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Abstract

We propose a new approach to the construction of secret-key authentication protocols from
pseudorandom generators (PRG). Our authentication protocols require only two messages, have
perfect completeness, and achieve the strongest meaningful security notion (man-in-the-middle
security). Finally, if the PRG can be computed in poly-logarithmic depth, the authentication
protocol also requires only poly-logarithmic depth computation. To the best of our knowledge,
this construction is the first to have all these properties simultaneously. We achieve this at the
cost of having the prover (but not the verifier) keep a small amount of state. Very efficient
PRGs that can be computed in small depth can be constructed, for instance, based on the
Learning Parity with Noise (LPN) problem, and our protocol is in several respects an attractive
alternative even to protocols that are derived directly from LPN. A variant of our construction
is secure even if the adversary is able to reset the prover.

1 Introduction

Secret-key authentication is one of most basic cryptographic tasks: a prover and a verifier share a
secret key K, and the aim is to design a protocol that will allow the prover, and the prover alone,
to convince the verifier that he indeed knows the key K.

The strongest security notion in the authentication literature assumes a powerful adversary
who may first interact as many times as he wants with the honest prover and the verifier; after
this, he is on his own and must attempt to falsely convince the verifier that he knows the secret
key. If no efficient adversary can win this game, we say the protocol is man-in-the-middle (MIM)
secure. An even stronger variant of this notion is concurrent MIM security, in which the adversary
may furthermore have several concurrent sessions with (different incarnations of) the prover and
the verifier, in the first phase.

In principle, one could say the authentication problem was already solved a long time ago
[GGM86]. Suppose we are given a pseudorandom function family (PRF) F whose functions fK
have a key K and a sufficiently large input size. The crucial property of a PRF is that even an
adversary who gets to choose the input (but does not know the key) cannot distinguish the output
of fK from random. Now we can simply let the verifier send a random input x, and have the prover
respond with fK(x). This simple protocol is already MIM secure.

However, from the perspective of efficiency, the simple PRF solution is problematic. In
[GGM86], it is shown how to construct a PRF from a pseudorandom generator (PRG), which
is a much simpler primitive that expands a short key into a random-looking longer output. How-
ever, their construction yields a PRF that requires a linear depth circuit to compute1. Moreover,
practical constructions of block-cipher-based PRFs also seem to require many sequential rounds
to be secure. So it is a natural theoretical goal to build authentication protocols that require only
small-depth computation, and this is also becoming ever more practically relevant as application
scenarios emerge where efficient “lightweight” authentication protocols are desired: for instance,
where the prover may be a low-cost RFID tag or smartcard.

1For authentication, it is actually sufficient to have an unpredictable function, a “MAC”, rather than a PRF;
however, we do not know of more efficient constructions of this primitive, either.
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Now, there are several very efficient and low-depth constructions of PRGs from specific prob-
lems, such as Learning Parity with Noise (LPN); and furthermore, the existence of low-depth PRGs
is known to follow from much more general assumptions [App13]. Thus, it is compelling to try to
design authentication directly from weaker pseudorandom primitives such as PRGs.

This direction has been explored in [DKPW12], which constructs a three-round protocol based
on any weak PRF. A weak PRF is a relaxed notion of PRF where function outputs are only
required to look random for uniformly random (rather than adversarial) inputs. The protocol of
[DKPW12] achieves active security (a weaker notion than MIM security). Subsequently, [LM13]
proposed a three-round protocol based on any weak PRF, which is secure against (sequential)
MIM attacks. In addition, they give a variant three-round protocol that can be built from any
randomized weak PRF, a yet slightly weaker primitive. However, these protocols are not concurrent
MIM secure (in fact, [LM13] outlines an attack). Moreover, even a randomized weak PRF seems
to be a significantly stronger primitive than a PRG.

