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Abstract

We propose a two new approaches to authentication based on the (ring-)LPN problem. In
contrast to all known approaches, we can use a noise rate for the LPN problem that is arbitrarily
close to 1/2, without this affecting the communication complexity of the protocol, and while
doing only (poly-)logarithmic depth computation. At the cost of having the prover keep a
small amount of state, our approach allows us to “upgrade” the HB protocol from passive to
the man-in-the-middle security (the strongest notion) while maintaining its simple structure.

A technical contribution of independent interest is a construction of a poly-logarithmic depth
PRF from LPN that is secure if at most a predetermined number ` of queries are asked; if more
queries are asked, the same PRF is still secure, but now under a stronger assumption closely
related to LPN. The basic idea of the construction also applies to other problems with a similar
structure, such as subset-sum.

Keywords. LPN, ring-LPN, authentication, identification, pseudorandom functions.

1 Introduction

The well-known Learning Parity with Noise (LPN) problem involves a binary secret vector s of
length n, and an adversary who is given a number of pieces of partial information about s, which
are called LPN samples. Each sample has form (a, 〈a, s〉+e), where a is a uniformly random vector,
e is a bit that is 1 with probability τ , and s is a random vector that is fixed across all samples.
The adversary’s goal is to compute s or (in the decision version of the problem) distinguish the
samples from completely random.

Because of its simplicity and because it seems to be hard for constant τ < 1
2 and relatively small

values of n, LPN has been intensively studied in order to build, for instance, efficient secret-key
authentication protocols. That is, we have a prover and a verifier who have the same secret key
s, and we seek a protocol in which the verifier can make sure he is talking to the one prover who
also knows the key. While the first suggestion (called HB [HB01]) only satisfied the most basic
passive security requirement, later proposals have shown that we can get the strongest meaningful
security for authentication protocols based on LPN [Kil+11], namely man-in-the-middle security.
Later, the Ring-LPN problem was proposed as a way to further reduce the complexity of the
protocols [Hey+12]. Here, samples are of form a · s + e, where all three elements are in some
suitable polynomial ring, and where each entry (i.e. coefficient) in e is 1 with probability τ .

From a theoretical point of view, one could also get secure authentication from LPN in a
different way: there is a straightforward construction of a pseudorandom generator (PRG) from
the LPN problem, and the result of [GGM86] shows how to build a pseudorandom function (PRF)
from any PRG. Given a PRF fK that depends on a key K shared by prover and verifier, consider
a simple authentication protocol as follows: the verifier generates a random challenge x and the
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prover responds with fK(x). However this construction is rather inefficient: in particular, the
PRF requires polynomial depth computation. In contrast, the other proposals for LPN-based
authentication avoid this problem by using the special properties of LPN to do authentication
without going via a PRF, and this allows them to make do with logarithmic depth computation.

Therefore, it may seem that the problem of doing authentication based on LPN is completely
solved. However, all previous protocols share a somewhat unfortunate property, coming from the
fact that the completeness of the protocols is not perfect. More precisely, we have to set the
parameters in such a way that the honest verifier will reject the honest prover with only negligible
probability. However at the same time, we also want to use parameters that make the underlying
LPN problem instance as hard as possible, which clearly means choosing τ close to 1

2 . It turns out
that if we want τ = 1

2 − ε and error probability 2−w, then the communication in the protocol needs
to be of size Ω(w/ε2). So as ε gets small, communication (and hence computation) grows quite
dramatically. Using the PRF based construction via [GGM86] could potentially be used to avoid
the growth in communication, but only at the cost of large depth computation. On the other hand,
if we use a small value of τ , the LPN problem gets easier, and we need to increase n to maintain
the security level, which again implies larger communication.

1.1 Our contribution

In this paper, we show we can allow an arbitrary value for τ (in particular, arbitrarily close to 1
2)

without having to pay for this with larger communication nor with large-depth computation. The
price we pay is instead that the prover (but not the verifier) has to keep a small amount of state
(basically a counter).

We show two approaches to the problem. The first one is a simple construction derived from the
HB protocol. We show that if we replace the noise vectors generated by the prover by pseudorandom
noise that the honest verifier can reconstruct, the protocol achieves perfect completeness and
man-in-the-middle security, whereas the original HB protocol was only passively secure. The
computation needed for the protocol is proportional to log(t) where t is the number of times the
protocol is used. Our protocol has the interesting property that its communication complexity
depends only on the desired security level and not on n or τ . More precisely, if we want k-bit
security, we need of course to choose parameters (n, τ) such that we can hope that the underlying
LPN problem will take 2k time to solve. But in our construction, this only affects the local
computation of prover and verifier and not the communication, which always consists of 2 k-bit
messages. This is in contrast to the one known protocol that is man-in-the-middle secure [Kil+11],
where both computation and communication is affected by the choice of n and τ .

Our construction can also be seen as a general template for doing secure authentication based
on a secure PRG. This is of particular interest for LPN because we know extremely efficient PRGs
based on LPN, as explained later in the paper.

The second protocol is based on a PRF that we construct which can be computed in poly-
logarithmic depth. When keys for the PRF are set up we choose a number `, and the PRF will then
be secure if LPN is hard, provided the adversary asks at most ` queries (` can be any polynomial
in the security parameter). If more than ` queries are asked, this same PRF is still secure, but now
under a stronger assumption that we describe in more detail below. The second protocol is secure
if LPN is hard and its run time grows more slowly with t, namely it is proportional to log(dt/`e).

We believe that asking the prover to keep state is reasonable, and in particular, we avoid the
synchrony problems that might arise if also the verifier had to keep state. Nevertheless, it is natural
to ask what happens if the adversary is able to reset the prover. Fortunately, not all is lost: while
the first protocol is insecure under such an attack, the second is secure, but now under the stronger
assumption mentioned above.

It should be noted that although our construction pays a smaller price for driving τ towards
1
2 , we do have to pay in terms of computation (although the depth is small): the construction
makes heavy use of the PRG that follows naturally from LPN, and this is less efficient if τ is close
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to 1
2 . We believe that this is inherent, however, in the following sense: in all known protocols,

security is based on arguing that the prover’s responses are pseudorandom if LPN is hard (even
for a malicious verifier). Now, if we consider a verifier that chooses his messages deterministically
and interacts many times with the prover, then we see that the protocol is effectively a procedure
that expands the prover’s key into a long sequence of random looking messages (from the prover),
that is, it acts as a PRG. This strongly suggests that we must build a PRG from LPN in order
to get authentication, and hence suffer a loss in computational efficiency (if not in depth) as τ
approaches 1

2 .
On the other hand, we could also choose to go for efficiency by choosing a relative small τ as

this makes the stretch of the PRG larger. This requires us to increase n to to maintain the concrete
security level, and where existing protocols would suffer an increase in communication because of
this, our communication complexity will not be affected.

