45 66 31 66 69 69 58 55 55 42 45 45 34 31 31 18 18 18

After SMIX[-1.0]

90 93 93 90 77 77 71 69 69 66 53 53 47 45 45 77 77 71 69 69 66 53 53 47 45 45 42 29 29 19

93 92 89 89 78 71 81 68 65 65 54 47 57 44 41 78 75 81 68 65 65 54 51 57 44 41 41 30 27 33

93 89 89 92 68 81 78 65 65 68 44 57 54 41 41 68 81 78 65 65 68 44 57 54 41 41 44 20 33 30

90 90 93 93 82 79 79 66 69 69 58 55 55 42 45 82 79 79 66 69 69 58 55 55 42 45 45 34 31 31

After SMIX[-0.5]

102 101 101 95 93 93 90 77 77 71 69 69 66 90 53 93 93 90 77 77 71 69 69 66 53 53 47 45 45 42

102 101 94 101 92 89 89 78 71 81 68 65 65 93 47 92 89 89 78 75 81 68 65 65 54 51 57 44 41 41

102 91 101 101 89 89 92 68 81 78 65 65 68 93 57 89 89 92 68 81 78 65 65 68 44 57 54 41 41 44

99 102 102 102 90 93 93 82 79 79 66 69 69 90 55 90 93 93 82 79 79 66 69 69 58 55 55 42 45 45

After SMIX[0]

110 113 113 110 101 101 95 93 93 90 77 77 71 69 69 101 101 95 93 93 90 77 77 71 69 69 66 53 53 47

113 112 109 109 101 94 101 92 89 89 78 71 81 68 65 101 98 101 92 89 89 78 75 81 68 65 65 54 51 57

113 109 109 112 91 101 101 89 89 92 68 81 78 65 65 91 101 101 89 89 92 68 81 78 65 65 68 44 57 54

110 110 113 113 102 102 102 90 93 93 82 79 79 66 69 102 102 102 90 93 93 82 79 79 66 69 69 58 55 55

Recorded for each state-byte is the number of “initial bytes” with non-linear influence on that state-byte.

44

Table 6: Diffusion statistics of five TIX-less rounds in F-256

byte 0 byte 1 byte 2 byte 3

col >0 >4 >9 >0 >4 >9 >0 >4 >9 >0 >4 >9

--- --- --- --- --- --- --- --- --- --- --- --- ---

[0] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[1] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[2] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[3] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[4] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[5] (120 88 28) (120 88 28) (120 88 28) (120 88 28)

[6] (120 88 28) (120 88 28) (120 88 28) (120 88 28)

[7] (117 76 16) (116 76 16) (113 76 16) (114 76 16)

[8] (117 76 16) (113 76 16) (113 76 16) (117 76 16)

[9] (114 76 16) (113 76 16) (116 76 16) (117 76 16)

[10] (105 64 0) (105 64 0) (102 64 0) (106 64 0)

[11] (105 64 0) (102 64 0) (105 64 0) (106 64 0)

[12] (102 64 0) (105 64 0) (105 64 0) (106 64 0)

[13] (93 52 0) (93 52 0) (90 52 0) (94 52 0)

[14] (93 52 0) (90 52 0) (93 52 0) (94 52 0)

[15] (120 100 40) (120 100 40) (120 100 40) (120 100 40)

[16] (120 88 28) (120 88 28) (120 88 28) (120 88 28)

[17] (120 88 28) (120 88 28) (120 88 28) (120 88 28)

[18] (117 76 16) (116 76 16) (113 76 16) (114 76 16)

[19] (117 76 16) (113 76 16) (113 76 16) (117 76 16)

[20] (114 76 16) (113 76 16) (116 76 16) (117 76 16)

[21] (105 64 0) (105 64 0) (102 64 0) (106 64 0)

[22] (105 64 0) (102 64 0) (105 64 0) (106 64 0)

[23] (102 64 0) (105 64 0) (105 64 0) (106 64 0)

[24] (93 52 0) (93 52 0) (90 52 0) (94 52 0)

[25] (93 52 0) (90 52 0) (93 52 0) (94 52 0)

[26] (90 52 0) (93 52 0) (93 52 0) (94 52 0)

[27] (81 40 0) (81 40 0) (78 40 0) (82 40 0)

[28] (81 40 0) (78 40 0) (81 40 0) (82 40 0)

[29] (78 40 0) (81 40 0) (81 40 0) (82 40 0)

Recorded for each entry are the number of bytes that influence it through at least one, five, and ten

SMIX-es.

45

via at least ten SMIX-es. (Note that ten SMIX-es is the “level of non-linearity” that one gets
from a full application of AES-128.) Some notable features that can be seen from that table are:

• Every “final byte” depends non-linearly on at least 78 of the “initial bytes”, and also depends
on at least 40 “initial bytes” via five or more SMIX-es.

• Every “final byte” in columns 0-4 (and 15) depends non-linearly on all the 120 “initial
bytes”, and moreover it depends on 100 of them via at least five SMIX-es and on 40 of
them via at least ten SMIX-es.

8.4 Diffusion in the entire final transformation G

We also consider the diffusion of the entire final transformation, including both the TIX-less
rounds G1 and the final rounds G2. For the full F-256 (with five TIX-less rounds and 13 final
rounds) we obtain that every byte in the output of F-256 depends on all the 120 “initial bytes”
(after the last TIX) via more than 25 SMIX-es (which is about the “level of non-linearity” in
double-AES-256).

Finally, we consider the diffusion of the final transformation in the weak variant wF-256, as
summarized in Table 7. That table lists two types of statistics, tracking both the “influenced-by”
statistics (how many “initial bytes” influence each output byte) and the “influencing” statistics
(how many output bytes are influenced by each initial byte). For each of these statistics, the
bytes are listed column by column, and for each byte there are four numbers: First is the number
bytes with “influence paths” that goes through at least one SMIX, then the number bytes with
“influence paths” that goes through at least five SMIX-es, then ten SMIX-es and then fifteen
SMIX-es.

As seen in this table, the input bytes from the last TIX step (in column [3] of the “influencing”
table) effect each output byte via at least ten SMIX-es (which is the “level of non-linearity” in
AES-128), and they effect all but two of the output bytes via at least fifteen SMIX-es. Moreover,
even for this weak variant we have that most state bytes (all except columns 4-11) influence every
output byte through at least five SMIX-es.

9 Properties of the S-Box

Recall from Section 4, that the S-Box used in Fugue is identical to that used in AES [16]. Moreover,
the AES S-Box derives its non-linear properties from the multiplicative inverse function over
GF(28), whose differential and linear characteristics were studied in [15].

Consider the mapping inv(x), from (GF2)8 to (GF2)8, by mapping 0 to 0, and otherwise first
viewing x to be in GF(28) (as in Section 3), and then taking multiplicative inverse in GF(28),
followed by the isomorphism back to (GF2)8. In [15], Nyberg shows that the mapping inv is
differentially 4-uniform. In other words, for every pair of differences α, and β, α 6= 0, the

46

Table 7: Diffusion statistics of the final transformation G in wF-256

byte 0 byte 1 byte 2 byte 3

col >0 >4 >9 >14 >0 >4 >9 >14 >0 >4 >9 >14 >0 >4 >9 >14

--- -- --- --- --- -- --- --- --- -- --- --- --- -- --- --- ---

[1] (88 88 88 28) (89 88 88 40) (89 88 88 40) (92 88 88 40)

[2] (88 88 88 28) (89 88 88 40) (92 88 88 40) (92 88 88 40)

[3] (88 88 88 28) (92 88 88 40) (89 88 88 40) (92 88 88 40)

[4] (92 88 88 40) (89 88 88 40) (89 88 88 40) (92 88 88 40)

...

[15] (92 88 88 40) (89 88 88 40) (92 88 88 40) (92 88 88 40)

[16] (89 88 76 0) (92 88 82 28) (89 88 88 28) (88 88 79 28)

[17] (92 88 76 0) (89 88 88 28) (89 88 82 28) (88 88 79 28)

[18] (89 88 88 28) (89 88 82 28) (89 88 82 28) (92 88 79 28)

Influenced-by statistics: Recorded for each output byte are the number of “initial bytes” that influence it
through at least one, five, ten, and fifteen SMIX-es.

byte 0 byte 1 byte 2 byte 3

col >0 >4 >9 >14 >0 >4 >9 >14 >0 >4 >9 >14 >0 >4 >9 >14

--- -- --- --- --- -- --- --- --- -- --- --- --- -- --- --- ---

[0] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[1] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[2] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[3] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[4] (15 0 0 0) (19 0 0 0) (19 0 0 0) (13 0 0 0)

[5] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[6] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[7] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[8] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[9] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[10] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[11] (0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0)

[12] (32 32 23 0) (32 32 25 0) (32 32 25 0) (32 32 26 0)

[13] (32 32 25 0) (32 32 25 0) (32 32 27 0) (32 32 28 0)

[14] (32 32 25 0) (32 32 27 0) (32 32 25 0) (32 32 28 0)

[15] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[16] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[17] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[18] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[19] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[20] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[21] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[22] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[23] (32 32 32 0) (32 32 32 0) (32 32 32 0) (32 32 32 0)

[24] (32 32 32 17) (32 32 32 17) (32 32 32 17) (32 32 32 17)

[25] (32 32 32 17) (32 32 32 17) (32 32 32 17) (32 32 32 17)

[26] (32 32 32 17) (32 32 32 17) (32 32 32 17) (32 32 32 17)

[27] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[28] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

[29] (32 32 32 30) (32 32 32 30) (32 32 32 30) (32 32 32 30)

Influencing statistics: Recorded for each “initial byte” are the number of output bytes that it influences through

at least one, five, ten, and fifteen SMIX-es.

47

probability of obtaining the output difference β, on input difference α is at most 4/28, i.e.

Pr
a,b∈(GF2)

8

[(a⊕ b = α) ∧ (inv(a)⊕ inv(b) = β)] ≤ 4 · 2−8

In fact, the equality is obtained exactly when α and β are multiplicative inverses of each other
in GF(28). Otherwise, the probability is at most 2−7.

Carlitz and Uchiyama [4] have earlier shown that the distance between any mapping which is
a composition of the inv mapping above followed by any linear transformation over GF2, from
any linear mapping over GF2 is at least 27 − 24. It follows that, for all α, β ∈ (GF2)8, β 6= 0,

Pr
a∈(GF2)8

[(α · a)⊕ (β · inv(a)) = 0] <
1

2
+ 2−4

10 Differential Analysis of Fugue-256: Internal Collisions

One of the most appealing properties of Fugue is that it provably resists differential attacks.
Moreover, under some very plausible assumptions it can even be proven to resist attacks that
employ message-modification techniques and control/neutral byte analysis. In this section and
the next we detail these attacks and our analysis that rule them out.

There are two types of collision-finding attacks that one can envision against Fugue, namely
internal collision attacks and external collision attacks. Internal collisions refer to attacks that
find two different messages P 6= P ′ such that the internal state of Fugue after processing P is
the same as the internal state after processing P ′. External collisions refer to attacks where the
internal states do not collide, but the outputs of the function do. In this section we analyze
internal collisions, and in the next we tackle external collisions.

We begin in Section 10.1 by describing the “backward evolution” of the internal state of
Fugue, starting from the end of a successful internal-collision attack. This analysis exhibits many
conditions that must be satisfied in order for an internal-collision attack to be successful. These
conditions are summarized in Tables 8 and 9, and they are used in later sections to lower-bound
the complexity of any such attack.

10.1 Backward Evolution of the Internal State

Consider two different inputs P 6= P ′, each consisting of an integral number of 4-byte words, that
result in an internal collision of F-256. We can assume without loss of generality that the internal
collision only occurs after processing the last words of P,P ′ (else we can just consider the prefixes
that lead to the first internal collision and disregard the suffixes from there on).

Notations. Below we denote the words that comprise these two messages by P [−m], . . . , P [−1],
P [0] and P ′[−m′], . . . , P ′[−1], P ′[0], respectively. Namely, the last words in these messages are

48

denoted P [0], P ′[0], respectively, the words before that P [−1], P ′[−1], and so on. For simplicity,
we assume below that m,m′ ≥ 4, i.e., both messages have at least five words in them.5

The round transformation that processes the last word (P [0] or P ′[0]) is called round 0, and
in general the round during which the word P [−i] (or P ′[−i]) is processed is called round −i. We
denote the 30-word states at the end of round 0 in the two executions by S(P)[0], and S(P ′)[0],
respectively. Similarly, the states at the end of round −i (i.e., just before the TIX step that takes
the words P [−i+ 1], P ′[−i+ 1]) are denoted S(P)[−i], and S(P ′)[−i], respectively.

Further, the xor-difference of the two messages is denoted ∆P and the xor-difference of the
states is denoted ∆S, with indexes as before. For example the difference between the last two
words is ∆P [0] = P [0] ⊕ P ′[0], and the difference of states after round −1 (i.e., before the last
TIX step) is denoted ∆S[−1] = S(P ′)[−1]⊕S(P ′)[−1], etc. We use subscripts to denote specific
columns of the state. For example, ∆S[−1]5 denotes the difference in column number 5 of the
state at the end of round -1. We also use the following notations for the states within a round.
Consider for example the steps in round −1:

• The state after the TIX step of round −1 is denoted S(P)[−2 + tix];

• The state after the first CMIX is S(P)[−2 + c1];

• The state after the first SMIX is S(P)[−2 + s1];

• The state after the second CMIX is S(P)[−2 + c2];

• The state after the second SMIX is S(P)[−2 + s2] (which is the same as S(P)[−1]).

We use the same notations also for S(P ′) as well as ∆S. For example, the state difference after
the last TIX step (in round 0) is denoted ∆S[−1 + tix].

10.1.1 Round Zero

Recall that we assume that the input words P,P ′ cause an internal collision at round zero. Clearly,
this collision can only occurs at the TIX step (since the rest of the round is a permutation). In
our notations, this means that ∆S[−1 + tix] = 0 but ∆S[−1] 6= 0. Recall now the definition of
the TIX step for F-256:

TIX(P) : { S10+ = S0; S0+ = P ; S8+ = S0; S1+ = S24 }

5This assumption is only made so that we can talk about the state before processing P [−4], P ′[−4]. We can
eliminate the assumption by prepending the same sequence of arbitrary words to both these messages, and starting
the computation from the state that one gets by evolving the initial state backward with that sequence of words.

49

Hence we have:
∆S[−1 + tix]10 = ∆S[−1]10 +∆S[−1]0
∆S[−1 + tix]0 = ∆P [0]
∆S[−1 + tix]8 = ∆S[−1]8 +∆P [0]
∆S[−1 + tix]1 = ∆S[−1]1 +∆S[−1]24
∆S[−1 + tix]i = ∆S[−1]i for all other columns

Since ∆S[−1 + tix] = 0 but ∆S[−1] 6= 0, then for ∆S[−1] we must have:

• ∆S[−1]10 = ∆S[−1]0 6= 0,

• ∆P [0] = 0, and

• ∆S[−1 + tix]i = 0 for all other columns.

Below we denote the non-zero difference in columns 0 and 10 by X1 = ∆S[−1]0 = ∆S[−1]10.

10.1.2 Introducing Tables 8 and 9

The argument from above about round 0 is illustrated in the top two lines of Table 8. That Table
(and the subsequent Table 9) further describe the backward evolution of the difference in the
state, with differences in individual words of the state named as follows:

• Blank entries imply zero difference. (We explicitly write a zero difference in places where
we want to stress it.)

• Variables denoting differences that are necessarily non-zero are written in capital (such
as X1 from above). Variables that can be either zero or non-zero are written in lowercase.

• Since each round transformation R in Fugue-256 has two sub-rounds, we use y variables
for the difference ∆S0..3 before the second SMIX in a round (or Y variables if they are
necessarily non-zero).

For example, the input differences to the second SMIX in round −1 are denoted Y 10
through Y 13. (We show below that all these differences must indeed be non-zero.)