Finally, an obvious alternative approach to authentication is to build protocols directly from
a concrete problem. Much work in this direction has been based on the LPN problem, which can
be briefly stated as follows: given polynomially many samples of the form (a, 〈a, s〉 + e), where a
is a random n-bit vector, s is a secret n-bit vector fixed across all samples, and e is a bit which is
1 with probability τ < 1/2, can we discover the secret s (or at least, distinguish the samples from
random)? Authentication from LPN has been studied in a series of papers, including [HB01; JW05;
KSS10; Hey+12]. The latest in this line of work [Kil+11; DKPW12] have proposed two-round MIM
secure protocols. These protocols require only small-depth computation, but they suffer from a
rather large (quadratic) key size, and moreover they are not perfectly complete: the verifier may
reject the honest prover with non-zero probability. In order to keep this error probability low, the
protocol’s communication (and hence also computational) complexity must depend on the LPN
noise parameter τ , and in fact the complexity grows quite dramatically as τ approaches 1/2. Thus,
these protocols incur a rather high price if we want to use a weaker variant of the LPN assumption.

Our contribution. We propose new two-round authentication protocols that can be based on
black-box access to any PRG, using two different approaches.

The first protocol has perfect completeness and is concurrent MIM secure for any polynomial
number of concurrent sessions, as long as this polynomial is fixed when the system is set up.
Moreover, if the PRG can be computed in poly-logarithmic depth, then the computation needed
in the protocol is poly-logarithmic depth as well. To the best of our knowledge, our protocol is the
first to have all these properties simultaneously. We achieve this by having the prover (but not the
verifier) keep a small amount of state (a counter). The total computation needed for the protocol
is O(log(t)) where t is the number of times the protocol is used2.

We then show a particularly efficient instantiation of this protocol based on LPN, and since we
have perfect completeness (and thus avoid the bad dependence on τ mentioned above), this offers
an attractive alternative to known protocols based directly on LPN. In particular, unlike previous
protocols, our protocol has the property that as we move τ towards 1/2 to weaken the under-
lying LPN assumption, we pay only in terms of computational complexity: our communication
complexity stays unchanged.

The basic idea of our protocol is that the verifier sends a n-bit random challenge a to the prover,
who responds with a MAC on a computed from a secret key that he shares with the verifier. To
get the efficiency and low depth that we are after, we will use a well-known unconditionally secure
MAC of the form as+e where (s, e) is the key and the computation is in the field with 2n elements.

The problem with this is that while s can be reused over several executions, e cannot, it must
be a fresh random value every time, or the MAC is not secure. An obvious solution is to choose e
pseudorandomly using another shared key. Computing it as e = fK(a) where f is PRF may seem

2 It should be noted that this refers to the time spent in normal operation between the honest prover and verifier.
An adversary can force the verifier (but not the prover) to spend more time, but we do not view this as a significant
problem: in practice, an adversary could always waste the verifier’s time by doing a standard denial of service attack.
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natural, but this would be pointless: if we already have a PRF, the simpler protocol mentioned
above might as well be used, and besides we do not have low-depth constructions of PRF from
PRG. Our idea is to instead have the prover keep a counter i that is incremented for each execution,
and compute e as e = fK(i). The point is that now the prover does not need to compute the PRF
on arbitrary inputs, but only on consecutive small values i = 1, 2, . . . . We use a variant of the
GGM construction to build a PRF that can be computed in small depth for exactly such inputs,
while still being secure and no less efficient than GGM for adversarially chosen inputs.

This basic protocol satisfies (sequential) MIM security. We then achieve concurrent MIM
security by an additional technique based on universal hashing.

Our second contribution is another two-round authentication protocol with properties that are
incomparable to the first protocol, as detailed later in this section. Here, we assume an efficiently
computable function g such that for random strings a, x, the pair (a, g(a, x)) is indistinguishable
from random, and is longer than the input string (a, x). We call this a PRG with public randomizer.
The existence of such functions follows trivially from existence of a standard PRG G, since we can
set g(a, x) = G(x); however, for certain problems such as LPN or subset sum, we can instantiate
g in a more direct way that can lead to a better security guarantee for the protocol.

From a function g as described above, we construct a “bounded” PRF which can be com-
puted in poly-logarithmic depth if the same is true for g. When setting up keys for the PRF,
we also set a parameter `, and the PRF will then be secure if g is a PRG with public random-
izer, provided that the adversary asks at most ` queries (` can be any polynomial in the security
parameter). If more than ` queries are asked, this same PRF is still secure, but now under a
stronger assumption – namely, that samples of the following form are indistinguishable from ran-
dom: (a1, g(a1, x1)), (a2, g(a2, x2)), . . . , where the ai are random, but the xi are chosen from an
`-wise independent distribution, and the number of samples is polynomial.