It is a long standing open problem to construct a logarithmic depth PRF from LPN. Our
work shows a first step towards a solution, that is already useful for the natural problem of
authentication. As an observation of independent interest, we show that other problems that share
some structure with LPN can be used as basis for our PRF construction: concretely, we show that
the subset sum problem can be used in this way. Note that also for subset sum, it is not known
how to construct a logarithmic depth PRF.

2 (Ring) Learning Parity with Noise

We begin by establishing some notation and formally defining the LPN [BFKL94] and ring-LPN
[Hey+12] problems.

Notation. We denote vectors by bold lower-case letters, and matrices by bold capital letters.
Where not stated otherwise, vectors are column vectors.

Let Berτ denote the Bernoulli distribution with parameter τ , and let Bernτ denote the distri-
bution of vectors in Zn2 where each bit is independently distributed according to Berτ . In the
context of LPN, all arithmetic operations are modulo 2. For a polynomial ring R ∈ F2[X]/(g), the
distribution BerRτ denotes the distribution over R, where each of the coefficients of the polynomial
is drawn independently from Berτ . For a polynomial r ∈ R, let |r| denote the weight of r, i.e.
the number of nonzero coefficients that r has. Let r[i] ∈ Z2 denote the coefficient of xi in r. ppt
stands for probabilistic polynomial time, negl(n) denotes a negligible function in n, and poly(n)
denotes a function polynomial in n.

For a finite set B, we will use U(B) to denote the uniform distribution over B. The rela-

tion
s
≈ between distributions denotes statistical indistinguishability, and

c
≈ denotes computational

indistinguishability. H is the binary entropy function.

Definition 2.1 (Decisional LPN problem). Take parameters n ∈ N and τ ∈ R with 0 < τ ≤ 1
2

(the noise rate). A distinguisher D is said to (q, t, ε)-solve the decisional LPNn,τ problem if∣∣∣∣ Pr
s,A,e

[D(A,As + e) = 1]− Pr
r,A

[D(A, r) = 1]

∣∣∣∣ ≥ ε
where s

$←− Zn2 , A
$←− Zq×n2 , and r

$←− Zq2 are uniformly random and e← Berqτ , and the distinguisher
runs in time at most t.

The decisional and search versions of the LPN problem are polynomially equivalent [KSS10].
The ring-LPN problem is a natural variant of the LPN problem with some additional structure

allowing for fast multiplication and compact representations of samples, in which the vectors of
the LPN problem are interpreted as polynomials in a ring.
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Definition 2.2 (Decisional ring-LPN problem). Take parameters R = F2[X]/(g) with g ∈ F2[X]
irreducible and of degree n− 1, and τ ∈ R with 0 < τ ≤ 1

2 . Let UR denote the uniform distribution

over R × R. For any polynomial s ∈ R, let ΛR,sτ be the distribution over R × R whose samples

are obtained by choosing a polynomial r
$←− R and another polynomial e → BerRτ and outputting

(r, rs+ e). A distinguisher D is said to (q, t, ε)-solve the decisional RingLPNRn,τ problem if∣∣∣Pr[DΛR,sτ = 1]− Pr[DU
R

= 1]
∣∣∣ ≥ ε

and the distinguisher runs in time at most t and makes at most q queries.

Remark. It is not strictly necessary (for correctness or security of the constructions) that g
be irreducible. In fact, it could increase efficiency of implementation if g were not irreducible.
However, there are various pitfalls to avoid when choosing a reducible g (for example, it must not
have factors of very low degree), in order to maintain security (see [Hey+12] for a more detailed
discussion). In this work we assume that g is irreducible.

Note that for both LPN and ring-LPN, when τ = 1
2 , the samples are information-theoretically

indistinguishable from uniformly random.

3 Overview of LPN-based authentication

A authentication protocol is an interactive two-party protocol (P,V) between a prover P and a
verifier V: these may be respectively thought of as a (lightweight) tag, and a reader to which the
tag is identifying itself. Both parties are ppt, and hold a shared secret s generated according to
some generation algorithm Gen(1κ) (where κ denotes the security parameter) in an initial phase.
After an execution of the protocol, the verifier V outputs either accept or reject – this is also called
the output of the protocol execution.

In this work we consider prover-stateful protocols where the prover also maintains some (small
amount of) state between protocol executions, and stateless protocols where neither party needs
to maintain state.

Definition 3.1 (Completeness). The completeness error of a protocol is defined to be

Pr
s←Gen(1κ)

[(P,V)(s) = accept].

A protocol is complete if its completeness error is negligible in a security parameter. It is perfectly
complete if its completeness error is zero.

Common definitions of security for authentication protocols are given below. Note that the
security definitions are presented in order of increasing strength, and the stronger security notions
subsume the weaker ones.

Definition 3.2 (Passive security). An authentication protocol (P,V) is secure against passive
attacks if for any secret s ← Gen(1κ), for any ppt adversary A which has access to arbitrarily
polynomially many transcripts of honest protocol executions (for secret s), it holds that

Pr[(A,V)(s) = accept] ≤ negl(κ).

Definition 3.3 (Active security). An authentication protocol (P,V) is secure against active at-
tacks if for any secret s ← Gen(1κ), for any ppt adversary A which first can interact arbitrarily
polynomially many times with an honest prover P (including concurrent executions, but not allow-
ing resetting of the prover’s state), and then afterward (now, without access to P) interacts once
with an honest verifier V, it holds that

Pr[(A,V)(s) = accept] ≤ negl(κ).

4



Definition 3.4 (Man-in-the-middle (MIM) security). An authentication protocol (P,V) is secure
against man-in-the-middle (MIM) attacks if for any ppt adversary A which first can interact
arbitrarily polynomially many times with an honest prover P and/or an honest verifier V (including
concurrent executions, but not allowing resetting of the prover’s state), and then afterward (now,
without access to P) interacts once with an honest verifier V ′, it holds that

Pr[(A,V ′)(s) = accept] ≤ negl(κ).

Note that in this setting, A learns the accept/reject decisions made by verifier V.

3.1 Overview of existing protocols

The first and simplest authentication scheme based on LPN was the HB scheme [HB01], illustrated
in Protocol 1. HB is provably secure against passive attacks (but easily breakable by active attacks).
Subsequently, [JW05] gave a variant protocol called HB+ with an additional round (which requires
the prover to keep state between rounds), and their protocol achieves active security as shown by
[KSS10]. Then, [Kil+11] proposed the first two-round actively secure protocol, whose security is
based on the Subspace LPN problem (this is a variant of the LPN problem that has been shown
to be almost as secure as LPN itself, under certain conditions [PP03]).