• Similarly, we use z variables (or Z variables) to denote the difference ∆S0..3 before the first
SMIX in a round.

Note that due to the ROR3 step between the TIX and the first SMIX, then the input
difference ∆P [−i] is always equal to zi3 (or Zi3 when it must be non-zero).

• The difference ∆S0[−i] is denoted by xi (or Xi when it must be non-zero).

50

Table 8: Evolution of Differential State for Internal Collision (Backwards)

0 3 6 9 12 15 18 21 24 27 29

0
TIX0

∆S[−1] X1 0 0 0 X1
SMIX

Y 10 Y 11Y 12Y 13 X1
CMIX

Y 10 Y 11Y 12Y 13 X1
ROR3

Y 13 0 0 0 X1 Y 10Y 11Y 12
SMIX

Z10 Z11Z12Z13 X1 Y 10Y 11Y 12
CMIX

Z10 Z11Z12Z13 X1 Y 10Y 11Y 12
ROR3

Z13 0 0 0 X1 Y 10Y 11Y 12Z10Z11Z12
TIX−1

0 3 6 9 12 15 18 21 24 27 29

∆S[−2] x2 Y 10 0 0 X1 Z13 0 x2 Y 10Y 11Y 12Z10Z11Z12
SMIX

y20 y21 y22 y23X1 Z13 0 x2 Y 10Y 11Y 12Z10Z11Z12
CMIX

y2′0 y21 y22 y23X1 Z13 0 x2 X1 Y 10Y 11Y 12Z10Z11Z12
ROR3

y23 X1 0 0 0 Z13 0 x2 0 X1 Y 10Y 11Y 12Z10Z11Z12 y2
′
0
y21 y22

SMIX
z20 z21 z22 z23 0 Z13 0 x2 0 X1 Y 10Y 11Y 12Z10Z11Z12 y2

′
0 y21 y22

CMIX
z20 z2′

1
z22 z23 0 Z13 0 x2 0 X1 Z13 Y 10Y 11Y 12Z10Z11Z12 y2

′
0
y21 y22

ROR3
z23 0 Z13 0 x2 X1 0 Z13 Y 10Y 11Y 12Z10Z11Z12 y2

′
0
y21 y22 z20 z2′

1
z22

TIX††

a All blank cells are zero. Primed variables are defined in Section 10.1.4. The shaded cells are the ones
affected in that step. The boxed variables are the ones that are not determined by variables from earier
(lower) steps. Variables that are necessarily non-zero are in capital. Rounds are referred to by the
subscript on the TIX step for that round. †† Continued on next page.

51

Table 9: Evolution of Differential State for internal Collision (contd.)

0 3 6 9 12 15 18 21 24 27 29

z23 0 Z13 0 x2 X1 Z13 Y 10Y 11Y 12Z10Z11Z12y2
′
0
y21y22z20z2

′
1
z22

TIX−2

∆S[−3] x3 y2′
0
Z13 0 x2 z23

† X1 x3 Z13 Y 10Y 11Y 12Z10Z11Z12y2
′
0
y21y22z20z2

′
1
z22

SMIX
y30 y31 y32 y33 x2 z23 X1 x3 Z13 Y 10Y 11Y 12Z10Z11Z12y2

′
0
y21y22z20z2

′
1
z22

CMIX
y3′0 y31 y32 y33 x2 z23 X1 x3 Z13 0 x2 Y 10Y 11Y 12Z10Z11Z12y2

′
0y21y22z20z2

′
1z22

ROR3

y33 x2 0 0 z23X1 x3 Z13 0 x2 Y 10Y 11Y 12Z10Z11Z12 y2
′
0 y21 y22 z20z2

′
1z22y3

′
0y31y32

SMIX
z30 z31 z32 z33 z23X1 x3 Z13 0 x2 Y 10Y 11Y 12Z10Z11Z12 y2

′
0
y21 y22 z20z2

′
1
z22y3

′
0
y31y32

CMIX
z30 z3′1 z3′2 z33 z23X1 x3 Z13 0 x2 Y 10 y1

′
1 y1

′
2Z10Z11Z12 y2

′
0 y21 y22 z20z2

′
1z22y3

′
0y31y32

ROR3
z33 0 z23 X1 x3 0 0 Z13 0 x2 0 0 Y 10 y1

′
1
y1′

2
Z10Z11Z12 y2

′
0
y21 y22 z20 z2

′
1
z22 y3

′
0
y31y32z30z3

′
1
z3′

2

TIX−3

∆S[−4] x4 y3′0 z23 | X1 x3 0 0 Z13 z33 x2 x4 0 Y 10 y1
′
1 y1

′
2Z10Z11Z12 y2

′
0 y21 y22 z20 z2

′
1 z22 y3

′
0y31y32z30z3

′
1z3

′
2

SMIX
y40 y41 y42 y43 x3 0 0 Z13 z33 x2 x4 0 Y 10 y1

′
1
y1′

2
Z10Z11Z12 y2

′
0
y21 y22 z20 z2

′
1
z22 y3

′
0
y31y32z30z3

′
1
z3′

2

CMIX
y4′

0
y41 y42 y43 x3 0 0 Z13 z33 x2 x4 0 Y 10 y1

′
1
y1′

2
z1′

0
Z11Z12 y2

′
0
y21 y22 z20 z2

′
1
z22 y3

′
0
y31y32z30z3

′
1
z3′

2

ROR3

y43 | x3 0 0 Z13z33 x2 x4 0 Y 10 y1
′
1
y1′

2
z1′

0
Z11Z12 y2

′
0
y21 y22 z20 z2′

1
z22 y3

′
0
y31 y32 z30z3

′
1
z3′

2
y4′

0
y41y42

SMIX
z40 z41 z42 z43 Z13z33 x2 x4 0 Y 10 y1

′
1 y1

′
2 z1

′
0Z11Z12 y2

′
0 y21 y22 z20 z2′1 z22 y3

′
0 y31 y32 z30z3

′
1z3

′
2y4

′
0y41y42

CMIX
z4′

0
z4′

1
z4′

2
z43 Z13z33 x2 x4 0 Y 10 y1

′
1
y1′

2
z1′

0
Z11Z12y2

′′
0
y2′

1
y2′

2
z20 z2′

1
z22 y3

′
0
y31 y32 z30z3

′
1
z3′

2
y4′

0
y41y42

ROR3

z43 Z13 z33 x2 x4 0 Y 10 y1
′
1
y1′

2
z1′

0
Z11Z12y2

′′
0
y2′

1
y2′

2
z20 z2′

1
z22 y3′

0
y31 y32 z30 z3

′
1
z3′

2
y4′

0
y41y42z4

′
0
z4′

1
z4′

2

TIX−4

x5 Z13 z33 x2 x4 0 Y 10 y1
′
1
y1′

2
z1′

0
Z11Z12y2

′′
0
y2′

1
y2′

2
z20 z2′

1
z22 y3′

0
y31 y32 z30 z3

′
1
z3′

2
y4′

0
y41y42z4

′
0
z4′

1
z4′

2

∆S[−5] + + +
y4′

0
z43 x5

0 3 6 9 12 15 18 21 24 27 29
a Primed variables are defined in Sections 10.1.5 and 10.1.6.

52

10.1.3 Round −1

Recall that the difference in ∆S[−1] is non-zero only in S0 and S10. Thus, the difference in
columns 0 to 3 of S after the last SMIX in round −1 is (X1,0,0,0), and these are the columns
that are affected by this SMIX.

Recall now Example 1 from Section 7.3: Since the output difference of this SMIX has the last
three columns zero, then the difference before the Super-Mix (but after the S-box transformation)
must be in the code C0, which has minimum weight 13. This means that at most three bytes
after the S-box have difference zero, and with the S-box being a permutation it also means that
at most three bytes at the input to the SMIXhave difference zero. We denote these four columns
differences at the input to this SMIX by Y 10 through Y 13, and since there are at most 3 zero
bytes among these 16 bytes then none of these column differences can be all-zero (and hence they
are all written in uppercase).

Continuing backward, the ROR3 steps implies that difference in columns 0 to 3 of S after the
first SMIX of round -1 is ∆S[−1+ s1] = (Y 13 0 0 0). Repeating the same argument as above, it
again means that all four input columns to this SMIX step must have non-zero differences, and
we denote them in uppercase Z10 through Z13.

Proceeding backward through the TIX step at the beginning of round −1, the difference
∆P [−1] must equal the variable Z13 (and hence must be non-zero). Also, since the difference in
column 10 after the TIX step is zero, then again it must be the case that ∆S[−2]0 = ∆S[−2]10,
and we denote that difference by x2. As opposed to round 0, however, here we cannot claim that
this difference must be non-zero (thus we write it in lowercase).

However, since column 24 is XOR-ed into column 1 in the TIX step (and the difference in
column 1 after the TIX step is zero), we must have ∆S[−2]1 = ∆S[−2]24 = Y 10 6= 0, so we
still know that ∆S[−2]0..3 = (x2 Y 10 0 0) must be non-zero. Also, the non-zero difference Z13 is
copied to column 8 due to the S8+ = S0 operation. (We will use this in Round −3 below.)

10.1.4 Round −2

Since ∆S[−2]0..3 = (x2 Y 10 0 0) then the difference before the Super-Mix (and after the S-box)
is a codeword in C0,1. However, the minimum weight of that code is only 6, so all we can say is
that at least two of the four columns y20..3 must be non-zero.6 In particular each of these column
differences separately could be all-zero, hence we write them all in lowercase.

Going through the nextROR3 step bringsX1 to the first column, so we have ∆S[−2+s1]0..3 =
(y23 X1 0 0) (which is non-zero). Again all we know is that we have a code word in C0,1, which
is not enough to preclude any of the z2i’s from being zero.

6However, if x2 = 0 then we have a codeword in C1 with minimum weight 12, so at least three of the y2i’s must
be non-zero. In other words, at most two of the five column differences x2, y20..3 can be zero. The same argument
implies that at most two of the fixed column differences y23, z20..3 can be zero.

53

Note that in this round the CMIX operations already add some non-zero differences. In
particular, in the second CMIX we have ∆S0+ = ∆S4(= X1) and in the first CMIX we
have ∆S1+ = ∆S5(= Z13). We denote the modified columns by primed variables, namely
y2′0 = y20 +X1 and z2′1 = z21 + Z13.

Going back through the TIX step, we again have ∆S[−3]0 = ∆S[−3]10 = x3, but again we
have no guarantee that x3 is non-zero. (However, notice that the non-zero difference Z13 was
moved in the two ROR3 steps from column 8 to Column 2, where the TIX operation leaves it
unchanged.)

10.1.5 Round −3

Now we have ∆S[−3]0..3 = (x3 y2′0 Z13 0), so we still know that the SMIXoutput differences
(and therefore also input differences) must be non-zero, but each individual column could still be
zero. For the first SMIX in this round we only have ∆S[−4 + s1]0..3 = (y33 x2 0 0), so we don’t
even have a guarantee that the input/output differences are non-zero.

Here again, theCMIX steps add some potentially non-zero differences, so we need to introduce
new primed variables, namely: y3′0 = y30+x2, z3′1 = z31+z23, z3

′
2 = z32+X1, y1′1 = Y 11+z23,

and y1′2 = Y 12 +X1.

The ROR3 steps in this round bring back the non-zero X1 to Column 3, where the TIX step
leaves it unchanged.

10.1.6 Round −4

Now we have ∆S[−4]0..3 = (x4 y3′0 z23 X1), so we still know that the SMIXoutput differences
(and therefore also input differences) must be non-zero, but each individual column could still be
zero. For the first SMIX in this round we only have ∆S[−4 + s1]0..3 = (y43 x3 0 0), so we don’t
even have a guarantee that the input/output differences are non-zero.

Again, we need to introduce new primed variables due to the CMIX steps, namely: y4′0 =
y40 + x3, z1′0 = Z10 + x3, z4′0,1,2 = z4′0,1,2 + (Z13 z33 x2), and (y2′′0 y2′1 y2′2) = (y2′0 y21 y22) +
(Z13 z33 x2).

The ROR3 steps in this round bring the non-zero Z13 to Column 1, but the TIX step adds
to it the (possibly non-zero) difference y4′0 from Column 24. The difference ∆S[−5] is shown at
the bottom of Table 9.

10.1.7 Summing it up

Evolving the state backward from a collision point, we obtained the state differences just before
the TIX steps in rounds zero through −4. We now shift our point of view and consider the
constraints that are imposed on ∆S[−4], and the constraints that ∆S[−4] imposes on the later
differences in rounds −3 through zero. We ignore round −4 for the moment.

54

First, observe that almost all the variables in Tables 8 and 9 are uniquely determined by
variables from earlier (lower) steps. The only variables that are not uniquely determined by
earlier values are listed below (and marked by a box in the tables):

vars Determined by

z43 input difference z43 = ∆P [−4]

y43, x3 output of first SMIX in round −4

z23,X1 output of second SMIX in round −4

y33 output of first SMIX in round −3

y23 output of first SMIX in round −2

Y 13 output of first SMIX in round −1

This means that once the attack reaches the end of round −4, there is very limited amount of
wiggle room left for the attacker to determine things further. For example, all the input differences
from then on will be fixed, and moreover the state differences must all evolve to match the pattern
from Tables 8 and 9. In the following section we will make heavy use of this limited choice of the
attacker. Many of the constraints that we need are summarized in Lemma 10.1 below.

More notations. Before presenting the lemma, we need one more piece of notation. Recall
that in Tables 8, 9 we use y and z variables to denote the differences in input to the SMIX
steps. Below we will also use ŷ’s and ẑ’s to denote the differences after the byte-substitution
and before the linear Super-Mix. Namely, if yij is the difference in the j’th input column to the
second SMIX step in round i, then ŷij will be the difference in the same column after the byte
substitution of that SMIX step.

Lemma 10.1 (Difference Evolution) With the notations in this section, the following must
hold for every successful internal-collision attack:

A. The state difference ∆S[−4] at the end of round −4 must satisfy the following conditions:

∆S[−4]5,6,11 = 0

∆S[−4]0 = ∆S[−4]10

∆S[−4]1 = ∆S[−4]24

∆S[−4]3,∆S[−4]7,∆S[−4]12,∆S[−4]15,∆S[−4]16,∆S[−4]17 are all non-zero.

B. The input differences ∆P in the last four rounds must satisfy the following conditions:

∆P [−3] = ∆S[−4]8
∆P [−2] = ∆S[−4]2
∆P [−1] = ∆S[−4]7
∆P [0] = 0

C. In addition, the following must hold for the intermediate differences ẑ, ŷ in the rounds −3
to −1.

55

1. ẑ30..3 = N−1(y33, ∆S[−4]9, 0, 0)T where y33 can be arbitrary.

2. ŷ30..3 = N−1(x3, y2′0, ∆P [−1]3, 0)T , where x3 = ∆S[−4]4 and y2′0 = ∆S[−4]18.

3. ẑ20..3 = N−1(y23,X1, 0, 0)T where y23 can be arbitrary and X1 = ∆S[−4]3

4. ŷ20..3 = N−1(x2, Y 10, 0, 0)
T where x2 = ∆S[−4]9 and Y 10 = ∆S[−4]12.

5. ẑ10..3 = N−1(Y 13, 0, 0, 0)
T where Y 13 can be arbitrary but non-zero.

6. ŷ10..3 = N−1(X1, 0, 0, 0)T where X1 = ∆S[−4]3.

(Recall that N is the 16 × 16 matrix defining the linear Super-Mix operation.)

10.2 Differential Attacks

Since any internal collision with both messages P and P ′ at least four words long, must satisfy
the conditions in Lemma 10.1, the pair of messages and their states must satisfy the following

1. The states at the end of round −4 must have a difference ∆S[−4] satisfying the conditions
in Lemma 10.1.A

2. The last four words P [−3..0] and P ′[−3..0] must be subject to the constraints in Lemma 10.1.B,
and together with the states must satisfy Lemma 10.1.C.