Our protocol based on this PRF is (concurrent) MIM secure assuming only that g is a PRG
with public randomizer, so it can be instantiated from any PRG (we do not need the stronger
assumption for this). The local computation for this protocol is somewhat more complicated than
for the first one, and it can be expected to be less efficient in practice; however, it still requires only
poly-logarithmic depth computation as long as g is computable in poly-log depth. Furthermore,
the run-time of our second protocol grows more slowly with the number of protocol executions t:
it is O(log(dt/`e)).

A different type of distinction between the two protocols emerges if one considers resetting
attacks on the prover: while we believe that asking (only) the prover to keep a small amount of
state is reasonable, it is nevertheless natural to ask what happens if the adversary is able to reset
the prover. The first protocol is insecure under such an attack, while the second is secure, but only
under the stronger assumption mentioned above.

2 Preliminaries

Notation. For a finite set B, we will write b← B to denote that b is drawn uniformly randomly

from B. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The relation
s
≈ between distributions denotes

statistical indistinguishability, and
c
≈ denotes computational indistinguishability. negl(n) denotes

a negligible function in parameter n, and poly(n) denotes a polynomial function. An efficient
algorithm is one which runs in probabilistic polynomial time (ppt).

2.1 Authentication protocols

A authentication protocol is an interactive two-party protocol (P,V) between a prover P and a
verifier V: these may be respectively thought of as a (lightweight) tag, and a reader to which the
tag is identifying itself. Both parties are ppt, and hold a shared secret s generated according to
some generation algorithm Gen(1κ) (where κ denotes the security parameter) in an initial phase.
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After an execution of the protocol, the verifier V outputs either accept or reject – this is also called
the output of the protocol execution.

In this work we consider prover-stateful protocols where the prover also maintains some (small
amount of) state between protocol executions.

Definition 2.1 (Completeness). The completeness error of a protocol is defined to be

Pr
s←Gen(1κ)

[(P,V)(s) = accept].

A protocol is complete if its completeness error is negligible in a security parameter. It is perfectly
complete if its completeness error is zero.

Common definitions of security for authentication protocols are given below. The security
definitions are presented in order of increasing strength, and the stronger security notions subsume
the weaker ones.

Definition 2.2 (Passive security). An authentication protocol (P,V) is secure against passive
attacks if for any secret s ← Gen(1κ), for any ppt adversary A which has access to arbitrarily
polynomially many transcripts of honest protocol executions (for secret s), it holds that

Pr[(A,V)(s) = accept] ≤ negl(κ).

Definition 2.3 (Active security). An authentication protocol (P,V) is secure against active at-
tacks if for any secret s ← Gen(1κ), for any ppt adversary A which first can interact arbitrarily
polynomially many times with an honest prover P (but cannot reset the prover’s state), and then
afterward (now, without access to P) interacts once with an honest verifier V, it holds that

Pr[(A,V)(s) = accept] ≤ negl(κ).

Definition 2.4 (Sequential man-in-the-middle (MIM) security). An authentication protocol (P,V)
is secure against sequential man-in-the-middle attacks if for any ppt adversary A which first can
interact arbitrarily polynomially many times with an honest prover P and/or an honest verifier V
(but cannot reset the prover’s state), and then afterward (now, without access to P,V) interacts
once with an honest verifier V ′, it holds that

Pr[(A,V ′)(s) = accept] ≤ negl(κ).

In this setting, the adversary learns the accept/reject decisions made by the verifier(s).

Definition 2.5 (Concurrent man-in-the-middle (MIM) security). An authentication protocol (P,V)
is secure against concurrent man-in-the-middle attacks if for any ppt adversary A which first can
interact arbitrarily polynomially many times with polynomially many honest provers P1, . . . ,Pk
and/or honest verifiers V1, . . . ,Vk (but cannot reset the provers’ states), and then afterward (now,
without access to the Pi,Vi) interacts once with an honest verifier V ′, it holds that

Pr[(A,V ′)(s) = accept] ≤ negl(κ).