Public parameters. Security parameter κ ∈ Z, n ∈ Z with n = poly(κ), noise rate τ ∈ (0, 12 ),
threshold τ ′ ∈ (τ, 12 ).

Key generation. Gen(1κ) samples secret key s
$←− Zn2 .

P(s) V(s)

A←−−−−−−−− A
$←− Zn×m2

e
$←− Bernτ

z := As + e
z−−−−−−−−→ accept iff ||z + As||1 < τ ′ · n

Protocol 1: The HB authentication protocol

The preceding protocols are all vulnerable to man-in-the-middle attacks. [Kil+11] shows how
to generate a MAC based on their aforementioned actively secure authentication protocol, and this
yields the first efficient MIM secure protocol based on LPN (using two rounds). More recently,
[DKPW12] gave a more efficient MIM secure variant protocol using pairwise independent hashing.

The notable authentication protocol in the literature which is presented in terms of ring-LPN
rather than LPN is the Lapin protocol [Hey+12] (Protocol 2), which has provable active security.
However, note that the preceding LPN-based protocols can also be straightforwardly adapted to the
ring-LPN setting (the adaptation preserves security properties, but with respect to the ring-LPN
assumption rather than the LPN assumption).

3.2 Increasing the noise rate

In existing schemes, though any constant noise rate 0 < τ < 1
2 is supported, the completeness

guarantees are asymptotic: in fact, as τ → 1
2 , the tradeoff between efficiency and completeness is

rather poor. Concretely, for τ = 1
2 − ε, if we want a completeness error of at most e−w for some

fixed w, then by a Chernoff bound, n = O(1/ε2). Hence, to get arbitrarily low error probability
we must have extremely large n (and thus, very slow algorithms and large memory requirements).
This is undesirable since we want τ close to 1

2 in order to use the weakest assumption possible.
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Public parameters. Security parameter κ ∈ Z, n ∈ Z with n = poly(κ), noise rate τ ∈ (0, 12 ),
threshold τ ′ ∈ (τ, 12 ), polynomial ring R = F2[X]/(g) with irreducible g
of degree n, and π : {0, 1}κ → R a mapping.

Key generation. Gen(1κ) samples secret key s
$←− R.

P(s) V(s)

c←−−−−−−−− c
$←− Zκ2

r
$←− R, e← BerRτ

z := r · (s · π(c) + s′) + e
r,z−−−−−−−−−→

e′ := z − r · (s · π(c) + s′)
accept iff ||e′||1 < τ ′ · n

Protocol 2: The Lapin authentication protocol

In contrast, by making use of (ring-)LPN-based pseudorandomness as in our protocols, we can
greatly improve the tradeoff between efficiency and error rate.

4 Authentication using pseudorandom generation

It is known how to construct a simple and efficient pseudorandom generator based on LPN
[BFKL94]. In this section we show how to improve authentication protocols using such a PRG.

Definition 4.1 (Pseudorandom generator). Let G : {0, 1}n → {0, 1}m(n) be a deterministic
polynomial-time algorithm. G is said to be a pseudorandom generator (PRG) if m(n) > n and for
any ppt algorithm A that outputs a single bit, it holds that |Pr[A(r) = 1] − Pr[A(G(s)) = 1]| ≤
negl(n), where r ← {0, 1}m(n), s ← {0, 1}n are chosen uniformly at random, and the probabilities
are taken over r, s, and the random coins of A.

It is well known that any pseudorandom generator implies pseudorandom generation with any
polynomial expansion factor m(n), by applying the PRG to its own output repeatedly.

4.1 (Ring-)LPN-based pseudorandom generation

The original pseudorandom generator of [BFKL94] takes a (uniformly random) input r and uses it
to sample A, s uniformly, and e with each bit distributed as Berτ , and then outputs (A,As + e).
Building upon this, [ACPS09] constructed an efficient (quasi-linear time) linear-stretch PRG based
on the LPN problem. In particular, their construction makes use of the fact that s ∈ Zl2 and e ∈ Zm2
together have l +m ·H(τ) bits of entropy, and can be very efficiently sampled using roughly that
many random bits by a method of [AIK08]. (A can be fixed as a public parameter and thus need
not be sampled afresh each time.) However, the [ACPS09] construction is defined only for τ = 2−t

for t ∈ Z+. In Section 4.2, below, we generalize their construction to any real τ ∈ (0, 1
2 ].

4.2 Efficient Bernoulli sampling, and PRGs for any noise rate

The PRF of [ACPS09] relies on the Bernoulli sampling technique of [AIK08], which is defined only
for τ = 2−t for t ∈ Z+.

Lemma 4.2 ([AIK08]). There exist positive integers k > 1 and c > 2k and a sampling algorithm
Samp that uses (k+k/c)n random bits and outputs a pair (e,v) whose joint distribution is 2−Ω(n)-
statistically close to (Bern2−k ,U({0, 1}kn)). Moreover, Samp can be implemented in NC0.
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The sampling method of [AIK08] is as follows: each bit of the Bernoulli output vector e is
obtained by taking the product of t uniformly random input bits; and then to reduce entropy
waste, they also apply a randomness extractor to the input bits to obtain the pseudorandom part
of the output, v. The Bernoulli output is just a product of t and thus computable in NC0, and
[AIK08] constructs an extractor that is also in NC0 so that the whole sampler is in NC0.

We now generalize their technique to any real τ ∈ (0, 1
2 ]. The generalized construction is no

longer in NC0, but has logarithmic depth, which is what we require. For security parameter κ, let

τ ′ be the approximation of τ to κ binary places. Note that to a ppt adversary, Berτ
c
≈ Berτ ′ . Now,

we can sample from Berτ ′ by choosing a random value t ∈ {0, 1}κ and outputting 1 if t ≤ τ ′ ·2κ, and
0 otherwise (for the purposes of the comparison, t should be interpreted as an integer expressed
in binary). Sampling n Bernoulli-distributed bits in this way yields an output distribution which
is computationally indistinguishable from the desired Bernτ (and this can be done in logarithmic
depth). The randomness extractor of [AIK08] is then applied to the input bits just as in their
original construction.

A very similar construction can be used to obtain a PRG based on ring-LPN. For easy future
reference, we let LPN-PRG denote the above-described LPN-based PRG, and let ring-LPN-PRG
denote the ring-LPN based variant PRG.