Note that so far we have not restricted the attack in any manner, except for the length restric-
tion. However, in the next few sections we focus on differential attacks, with increasing levels of
generality. Later, in section 10.2.4, we will address the issue of short length messages.

10.2.1 Pure differential Attacks

We begin with an analysis of a “pure differential attack”, where the attacker is assumed to
control the difference ∆S, but the actual states and the messages are assumed to be random.
Later we remove the unrealistic assumption about the plaintext being random. We model a “pure
differential attack” by the following probabilistic game:

Pure Differential Internal-Collision Attack:

1. The attacker freely chooses a state difference ∆S[−4].

2. The state S(P)[−4] and inputs P [−3] through P [0], as well as inputs P ′[−3] through
P ′[0], are chosen at random. Then, the state S(P ′)[−4] is set to S(P)[−4] + ∆S[−4].

3. The attack is successful if the resulting states have an internal collision in round 0,
namely S(P)[−1] 6= S(P ′)[−1] but S(P)[0] = S(P ′)[0].

Clearly, to have a non-zero probability of success the attacker in this game must choose differ-
ences ∆S[−4] and ∆P that satisfy the constraints of Lemma 10.1.A-B. Since by Lemma 10.1.B,

56

Table 10: The inputs to the last six SMIX steps

SMIX Step Input words (S denotes S[−4]) Output

SMIX[−2.5] S27 + S24 + S1, S28 + P [−2], S29 +M [−3]3, P [−3] M [−2.5]0..3
SMIX[−2] S24 +M [−2.5]1, S25 +M [−2.5]2, S26 +M [−2.5]3, M [−2.5]0 M [−2]0..3
SMIX[−1.5] S21 + S18 +M [−2]1, S22 +M [−2]2, S23 +M [−2]3, P [−2] M [−1.5]0..3
SMIX[−1] S18 +M [−1.5]1, S19 +M [−1.5]2, S20 +M [−1.5]3, M [−1.5]0 M [−1]0..3
SMIX[−0.5] S1 + S24 + S12 + S15 +M [−1]1, S16 +M [−1]2, S17 +M [−1]3, P [−1] M [−0.5]0..3
SMIX[0] S1 + S12 + S24 +M [−0.5]1, S2 + S13 +M [−0.5]2, S3 + S14 +M [−0.5]3, M [0]0..3

M [−0.5]0

∆S[−4] completely determines ∆P [−3] through ∆P [0], then once P [−3] to P [0] are chosen, P ′[−3]
to P ′[0] are forced. Further, we argue, that for any choice of ∆S[−4] that satisfies Lemma 10.1.A,
the probability of satisfying Lemma 10.1.C is bounded from above by 2−246.

The independence assumption. Table 10 lists the inputs to the SMIX steps in rounds −3
through −1, expressed in terms of the state S at the end of round −4 and the input P [−3 . . .−1].
The SMIX steps are numbered from −2.5 (which is the first SMIX in round −3) to 0 (which is
the last SMIX step before round 0).

It can be seen from that table that when S[−4] and P [−3 . . . 0] are chosen uniformly at
random, then almost all the inputs to all the SMIX steps are also uniform and independent. In
fact, the only ones that are not uniform are Column 3 in the input to steps SMIX[−2], SMIX[−1],
and SMIX[0]. (These columns are just the first output column from the previous SMIX step.)

Below we assume, however, that the probability of satisfying the conditions in Lemma 10.1.C is
no higher than if these inputs to the third column too are chosen at random (with the appropriate
differentials). This heuristic assumption is very common in cryptanalysis, and below we refer to
it as the independence assumption. We can now state our result for pure differential attacks:

Theorem 10.2 Under the independence assumption, for every fixed non-zero D, it holds that

Pr[Internal collision at round 0 |∆S[−4] = D] ≤ 2−246

where the probability is taken over a uniform choice of S(P)[−4], S(P ′)[−4], P [−3 . . . 0], P ′[−3 . . . 0].

Proof: Since, we are bounding the probability conditioned on the state difference ∆S[−4] being a
fixed non-zero value D, it follows that if D (substituted for ∆S[−4]) does not satisfy the conditions
in Lemma 10.1.A, then the probability above is zero. So, from now on we assume that D, and
hence ∆S[−4], do satisfy those conditions. Further by part B of that lemma, ∆P [−3 . . . 0] is
fixed, once ∆S[−4] is fixed to D. Thus in the above probability, it suffices to consider the case of
choosing S(P)[−3 . . . 0] at random, and letting P ′[−3 . . . 0] = P [−3 . . . 0] + ∆P [−3 . . . 0].

57

We analyze the SMIX steps one by one, obtaining a bound for each of them and then (using
the independence assumption) multiplying all the bounds.

SMIX[−3.5]. The input differences to this SMIX steps are completely determined by ∆S[−4]
and ∆P . there are two cases to consider here: either these input differences (which are denoted
z40..3) are all zero, or they are not. In the first case the output differences must also be zero
(namely y43 = x3 = 0).

SMIX[−3]. For this step we use the trivial probability bound of 1, and just note that the
condition C2 of the lemma implies that X1 = M [3]3 6= 0 (which we will use later).

SMIX[−2.5]. The input differences to this SMIX step are completely determined by ∆S[−4]
and ∆P . We have two cases: either these fixed input differences (denoted z30..3) are all zero, or
they are not. In the first case the output differences must also be zero (namely y33 = x3 = 0).
We now analyze the other case.

Recall that the differences after the byte substitution in this round are denoted ẑ30..3. To meet
the condition C1 in the lemma we must have N · ẑ3 = (y33, x2, 0, 0)

T for some values y33, x2,
which means that ẑ3 ∈ C0,1, and since we assume that the differences are not all-zero then ẑ3 is
a non-zero codeword. Namely, with the input difference z3 being fixed by our choice of ∆S[−4],
the difference after the byte substitution must be a non-zero codeword in C0,1.

Now recall Example 2 form Section 7.3: with the input difference z3 being fixed, we can ask
how many zero bytes are in the vector z3, and this must also be the number of zero-bytes in the
codeword ẑ3. If we denote bym = m2.5 the number of non-zero bytes in z3 (and therefore also ẑ3),
then the byte-substitution in this step must “hit” a codeword of C0,1 with exactly that number of

non-zero bytes, and by Lemma 7.3 there are at most 256m−minRankm(C0,1) such codewords. On the
other hand, the probability of hitting any particular 16-byte difference with m non-zero bytes in
the byte-substitution is at most 2−6m (using the differential properties of the S-box). Consulting
Table 3 that has the min-rank numbers for the various codes, we conclude that the probability of
“hitting” any non-zero codeword in this step is at most

max
m

(

2−6m · 28(m−minRankm(C0,1))

)

= 2−28

(where the maximum is obtained at m = 6).

SMIX[−2]. The input differences here are determined by ∆S[−4] and the output difference in
the previous SMIX step. Condition C2 says that the output difference from this step is of the
form (x3 y′20 ∆P [−1] 0), which implies in particular that M [−2]2 = ∆P [−1] 6= 0. This means
that the output difference (and hence also input difference) to this step is non-zero. On the other
hand M [−2]3 = 0, so the differences after byte substitution ŷ30..3 are a non-zero codeword in
C0,1,2.

58

Observe that the required output difference of this step is also uniquely determined by ∆S[−4]
(see part C of Lemma 10.1). Hence after the byte-substitution we must “hit” one specific non-zero
codeword in C0,1,2. This codeword must have at least two non-zero bytes (since the minimum-
weight of C0,1,2 is 2), so the probability of “hitting” it is at most 2−6×2 = 2−12.

Moreover, if we have x3 = 0, then ŷ30..3 is a non-zero codeword in C1,2. The min-weight of
this code is six, so in this case we have a bound of 2−6×6 = 2−36.

We conclude that the probability of satisfying the condition C2 from the lemma is at most
2−12 when x3 6= 0 and at most 2−36 when x3 = 0.

SMIX[−1.5]. This is similar to SMIX[−2.5]. The input differences to this SMIX steps are
completely determined by ∆S[−4], ∆P , and by the output differences in the previous SMIX
steps, but here we know that the output difference is non-zero. Hence the differences ẑ1 after
byte substitution must be a non-zero codeword in C0,1, and we get same analysis showing a bound
of 2−28 on the probability of satisfying the condition C3 in the lemma.

SMIX[−1]. In this step the input difference is determined by ∆S[−4], ∆P , and by the out-
put differences in the previous SMIX steps. the output difference is completely determined by
∆S[−4]. Moreover, condition C4 says that the output difference is of the form (x2 Y 10 0 0), so
the differences after byte substitution ŷ20..3 must be a specific non-zero codeword in C0,1. The
min-weight of C0,1 is six, so the probability of hitting any specific codeword in it is at most
2−6×6 = 2−36.

Moreover, if we had an all-zero difference in step [−2.5] above, then we have x2 = 0 which
means that ŷ20..3 is a non-zero codeword in C1. The min-weight of that last code is twelve, so in
this case we have a bound of 2−6×12 = 2−72.

We conclude that the probability of satisfying the condition C4 from the lemma is at most
2−36 when x2 6= 0 and at most 2−72 when x2 = 0.

SMIX[−0.5]. The input differences here are determined by ∆S[−4] and the output difference
in the previous SMIX step, and Condition C5 says that the output difference from this step is
of the form (Y 13 0 0 0) which is non-zero. Hence the difference after byte substitution Ẑ10..3 is a
non-zero codeword in C0 (and thus has at least 13 non-zero bytes).

Repeating the argument from Example 2 in Section 7.3, the fixed input difference Z10..3 to the
SMIX step can have between 13 and 16 non-zero bytes. If we denote by m = m0.5 the number of
non-zero bytes in Z1 (and therefore also Ẑ4), then the byte-substitution in this step must “hit”
a codeword of C0 with exactly that number of non-zero byte. By Lemma 7.3 there are at most
256m−minRankm(C0) such codewords, and the probability of hitting any specific one is at most 2−6m

(using the differential properties of the S-box). We again consult Table 3 and conclude that the
probability of “hitting” a non-zero codeword in this step is at most

max
m

(

2−6m · 28(m−minRankm(C0))

)

= 2−64

59

(where the maximum is obtained at m = 0).

SMIX[0]. Here the input difference is determined by ∆S[−4], ∆P , and by the output differences
in the previous SMIX steps, while the output difference is completely determined by ∆S[−4].
Moreover, the output difference is of the form (X1 0 0 0) some some fixed non-zero X1. Hence
the difference after byte substitution Ŷ 10..3 must be some fixed non-zero codeword in C0, and thus
it has at least 13 non-zero bytes. The probability of hitting that codeword is therefore at most
2−6×13 = 2−78.

Concluding the proof. All that is left now is to multiply all the probability bounds. We have
several cases to consider depending on whether or not the input difference to the step SMIX[−2.5]
is all-zero.

For steps SMIX[−2.5] and SMIX[−1]: If the input differences to SMIX[−2.5] is all-zero then
we have a bound of 1 for that step but a bound of 2−72 for SMIX[−1], and otherwise we have
2−28 for SMIX[−2.5] and 2−36 for SMIX[−1]. Either way, the product of the two is at most 2−64.
For step SMIX[−2] we have a bound of 2−12. Factoring in also the bounds 2−28 for SMIX[−1.5],
2−64 for SMIX[−0.5], and 2−78 for SMIX[0] we obtain the total bound

Pr[Internal collision at round 0] ≤ 2−64 × 2−12 × 2−28 × 2−64 × 2−78 = 2−246

Some improvements and extensions. The analysis of Theorem 10.2 can be improved in
several ways. First, the bound can be improved by a closer look at some of the constraints.
In particular, a closer look at Ŷ 1 and X1 reveals that any zero bytes in Ŷ 1 imply some linear
constraints on X1, which in turns implies some more linear constraints on the code word ẑ2, thus
increasing its weight. This analysis is found in Section 10.3, where it is shown that this additional
argument improves the bound in Theorem 10.2 from 2−246 to 2−264.

A different approach for improving the bound takes advantage of the fact that most in-
put/output differences of the S-box have probability either 2−7 or zero, and only very few of
them have probability 2−6. So far we did not check the extent to which we can apply this fact.

For the purists, a different extension allows us to get rid of the Independence assumption:
Observe that since the only input columns that are not uniformly random are the third columns
in the SMIX-es −2 and −1, we can eliminate the assumption at the price of discounting four
non-zero bytes in each of these steps. It degrades the bounds for the two steps by 2−24 each.
Hence, without making the Independence assumption we can still prove a bound of 2−198 (or
2−216 when using the improved argument from Section 10.3).

10.2.2 More Realistic Differential Attacks

The “pure differential attack” from above is quite weak, since the attacker is not allowed to control
the input messages P,P ′. However, this aspect is easy to fix, as we show now.

60

We relax the “pure differential” condition by allowing the attacker full control over the messages
P,P ′, but still insisting that the “initial states” S,S′ are chosen at random (subject to some
difference ∆S[−4] that the attacker chooses). Namely, we consider the following probabilistic
game:

Semi-Pure Differential Internal-Collision Attack:

1. The attacker freely chooses a state difference ∆S[−4];

2. The state S(P)[−4] is chosen at random, and then the state S(P ′)[−4] is set to
S(P)[−4] ⊕∆S[−4].

3. The attacker is given S(P)[−4] and S(P ′)[−4]. The attack is successful if there
exist any two messages P [−3 . . . 0], P ′[−3 . . . 0] that starting from these two
states induce an internal collision in round 0 (namely S(P)[−1] 6= S(P ′)[−1] but
S(P)[0] = S(P ′)[0]).

We note that “semi-pure” differential attacks are actually quite realistic. Given the constraints
from Lemma 10.1, a natural line of attack to consider is to choose at random very long messages
P,P ′, and find pairs of intermediate internal states in the processing of these messages whose
difference satisfies the conditions in Lemma 10.1. Then, given such a pair of states, the attacker
can try to find four last words that can be added after each of these states to cause an internal
collision. Since the internal states in this attacks were reached via a “random walk” from the
initial state, it is reasonable to model them as random, with the freedom to choose their difference.

Theorem 10.3 Under the Independence assumption, no “semi-pure” attacker as above can find
internal collisions with probability better than 2−150, where the probability is taken over a uniform
choice of S(P)[−4] (and we set S(P ′)[−4] = S(P)[−4] + ∆S[−4]).

Proof: The theorem follows from Theorem 10.2, and Lemma 10.1.B by a simple union bound. To
elaborate, let the state difference that the adversary chooses be some non-zero D. Let π represent
any 96-bit binary string, a potential choice for P [−3 . . . − 1]. We will ignore P [0], as its choice
does not affect the internal collision. Now, in order to get an internal collision, Lemma 10.1.B
forces ∆P [−3 . . . 0], once ∆S[−4] is fixed to D. Thus, if P [−3 . . . − 1] is chosen to be π, then
P ′[−3 . . . − 1] is just π plus this forced ∆P [−3 . . . − 1] (call it π′). Let ∆S(π)[0] denote the
difference in the states after round 0, with the first state starting from S(P)[−4] and evolving
using input π, and the second state starting from S(P ′)[−4] and evolving using π′.

61

Now, starting with the quantity we bound in Theorem 10.2, we get

Pr
P [−3 ...0],S(P)[−4]

[∆S[0] = 0 |∆S[−4] = D]

=
∑

π

Pr
P [−3 ...0],S(P)[−4]

[P [−3 . . . 0] = π ∧ ∆S(π)[0] = 0 |∆S[−4] = D]

=
∑

π

Pr[P [−3 . . . 0] = π]× Pr
S(P)[−4]

[∆S(π)[0] = 0 |∆S[−4] = D]

= 2−96 ×
∑

π

Pr
S(P)[−4]

[∆S(π)[0] = 0 |∆S[−4] = D]

≥ 2−96 × Pr
S(P)[−4]

[∃π : ∆S(π)[0] = 0 |∆S[−4] = D]

Thus,
Pr

S(P)[−4]
[∃π : ∆S(π)[0] = 0 |∆S[−4] = D]

is at most 296 × 2−246 = 2−150.