As above, the adversary learns the accept/reject decisions made by the verifier(s).

Variants of security definitions. The definition of concurrent MIM security can be relaxed
slightly to give a notion of bounded-concurrent security. We write “`-concurrent MIM security”
to denote security against an adversary who has concurrent access to up to ` honest provers
(and verifiers), but no more. Similarly, one can define concurrent and bounded-concurrent active
security. Finally, one can consider strengthening any of the definitions above by allowing the
adversary the power to reset the prover; this yields an “ultimate” security notion of reset-safe
concurrent man-in-the-middle security.
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2.2 Pseudorandom primitives

We recall below the definitions of pseudorandom generators (PRGs) and pseudorandom function
families (PRFs).

Definition 2.6 (Pseudorandom generator). Let G : {0, 1}n → {0, 1}m(n) be a deterministic
polynomial-time algorithm. G is a pseudorandom generator (PRG) if m(n) > n and for any
efficient distinguisher D that outputs a single bit, it holds that |Pr[D(r) = 1]−Pr[D(G(s)) = 1]| ≤
negl(n), where r ← {0, 1}m(n), s ← {0, 1}n are chosen uniformly at random, and the probabilities
are taken over r, s, and the random coins of D.

It is well known that any pseudorandom generator implies pseudorandom generation with any
polynomial expansion factor m(n), by applying the PRG to its own output repeatedly.

Definition 2.7 (Pseudorandom function (PRF)). Let F = {FK} be family of deterministic
polynomial-time keyed algorithms mapping n bits to m bits. F is a pseudorandom function fam-
ily (PRF), if for any efficient distinguisher D that outputs a single bit, it holds that |Pr[DFK =
1]−Pr[DRn→m = 1]| ≤ negl(n), where Rn→m is a random oracle mapping n bits to m bits, and the
probabilities are taken over the random coins of D and the key K which is randomly chosen.

A variant notion that we consider is that of a “b-bounded PRF”, which is exactly like a PRF
except that security is only guaranteed if the adversary makes no more than b oracle queries.

Weak pseudorandom functions (WPRFs) [NR99] are functions whose outputs appear random
for random inputs, as opposed to arbitrary inputs as in the PRF definition. Since WPRFs can be
more efficient than PRFs, the use of WPRFs is favoured in applications where they suffice.

Definition 2.8 (Weak pseudorandom function (WPRF)). Let F = {FK} be family of deterministic
polynomial-time keyed algorithms mapping n bits to m bits. Let Of be an oracle that takes no
input but when queried returns (x, f(x)) where x ← {0, 1}n is chosen randomly. F is a weak
pseudorandom function family (WPRF), if for any efficient distinguisher D that outputs a single

bit, it holds that |Pr[DOFK = 1]−Pr[DO
Rn→m

= 1]| ≤ negl(n), and the probabilities are taken over
the random coins of D and the key K which is chosen uniformly at random.

3 Overview of protocols

In this section we give an overview of known protocols and techniques for efficient authentication.
Two main approaches in this field have been to construct protocols in a black-box way from
pseudorandom primitives, and to propose protocols based on concrete hardness assumptions such as
LPN. In the latter direction, LPN and its variants have been particularly favoured in the literature
as they involve fast computations that are well-suited for computationally limited devices3.

3.1 Efficient authentication from pseudorandom primitives

Given a PRF, it is possible to construct a simple two-round protocol achieving fully concurrent MIM
security. In fact, this construction does not require a full-blown PRF: a message authentication
code (MAC) would suffice. The catch is that in such protocols, the prover must evaluate the
PRF, and known PRF constructions are relatively inefficient (certainly too slow to be deployed on
lightweight tag devices). Furthermore, known MAC constructions tend to be based on PRFs.

Thus, it is natural to ask: can we construct efficient authentication protocols from weaker
pseudorandom primitives4? While earlier works in the authentication literature focused on ad

3Or even, as suggested in the original work of [HB01] which introduced LPN-based authentication, potentially
suitable for computation by humans!