In our later constructions, we require generation of Bernoulli samples separately from the PRG
construction, and derived from pseudorandom – rather than truly random – input. To capture
this, we define the following.

Definition 4.3. For security parameter κ, let BerSampGn,τ : {0, 1}n → {0, 1}n be the function
that: takes as input x ∈ {0, 1}n (which is truly random), applies the pseudorandom generator G
to x to obtain a pseudorandom value x′ ∈ {0, 1}(k+k/c)n where k, c are the constants promised in
Lemma 4.2 and κ ≤ k, then applies the generalized Bernoulli sampling algorithm of to x′ to obtain
a pair (e,v) whose distribution is computationally indistinguishable from (Bern2−k ,U({0, 1}kn)), and
finally outputs e.

Note that in the ring-LPN context, we interpret the output of BerSamp as a ring element e.

4.3 Efficient look-ups using the PRG

We would like to generate a series of pseudorandom values r1, . . . , rt ∈ Zn2 using ring-LPN-PRG, such
that each ri can be looked up in logarithmic time. Let Gn denote the PRG based on ring-LPN-PRG,

that maps n bits to 3n bits. Let G
(j)
n denote the first, middle, or last n bits of the output of PRG3

(for j = 1, 2, 3 respectively). We generate r1, . . . , rt in a tree structure as follows.

ρ0

r1 ρ1

r2 ρ3

...

ρ4

...

ρ2

r3 ρ5

...

ρ6

...

Figure 1: Tree illustrating efficient look-up of pseudorandom values

In Figure 1, ρ0 ∈ Zn2 is the original (random) input to the PRG. The ρi ∈ Zn2 are values which
are subsequently pseudorandomly generated, which are used again as input to the PRG to produce
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more pseudorandom values: in particular, if ρi is a child of ρj in the tree, then ρi = G
(2)
n (ρj) if i is

even, and ρi = G
(3)
n (ρj) if i is odd. The boxed nodes ri ∈ Zn2 represent the output pseudorandom

values which we want to look up, and they are generated by ri = G
(1)
n (ρj) where ρj is the parent

node of ri. We refer to the boxed nodes as output nodes and we call the other nodes internal nodes.
For a PRG Gn : Zn2 → Z3n

2 , let lookupGn(ρ0, i) ∈ Zn2 denote the ith output value ri obtained
using the above tree method. It is clear that for any polynomial size i, the number of PRG
evaluations required to look up ri is logarithmic.

Lemma 4.4. For any PRG Gn and random ρ0
$←− Zn2 , it holds that

(lookupGn(ρ0, i1), . . . , lookupGn(ρ0, im))
c
≈ (r1, . . . , rm),

where ri
$←− Z3n

2 are uniformly random .

Proof. Since Gn is a PRG, the output of Gn on a random input ρ is indistinguishable from random
(as long as the input ρ is not known). In the tree structure, the value at each (non-root) node
is obtained by applying Gn to the value at its parent. Therefore, if the value at the root node is
random, then it follows (by induction on the depth of the node N in the tree) that the value at any
node N is indistinguishable from random as long as none of the values at its ancestors is known.

For any node N , the values at its three child nodes are disjoint parts of the output of the
PRG (on the value at N). Hence, the children are (together) indistinguishable from random as
long as the parent is not known. Furthermore, the values at any subset S of nodes of the tree
are indistinguishable from random – even if the nodes share parents or ancestors – as long as no
ancestor of a node in S is known.

By the design of the tree, no output node is an ancestor of any other output node. More-
over, since the ij are all distinct, no output value rij corresponds to the same output node as
another output value rij′ . It follows that the outputs (lookupGn(ρ0, i1), . . . , lookupGn(ρ0, im)) are
computationally indistinguishable from uniformly random.

4.4 Authentication using the PRG

The approach we take in this section is to replace the Bernoulli noise in a traditional LPN or
ring-LPN sample by pseudorandom noise from an LPN-based PRG, and modify the verifier’s
accept/reject decision to check whether the correct pseudorandom noise was used (instead of a
threshold check as in the original protocol). In contrast to the original protocol, the new one has
perfect completeness and its communication complexity is unaffected as τ → 1/2 (although the
PRG will be come less efficient). Protocol 3 is an instantiation of this approach based on the
simplest LPN-based protocol, HB.

Note that the teal color in the protocol diagram indicates (updating of) the prover’s state.

Lemma 4.5. Protocol 3 is perfectly complete.

Proof. This is clear since lookupGn is a deterministic algorithm, so by definition, for any honest
prover, the verification check must accept.

Theorem 4.6. Assuming RingLPNRn,τ is hard, Protocol 3 is secure against man-in-the-middle
attacks.

Proof. In the following, let ej denote the noise string for index j. Assuming RingLPNRn,τ is hard,
Gn is a PRG. Then by Lemma 4.4, the ej are indistinguishable from random (even given many
samples), since the counter j is incremented upon each protocol execution and is thus different
between any pair of executions that the adversary can see. Hence z = a · s+ ej is indistinguishable
from a ring-LPN sample z′ = a·s+e′ where e′ ← BerR1/2. This, in turn, is (information-theoretically)
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Public parameters. Security parameter κ ∈ Z, n ∈ Z with n = poly(κ), noise rate τ ∈ (0, 12 ],
polynomial ring R = F2[X]/(g) with irreducible g of degree n.

Key generation. Gen(1κ) samples s
$←− R, s′ $←− Zn2 and outputs secret key (s, s′).

Initial state. The prover’s state consists of i ∈ Z initialized to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a
$←− R

e := lookupGn
(s′, i)

z := a · s+ e
i := i+ 1

z, i−−−−−−−−−→ accept iff z + a · s = lookupGn
(s′, i)

Protocol 3: Enhanced HB protocol based on PRG

indistinguishable from random, regardless of how a is chosen. Thus, we can replace all the ej by
uniformly random strings and the adversary’s advantage will change by only a negligible amount.

We now show that it is possible to build a new adversary A′ that only talks to the prover
and achieves essentially the same advantage. First, we will replace the honest verifier by a fake
verifier V ′ who has no access to s or the ej but still gives essentially the same answers as V. Then
we argue that for any man-in-the-middle attack, there is an equally successful active attack, and
finally prove the active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does).