Clearly, all the extensions that are mentioned for the “pure” case hold here too, so we can
improve the bound by at least a factor of 2−18 by using a more refined analysis, and/or eliminate
the Independence assumption by paying a factor of 248 in the bound.

10.2.3 Beyond Random Initial State

The analysis from above gave the adversary complete control over the initial state difference
∆S[−4], but required that the states themselves be random (subject to this difference). In reality,
however, the state is not random, rather the attacker can choose the two inputs leading from the
initial state to S[−4] such that not only would it satisfy the conditions in Part A of Lemma 10.1
but also have better than random probability to satisfy the other parts as well.

Specifically, one should be wary of message-modification techniques, where parts of the input
message are held fixed to control some state bytes while others are chosen as needed for the
differential attack. Such techniques are backed by control/neutral bytes analysis, taking advantage
of the fact that an input bytes can be used to effect (control) some specific state byte without
changing other bytes (neutral).

Below we argue informally that such techniques are not likely to apply to Fugue, due to its
fast diffusion properties. First observe that in our context, we only need to argue about “message
modification” being applied to message words P [−4] or earlier, since the words P [−3 . . . 0] are
already included in the union-bound argument of Theorem 10.3.

Considering the diffusion Table 4 (on Page 42), we see that an input byte in P [−4] or earlier
influences every byte in every SMIX step in rounds −3 and on (except of course the new input
bytes in these round), so we have no neutral bytes to consider here. Moreover, a byte in P [−4]
influences the bytes in the last four SMIX steps in a highly non-linear fashion, as its path of
influence goes through four SMIX-es for the input to SMIX[−1.5] and via seven SMIX-es for
the input to SMIX[0].

62

SMIX

p1

SMIX

2
−64

TIX

2
32

SMIX

2
−36

SMIX

p2

TIX

2
32

SMIX

2
−12

SMIX

2
−28

TIX

2
32

SMIX SMIX

2
−28

TIX

2
64

SMIX SMIX TIX

2
64

-1 -2 -3 -4 -5

p1 ∗ p2 ≤ 2
−124

Figure 6: Free Message Modification upto 3 SMIXes

It seems reasonable to assume that an attacker cannot use “message modifications” through
that many SMIX-es. Consider the improved bound 2−168 that one gets using the refined analysis
in Section 10.3, and we show below how this bound degrades when we allow the attacker “free
message modification” through three, four, or five SMIX-es.

• Allowing “free message modification” through three SMIX-es means that the attacker can
use its input P [−4] to get better than random probability upto SMIX[−2.5] but not beyond
that. This will leave us with the bounds on the last five SMIX-es which gives probability
bound of 2−236 for random messages (with adversarial difference), and 2−140 after the union
bound. This is depicted in Figure 6, where the bound on p1 ∗p2 is obtained from the tighter
analysis in Section 10.3.

• Allowing “free message modification” through four SMIX-es degrades the bounds to 2−224

for random messages with adversarial difference, and 2−128 after the union bound.

• Allowing “free message modification” through five SMIX-es degrades the bounds to 2−196

for random messages with adversarial difference, and 2−100 after the union bound.

To appreciate the last bullet, note that even if we allow the attacker full control over the state
difference, and moreover let it “magically” use input words from five SMIX-es ago (which are at
least as non-linear as half-AES) to avoid having to pay for fourteen active S-boxes, we still have a
proof that the probability that any extension exists that would lead to internal collision is below
2−100. Note that even a modest cost of 228 to actually find these extensions would already push
it beyond the complexity needed for a simple birthday attack.

10.2.4 The Length-Padding in Fugue-256

We conclude this section by noting the effect of the length padding in Fugue-256 on differential
internal-collision attacks. For one thing, it implies that messages whose bit-lengths are not the
same modulo 232 cannot have an internal collision (since the last input word will be different in
this case). This means that one can only have internal collision either for messages of the same
length, or for messages whose lengths differ by a multiple of 229 bytes. If one of the messages
(w.l.o.g. P) is less than four words long (say m words long) in the analysis of the previous sections,

63

Table 11: Min-Rankm values for Codes CI
0,1

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|I| = 3 - - - - - - - - 9 9 10 11 11 11 11 11

|I| = 2 - - - - - - 7 7 8 9 9 10 10 10 10 10

|I| = 1 - - - - - - 7 7 8 8 9 9 9 9 9 9

then its state S[−m + 1] is the initial state. If the other message is of equal length, then there
can be no collision, by Lemma 10.1. Otherwise, the other message is extremely long, and must
achieve a state S(P ′)[−m+1] as required by Lemma 10.1, since the other S(P)[−m+1] is fixed.
Note that the analysis of the previous section was focused on achieving zero differences in the
state. Now, the adversary must find an exact match in the state for those columns. We assume
that this is a harder problem than finding the difference to be zero.

10.3 A Tighter Analysis for Theorem 10.2

Recall that the output difference in SMIX[0] is (X1 0 0 0) and the input difference is Y 10..3. We
used that to conclude that Ŷ 1 ∈ C0 and therefore it can have at most three zero bytes. We
now observe that if Ŷ 1 has any zero bytes then this implies additional linear constraints on X1.
Namely, every zero byte in Ŷ 1 implies a constraint on X1 of the form (N−1)i0..3 ·X1 = 0 (where
(N−1)i0..3 is a 1× 4 sub-matrix of N−1).

Now, we focus our attention on step SMIX[−1.5], where the output difference is (y23 X1 0 0),
and the differences after the byte substitution are denoted ẑ20..3. The additional constraints
on X1 imply more parity-check equations on ẑ2 beyond the ones that define C0,1. Namely, a
subset I of zero bytes in Y 1 implies that ẑ2 belongs to a sub-code CI

0,1 ⊆ C0,1, and that sub-code
may have higher minimum weight.

We used a computer program to compute the min-rank of the codes CI
0,1, for all possible

subsets I (of three or less indices). The values are listed in Table 11, with each row representing
the minimum over all I of a particular size. We can now repeat the analysis of the step SMIX[−1.5]
using each of these codes rather than the code C0,1, while at the same time using 16− |I| (rather
than 13) as the number of non-zero bytes of Y 1 in SMIX[0]. This gives us the following bounds:

|I| SMIX[0] bound SMIX[−1.5] bound Total bound

0 : 2−6×16 2−28 2−124

1 : 2−6×15 2−40 2−130

2 : 2−6×14 2−40 2−124

3 : 2−6×13 2−52 2−130

We conclude that the steps SMIX[0] and SMIX[−1.5] together contribute at least 2−124 to the
bound (as compared to 2−106 in the analysis of Theorem 10.2).

64

11 Differential Analysis of Fugue-256: External Collisions

The final roundG of F-256 consists of two phases. The first phase consists of five TIX-less rounds,
which are the same as the input round transformation F with the TIX step removed. The purpose
of this first phase is to provide quick non-linear mixing before the second phase, which has been
designed with the sole purpose of providing a provable upper bound on the probability of an
external collision (given that there was no internal collision).

Below we provide a differential analysis of the second phase of the the final round, proving
that the probability of an external collision is bounded below 2−129. As in Section 10, here too we
consider an attacker that can freely chose the difference between two states at the beginning of
the second phase, but we assume that the states themselves are chosen at random (subject to this
difference). The reason for the first (TIX-less) phase is to make this random-state assumption
more plausible: Recall from the Diffusion section (Section 8) that after five TIX-less rounds
(consisting of ten SMIX-es), every byte of the state depends on every byte of the input in a
highly non-linear fashion (via at least five SMIX-es). Moreover, columns 1-4 and 15-17 after the
TIX-less phase depend non-linearly on every byte in the state before that phase.

For the analysis below it will be easier to view the second phase as implemented in a “sliding
window” fashion, as described in Figure 7. Namely, we can write the second phase as follows:

p = 0;

For i = 0 to 25

{

Sp+4 += Sp;

If i is even Then

Sp+15 += Sp;

p = p+ 15 mod 30;

Else

Sp+16 += Sp;

p = p+ 16 mod 30;

Sp..p+3 = Super-Mix(S-Box[Sp..p+3]);

}

Sp+4 += Sp;Sp+15 += Sp;

Output Sp+1,Sp+2,Sp+3,Sp+4,Sp+15,Sp+16,Sp+17,Sp+18

where the additions in the subscripts of S are done modulo 30. One can check that at the end of
the loop we have p = 13, so the output is S14, S15, S16, S17, and S28, S29, S0, S1, as also seen
from Figure 7.

We call each iteration of the above loop a round, and index the rounds by i = 0, 1, . . . , 25.

65

4 5 6 11 12 13 14 19 20 21 22 23 24 25 260 1 2 3 7 8 9 10 15 16 17 18 27 28 29 0

4 5 6 11 12 13 14 19 20 21 22 23 24 25 260 1 2 3 7 8 9 10 15 16 17 18 27 28 29 0

SMIX 25

SMIX 0

Figure 7: The Final Round G (in sliding window format)

66

The SMIX step in round i (that performs the SMIX transformation on the columns Sp..p+3)
is denoted SMIX[i]. The output difference in this SMIX step is denotes outSMIX(i)0..3 (or just
outSMIX(i)) and the input difference is inSMIX(i)0..3 (or just inSMIX(i)).

The Independence Assumption for G2. Just as we did in the analysis of internal collisions,
here too we will analyze each SMIX separately as if it is applied on an adversarially-chosen
differential but a random states (subject to that differential). We will then multiply all the
probabilities that we get, and assume that the combined differential behaves like a product of the
individual ones. Formally this is much less justified here than it is for the internal collisions, but
such an Independence assumption is nonetheless very common in cryptanalysis.

Theorem 11.1 Under the Independence assumption, the probability of obtaining an external col-
lision is at most 2−129, where the probability is over choosing the state (for one input) at random
at the end of the TIX-less rounds, and conditioned on any non-zero constant difference in the
state at the end of the TIX-less rounds.

Proof : Let the non-zero constant difference in the state at the end of the TIX-less rounds be D.
Thus, e.g., the input difference to SMIX[0] is D15..18 (as can be readily checked from Figure 7).
Observe that since D 6= 0, then there must be some SMIX steps with non-zero input (and output)
difference.

Let j∗−1 be the index of the last SMIX step that has a non-zero input (and output) difference.
That is, outSMIX(j∗−1) 6= 0 but outSMIX(k) = 0 for all k ≥ j∗. We observe that the last non-zero
SMIX step cannot be SMIX[0] (so we much have j∗ ≥ 2). The reason is that if outSMIX(0) 6= 0
then either the first output column or at least one of the last three output columns must have a
non-zero difference. If the last three column differences are not all zero then the input difference
to SMIX[1] is non-zero. And if outSMIX(0)0 6= 0 (and all the steps SMIX[1] through SMIX[22]
all have zero difference), then SMIX[23] that revisits the same column (S15) must have non-zero
input difference.

We now have two cases: either j∗ ≤ 24 or j∗ > 24, and we begin by considering the first case.
Now, since inSMIX(j∗)1,2 = outSMIX(j∗ − 2)2,3, we have

outSMIX(j∗ − 2)2 = outSMIX(j∗ − 2)3 = 0 (6)

Also, inSMIX(j∗)3 = outSMIX(j∗−2)0+c, where c is either determined by the starting differential
D, or by the output of outSMIX(0) and/or outSMIX(2) (see Figure 7). Thus,

outSMIX(j∗ − 2)0 = c (7)

Further, inSMIX(j∗)0 = outSMIX(j∗ − 2)1 + outSMIX(j∗ − 1)0. Thus,

outSMIX(j∗ − 2)1 = outSMIX(j∗ − 1)0 (8)

Now, if outSMIX(j∗ − 1)0 is zero, then all of outSMIX(j∗ − 1) is zero, as inSMIX(j∗ + 1)0 =
outSMIX(j∗)0 + outSMIX(j∗ − 1)1, and since the first summand is zero, and the sum itself is

67

zero, then the second summand must be zero. Also, inSMIX(j∗+1)1,2 = outSMIX(j∗−1)2,3, and
hence outSMIX(j∗ − 1)2,3 are zero as well. But, outSMIX(j∗ − 1) is non-zero, by the choice of
j∗, and hence outSMIX(j∗ − 1)0 must be non-zero. Thus, the input differences, inSMIX(j∗ − 1),
after the S-Box substitutions form a codeword of C0. Further, outSMIX(j∗ − 1)0 equals a value
c′, which is either determined by D itself, or by the output of outSMIX(0) and/or outSMIX(2),
because inSMIX(j∗ + 1)3 = outSMIX(j∗ − 1)0 + c′ = 0.

Now, by equation (8) it follows that outSMIX(j∗ − 2)1 = outSMIX(j∗ − 1)0 = c′ 6= 0. From,
equations (6) and (7), it follows that the input difference inSMIX(j∗ − 2), after the S-Box substi-
tutions, forms a codeword of CI

0,1 (as in Section 10.3).

Now, the values c and c′ above were either determined by D itself or by outSMIX(0) and/or
outSMIX(2). (The latter case arises only if j∗ > 21.) In that case, w.l.o.g. we can take D to
be the differential state after SMIX[2]. Thus, c and c′ are completely determined by D. Hence,
there is exactly one codeword choice for both inSMIX(j∗ − 1) and inSMIX(j∗ − 2) (after S-Box
substitutions), and the two being codewords of C0 and CI

0,1 respectively, where I is the indexes in
which inSMIX(j∗ − 1) is zero.

Thus, if there are k zero bytes in the input difference inSMIX(j∗− 1), then by tables 11 and 3,
the probability of obtaining the above conditions together is at most

k = 0 : 2−96 × 2−36 = 2−132

k = 1 : 2−90 × 2−48 = 2−138

k = 2 : 2−84 × 2−48 = 2−132

k = 3 : 2−78 × 2−60 = 2−138

Hence the probability is upper bounded by 2−132.

Now, we consider the case where j∗ > 24. There are only two possibilities: either j∗ = 25
(outSMIX(25) is zero) or j∗ = 26 (outSMIX(25) is non-zero).

Before we proceed, note that the output of the hash function is the following

SMIX(25)1,SMIX(25)2,SMIX(25)3,SMIX(25)0 + SMIX(4)0,

SMIX(24)1 + SMIX(25)0,SMIX(24)2 + SMIX(24)3,SMIX(24)0 + SMIX(1)0

If we have j∗ = 26 and outSMIX(25) is non-zero, then it must be the case that outSMIX(25)0 6=
0 and outSMIX(25)1,2,3 = 0 (since we have an external collision). Further, outSMIX(25)0 =
SMIX(4)0. Thus, inSMIX(25) after the S-Box substitutions form a non-zero codeword of C0, ad
as before, w.l.o.g.,there is only a unique choice of this codeword. outSMIX(24) cannot be zero
either, as outSMIX(25)0 is non-zero, and that will cause a difference in the output. Hence, as
before the inSMIX(24) after the S-Box substitution forms a codeword of CI

0,1, and the combined
probability is at most 2−132.

If j∗ = 25 then outSMIX(25) is zero but outSMIX(24) is non-zero. Now, outSMIX(24)1,2,3 must
be zero, and a similar argument shows an upper bound of 2−132 on the combined probability.

68

Now to complete the proof, note that j∗ itself is a random variable, but we show that given
the initial difference D it can only assume one of five different values. First note that, for all
k ≥ j∗ + 2 inSMIX(k)3 = 0 = SMIX(k − 2)0 + c(k), where c(k) is a column in D as before, or
outSMIX(0)0 or outSMIX(2)0. Since, SMIX(k − 2)0 = 0, by definition of j∗, we have c(k) = 0.
On the other hand, inSMIX(j∗ + 1)3 = 0 = SMIX(j∗ − 1)0 + c′, where c′ is as above, and in the
notation c(k) can be written as c(j∗+1), and hence c′ = c(j∗+1) 6= 0. Now, unless inSMIX(0) or
inSMIX(2) is non-zero, j∗ is fixed by D. Similarly, unless inSMIX(1) or inSMIX(4) is non-zero,
j∗ exists. Thus, a careful case analysis shows that there can be at most five cases when input
differences to outSMIX(0) to outSMIX(4) are non-zero. Thus, a union bound leads to a maximum
probability of 2−129. �

12 Various other Properties of Fugue-256

12.1 Pre-Image Resistance of Fugue-256

The Pre-image attack consists of finding a message which hashes to a given hash value. We expect
that there is no method substantially better than brute force search to find the pre-image. We also
expect that each possible output value, i.e. a 256 bit string, is almost equally likely to be output
as hash value on a uniformly chosen message of large enough length. Thus, brute force search will
require about 2256 random messages, and computation of Fugue-256 on those messages, before a
hash value can be obtained which matches the given hash value.