4Given a PRG or a weak PRF, we can build an authentication protocol through a PRF via the classic tree
construction of [GGM86], but this will again be inefficient. It is not known in general how to more efficiently obtain
a PRF based on a PRG or WPRF.
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hoc constructions based on specific assumptions (some of which are discussed in Section 3.2), this
more general approach has gained attention in recent years, and seems particularly promising for
achieving strong MIM security. [DKPW12] constructed a three-round actively secure protocol
based on any weak PRF. Building upon this, [LM13] gave a three-round protocol from any weak
PRF, which is secure against sequential MIM attacks. In addition, [LM13] proposes a similar three-
round protocol that can be built from any randomized weak PRF, a yet slightly weaker primitive
than WPRF. However, their protocols are not concurrent MIM secure: indeed, they outline a
possible attack in the case of just two concurrent provers.

3.2 Efficient authentication from LPN and variants

Notation. We denote vectors by lower-case letters, and matrices by upper-case letters. Arithmetic
operations on n-bit vectors are taken over the field of 2n elements. When adding an n-bit vector to
an m-bit vector where n 6= m, we assume the shorter one to be zero-padded to match the length of
the longer one. Let Berτ denote the Bernoulli distribution with parameter τ , and let Bernτ denote
the distribution of vectors in {0, 1}n where each bit is independently distributed as Berτ .

3.2.1 The LPN problem

The decisional LPN problem is that of distinguishing from random a set of samples, each of the
form (a, 〈a, s〉+e), where a ∈ {0, 1}n is uniformly random, e← Berτ , and s ∈ {0, 1}n is a randomly
chosen secret that is fixed over all samples.

Definition 3.1 (Decisional LPN problem [BFKL94]). Take parameters n ∈ N and τ ∈ R with
0 < τ ≤ 1

2 (the noise rate). A distinguisher D is said to (q, t, ε)-solve the decisional LPNn,τ
problem if ∣∣∣∣ Pr

s,A,e
[D(A,A · s+ e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≥ ε
where s ← {0, 1}n, A ← {0, 1}q×n, and r ← {0, 1}q are uniformly random and e ← Berqτ , and the
distinguisher runs in time at most t.

In the search version of the problem, the goal is instead to find the secret vector s. The
decisional and search versions of the LPN problem are polynomially equivalent [KSS10].

3.2.2 LPN-based authentication protocols

The first and simplest authentication scheme based on LPN was the HB scheme [HB01], illustrated
in Protocol 1. HB is secure against passive attacks (but easily breakable by active attacks).
Subsequently, [JW05] gave an actively secure5 variant protocol called HB+ with an additional
round (which requires the prover to keep state between rounds). Then, [Kil+11] proposed the first
two-round actively secure protocol, whose security is based on the Subspace LPN problem6.

The preceding protocols are all vulnerable to man-in-the-middle attacks. [Kil+11] shows how
to generate a MAC based on their aforementioned actively secure authentication protocol, and
this yields the first somewhat efficient MIM secure protocol based on LPN (using two rounds).
More recently, [DKPW12] gave a more efficient MIM secure (three-round) variant protocol using
more efficient MACs that make use of pairwise independent hashing. Unfortunately, both of these
constructions suffer from large (quadratic) MAC key-sizes.

There is also interest in basing protocols on variant LPN assumptions such as ring-LPN and
Toeplitz-LPN, which impose some additional structure on the public matrix A, and consequently

5In fact, it was subsequently shown that HB+ is secure even against concurrent active attacks where the adversary
may interact with multiple provers concurrently [KSS10].

6Subspace LPN is a variant of the LPN problem that has been shown to be almost as secure as standard LPN,
under certain conditions [PP03].
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Public parameters. Security parameter κ ∈ Z, n ∈ Z with n = poly(κ), noise rate τ ∈ (0, 12 ),
threshold τ ′ ∈ (τ, 12 ).

Key generation. Gen(1κ) samples secret key s← Zn2 .

P(s) V(s)

A←−−−−−−−− A← Zn×m2

e← Bernτ
z := As+ e

z−−−−−−−−→ accept iff ||z +As||1 < τ ′ · n

Protocol 1: The HB authentication protocol

allow yet faster operations as well as smaller key sizes7. The preceding LPN-based protocols can all
be straightforwardly adapted to the ring- or Toeplitz-LPN settings (preserving security properties,
but with respect to the variant assumption rather than the LPN assumption), except for the
MAC-based [Kil+11] and [DKPW12] which depend on particular algebraic properties of the LPN
problem. Further, there have been protocols designed particularly with variant assumptions in
mind: notably, [Hey+12] which depends on ring-LPN.