When A returns an answer z, j (i.e. the second protocol message), there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = a′ · s + ej and a′ is A’s query to P.
Here we have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution):
in this case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. The challenge produced by V has exactly the
same distribution as the one V ′ outputs. Now, in case 1a, notice that V will accept if and only
if z has the correct value a · s + ej : so V ′ always makes the same decision as V. In case 1b, V
rejects except with negligible probability, so V ′ is statistically close to the right behavior. This
is because accepting would imply that z = a · s + ej , but we also have z′ = a′ · s + ej so then
s = (z− z′)(a− a′)−1. This happens with negligible probability because s is random and z, z′, a, a′

are all independent of s. This holds because all of P’s responses (including z′) are independent of
s. Moreover, since this is the first query, V has not even looked at s yet, so a, a′ and z must be
independent of s too. Finally, in case 2, note that no one sees ej before the adversary produces
z, j. If V accepts, we have z = a · s+ ej , so ej = z−a · s, which happens with negligible probability
since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query, and the adversary’s
advantage changes at most negligibly as a result. Repeating the same argument for all the queries,
we reach the game where V is entirely replaced by V ′, and the adversary’s advantage is still at
most negligibly different from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”. So
for any adversary A which has non-negligible advantage in a man-in-the-middle attack, we can
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construct an adversary A′ that emulates both A and V ′ “in his head” and achieves the same
advantage, but conducting an active attack (since he need not interact with the real verifier V).

We now prove the security of the protocol against active attacks. First, note that the prover’s
message z is indistinguishable from random to any active adversary (even after observing polyno-
mially many honest transcripts), since we established at the beginning of this proof that correctly-
formed z = a · s + ej are indistinguishable from random regardless of the adversary’s choice of a.
So, it remains only to consider the interaction of A with the verifier. Given a challenge a from
an honest verifier V, we argue that A can have no more than negligible advantage at guessing the
(unique) value of z that will cause V to accept, by considering the following two cases:

1. A sends an index i that was not used when talking to the honest prover. In this case, we
could give the adversary the e values for this i for free (as it is independent of the what
happens for the other indices). Now the adversary’s task is equivalent to guessing a ·s, which
he cannot do since he has no information about s.

2. A sends an index i that was previously used in a query to the prover. Let z, i be the response
(to a) from the honest prover. Say the honest verifier sends a′ and let z′, i be the adversary’s
response. If there is a non-negligible probability that z′ is accepted, then it follows that
z− z′ = (a− a′) · s, and thus s = (z− z′)(a− a′)−1. This happens with negligible probability
since all of a, a′, z, z′ were chosen independently of s.

On choice of parameters. Suppose we want k-bit security for the protocol. It then seems
natural to choose parameters (n, τ) for the underlying LPN problem such that known attacks will
require time about 2k to solve it. This will dictate the size of one of the keys, namely s′. However,
for |s|, i.e. the size of the other key s, we only need k bits. This is because the proof of the
above theorem shows that the bad events that will cause the real protocol to misbehave occur with
probability at most 2−|s|. Hence the communication of the protocol is always 2 k-bit messages,
regardless of the choice of n and τ . So, we are free to choose (n, τ)-values that give us the most
efficient PRG, or τ close to 1/2 if we want maximally hard LPN.

4.5 An alternative perspective on the enhanced HB protocol

Although we have derived our protocol from HB, it can also be understood in a different way:
we used ring-LPN over a field, and so the prover’s answer a · s + e can be interpreted as an
unconditionally secure message authentication code (MAC) on message a with key (s, e). That is,
the verifier chooses a random message a and the prover is to produce a valid MAC on a.

MACs of this form are well known and it is also known that, although a key for an uncondi-
tionally secure MAC can usually be used only once, in this case one can reuse the multiplier (s)
provided that e is freshly chosen for each message (see e.g. [BDOZ11]): this is what we do pseu-
dorandomly. However, security of our protocol does not follow from MAC security: the standard
security notion for MACs simply requires that an adversary who observes a message and a valid
MAC cannot produce a different message and valid MAC. We consider a more complicated game
where the adversary interacts with prover and verifier concurrently.

5 Efficient pseudorandom functions from (ring-)LPN

In this section we show how to construct pseudorandom functions (PRFs) that can be evaluated in
poly-logarithmic depth, based on ring-LPN. Concretely, we will construct a weak pseudorandom
function (WPRF) and use the result from [NR99] which says that given a WPRF, a PRF can
be constructed. Our PRF is parametrized by n, ` ∈ Z, τ ∈ R, 0 < τ ≤ 1

2 and a polynomial ring
R = F2[X]/(g) where g is irreducible and has degree n, and it is secure assuming the RingLPNnτ
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problem is hard and that at most ` queries are made to the PRF. For a larger number of queries,
this same PRF is still secure, but now under stronger assumptions on ring-LPN.

It is straightforward to modify the construction to yield a very similar PRF construction based
on LPN rather than ring-LPN.

5.1 Definitions

First, we give the definition of pseudorandom functions.

Definition 5.1 (Pseudorandom function (PRF) [GGM86]). Let F be a function family, i.e. F
is defined by two algorithms G and F ; The key generator G gets as input 1κ where κ is the
security parameter and outputs a key K = G(1κ) (also sometimes called the index). The evaluation
algorithm F takes as input K and a string x ∈ {0, 1}n where n = n(κ) is the input length. It outputs
a string FK(x) ∈ Y where Y = Y (κ) is the output domain. Let OU (κ) be an oracle that on input
x returns R(x) where R : {0, 1}n(κ) 7→ Y (κ) is a random function, and let OF (κ) be an oracle that
first computes K = G(1κ) and then on input x returns FK(x).
F is said to be pseudorandom (or a secure PRF), if for any ppt algorithm A that outputs a

single bit, it holds that |Pr[AOU (κ) = 1]− Pr[AOF (κ) = 1]| ≤ negl(κ).

We also need to define weak pseudorandom functions (WPRFs) [NR99], which are basically
like PRFs, except that the adversary does not get to choose the inputs to the function: instead,
they are always uniformly chosen.

Definition 5.2 (Weak pseudorandom function (WPRF)). Let OWU (κ) be an oracle that takes no
input but when queried returns x,R(x) where x is chosen uniformly and R : {0, 1}n(κ) 7→ Y (κ)
is a random function. Let OWF (κ) be an oracle that first computes K = G(1κ) and then returns
x, FK(x) where x is chosen uniformly.
F is said to be weak pseudorandom (or a secure WPRF), if for any ppt algorithm A that

outputs a single bit, it holds that |Pr[AOWU (κ) = 1]− Pr[AOWF (κ) = 1]| ≤ negl(κ).

[NR99] also introduced the concept of a synthesizer (alongside WPRFs). We do not need to
formally define synthesizers here; however, we make use of the following result.