12.2 Second Pre-Image Resistance of Fugue-256

Given a hash output H on an input P , the problem of finding another input P ′ which is different
from P , such that the hash output on P ′ is also H, is called the problem of finding a second
pre-image.

One possibility is to ignore the given input P , on which H was computed, and directly trying
to find a pre-image of H. However, the possibility exists that the input P and the evolution of
the internal state on the input P , can be used as a guide to compute a second pre-image. In fact,
if at all this is possible, then it is better for the adversary to start with a same internal state S
(i.e. before the final round G starts) for the two inputs P and P ′, and work backwards towards
the same initial state, diverging somewhere in the middle (so as to make P ′ different different
from P), and then converging back to the same state.

Thus, this can be seen as a differential attack, where one of the inputs and hence the whole
state development is already fixed, and we start with a zero difference in the full 30 column state,
and evolve the state backwards to a non-zero difference in the state, and then back again to a
zero difference in the state. We focus on this latter part of the evolution of the state difference.

So, suppose that the rounds are numbered 0,1,2,... starting from the initial state. Further,
suppose that the adversary has decided to work backwards from a common state at the end of

69

round j. Thus, the difference in state S at the end of round j is zero. While working backwards,
suppose the adversary introduces a difference in the state for the first time in round j1 (0 < j1 <
j), and then manages to get back to a zero difference in state in round j2 (0 ≤ j2 < j1).

We now re-number the rounds, and call round j2 itself as round 0, and rename round j1 to
be round j1 − j2, and round j as round j − j2. Thus, at the end of round 1, there is a non-zero
difference in state S. This, implies that the input difference in round 1 must be non-zero. The
situation is depicted in Table 14, where we start with this input difference of a1 in round 1, and
calculate what must have been the state difference at the start of round 2 to get back a state
difference of zero at the start of round 1. This evolution of the state difference is continued on to
round 2, 3, etc. The adversary now tries to choose the value in column 0 which is truncated, and
not the value that is input into column 0. Thus, from Table 14, the adversary tries to choose a
value according to difference z10 for round 1.

Now there are two different ways the adversary can try to achieve this zero difference in state
at the start of round 1.

1. If the adversary tries to fix the differential in state at the start of round 2 (remember, the
adversary is working backwards, i.e. from state 2 to 1 to 0), then, since one of the inputs
(and hence its corresponding state) is already fixed, the other input and its state also gets
fixed. Then, there is no choice for the adversary to choose the (second) value in column 0
which is truncated in this round. In particular, z10 is already fixed, as it is required to be
same as column 10 difference at the start of round 2. Thus, in this case the adversary is
forced to already require all the variables a2, z11, z12 etc. to be such that they satisfy the
constraints of the SMIX steps in round 1.

However, the situation is similar in round 2 as well, as there again, the choice z20 is already
forced by the difference of column 10 and column 21, at the start of round 3. In other words,
the difference in state at the start of round 3 is y′11 which is same as y11 + z20, and y11 is
also required to be the difference in column 21. A similar situation holds in round 3 as well.

It is only in round 4, that the difference z40 is not pre-determined, and there is a choice
for z40, even if the difference at the start of round 5 is fixed. However, the choice of z20
is constrained by a complicated set of non-linear equations of high polynomial degree over
GF2.

To elaborate, any choice of z40 must satisfy the following. Once, z40 is chosen, it forces y31,
as y′31 = y31 + z40. Then, y31 along with all other differential values in columns 1 to 29 at
the start of round 5, can be used to calculate ẑ11, ẑ12, â11, and hence to evaluate a value
back for z40, using the specification of SMIX. This value must equal the value already
chosen. Thus, choosing z40 strategically so that the above constraints are satisfied seems to
be an intractable problem, especially given that the problem gets more difficult in the next
round, as there are many more similar constraints on the other variables in that round.

2. The adversary may not require the differentials to be fixed to a specific value, and try to
satisfy constraints in each round by dynamically choosing the value truncated in column 0
in each round. However, we already saw in the previous case, that for the first 4 rounds,

70

the adversary has no choice for even choosing this value, as it is already determined by the
difference in state at the start of the next round. Now, e.g., the probability of

SMIX(〈0, 0, 0, a1〉) = 〈y10, y11, y12, y13〉

where the probability is over random a1, y10, y11, y12, is (28)4/(28)5×4 = 2−128, as SMIX
is invertible. If we consider the two SMIXes of round 1, we get a probability of 2−256.

Thus, it seems no easier to obtain a second pre-image of Fugue-256(P) than just inverting
Fugue-256 directly without using P.

12.3 Strength of MD-Mode usage of C-Fugue-256

Note that the Compression function C-Fugue-256 always has inputs of length 16 words. However,
since it accepts an IV as a parameter, the possibility exists of obtaining an internal collision
with a chosen IV. In fact, we will allow two different IVs, one each for the two input messages.
Collisions obtained with different inputs, as well as different IVs are called pseudo-collisions.
Pseudo-collision resistance is important as otherwise multi-block collision attacks, in the Merkle-
Damgard [14, 6] mode of using the compression function, could become a possibility.

We now show that obtaining internal pseudo-collisions for the Compression Function C-Fugue-
256 is no easier than obtaining internal collisions in Fugue-256. For pseudo-collisions, the situation
is similar to as analyzed in Section 10, except that an adversary can now start at the beginning
of round -j, with j as small as 1, and with a chosen difference in ∆S[−(j + 1)]22..29 (the columns
22 to 29 are where the IV is placed). However, if the adversary starts the compression function at
the beginning of round -j, then the other differences ∆S[−(j +1)]0..21 must be zero, as the initial
state is identical in columns 0 to 21, regardless of the IV.

However, from Table 8, it is clear that the adversary cannot start from the beginning of round
-1, as the required difference in state at that point has columns 1 and 4 non-zero. Similarly, the
adversary cannot start from the beginning of round -2 as the difference in state at that point in
column 9 is required to be non-zero. Similarly, for rounds -3 and rounds -4. But, if the adversary
is forced to start at the beginning of round -5 or earlier, then the analysis is no different from that
of Section 10, as there we allow conditioning on an arbitrary state difference at the beginning of
round -5 or earlier.

12.4 Analysis of PR-Fugue-256 as a PRF

Recall that PR-Fugue-256 uses the 32-byte secret key as the initial IV and then applies the
underlying F-256 to the message (after padding and length-encoding). In this section we provide
some analysis of the strength of this construction, when viewed as a pseudo-random function.

71

12.4.1 Linear Cryptanalysis

As was noted in Section 8.3, each of the output bytes of F-256 depends on every one of the 256
bytes of the state after the last TIX step in a “very non-linear” fashion. In fact, between every
pair of state bytes and output byte there is a path of influence that goes through at least 25
SMIX-es. This is more than twice the number of round functions in AES-128 (and in addition
Fugue has better diffusion than AES, as was seen in Section 8), which means that any linear
trail in Fugue would have hundreds of active S-boxes. This seems to make linear cryptanalysis of
Fugue-256 far out of reach. We did not explore this attack direction any further.

12.4.2 Differential Cryptanalysis

We will focus on resistance to differential attacks on PR-Fugue-256 in this section. One key
difference in analysis of a PRF construction from that of a block cipher construction is that in
the former there are no chosen ciphertext attacks. The second difference which is specific to our
style of construction is that there are no sub-round keys, as the key is mixed with the input data
right from the first round onwards. Thus, the usual concept of peeling away rounds from the final
rounds of a block cipher, by guessing the sub-round keys of those final rounds, does not apply to
differential attacks here.

Comparing with the differential cryptanalysis of obtaining collisions in Fugue-256, there are
both positives and negatives for an adversary. The downside for the adversary is that it can not
do any message modification, or early stopping, and in fact is assumed to consider the state at
each point as random. Notice, that in PR-Fugue-256, the keys are placed in the back columns of
the state, i.e. columns 22 to 29, and these are the columns which are operated on first by SMIX
steps. On the positive side (from an adversary’s perspective), the adversary now can look for
arbitrary differentials, and not just ones which have output difference zero. In fact, since the AES
S-box has almost perfect differential properties, except for zero differentials, the best bet for the
adversary is to look for partial collisions.

Thus, for a partial output differential, which has difference zero in k bytes, in a random
function, one expects that differential to hold with probability 2−8k. If there is an input differential
which leads to such an output differential with probability (2−8k + ǫ), then by Chernoff bound,
the adversary needs about ǫ2 × 28k random samples to distinguish the two functions with high
probability.

Proving such bounds, especially for small k is a challenging task. Here we just focus on showing
that it is difficult to launch distinguishing attacks with probability better than 2−128.

The adversary’s strategy to obtaining partial collisions may consist of starting with a zero
differential in state S, say at initial state, or even later, and then introducing input differences,
and maintaining a controlled differential in the state, whatever the probability of accomplishing
that may be. We have already shown in section 10, that if the input is randomly chosen, then the
probability of obtaining a full internal collision is at most 2−250, and the probability of obtaining
an external collision, without first obtaining an internal collision is at most 2−129.

72

Round 0:

Round -2, 2nd SMIX:

Round -2, 1st SMIX:

Round -3:

ya = 0, yb 6= 0 ya 6= 0, yb 6= 0ya 6= 0, yb = 0

2−72 2−72 2−42

x2 6= 0 x2 6= 0 x2 6= 0x2 = 0 x2 = 0 x2 = 0

2−36 2−362−72

2−72

2−722−78

2−64 2−64

2−72

z03 = 0z03 = 0 z03 = 0 z03 6= 0

2−64

2−64

Round -1, 2nd SMIX:

Round -1, 1st SMIX:

Figure 8: The Case Analysis for one kind of Partial Collision

Thus, we can ignore this possibility, and focus on the adversary obtaining a strictly partial
collision. So, suppose an internal collision has not been achieved after the end of all the round
transformations R. Then, since the final round is invertible, at every stage the state differential
is non-zero. At this point, it is better to visualize the state evolution as depicted in Figure 7.
Instead of rotating the state S by three or fifteen, here we use a sliding window on the same
array of state columns, and the sliding window indicates the columns on which the SMIX step
is performed. Thus, there are 10 SMIX steps in the first loop of the final transformation G, and
26 SMIX steps in the second loop of G.

As discussed in section 10, the adversary’s success probability is increased by decreasing the
total number of active bytes, i.e. bytes which are fed into an SMIX step, and which have a
non-zero difference corresponding to two inputs. Thus, at first glance, one strategy that may be
beneficial for the adversary is to have non-zero differential only in the last few columns of the
state as depicted in Figure 7, after the first one or two SMIX steps of the final round (i.e. the
top right most SMIX steps). If this can be accomplished, then there are no active bytes in the
next eight SMIX steps of the first loop of G, and no active bytes in most of the SMIX steps of
the second loop of G.

However, obtaining such a differential state after the first one or two SMIX steps of G is an

73

extremely low probability event, as explained next.

We will only consider here the case of obtaining a differential state with zero everywhere except
for the columns one and two output by the first SMIX step (i.e. columns 28, 29), at the start
of the second SMIX step of G. This way, there will be no more active bytes till the final few
SMIX steps of G. The other cases are similar, and just extend the analysis backwards, though
we do not claim a proof yet.

Let us call these differences ya and yb for columns 28 and 29, resp. Now, we do an analysis
similar to that done in Section 10 using table 8. In particular, we rename columns 28 and 29 of
figure 7 to be columns 1 and 2, so that the first SMIX step of the final round actually operates
on columns 0 to 3. The backwards evolution of the state differential is now shown in Tables 16
and 17. The first SMIX step of G will be called round 0, and the last input round will be called
round -1, and so forth backwards.

Now, already in round 0’s SMIX (i.e. the first SMIX of G), we have seven active bytes, as
the differences z00 to z03 after the S-Box substitutions must form a codeword of C1,2. This code
has minimum distance 7, by Table 13, and since we assumed no internal collision, then one of ya
or yb is non-zero. If one of them is zero, then at this stage itself we have 12 active bytes, as then
the code is either C1, or C2, both of which have minimum distance 12.

Now, z03 taking a value zero is not ruled out, and indeed, that is the best option for the
adversary, as otherwise there will be two consecutive C0 codeword requirements in round -1,
which would lead to 26 active bytes in round -1.

Now, in round -2, if “ya zero” option was taken before, then it is better for the adversary that
x2 be zero, for otherwise we have 13 active bytes in the second SMIX of this round. But, in
this case y23 is zero, and hence in the first SMIX of this round there are at least 12 active bytes
(assuming ya was zero). If instead, ya is non-zero, then it is better for the adversary to have x2
non-zero, otherwise there are 12 active bytes in the second SMIX of this round. However, if x2
is zero, then in round -3, for the first SMIX we have 12 active bytes.

Thus, in all cases, we have at least 24 active bytes, already by round -3. The case analysis is
shown in Figure 8, from which it follows that the probability of obtaining this partial collision is at
most 2−142. The probabilities have been calculated as in Section 10. For example, the probability
in the case z03 6= 0, of obtaining the requisite post-condition of the second SMIX step of round -1
is at most 2−64, because we sum over all possibilities for z03. And, using lemma 7.3, and Table 3,
the maximum probability is obtained when there are no zero difference bytes in the input to this
SMIX step, and hence the probability is at most 24×8 ∗ 2−16×6 = 2−64.

12.5 PR-Fugue-256 as a Universal Hash Function

Even though the property of being a universal hash function can be thought of as a weaker
requirement than collision resistance, it can potentially be more difficult to prove as it is a com-
binatorial requirement in contrast to resistance to computationally bounded adversaries in usual
properties like collision resistance and PRF. However, since the state of the art does not help us

74

prove non-trivial computational lower bounds, it is reasonable to expect that proving universal
hash properties is much easier.

Indeed, since in Section 10 we do prove combinatorial bounds on differential collision attacks,
we now show that the same analysis leads to provable universal hash property for Fugue-256 with
even weaker assumptions.

Since the universal hash function property is defined using a randomly chosen key, one can
use PR-Fugue-256 to define a universal hash function. The precise definition of universal hash
property is as follows. A function f : {0, 1}k × {0, 1}∗ → {0, 1}m is called an ǫ-universal (hash)
function if for all a, b ∈ {0, 1}∗, a 6= b,

Pr
K∈{0,1}k

[f(K,a) = f(K, b)] ≤ ǫ.

We will first focus on internal collisions. We will use notation as in Section 10.1. The main
difference from the model in Section 10.2.1 is that now we do not need to assume that the state
S(P)[−4] is chosen randomly. That the initial state is random (at least 8 words of it), instead,
is now a stipulation of the universal hash property. However, we will make an assumption here
that the whole of the initial state is random (instead of just the 8 words). If one wants to be
more rigorous, a new mode can be defined where a 30 word random key is used. Or, one can
assume that Fugue works as a good pseudo-random number generator, and the 8 words of initial
randomness can be treated as 30 words of randomness at S(P)[−4]. In fact, we first formally
prove that no matter what the plaintext input is (i.e. a in the above definition), the initial (min-)
entropy of 8 words is maintained, and hence Fugue is definitely not losing entropy as input rounds
progress.

The min-entropy H(X) of a random variable X is defined as

min { log 1/Pr[X = c] }

where the minimum is over all c in the support of X.