4 PRG-based authentication via “one-time” MACs

In this section, our approach is to build authentication protocols from very efficient MACs. It
was observed in earlier sections that known MAC constructions are not very efficient as they are
based on PRFs – however, this is only true of computationally secure MACs. In contrast, there
are unconditionally secure MACs that can be computed very efficiently – but these are only secure
for one-time use, so have not thus far been considered suitable for authentication protocols.

We focus on the following simple and unconditionally secure MAC: for a message a ∈ {0, 1}n,
the MAC on the message is a · s + e, where (s, e) ∈ {0, 1}n × {0, 1}n is the secret key (which
is chosen uniformly at random). MACs of this form are well known, and it is also known that
although a key for an unconditionally secure MAC can usually be used only once, in this case the
multiplier (s) can be reused provided that e is freshly chosen for each message (see e.g. [BDOZ11]).
In our protocols, we consider s to be the secret key, and generate e pseudorandomly per execution.
Note that the man-in-the-middle security of our protocol does not follow from MAC security,
however: the standard security notion for MACs simply requires that an adversary who observes
a message and a valid MAC cannot produce a different message and valid MAC. We consider a
more complicated game where the adversary interacts with prover and verifier concurrently.

We initially construct a slightly simpler protocol that is secure against sequential MIM attacks,
then propose a variant (still two-round) protocol that is furthermore secure against `-concurrent
MIM attacks at very little additional overhead, where ` can be any polynomial in the security
parameter but must be fixed in advance.

Notation. Since a PRG G can be used to build a PRG of any stretch, we write Gn→m to denote
the PRG based on G which maps n bits to m bits. We write Gn→m(r)[i,j] to denote the substring
of the PRG output Gn→m(r) ∈ {0, 1}m ranging from the ith bit to the jth bit, inclusive.

7For example, in ring-LPN, vectors in Zn2 are interpreted as elements of a polynomial ring R = F2[X]/(g) for some
g ∈ F2[X] of degree n−1 whose coefficients correspond to the bits of the vector. As a result, the relatively expensive
matrix multiplication in computing As+e can be replaced by a much faster ring multiplication in computing a ·s+e.
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4.1 Pseudorandom look-up function

To begin with, as a building block for our authentication protocols, we construct a logarithmic-
depth “look-up function” for efficient retrieval of pseudorandom values using the PRG, and show
that the look-up function is a PRF. Note that this technique may be of independent interest
towards generic constructions of low-depth PRFs.

Given a PRG G taking an n-bit input, our goal is to generate a series of pseudorandom values
r1, . . . , rt ∈ {0, 1}m for some m ∈ N, such that each ri can be looked up in logarithmic time. This
is achieved using the tree structure below.

ρ0

r1 ρ1

r2 ρ3

...

ρ4

...

ρ2

r3 ρ5

...

ρ6

...

Figure 1: Tree illustrating efficient look-up of pseudorandom values

In Figure 1, ρ0 ∈ {0, 1}n is the original (random) input to the PRG Gn→m+2n. The ρi ∈ {0, 1}n
are values which are subsequently pseudorandomly generated, which are used again as input to
the PRG to produce more pseudorandom values: in particular, if ρi is a child of ρj in the tree,
then ρi = Gn→m+2n(ρj)

[m+1,m+n] if i is even, and ρi = Gn→m+2n(ρj)
[m+n+1,m+2n] if i is odd. The

boxed nodes ri ∈ {0, 1}m are leaves that represent the output pseudorandom values which we want
to look up, and they are generated by ri = Gn(ρj)

[1,m] where ρj is the parent node of ri.
Let lookupGn,m(ρ0, i) ∈ {0, 1}m denote the ith output value, ri ∈ {0, 1}m, obtained using the

above tree method. It is clear that for any i of polynomial size, the number of PRG evaluations
required to look up ri is logarithmic. This gives rise to a PRF family with logarithmic-depth
evaluations, as proven in Theorem 4.2 below. Before proving that the look-up function is a PRF,
we give a simple supporting lemma.