Theorem 5.3 ([NR99]). A secure PRF can be constructed from any synthesizer, and a synthesizer
can be constructed from any WPRF whose input and output sets are equal. Furthermore, if the
WPRF can be evaluated in poly-logarithmic depth, then so can the resulting PRF.

In [BPR12] a construction of a synthesizer was given based on the LWE problem, but their
approach will not work for us. Instead, our goal here is to construct a WPRF based on (ring-)LPN.

Finally, it is useful to define `-independent hashing.

Definition 5.4 (`-independent hashing). Let H be a family of hash functions, where each hash
function h ∈ H maps from a domain D to a codomain C. H is said to be `-independent if for any
fixed sequence of ` distinct inputs (k1, . . . , k`) ∈ D` and for h← H chosen at random, the sequence
(h(x1), . . . , h(x`)) is uniformly random in C`.

5.2 The PRF construction

We construct a WPRF family FRingLPN, parametrized by n, ` ∈ Z, τ ∈ (0, 1
2 ] and R = F2[X]/(g)

a polynomial ring with irreducible g of degree n. The input to our WPRF will be a random ring
element a ∈ R, and the key will be a random s ∈ R. Let G be a PRG based on ring-LPN-PRG. We
interpret the output of G on input s as follows. G(s) produces two pseudorandom outputs:

• a ((`+ 1) · n)-bit string xs, and
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• a description of a hash function hs, chosen from a family of 2`-wise independent hash functions
that map (`+ 1) · n bits to n bits.

Now we define FRingLPN = {Fs} (parametrized by n, `, τ, R) as follows:

Fs(a) = a · s+ BerSampnτ (hs(xs + a)).

Note that the sum xs + a above is the bitwise exclusive-or of x with a interpreted as a bit
vector, including padding (with zeros) so that the vector lengths are equal.

Remark. A hash function satisfying the above properties can be chosen as a random polynomial
of degree at most 2` over the field with 2(`+1)·n elements. To compute the hash function, evaluate
the polynomial at the input point, and output the least significant n bits of the result.

Lemma 5.5. The functions in FRingLPN can be evaluated in depth poly-logarithmic in n and `.

Proof. First, note that the product of polynomials a · s can be done in depth O(log(n)), for the
first part of the output of Fs. Now we consider the evaluation of the PRG.

Let G2× : {0, 1}n → {0, 1}2n denote a pseudorandom generator based on ring-LPN-PRG where
the output length is double the input length, and let G0

2×(x), G1
2×(x) denote the first and last n

bits of the output of G2×(x), respectively. Since our required output size for the PRG, |xs|+ |hs|,
is polynomial in ` and n, we can apply the PRG G2× recursively to the two halves of its output
G0

2×, G
1
2× to obtain the required number of output bits in depth logarithmic in the output length.

In total, this calls for poly-logarithmic depth of computation, since each PRG evaluation requires
logarithmic depth.

Finally, the hash function is computed by evaluating a polynomial of degree at most 2` over
the field with 2(`+1)·n elements. It is well known that this can be done in depth that is logarithmic
in both degree and bit size of field elements. The lemma follows.

Before showing our initial security result, we need the following technical lemma. It can be
seen as a generalization of the left-over hash lemma and has a similar proof.

Lemma 5.6 ([DFMV13]). Let (X1, X2, . . . , X`) ∈ X ` be ` (possibly dependent) random variables
such that H∞(Xi) ≥ β and (X1, . . . , X`) are pairwise different. Let H = {h : X → Y} be a family
of 2`-wise independent hash functions, with |Y| = 2k. Then for random h ← H we have that the
statistical distance satisfies

∆((h, h(X1), h(X2), . . . , h(X`)); (h, U1
Y , . . . , U

`
Y)) ≤ `

2
· 2(`·k−β)/2,

where U1
Y , . . . , U

`
Y are ` independent and uniformly distributed variables.

In the theorem below, we prove that this lemma implies that our construction is a secure WPRF
if the adversary makes at most ` queries, and after this we consider what happens for more than
` queries1.

Theorem 5.7. Under the RingLPNRn,τ assumption, FRingLPN is a weak pseudorandom function
family for any adversary making no more than ` queries to its oracle.

Proof. By the assumption, G is a secure pseudorandom generator. We can therefore modify the
oracle OWF from Definition 5.2 so that it uses uniformly chosen xS and hS , and the advantage of
any adversary will change only by a negligible amount.

1 If we were only interested in security for ` queries this could be done very easily, even without relying on
LPN: we could use an `-wise independent hash function h as secret key and output h(x) on input x. However, such
construction is completely insecure if more than ` queries are asked.
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Let a1, . . . , a` be the (uniformly random) inputs occurring in the oracle responses. Let U(`+1)·n
be a random variable that is uniformly distributed over the set of ((`+ 1) ·n)-bit strings. Consider
the random variables U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has
entropy H(U(`+1)·n + ai) = H∞(U(`+1)·n + ai) = (` + 1) · n. They are not independent, but they
are pairwise different because the ai’s are distinct (with overwhelming probability). Therefore, by
Lemma 5.6,

{hS , hS(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hS , U1

dn·H(τ)c, . . . U
`
dn·H(τ)c},

i.e. in the lemma we have k = n and β = (` + 1) · n, so the distance is `
22−n which is negligible

if ` = poly(n). We can therefore modify oracle OWF again so it outputs (ai, ai · s + BerSampnτ (ei))
where ei is a fresh random value chosen for each query. This is in turn indistinguishable from
(ai, ai · s+ e′i) where e′i ← BerR,nτ . Finally, we can replace ai · s+ e′i by a uniformly random value
under the RingLPNRn,τ assumption, so the final modified OWF is computationally indistinguishable

from OWR .

It follows from the construction in [NR99] that if we build a PRF from a WPRF and the
adversary makes no more than ` queries to the PRF, then no more than ` queries are made to any
instance of the WPRF (the construction uses several instances of the WPRF with different keys).
Hence, if the application of the PRF can guarantee some (polynomial) upper bound on `, Lemma
5.7 is already sufficient, and we need only assume standard hardness of LPN. For example, this
will be the case for our PRF-based authentication protocol given in Section 6. Note, also, that `
can be chosen freely without affecting the required secret key size.

In some settings, such a bound on the number of queries is not a realistic assumption, but we
can still prove security of the WPRF in general, under a stronger assumption on the ring-LPN
problem: namely, that even if the noise elements e in the samples (a, a · s + e) are only `-wise
independent between samples (but still each distributed according to BerRτ ), then as long as `
is large enough, it is still hard to distinguish any polynomial number of samples from uniformly
random. Formally, we make the following conjecture.