Lemma 12.1 Consider a plaintext message P = P [−(m − 1)], ..., P [1], P [0] of length m words.
Then, H(S(P)[0]) = H(T0..7), where T is the initial state

Proof : Recall, that by our notation the initial state T is S(P)[−m], i.e. the state before
P [−(m − 1)] is input. Also, the state after the TIX step with input P [−(m − 1)] is denoted
S[−m+tix]. The rounds are numbered −(m− 1) to 0, with round 0 corresponding to input P [0].

Note that the first step of a round is the TIX step, and the first sub-step of the TIX step is
to add S0 to S10. It will be convenient to view the end of a round to include this first sub-step of
the next round. So, for the purpose of this lemma we will use S(P)[−(m− i)] to denote the state
after round −(m− i) plus the sub-step of next round.

Thus, since in the initial state T8..29 is set to zero, this implies that the min-entropy of
S[−m]1..29 is H(T0..7) which is 8 ∗ 32.

75

Hence, we will actually show something stronger, which is that the min-entropy in words 1 to
29 of the state is 8 ∗ 32 (instead of words 0 to 29). We prove this by induction over 0 ≤ i ≤ m,
with the following induction hypothesis: for every 29 word constant c,

Pr[S(P)[−(m− i)]1..29 = c] ≤ 2−8∗32

The base case (i = 0) holds by the previous paragraph.

So, now suppose the hypothesis holds for i, and we will prove it for i + 1. We show that for
every possible value of S(P)[−(m − i − 1)]1..29, there is at most one value of S(P)[−(m − i)]1..29
which along with P [−(m− i− 1)] leads to the former, from which the induction step follows.

Suppose to the contrary, there are two values S1 and S2 for S(P)[−(m − i)]1..29 which along
with the same P [−(m− i− 1)] lead to the same value T for S(P)[−(m− i− 1)]1..29. If we look at
the differentials, this implies that the difference in words 1, 2 and 3 of S(P)[−(m− i− 1)]1..29 is
zero. Then, as in section 10 it follows that all four words in S(P)[−(m− i) + tix]1..29 must have
non-zero difference. a contradiction. �

A similar argument shows that if the full initial state T is chosen randomly, then the state after
every round has min-entropy 8 ∗ 29. In the following, we will assume that the adversary chooses
two messages of the same length. In the case that the adversary chooses messages of different
lengths, say m1 > m2, then the above analysis shows that one can just start after incorporating
the first m1 −m2 blocks of input of the longer message into the random state.

Universal Internal-Collision Attack:

1. The attacker chooses two messages P and P ′, each of equal length m.

2. The initial state T is chosen at random.

3. The attack is successful if starting from the initial state the two messages induce an internal
collision in round 0 (namely S(P)[−1] 6= S(P ′)[−1] but S(P)[0] = S(P ′)[0]).

Theorem 12.2 The success probability of an attacker in the Universal Internal-Collision Attack
is at most 2−130.

Proof: The proof will use the analysis of both the pure differential attack (Theorem 10.2), and
the semi-pure differential attack (Theorem 10.3). Further, we will use the improved analysis of
Section 10.3.

As opposed to these earlier theorems, we will only consider rounds -1 and -2, and hence only
SMIX[0], SMIX[−0.5], SMIX[−1], and SMIX[−1.5]. Further, as the plaintext is fixed before
the random initial state is chosen, instead of charging 232 per input round as in Theorem 10.3,
we can charge 26∗4, essentially giving the 4 possible S-Box differentials for free.

Thus, the probability of finding a collision is 2−124 × 2−36 × 2−64 times 224 × 224 × 224, where
2−124 is the probability for SMIX[0], and SMIX[−1.5] (see section 10.3), 2−36 is the probability

76

for SMIX[−1], and 2−64 is the probability for SMIX[−0.5]. The factor 224 × 224 × 224 comes
from the two input rounds, and the price for eliminating the independence assumption used in
SMIX[−1].

The theorem for universal external collision is same as Theorem 11.1, and gives a bound of
2−129. In this case we are not able to get rid of the independence assumption of Section 11, but
we can consider the probability under choosing the initial state at random (as opposed to at the
beginning of the TIX-less rounds in Theorem 11.1).

13 Other Security Considerations

13.1 A Meet-in-the-Middle Attack on Fugue

As we mentioned in the introduction, Fugue is not subject to many of the “generic attacks” that
are known against Merkle-Damgard functions. The only generic attack that we are aware of for
Fugue is the meet-in-the-middle attack that is described below.

Since the round functions of Fugue are invertible, there is an easy pre-image attack with time-
and space-complexity roughly 2m/2 where m is the state size (in bits).7 Below we describe the
attack for the underlying F-256, but similar attacks apply to all version of Fugue (even with
padding an length encoding).

Given the output Y from F-256 (which was taken from columns 1-4 and 15-18 of the state)
we set up the following two processes:

• The first process just choose many different messages (say, of length more than 30 words) and
records each message with the state that it induces after incorporating the whole message
(but before the final round).

• The second process fills the state with the output Y in columns 1-4 and 15-18 and with
random bytes elsewhere, and then evolves that random state backward to just before the
beginning of the final round.

After roughly 2m/2 trials for each process, we expect to find a collision. That is, a message M
that leads to a state S just before the final round, such that when going through the final round
we end up with exactly Y in the right columns of the final state.

As we said, this attack has complexity (both time and space) of about 2m/2. Namely, we have
complexity 2480 for Fugue-256 and Fugue-224 and complexity 2576 for Fugue-384 and Fugue-512.

7This attack is the reason for the requirement s ≥ 2n in the parametrized version of Fugue.

77

13.2 Side-channel Cryptanalysis Attacks

Since Fugue has very similar implementations to AES, we expect it to exhibit the same character-
istics as AES with respect to size-channel attacks. On one hand, this means that Fugue is likely
to be vulnerable to similar cache attacks as AES [1, 19]. On the flip side, it is likely that the
same counter-measures that are employed to protect AES from side-channel attacks will also be
applicable to Fugue.

We also mention that side-channel attacks are only applicable to hash functions when they are
used with a secret key, and have no bearing on “integrity properties” such as collision resistance
or second-pre-image resistance.

14 Cryptanalysis of wFugue-256

In this section we focus on the possibilities of internal collisions in wF-256. As for F-256, the
backwards evolution of the differential state is shown in tables 18 and 19.

However, to get a tighter bound, we need to capitalize on the fact that there are even more
constraints on the differential state variables than analyzed in section 10. We will use notation
similar to that in Section 10. From Table 18, it is clear that the (differential) variables input
to the SMIX in round -2 after the S-Box substitutions form a codeword of CI

0,1, as shown in
Section 10.3. This allowed us to prove that if there were k > 0 zeroes in the input to the SMIX
in round -1, then there were more than 6 non-zeroes in the input to the SMIX in round -2. The
precise relation was given by table 11.

However, in this section, we do a similar analysis for two other similar situations. The first is
simpler to describe, and is essentially the same as described in the previous paragraph, except we
consider the case where x1 is zero. Then, the code for the input variables for the Super-Mix in
round -2 is called CI

1, and its minimum maxmin-rank, over all I, is given as follows (as checked
by a computer program):

|I| = 0 : 11

|I| = 1 : 12

|I| = 2 : 12

|I| = 3 : 14

In other words, if there are three zeros in the input to SMIX which produces 〈X0, 0, 0, 0〉, then
the input to an SMIX that produces 〈0,X0, 0, 0〉 has minimum weight 14+1.

The second situation is more difficult to analyze, though the code description is simple. If an
SMIX which produces an output of 〈a, b, 0, 0〉 has k zeroes in its input, say, in indices I, then
the inputs to the linear transformation Super-Mix that produce 〈c, a, 0, 0〉 as output for any c, are
called codewords of code CI∗

0,1. The minimum maxmin-rank, over all I, for such codes is given as

78

follows (and as checked by a computer program as described below):

|I| = 7 : 8

|I| = 8 : 8

|I| = 9 : 9

|I| = 10 : 10

The code CI∗
0,1 has parity check equations which can be described as follows. To start with, say,

N · 〈Ŷ10, Ŷ11, Ŷ12, Ŷ13〉
T = 〈x1, x0, 0, 0〉

T

Since N is invertible, this implies,

〈Ŷ10, Ŷ11, Ŷ12, Ŷ13〉
T = N−1 · 〈x1, x0, 0, 0〉

T

Now, if the Ŷ byte variables have k zeroes, say in byte indices I, then it imposes that many
constraints on x1, x0, via the first eight columns, and the k rows I of N−1. Let this k × 8 sub-
matrix of N−1 be called N-invI . Thus, N-invI · 〈x1, x0〉 = 0. However, from these equations,
by Gaussian elimination, we can obtain constraints just on x1, though how many such linearly
independent constraints can be obtained is only checked by a computer (for each I). so suppose
we obtain kI constraints on x1, and let these constraints be given by k1×4 matrix N-inv-reducedI .

Thus, the code CI∗
0,1 has 8 + kI parity check equations given by N8..15 and N-inv-reducedIN

4..7.
A computer program can then compute the maxmin-rank of each such code.

Equipped with these additional bounds on the ranks of various codes, and with the help of
table 18, we first upper bound the probability of finding a collision under the assumption that
the inputs are chosen randomly and independently (as one in Section 10.2.1).

In this section we will also assume that the probability of any non-zero differential of the S-
Box is 2−8, as indeed that is the average probability over all differentials. This is a reasonable
assumption, as it is difficult for the adversary to fix non-zero parts of the state differentials
to his choice, without incurring additional cost. Moreover, for all differentials (i.e. differential
characteristics for an SMIX) that we consider the output difference is determined by the full state
difference before the start of the SMIX step, and hence there is only one choice for a codeword
that leads to that output difference. Thus, we can just count the number of active bytes.

In each round -j, let the number of active bytes be denoted by 16− kj . Thus, in round -1, let
there be 16−k1 active bytes. Indeed k1 ≤ 3, as the code corresponding to the SMIXin this round
is C0. In round -2, if x1 is zero, then k2 ≤ 4, as the code corresponding to this SMIX is then C1.
If x1 is non-zero, then the code is CI

0, where I is the indices in round -1— which correspond to
zero input byte differences (|I| = k1).

In round -3, if x1 is zero, the best option for the adversary is to take x2 to be zero. If, on the
other hand x1, then it is best for the adversary to have x2 non-zero, in which case the code for this
round is CJ∗

0,1, where J is the indices in round-2 which correspond to zero input byte differences
(|J | = k2).

79

Round -1:

k1 =

2
−128

2
−120

2
−112

2
−104

0 1 2 3

x1 = 0 x1 6= 0

k2 ≤ 4 3 3 1 10 8 8 6

Round -2: 2
−96

2
−104

2
−104

2
−120

2
−48

2
−64

2
−64

2
−80

x2 6= 0

2
−88

2
−72

2
−72

2
−48

Round -3:

Figure 9: Case Analysis for wF-256

SMIX

2
−112

TIX

2
32

SMIX

2
−104

TIX

2
32

SMIX

2
−32

TIX

2
32

SMIX TIX

2
32

SMIX TIX

2
32

-1 -2 -3 -4 -5

SMIX

2
−104

TIX

2
32

SMIX

2
−80

TIX

2
32

SMIX

2
−48

TIX

2
32

SMIX TIX

2
32

SMIX TIX

2
32

-1 -2 -3 -4 -5

2
−16

Figure 10: Internal Collision Probability for wF-256 assuming Free Message Modification for two
SMIXes

80

In round -4, if x2 (and x1) were zero, then since Y03 is necessarily non-zero, it is best for the
adversary to have x3 non-zero, in which the code for this round is C0,2.

The case analysis is depicted in Figure 9. The situation under the weak adversarial advantage
assumption of free message modification upto two SMIXes is shown in Figure 10. Note that at
each round shown, there are only 232 possibilities for the input pairs, as the differentials of the
inputs are already determined by the state differential before the TIX step. Thus, for example,
the input pair difference for the TIX in round -1 is Y03, but that is required to be same as
∆S[−2]8. Similar situation holds for all TIX steps till round -5.

In Figure 10, two situations are shown, corresponding to x1 = 0 and x1 6= 0 resp. Now, first
we consider the weak adversarial advantage assumption of free message modification upto only
one SMIX. This is not an unreasonable assumption, as we could not build a small enough pre-
computed table (i.e. one which is practical in the foreseeable future) which allows us to do free
message modification beyond one SMIX step. Under this assumption, the probability of internal
collision is at most 2−152 in the top case, and at most 2−136 in the bottom case.

If on the other hand, we assume that upto two SMIXes free message modification is feasible,
and beyond that is infeasible, then we get (naively) an upper bound of 2−120 in the top case, and
an upper bound of 2−104. However, this assumes, e.g. in the bottom case, that input in round
-4 can satisfy all the constraints in the SMIX of round -3, and the inputs of round -3 remain
neutral w.r.t. satisfaction of these constraints, and can be used as control bytes for constraints on
the SMIX in round -2. If the input bytes of round -3 do not remain neutral (and we could not
see a situation where they could be), then the probability of collision is upper bounded by 2−120.

Thus, it is safe to claim that the workload of finding an internal collision is at least 296 wF-256
computations on messages of 64 bytes, even with pre-computed tables of size 296 bits.

15 Strength of Fugue-224, Fugue-384 and Fugue-512

15.1 Collision Resistance of F-224

Since, Fugue-224 is identical in structure to Fugue-256, except that only a subset of seven columns
of the output of Fugue-256 is output, the probability of obtaining an internal collision is upper
bounded exactly as for Fugue-256. The analysis for probability of obtaining an external collision
in Fugue-224 is not as clean as that for Fugue-256, and the reason is similar to that described in
the section 12.4.2 on differential attacks on PR-Fugue-256. However, as shown there, it is difficult
to obtain any useful partial collision before the start of the final round, and hence we do not
expect the probability of obtaining an external collision in Fugue-224 to be more than 2−112.

15.2 Collision Resistance of F-384

In this document, we focus solely on the possibilities of internal collisions in Fugue-384, and in
particular in F-384. The analysis is similar to that for F-256 in Section 10, and the (backwards)

81

SMIX

2
−78

SMIX

2
−64

TIX

2
32

SMIX

2
−36

SMIX

2
−28

TIX

2
32

SMIX

2
−12

SMIX TIX SMIX SMIX TIX

2
64

SMIX

-1 -2 -3 -4

2
32

2
−64

SMIX SMIX SMIX

Figure 11: Internal Collisions in F-384 with Free Message Modification upto 4 SMIXes

evolution of the differential state required for an internal collision is shown in Tables 20 and 21.
As before, all differences which are necessarily non-zero are shown in capital letters.

Since, the input word difference in round -1 is W03, and since the specification of F-384 requires
the input word to be XOR-ed into column 8, we have that W03 +∆S[−2]8 = 0. Hence, the input
difference for this round is already fixed, if we condition on ∆S[−2] being a fixed value.

Similarly, the input pair difference for rounds -2 and -3 are fixed. Thus, in these rounds there
are only 232 possibilities for the pair of input words. This is shown in Figure 11, where the
probabilities of satisfying the various post-conditions of the different SMIX steps are also shown
(analyzed in a similar fashion as done in Section 10).

From Figure 11, it follows that under the multiplicative differential assumption, the probability
of obtaining an internal collision is at most 2−282, where the probability is over a random state
at the end of round -j (j > 5), and random inputs, and conditioned on any fixed state differential
at the end of round -j.

On the other hand, since the adversary may choose its inputs strategically, we consider the
situation where we allow it to do free message modification upto four SMIXes. In that case, the
probability is still upper bounded by 2−282+32+32+12 = 2−206.

15.3 Collision Resistance of F-512

In this document, we focus solely on the possibilities of internal collisions in Fugue-512, and in
particular in F-512. The analysis is similar to that for F-256 in Section 10, and the (backwards)
evolution of the differential state required for an internal collision is shown in Tables 22 and 23.
As before, all differences which are necessarily non-zero are shown in capital letters.