Definition 5.8. Let Dn,τ`,R(a1, . . . ,ak) be the distribution defined by the following sampling proce-

dure: choose a random u
$←− Z(`+1)·n

2 and a 2`-wise independent hash function h with input size
(`+ 1) · n bits and output size n bits (a polynomial, as described above), and then output

BerSampnτ (h(u + a1)), . . . ,BerSampnτ ((u + ak))

(with zero-padding where necessary to match summand lengths).

Conjecture 5.9. Let κ be a security parameter, let n, k = poly(κ), τ ∈ (0, 1
2 ], and R = F2[X]/(g)

with irreducible g of degree n. Let a1, . . . , ak
$←− R and s

$←− R, and e1, . . . , ek ← Dn,τ`,R(a1, . . . , ak).
Then there exists a polynomial f such that if we set ` = f(κ), then it holds that

((a1, a1 · s+ e1), . . . , (ak, ak · s+ ek))
c
≈ ((a1, u1), . . . , (ak, uk))

where the ui
$←− R are uniformly random.

Of course, this assumption is new and should be studied carefully before it is used. As arguments
in favor we can note that for any polynomial value of k, the probability that the ai’s are not distinct
is negligible, and therefore by Lemma 5.6 the ei’s are `-wise independent. Hence any attack that
is faster than trying to solve ring-LPN directly must consider at least ` + 1 of the k instances
simultaneously. Furthermore, the `-wise independence holds even if the hash function h is given.
In our setting, the adversary does not get h so this should add to the difficulty of the problem.

We can now show the security of the PRF in general:
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Theorem 5.10. Assuming Conjecture 5.9, FRingLPN is a secure WPRF.

Proof. The conjecture clearly implies that ring-LPN is hard for the corresponding parameters, so
the generator G used in the construction of FRingLPN is a secure PRG. Thus, we can modify the
oracle OF as in the proof of Theorem 5.7 so that the xs and hs are uniformly chosen, and the
adversary’s advantage increases by at most a negligible amount as a result of this modification.

Let a1, . . . , ak be the inputs occurring in the oracle responses. Then the distribution of the
“noise components” BerSampnτ (hs(xs + ai)) as defined in the construction of FRingLPN is exactly
according to Dn,τ`,R(a1, . . . , ak). Hence, the conjecture implies the outputs are indistinguishable from
random.

As before, by the construction of [NR99], FRingLPN can be used to build a secure PRF family
(again, assuming that Conjecture 5.9 holds), as summarized in the following theorem.

Theorem 5.11. Let F̃RingLPN = {F̃s} be the PRF family obtained by applying the [NR99] technique
to the WPRF family FRingLPN, for parameters n, ` ∈ Z, τ ∈ (0, 1

2 ], R = F2[X]/(g). Then, if

RingLPNRn,τ is hard, F̃RingLPN is a secure PRF family for any adversary making at most ` queries.

Moreover, if Conjecture 5.9 holds, then F̃RingLPN is a secure PRF family (for any ppt adversary).

Proof. Follows directly from Theorems 5.3, 5.7, and 5.10.

Remark. We can straightforwardly modify the above construction to be based on LPN rather than
ring-LPN. For best efficiency, the construction based on LPN should take matrices A ∈ Zm×n2 as
input, and operate on l secrets si ∈ Zn2 in parallel, for some m, l = poly(n). More concretely, this
yields the function family FLPN = {FS} (parametrized by n, `,m, l) defined by:

FS(A) = AS + BerSampm×lτ (hS(xS + A)),

where S is a matrix whose columns are the secret vectors si. Note that the re-use of a single public
matrix A for multiple secrets si is known to be secure under the LPN assumption.

6 Authentication using pseudorandom functions

In this section we present an authentication protocol based on the secure PRF construction from
Section 5. ` denotes the maximum number of queries the adversary can make in order to guarantee
security under the ring-LPN assumption (according to Theorem 5.7). Note that Gn denotes the
PRG based on ring-LPN-PRG, that maps n bits to 3n bits (as defined in Section 4).

Lemma 6.1. Protocol 4 is perfectly complete.

Proof. This is clear since lookupGn is a deterministic algorithm, so by definition, for any honest
prover, the verification check must accept.

Theorem 6.2. Assuming RingLPNRn,τ is hard, Protocol 4 is secure against man-in-the-middle
attacks.

Proof. Assuming RingLPNRn,τ is hard, Gn is a PRG. Then by Lemma 4.4, since the secret s0 is
chosen at random, the values s = lookupGn(s0, i) for i = 1, 2, . . . used as PRF seeds in the protocol

are indistinguishable from random. By Theorem 5.11, F̃RingLPN is a secure PRF family since we
assume that the adversary makes no more than ` queries. It follows that F̃s for a random seed
s is indistinguishable from a random oracle (for an adversary A who is given oracle access to
F̃s). Hence, interacting with the honest prover P will give the adversary outputs z which are
indistinguishable from that of a random oracle, and therefore the adversary can gain no more than
negligible advantage from interacting with P.
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Public parameters. Security parameter κ ∈ Z, n, ` ∈ Z with n, ` = poly(κ), noise rate τ ∈
(0, 12 ], polynomial ring R = F2[X]/(g) with irreducible g of degree n.

Key generation. Gen(1κ) samples secret key s0
$←− R.

Initial state. The prover’s state consists of i, j ∈ Z, both initialized to 1.

P(s0; i, j) V(s0)

a←−−−−−−−− a
$←− R

s := lookupGn
(s0, i)

z := F̃s(a)
j := j + 1

if j = `+ 1 then {i := i+ 1; j = 1} z, i−−−−−−−−−→
s := lookupGn

(s0, i)

accept iff z = F̃s(a)

Protocol 4: Authentication using pseudorandom functions

The other option available to the adversary is to interact with the honest verifier V and observe
his accept/reject decisions. Clearly, the adversary gains no information from the initial message
a since it is just a random ring element. Now we consider whether the adversary can gain an
advantage from access to the accept/reject decisions. For initial message a, the verifier V accepts
if and only if z = F̃s(a). V’s response for any given input a is distributed as one of these two cases:

1. If A already queried the prover P on input a, then A already knows (given a) the true
distribution of z, so the verifier’s response gives the adversary no additional information.

2. Otherwise, if A has not queried P on input a, then since FRingLPN is a PRF family (for up
to ` queries) and s is randomly chosen and unknown to A, the verifier’s decision on any
transcript (a, z′) where z′ is chosen by A is indistinguishable, to the adversary, from the
decision procedure that always outputs reject. So, again, the verifier’s response gives the
adversary no additional information.

Let D1 denote the distribution defined in item 1, and D2 denote the distribution defined in
item 2 above. Now consider an adversary who makes polynomially many queries a1, . . . , ak. In
this case, by a hybrid argument replacing each ai by bi for each i one by one, we argue that the
joint distribution of the verifier’s responses to all the queries is indistinguishable from the joint
distribution of b1, . . . , bk where each bi is drawn (independently) from either D1 or D2. It follows
that the adversary who makes polynomially many queries gains at most negligible advantage from
interacting with the honest verifier. Therefore, the protocol is secure against MIM attacks.

Theorem 6.3. Assuming Conjecture 5.9 holds, Protocol 4 is secure against man-in-the-middle
attacks even for adversaries with the power to reset the prover during the query stage.

Proof. The conjecture clearly implies that ring-LPN is hard for the corresponding parameters, so
the generator Gn is a secure PRG. Moreover, by Theorem 5.11, F̃RingLPN is a secure PRF family.
The rest of the proof is exactly as in the proof of Theorem 6.2.

In fact, if Conjecture 5.9 holds, then a straightforward modification to Protocol 4 (essentially,
removing the counters i, j) gives a simpler and stateless authentication protocol.
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7 A generalized PRF construction

In this section we show a PRF construction that is based on functions with certain properties
rather than a specific problem such as LPN or ring-LPN. Identifying these essential properties
then opens a way to base the construction on other problems. Finally, following this paradigm, we
show that the subset sum problem can also be used as a basis for a PRF.

Suppose that we have a family of functions G = {gr} with the index r ∈ {0, 1}n and

gr : {0, 1}m × {0, 1}d → {0, 1}m,

where n = n(κ),m = m(κ), d = d(κ) are functions of a security parameter κ. Furthermore,
suppose that for some distributions R,X over {0, 1}n, {0, 1}d respectively, it holds that: for r← R,

(polynomially many) samples of the form (a, gr(a,x)) for a
$←− {0, 1}m,x ← X (with r unknown

and fixed across all samples) are computationally indistinguishable from samples (a,u) where u is
chosen uniformly at random.

In the case of LPN, for example, r corresponds to the secret s, a corresponds to the public
randomness a, and x corresponds to the noise e. An advantage of this abstraction is that the
well-known subset sum problem can also be phrased in this way, and thus we can construct PRFs
based on the hardness of subset sum.

7.1 Efficient pseudorandom functions from subset sum

Notation. In this section, + denotes integer addition (in a field, where applicable) and ⊕ denotes
(component-wise) binary addition, i.e. exclusive-or.

7.1.1 Subset sum

The subset sum problem is defined by parameters d and M as follows: given d numbers a1, . . . , ad ∈
ZM , and a target number t ∈ ZM , find a subset S ⊂ {1, . . . , d} such that

∑
i∈S ai = t mod M .

We consider a function g defined as follows:

g(a, S) =
∑
i∈S

ai mod M.

for a = (a1, . . . ,ad) sampled uniformly at random in ZdM . The subset sum problem can then be
viewed as that of inverting g.

We adopt the notation from [LPS10] for describing the subset sum function: we identify the
subset S ⊂ {1, . . . , d} with its incidence vector s = (s0, . . . , sd−1) ∈ {0, 1}d. Given numbers in
ZM for M = qn we write the matrix A = (aij) ∈ Zn×dq and define the subset sum product,
A � s = t ∈ Znq . Concretely A � s = As + c, where c ∈ Znq is the vector representing the carries
that arise when doing addition of numbers. Here we interpret the columns of A as numbers in Znq
written in base q and sum all the elements from the columns where si = 1. In other words we have

n−1∑
i=0

tiqi =

d−1∑
j=0

sj

n−1∑
i=0

aijq
i

 mod qn.

As an example consider M = qn, q = 10, n = d = 3,a = (623, 425, 519),S = {1, 3}. Computing
the subset sum we get: fa(S) = 623 + 519 mod 103 = 142. In the matrix notation we get

A� s = As + c =

6 4 5
2 2 1
3 5 9

1
0
1

+

0
1
0

 =

1
4
2


with all operations done modulo q.
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Hardness. According to our current knowledge, the hardness of a concrete instance of the subset
sum problem depends on the relation between d and M . For this purpose we consider the density
of a problem instance, ρ = d/ log(M). In [IN96] it is shown that the problem gets harder as the
density gets closer to 1. When the density is less than 1/d or larger than d/ log2(d) there exist
algorithms for solving the problem in polynomial time [LO85; Fri86; FP05; Lyu05; Sha08]. Thus,
for cryptographic constructions based on this problem, concrete choices of parameters have to stay
within the intervening range where there are currently no known polynomial time algorithms.

7.1.2 PRF from subset sum

Impagliazzo and Naor [IN96] showed that if the subset sum function is hard to invert, i.e. one-way,
then it is also a pseudorandom generator:

Theorem 7.1. If the subset sum function g(a, S) is one-way, then {a, g(a, S)} and {a,u} are
computationally indistinguishable, where a ∈ ZdM , S ⊂ {1, . . . , d}, and u ∈ ZM are chosen indepen-
dently at random.

Given this theorem, we can apply the abstraction detailed at the beginning of Appendix ??,
and conclude that the construction of Section 5.2 can also be based upon the subset sum problem.
In this case, concretely, the WPRF FSubsetSum = {FS} is given by

FS = A� hS(xS ⊕A),

where S← {0, 1}n×n, hS, and xS are generated pseudorandomly by the PRG g established above,
and S represents the “key” of the PRF.

This yields a secure PRF assuming the hardness of the subset sum problem for constant density,
for an adversary that makes no more than a certain threshold ` of queries. Security for general ppt
adversaries is based on a stronger assumption on subset sum, where the secret subset s′ in samples
(A,A� s′) is chosen (afresh for each sample) according to an `-wise independent distribution.

Remark. Note that here, the index r from the abstraction is not relevant, i.e. it can be considered
to be drawn from a set containing one element. This is because in the subset sum problem, none
of the secret randomness s can be reused across multiple samples without compromising security.
On the other hand, with LPN, the secret s can be used across many samples, but the secret noise
vector e cannot. r can be considered to be the secret randomness that is reused across samples.

8 Conclusion

We have seen two approaches to improving authentication protocols based on LPN and ring-
LPN as the noise rate comes closer to the maximal value τ ← 1

2 , that is, as the computational
assumption gets weaker. We have also seen a new method to construct a PRF from LPN or other
hard problems with a similar structure, which can be computed in low depth and is secure agaist a
bounded number of queries. Moreover, for a larger number of queries, this PRF construction has
a graceful degradation to a stronger assumption.
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