Since, the input word difference in round -1 is U03, and since the specification of F-512 requires
the input word to be XOR-ed into column 8, we have that U03 +∆S[−2]8 = 0. Hence, the input
difference for this round is already fixed, if we condition on ∆S[−2] being a fixed value.

Similarly, the input pair difference for round -2 is fixed. Thus, in these rounds there are only
232 possibilities for the pair of input words. This is shown in Figure 12, where the probabilities
of satisfying the various post-conditions of the different SMIX steps are also shown (analyzed in
a similar fashion as done in Section 10).

From Figure 12, it follows that under the multiplicative differential assumption, the probability
of obtaining an internal collision is at most 2−374, where the probability is over a random state

82

SMIX SMIX TIXSMIX SMIX TIXSMIXSMIX TIX SMIX SMIXSMIX

-1 -2 -3

SMIXSMIX SMIX

2
−78

2
−64

2
32

2
−36

2
−28

2
−12

2
64

2
32

2
−64

2
−28

2
−64

Figure 12: Internal Collisions in F-512 with Free Message Modification upto 6 SMIXes

at the end of round -j (j > 3), and random inputs, and conditioned on any fixed state differential
at the end of round -j.

On the other hand, since the adversary may choose its inputs strategically, we consider the
situation where we allow it to do free message modification upto six SMIXes. In that case, the
probability is still upper bounded by 2−374+32+32+28+12 = 2−270. Note that it already gives an
additional advantage to the adversary that the input bits of round -2 are neutral for the constraints
set in the first and second SMIX steps of round -2 using control bits from inputs in round -3.

16 On the Choice of the Matrix M

The 4× 4 matrix M of Section 4.2 has been chosen as follows. Note that its first column can be
written as 1174, i.e. a four digit hexadecimal number. We considered all circulant matrices, and
hence determined by their first columns, with each of the four GF(28) values in the column, i.e.
M0

0 , M
1
0 , M

2
0 , and M3

0 , being equivalent to a single digit hexadecimal number.

Next, the smallest such four digit number (with M0
0 being the most significant digit) such that

the resulting matrix M, and the derived matrix N, satisfy the following constraints was chosen.

• The matrix N is invertible,

• the matrix M itself is MDS, i.e. all its square sub-matrices are non-singular,

• the code C0 corresponding to N is MDS,

• the maxmin-rank of codes C1, C2, C3 are at least 11,

• the maxmin-rank of code C0,1 is at least 5,

• the minimum over all I, |I| = 3, of the maxmin-rank of all codes CI
0,1 is at least 9,

• the minimum over all I, |I| = 1, 2, of the maxmin-rank of all codes CI
0,1 is at least 7.

83

References

[1] Daniel J. Bernstein. Cache timing attacks on AES. Available on-line from
http://cr.yp.to/papers.html#cachetiming. 2005.

[2] Brian Gladman. http://fp.gladman.plus.com/cryptography technology/index.htm

[3] Eli Biham, Rafi Chen. Near-Collisions of SHA-0. Advances in Cryptology - CRYPTO ’04,
Lecture Notes in Computer Science Vol. 3152, Springer, 2004, pp. 290-305.

[4] L. Carlitz, S. Uchiyama. Bounds for Exponential Sums. Duke Math. J., 24, 1957, 37-41.

[5] J. Daeman, V. Rijmen, ”The Design of Rijndael: AES - The Advanced Encryption Standard.”
Springer-Verlag, 2002.

[6] Ivan Damgard. A Design Principle for Hash Functions. Advances in Cryptology - CRYPTO
’89, Lecture Notes in Computer Science Vol. 435, Springer-Verlag, 1989, pp. 416-427.

[7] Yedidya Hilewitz, Yiqun Lisa Yin, Ruby B. Lee. Accelerating the Whirlpool Hash Function
Using Parallel Table Lookup and Fast Cyclical Permutation. Fast Software Encryption -
FSE’08, Lecture Notes in Computer Science Vol. 5086, Springer, 2008, pp. 173-188.

[8] Antoine Joux. Multi-collisions in Iterated Hash Functions. Application to Cascaded Con-
structions. Advances in Cryptology - CRYPTO ’04, Lecture Notes in Computer Science Vol.
3152, Springer, 2004, pp. 306-316.

[9] Antoine Joux, Thomas Peyrin. Hash Functions and the (Amplified) Boomerang Attack Ad-
vances in Cryptology - CRYPTO’07, Lecture Notes in Computer Science Vol. 4622, Springer,
2004, pp. 244-263.

[10] Charanjit S. Jutla, Anindya C. Patthak. Provably Good Codes for Hash Function Design.
Selected Areas in Cryptography - SAC ’06, Lecture Notes in Computer Science Vol. 4356,
Springer, 2006, pp. 376-393.

[11] Geoffrey Keating. Performance Analysis of AES candidates on the 6805 CPU core Available
on-line from http://csrc.nist.gov/archive/aes/round1/pubcmnts.htm

[12] John Kelsey, Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. Ad-
vances in Cryptology - EUROCRYPT ’06, Lecture Notes in Computer Science Vol. 4004,
Springer, 2006, pp. 183-200.

[13] Lars R. Knudsen, Christian Rechberger, Soren S. Thomsen. The Grindahl Hash Functions.
Fast Software Encryption - FSE ’07, Lecture Notes in Computer Science Vol. 4593, Springer,
2007, pp. 39-57.

[14] Ralph C. Merkle. A Certified Digital Signature. Advances in Cryptology - CRYPTO ’89,
Lecture Notes in Computer Science Vol. 435, Springer-Verlag, 1989, pp. 218-238.

84

[15] Kaisa Nyberg. Differentially Uniform Mappings for Cryptography. Advances in Cryptology -
Eurocrypt 1993.

[16] NIST. Advanced Encryption Standard. FIPS 197, November 2001.

[17] NIST. The Keyed-Hash Message Authentication Code (HMAC). FIPS 198-1, July 2008.

[18] NIST. DRAFT Randomized Hashing Digital Signatures SP 800-106, Jul 31, 2008

[19] Dag Arne Osvik, Adi Shamir, Eran Tromer. Cache Attacks and Countermeasures: The Case
of AES. The Cryptographers’ Track at the RSA Conference - CT-RSA ’06, Lecture Notes in
Computer Science Vol. 3860, Springer, 2006, pp. 1-20

[20] Thomas Peyrin. Cryptanalysis of Grindahl. Advances in Cryptology - ASIACRYPT ’07,
Lecture Notes in Computer Science Vol. 4833, Springer, 2007, pp. 551-567.

[21] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, Pankaj
Rohatgi. Efficient Rijndael Encryption Implementation with Composite Field Arithmetic.
Workshop on Cryptographic Hardware and Embedded Systems - CHES’01, Lecture Notes in
Computer Science Vol. 2162, Springer, 2001, pp. 171-184.

[22] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu. Cryptanalysis of the
Hash Functions MD4 and RIPEMD. Advances in Cryptology - EUROCRYPT ’05, Lecture
Notes in Computer Science Vol. 3494, Springer, 2007, pp. 1-18.

[23] Xiaoyun Wang, Hongbo Yu. How to Break MD5 and Other Hash Functions. Advances in
Cryptology - EUROCRYPT ’05, Lecture Notes in Computer Science Vol. 3494, Springer,
2007, pp. 19-35.

85

Table 12: The Fugue S-Box[]. The Fugue S-box is identical to the AES S-box, and is specified
below as a table of 256 bytes. Note that the table is given in row order. that is the first few bytes
in the table are S-box[00] =63, S-box[01]=7c, S-box[02] =77,etc.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
A e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
B e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
C ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
D 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
E e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
F 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 13: Min-Rankm values for Various Linear Codes (Expanded)

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cφ - - - - - - - - - - - - - - - 16

C0 - - - - - - - - - - - 12 12 12 12 12

C1 - - - - - - - - - - 11 11 12 12 12 12

C2 - - - - - - - - - - 11 11 12 12 12 12

C3 - - - - - - - - - - 11 11 12 12 12 12

C0,1 - - - - 5 5 6 6 7 7 8 8 8 8 8 8

C0,2 - - 3 3 4 4 5 6 7 7 7 8 8 8 8 8

C0,3 - - - - 5 5 6 6 7 7 7 8 8 8 8 8

C1,2 - - - - - 6 6 7 7 7 8 8 8 8 8 8

C1,3 - - - - 5 5 6 6 7 7 8 8 8 8 8 8

C2,3 - - 3 3 4 5 6 6 7 7 7 8 8 8 8 8

C0,1,2 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4
†The shaded entries are the maxmin-rank.

86

Table 14: Evolution of Differential State for Second Pre-Image(Forward)

0 3 6 9 12 15 18 21 24 27 29

0 00 0 0 0

TIX1

a1 a1
ROR3

a1 a1
CMIX

a1 a1
SMIX

y10y11y12y13 a1
ROR3

y10y11y12y13 a1
CMIX

y11y12y13y10y11y12y13 a1 y11y12y13
SMIX

z10z11z12z13y11y12y13 a1 y11y12y13

TIX2

a2 z11z12z13y11y12y13 a2 z10 a1 y11y12y13
ROR3

a2 z11z12z13y11y12y13 a2 z10 a1 y11y12y13
CMIX

z11z12z13 a2 z11z12z13y11y12y13 a2 z10 z11z12 a
′
1 y11y12y13

SMIX
y20y21y22y23z11z12z13y11y12y13 a2 z10 z11z12 a

′
1 y11y12y13

ROR3
y20y21y22y23z11z12z13y11y12y13 a2 z10 z11z12 a

′
1 y11y12y13

CMIX
y21y22y23y20y21y22y23z11z12z13y11y12y13 a2 y21z

′
10y23z11z12 a

′
1 y11y12y13

SMIX
z20z21z22z23y21y22y23z11z12z13y11y12y13 a2 y21z

′
10y23z11z12 a

′
1 y11y12y13

TIX3

87

Table 15: Evolution of Differential State for Second Pre-Image(Contd.)

0 3 6 9 12 15 18 21 24 27 29

z20z21z22z23y21y22y23z11z12z13y11y12y13 a2 y21z
′
10y23z11z12 a

′
1 y11y12y13

TIX3

a3 z21z22z23y21y22y23z11z
′
12z13y

′
11y12y13 a2 y21z

′
10y23z11z12 a

′
1 y11y12y13

ROR3
a3 z21z22z23y21y22y23z11z

′
12z13y

′
11y12 y13 a2 y21z

′
10y23z11z12 a

′
1 y11y12y13

CMIX
z21z22z23 a3 z21z22z23y21y22y23z11z

′
12z13y

′
11y12 y′13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

SMIX
y30y31y32y33z21z22z23y21y22y23z11z

′
12z13y

′
11y12 y′13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

ROR3
y30y31y32y33z21z22z23y21y22y23z11z

′
12 z13y

′
11y12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

CMIX
y31y32y33y30y31y32y33z21z22z23y21y22y23z11z

′
12 z′13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

SMIX
z30z31z32z33y31y32y33z21z22z23y21y22y23z11z

′
12 z′13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

TIX4

a4 z
′
31z32z33y31y32y33z21z

′
22z23y

′
21y22y23z11z

′
12 z′13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1 y11y12y13

ROR3
y11y12y13 a4 z

′
31z32z33y31y32y33z21z

′
22z23y

′
21y22 y23z11z

′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1

CMIX
ŷ11ŷ12ŷ13 a4 z

′
31z32z33y31y32y33z21z

′
22z23y

′
21y22 y′′23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1

SMIX
y40y41y42y43z

′
31z32z33y31y32y33z21z

′
22z23y

′
21y22 y′′23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23z11z12 a

′
1

ROR3
z11z12 a

′
1 y40y41y42y43z

′
31z32z33y31y32y33z21z

′
22 z23y

′
21y22y

′′
23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23

CMIX
ẑ11 ẑ12 â1 y40y41y42y43z

′
31z32z33y31y32y33z21z

′
22 z′23y

′′
21y

′
22y

′′
23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23

SMIX
z40z41z42z43y41y42y43z

′
31z32z33y31y32y33z21z

′
22 z′23y

′′
21y

′
22y

′′
23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23

TIX5

a5 z
′′
41z42z43y41y42y43z

′
31z

′
32z33y

′
31y32y33z21z

′
22 z′23y

′′
21y

′
22y

′′
23z

′
11z

′′
12z

′
13y

′′
11y

′
12y

′
13z22 a

′
2 y21z

′
10y23

ROR3
a Primed and hatted variables should be easy to deduce. In general, the number of primes
indicate the number of other summands.

88

Table 16: Evolution of Differential State for one type of Partial Collision (Backwards)

0 3 6 9 12 15 18 21 24 27 29

0 0 0 0 ya yb
CMIX

ya yb 0 0 ya yb ya yb
ROR3

0 ya yb 0 yayb ya yb 0
SMIX

z00z01z02z03 yayb ya yb 0
CMIX

z00z01z02z03 yayb ya yb 0
ROR3

G starts

z03 0 0 0 yayb ya yb 0 z00z01z02
SMIX

y10y11y12y13 yayb ya yb 0 z00z01z02
CMIX

y10y11y12y13 yayb ya yb 0 z00z01z02
ROR3

y13 0 0 0 yayb ya yb 0 z00z01z02y10y11y12
SMIX

z10z11z12z13 yayb ya yb 0 z00z01z02y10y11y12
CMIX

z10z11z
′
12z13 yayb ya ya yb 0 z00z01z02y10y11y12

ROR3
z13 ya yb ya ya yb 0 z00z01z02y10y11y12z10z11z

′
12

TIX−1

x2 0 0 ya yb z13 x2 ya ya yb 0 z00z01z02y10y11y12z10z11z
′
12

SMIX
y20y21y22y23yb z13 x2 ya ya yb 0 z00z01z02y10y11y12z10z11z

′
12

CMIX
y′20y21y22y23yb z13 x2 ya yb ya yb 0 z00z01z02y10y11y12z10z11z

′
12

ROR3
y23 yb 0 0 z13 x2 yayb ya yb 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22

SMIX
z20z21z22z23 z13 x2 yayb ya yb 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22

CMIX
z20z

′
21z22z23 z13 x2 yayb ya y′b 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22

ROR3
z23 z13 x2 ya yb yay

′
b 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22

TIX−2
†

x3 z13 x2 y′a ybz3 yay
′
b 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22

† continued on next page.
89

Table 17: Evolution of Differential State for one type of Partial Collision (Continued)

0 3 6 9 12 15 18 21 24 27 29

x3 0 z13 0 x2 0 0 0y′aybz3 ya y′b 0 z00z01z02y10y11y12z10z11z
′
12y

′
20y21y22z20z

′
21z22

SMIX
y30y31y32y33x2 0 0 0y′aybz3 ya y′b 0 z00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22

CMIX
y′30y31y32y33x2 0 0 0y′aybz3 ya y′b 0 z′00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22

ROR3
x2 0 0 0 y′aybz3 yay

′
b 0 z

′
00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22y

′
30y31y32y33

SMIX
z30z31z32z33y

′
aybz3 yay

′
b 0 z

′
00z01z02y10y11y12z10z11z

′
12y

′
20y21y22z20z

′
21z22y

′
30y31y32y33

90

Table 18: Evolution of Differential State for weak-Fugue-256 Internal Collision (Backwards)

0 3 6 9 12 15 18 21 24 27 29

0 0

TIX0

X0 X0

SMIX
Y00Y01Y02Y03X0

CMIX
y′00Y01Y02Y03X0 X0

ROR3
Y03X0 X0 y′00Y01Y02

TIX−1

x1 X0 x1 Y03 X0 y′00Y01Y02

SMIX
y10y11y12y13 x1 Y03 X0 y′00Y01Y02

CMIX
y′10y11y12y13 x1 Y03 X0 x1 y′00Y01Y02

ROR3
y13 x1 Y03 X0 x1 y′00Y01Y02y

′
10y11y12

TIX−2

x2 x1 x2Y03 y13X0 x1 y′00Y01Y02y
′
10y11y12

SMIX
y20y21y22y23 x2Y03 y13X0 x1 y′00Y01Y02y

′
10y11y12

CMIX
y′20y

′
21y22y23 x2Y03 y13X0 x1 x2Y03 y′00Y01Y02y

′
10y11y12

ROR3
y23 x2 Y03 y13X0 x1 x2Y03 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22

TIX−3

x3 x2 Y03 x3 y13X0 y23 x1 x2Y03 y′00Y01Y02y
′
10y11y12y

′
20y

′
21y22

SMIX
y30y31y32y33 x3 y13X0 y23 x1 x2Y03 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22

CMIX
y′30y

′
31y

′
32y33 x3 y13X0 y23 x1 x2Y03 x3 y13X0 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22

ROR3
y33 x3 y13X0 y23 x1 x2Y03 x3 y13X0 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32

TIX−4

91

Table 19: Evolution of Differential State for weak-Fugue-256 Internal Collision (Contd.)

0 3 6 9 12 15 18 21 24 27 29

y33 x3 y13X0 y23x1 x2Y03 x3 y13X0 y′00Y01Y02y
′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32

TIX−4

x4 x3 y13X0 x4 y23x1 y33x2Y03 x3 y13X0 y′00Y01Y02y
′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32

SMIX
y40y41y42y43 x4 y23x1 y33x2Y03 x3 y13X0 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32

CMIX
y′40y

′
41y

′
42y43 x4 y23x1 y33x2Y03 x3 y13X0 x4 y23 x1 y

′
00Y01Y02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32

ROR3
y43 x4 y23 x1 y33x2Y03 x3y13X0 x4 y23x1 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42

TIX−5

x5 x4 y23 x1 x5 y33x2Y03y43x3y13X0 x4 y23x1 y′00Y01Y02y
′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42

SMIX
y50y51y52y53 x5 y33x2Y03y43x3y13X0 x4 y23x1 y′00Y01Y02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42

CMIX
y′50y

′
51y

′
52y53 x5 y33x2Y03y43x3y13X0 x4 y23x1 y′′00y

′
01y

′
02y

′
10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42

ROR3
y53 x5 y33 x2 Y03y43x3y13X0x4y23 x1 y

′′
00y

′
01y

′
02 y′10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42y

′
50y

′
51y

′
52

TIX−6

x6 x5 y33 x2 y
′
03y43x3y13 x

′
0 x4y23 x1 y

′′
00y

′
01y

′
02 y′10y11y12y

′
20y

′
21y22y

′
30y

′
31y

′
32y

′
40y

′
41y

′
42y

′
50y

′
51y

′
52

92

Table 20: Evolution of Differential State for Fugue-384 Internal Collision (Backwards)

0 3 6 9 12 15 18 21 24 27 30...

0 0

TIX0

X0 X0

SMIX
Y00 Y01 Y02 Y03 X0

CMIX
Y00 Y01 Y02 Y03 X0

ROR3
Y03 X0

SMIX
Z00 Z01 Z02 Z03 X0

CMIX
Z00 Z01 Z02 Z03 X0

ROR3
Z03 X0 Y00

SMIX
W00W01W02W03 X0 Y00

CMIX
W00W01W02W03 X0 Y00

ROR3
W03 X0 Y00 Y01 Y02 Z00

TIX1

x1 Y00 Z00 X0W03 x1 Y00 Y01 Y02 Z00

SMIX
y10 y11 y12 y13 Z00 X0W03 x1 Y00 Y01 Y02 Z00

CMIX
y′

10 y11 y12 y13 Z00 X0W03 x1 Z00 Y00 Y01 Y02 Z00

ROR3
y13 Z00 X0W03 x1 Z00 Y00 Y01 Y02 Z00 Z01 Z02 W00

SMIX
z10 z11 z12 z13 X0W03 x1 Z00 Y00 Y01 Y02 Z00 Z01 Z02 W00

CMIX
z′10 z′11 z12 z13 X0W03 x1 Z00 X0W03 Y00 Y01 Y02 Z00 Z01 Z02 W00

ROR3
z13 X0 W03 x1 Z00 X0W03 Y00Y01Y02 Z00 Z01 Z02W00W01W02 y′

10

SMIX
w10 w11 w12 w13 x1 Z00 X0W03 Y00Y01Y02 Z00 Z01 Z02W00W01W02 y′

10

CMIX
w10 w11 w12 w13 x1 Z00 X0W03 Y00Y01Y02 Z00 Z01 Z02W00W01W02 y′

10

ROR3
w13 x1 Z00 X0W03 Y00 Y01 Y02Z00Z01Z02W00W01W02 y

′

10 y11 y12 z′10

TIX2

93

Table 21: Evolution of Differential State for Fugue-384 Internal Collision (Contd.)

0 3 6 9 12 15 18 21 24 27 30...

w13 x1 Z00 X0W03 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10

TIX2

x2 y′

10 z′10 x1 w13Z00 X0W03 x2 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10
SMIX

y20 y21 y22 y23 z′10 x1 w13Z00 X0W03 x2 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10
CMIX

y′′

20 y21 y22 y23 z′10 x1 w13Z00 X0W03 x2 Y ′′

00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10
ROR3

y23 z′10 x1 w13Z00 X0W03 x2 Y ′′

00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10 z′11 z12 w10

SMIX
z20 z21 z22 z23 x1 w13Z00 X0W03 x2 Y ′′

00 Y01 Y02 Z00 Z01 Z02W00W01W02 y
′

10 y11 y12 z′10 z′11 z12 w10

CMIX
z′20 z′21 z′22 z23 x1 w13Z00 X0W03 x2 Y ′′

00 Y01 Y02 Z′

00 Z′

01 Z′

02W00W01W02 y
′

10 y11 y12 z′10 z′11 z12 w10

ROR3
z23 x1 w13Z00 X0W03 x2 Y ′′

00 Y01 Y02 Z
′

00 Z′

01Z
′

02 W00W01W02 y
′

10 y11 y12 z′10 z′11 z12 w10w11w12 y′′

20

SMIX
w20w21w22w23 X0W03 x2 Y ′′

00 Y01 Y02 Z
′

00 Z′

01Z
′

02 W00W01W02 y
′

10 y11 y12 z′10 z′11 z12 w10w11w12 y′′

20

CMIX
w20w21w

′

22w23 X0W03 x2 Y ′′

00 Y01 Y02 Z
′

00 Z′

01Z
′

02 W00W01W
′

02 y
′

10 y11 y12 z′10 z′11 z12 w10w11w12 y′′

20

ROR3
w23 X0W03 x2 Y ′′

00 Y01 Y02Z
′

00Z
′

01Z
′

02W00W01W
′

02 y′

10 y11 y12 z′10 z′11 z12 w10 w11 w12 y
′′

20 y21 y22 z′20

TIX3

x3 y′′

20 X0W
′′

03 x2 w23Y
′′

00 Y01 Y02Z
′

00Z
′

01Z
′

02W00W
′

01W
′

02 y′

10 y11 y12 z′10 z′11 z12 w10 w11 w12 y
′′

20 y21 y22 z′20

94

Table 22: Evolution of Differential State for Fugue-512 Internal Collision (Backwards)

0 3 6 9 12 15 18 21 24 27 30...

0 0

TIX0

X0 X0

SMIX
Y00 Y01 Y02 Y03 X0

CMIX
Y00 Y01 Y02 Y03 X0

ROR3
Y03 X0

SMIX
Z00 Z01 Z02 Z03 X0

CMIX
Z00 Z01 Z02 Z03 X0

ROR3
Z03 X0 Y00

SMIX
W00W01W02W03 X0 Y00

CMIX
W00W01W02W03 X0 Y00

ROR3
W03 X0 Y00 Y01 Y02 Z00

SMIX
U00 U01 U02 U03 X0 Y00 Y01 Y02 Z00

CMIX
U00 U01 U02 U03 X0 Y00 Y01 Y02 Z00

ROR3
U03 X0 Y00 Y01 Y02 Z00 Z01 Z02 W00

TIX1

x1 Y00 Z00 W00U03 X0 x1 Y00 Y01 Y02 Z00 Z01 Z02 W00

SMIX
y10 y11 y12 y13 Z00 W00U03 X0 x1 Y00 Y01 Y02 Z00 Z01 Z02 W00

CMIX
y′

10 y11 y12 y13 Z00 W00U03 X0 Z00 x1 Y00 Y01 Y02 Z00 Z01 Z02 W00

ROR3
y13 Z00 W00U03 X0 Z00 x1 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 U00

SMIX
z10 z11 z12 z13 W00U03 X0 Z00 x1 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 U00

CMIX
z′10 z′11 z12 z13 W00U03 X0 Z00 W00 x′

1 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02 U00

ROR3
z13 W00U03 X0 Z00 W00 x′

1 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10

SMIX
w10 w11 w12 w13 X0 Z00 W00 x′

1 Y00 Y01 Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10

CMIX
w′

10 w11 w12 w13 X0 Z00 W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10

ROR3
w13 X0 Z00 W00 x

′

1 Y ′

00 Y01Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10 y11 y12 z′10
SMIX

u10 u11 u12 u13 Z00 W00 x
′

1 Y ′

00 Y01Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10 y11 y12 z′10
CMIX

u10 u11 u12 u13 Z00 W00 x
′

1 Y ′

00 Y01Y02 Z00 Z01 Z02W00W01W02U00 U01 U02 y′

10 y11 y12 z′10
ROR3

u13 Z00 W00 x
′

1 Y ′

00 Y01Y02Z00Z01Z02 W00W01W02U00 U01 U02 y′

10 y11 y12 z′10 z′11 z12 w′

10

TIX2

95

Table 23: Evolution of Differential State for Fugue-512 Internal Collision (Contd.))

0 3 6 9 12 15 18 21 24 27 30...

u13 Z00 W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01Z02 W00W01W02U00U01U02 y
′

10 y11 y12 z′10 z′11 z12 w′

10

TIX2

x2 y′

10 z′10 Z00 w′

10 u13 W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01Z02 W00W01W02U00U
′

01U02 y
′

10 y11 y12 z′10 z′11 z12 w′

10

SMIX
y20 y21 y22 y23 z′10 Z00 w′

10 u13 W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01Z02 W00W01W02U00U
′

01U02 y
′

10 y11 y12 z′10 z′11 z12 w′

10

CMIX
y′′

20 y21 y
′

22 y23 z′10 Z00 w′

10 u13 W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01Z02 W ′′

00W01W
′

02U00U
′

01U02 y
′

10 y11 y12 z′10 z′11 z12 w′

10

ROR3
y23 z′10 Z00w

′

10u13W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02 U00 U ′

01 U02 y′

10 y11 y12 z′10 z′11 z12w
′

10w11w12 u10

SMIX
z20 z21 z22 z23 w′

10u13W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02 U00 U ′

01 U02 y′

10 y11 y12 z′10 z′11 z12w
′

10w11w12 u10

CMIX
z′′20 z′21 z′22 z23 w′

10u13W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02 U ′′

00 U ′′

01 U ′

02 y′

10 y11 y12 z′10 z′11 z12w
′

10w11w12 u10

ROR3
z23w

′

10u13W00 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01U
′

02 y′

10 y11 y12 z′10 z′11 z12w
′

10w11w12u10 u11 u12 y′′

20

SMIX
w20w21w22w23 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01U
′

02 y′

10 y11 y12 z′10 z′11 z12w
′

10w11w12u10 u11 u12 y′′

20

CMIX
w′′

20w21w
′′

22w23 x′

1 Y ′

00 Y01 Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01U
′

02 y′′′

10 y11 y′′

12 z′10 z′11 z12w
′

10w11w12u10 u11 u12 y′′

20

ROR3
w23 x′

1 Y ′

00 Y01Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01 U ′

02 y′′′

10 y11 y
′′

12 z′10 z′11 z12 w′

10w11w12u10 u11 u12 y
′′

20 y21 y
′

22 z′′20
SMIX

u20 u21 u22 u23 Y01Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01 U ′

02 y′′′

10 y11 y
′′

12 z′10 z′11 z12 w′

10w11w12u10 u11 u12 y
′′

20 y21 y
′

22 z′′20
CMIX

u′

20 u
′

21 u
′

22 u23 Y01Y02 Z00 Z01 Z02W
′′

00W01W
′

02U
′′

00 U ′′

01 U ′

02 y′′′

10 y11 y
′′

12 z′′10 z′′11 z′12 w′

10w11w12u10 u11 u12 y
′′

20 y21 y
′

22 z′′20
ROR3

u23 Y01 Y02 Z00 Z01Z02W
′′

00W01W
′

02U
′′

00 U ′′

01 U ′

02 y′′′

10 y11 y′′

12 z′′10 z′′11 z′12 w′

10 w11 w12 u10 u11 u12 y
′′

20 y21 y
′

22 z′′20 z′21 z′22 w′′

20

TIX3

x3 Y ′′′

01 Y02 Z00 Z
′′′

01Z02W
′′

00W
′′′

01W
′′

02U
′′

00 U ′′

01 U ′

02 y′′′

10 y11 y′′

12 z′′10 z′′11 z′12 w′

10 w11 w12 u10 u
′

11 u12 y
′′

20 y21 y
′

22 z′′20 z′21 z′22 w′′

20

ROR3

96

	Introduction
	Speed estimates
	Statement of Expected Strength
	Statement of Advantages and Limitations
	Main Idea
	Super-Mix Transformation

	I Specification of Fugue
	Basic Conventions
	Galois Field GF(28)
	Specification of Fugue-256
	Substitution Box
	Super-Mix
	The Hash Function F-256
	The Round Transformation R
	The Final Round G
	Initial State
	Hash Output
	Complete Specification of the Hash Function F-256

	The Hash Function Fugue-256
	Pseudo-Random Function PR-Fugue-256
	Compression Function C-Fugue-256
	Other Modes of Operation

	Specification of Parameterized Fugue
	The parameterized function F[n,k,s,r,t]
	A Complete Specification of F[n,k,s,r,t]

	Parameter Specifications for Different Output Lengths
	Fugue-224 and related functions
	Fugue-384 and related functions
	Fugue-512 and related functions
	A Weaker Version of Fugue-256

	II Implementation
	Software and Hardware Efficiency
	Implementing Fugue on 32-bit Machines
	Implementing Fugue on 64-bit Machines
	Implementing Fugue on 8-bit Architectures
	Hardware Implementations of Fugue
	Other Implementations of Fugue

	III Security Analysis
	The Super-Mix Matrix and Related Linear Codes
	Linear Codes
	Linear Codes Related to the Super-Mix Matrix N
	Implications for the Differential Properties of SMIX

	Diffusion Properties of Fugue-256
	Diffusion of input bytes
	Diffusion of state bytes
	Diffusion in the TIX-less rounds G1
	Diffusion in the entire final transformation G

	Properties of the S-Box
	Differential Analysis of Fugue-256: Internal Collisions
	Backward Evolution of the Internal State
	Round Zero
	Introducing Tables 8 and 9
	Round -1
	Round -2
	Round -3
	Round -4
	Summing it up

	Differential Attacks
	Pure differential Attacks
	More Realistic Differential Attacks
	Beyond Random Initial State
	The Length-Padding in Fugue-256

	A Tighter Analysis for Theorem 10.2

	Differential Analysis of Fugue-256: External Collisions
	Various other Properties of Fugue-256
	Pre-Image Resistance of Fugue-256
	Second Pre-Image Resistance of Fugue-256
	Strength of MD-Mode usage of C-Fugue-256
	Analysis of PR-Fugue-256 as a PRF
	Linear Cryptanalysis
	Differential Cryptanalysis

	PR-Fugue-256 as a Universal Hash Function

	Other Security Considerations
	A Meet-in-the-Middle Attack on Fugue
	Side-channel Cryptanalysis Attacks

	Cryptanalysis of wFugue-256
	Strength of Fugue-224, Fugue-384 and Fugue-512
	Collision Resistance of F-224
	 Collision Resistance of F-384
	 Collision Resistance of F-512

	On the Choice of the Matrix M