Lemma 4.1. Let G : {0, 1}n → {0, 1}m be a PRG. Then for any polynomial q = q(n), it holds
that there is no efficient distinguisher D for which it holds that

|Pr [D((r1, . . . , rq)) = 1]− Pr [D((G(s1), . . . , G(sq))) = 1]| ≥ negl(n)

for all negligible functions negl, where r1, . . . , rq ← {0, 1}m(n) and s1, . . . , sq ← {0, 1}n.

Proof. Suppose, for contradiction, that there is a distinguisher D̂ for which∣∣∣Pr
[
D̂((r1, . . . , rq)) = 1

]
− Pr

[
D̂((G(s1), . . . , G(sq))) = 1

]∣∣∣ ≥ 1/P (n)

where P is a polynomial.
For i ∈ [q], define tupi to be the distribution of tuples whose first i elements are uniformly ran-

dom in {0, 1}m and whose remaining elements are sampled as G(si+1), . . . , G(sq) for si+1, . . . , sq ←
{0, 1}n. Let pi = Pr[D̂(tupi) = 1] denote the probability that D̂ outputs 1 on input from tupi.

By our supposition, we know that |p0−pq| ≥ P (n). Since p0−pq =
∑

i∈[q](pi−1−pi), it follows

that there must exist some i∗ ∈ [q] such that |pi∗−1 − pi∗ | ≥ 1
q·P (n) , which is non-negligible. Then

there exists a distinguisher D̂′ which can distinguish a single output of the PRG from random,
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as follows: on input r ∈ {0, 1}m, D̂′ generates a tuple t whose first i∗ − 1 elements are uniformly
random in {0, 1}m, whose (i∗)th element is r, and whose remaining elements are generated as
G(si∗+1), . . . , G(sq) for si+1, . . . , sq ← {0, 1}n. If r is truly random then t ← tupi∗ ; otherwise,

t← tupi∗−1. Hence, running D̂ on input t will distinguish with non-negligible probability between
these two cases. This contradicts that G is a PRG.

Theorem 4.2. Let G be a PRG and n,m ∈ N be positive integers with m = poly(n). Then the

family of functions F (n,m) def
=
{
lookupGn,m(ρ, ·)

}
ρ∈{0,1}n is a PRF with input size n′ bits and output

size n bits, for any n′ = poly(n).

Proof. The statement to prove is that for any PRG G and random ρ0 ← {0, 1}n, there is no efficient
distinguisher D that satisfies∣∣∣Pr

[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > negl(κ)

for all negligible functions negl and all sufficiently large values of the security parameter κ. In the
above, R is a random oracle, and DO may make any polynomial number of “polynomial-depth”8

queries to the oracle O.
Suppose, for contradiction, that there exists such a distinguisher D̂, for which the above in-

equality does not hold: that is, there is a polynomial q for which∣∣∣Pr
[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > 1/q(κ).

Let T = T (κ) be the run-time of distinguisher D̂, and let Hj be a stateful algorithm which is
defined as follows. (Note that when referring to tree structure, the root node is considered to be
at depth 0.) On input i, the algorithm Hj does the following:

• if i has already been queried previously, look up the stored tuple (leaf, i, ρi), and output ρi;

• else if i < 2j+1 (that is, the ith output node is at depth less than or equal to j in the tree),
then choose some ρi ← Z2

n uniformly at random, store the tuple (leaf, i, ρi) in memory, and
output ρi;

• otherwise (that is, the ith output node is at depth greater than j in the tree):

– if there is no stored tuple of the form (root, α, ρ), then choose some ρ ← Z2
n uniformly

at random, store the tuple (root, α, ρ) in memory, and output lookupGn,m(ρ, γ);

– otherwise, look up the stored tuple (root, α, ρ) and output lookupGn,m(ρ, γ);

where α = α(i,j), γ = γ(i,j) are defined by the following:

α(i,j) = b(i− 2blog2(i)c)/2jc

β(i,j) = i− 2blog2(i)c mod 2blog2(i)c−j

γ(i,j) = 2(2blog2(i)c−j) + β(i,j).

When considering the tree representation of lookupGn,m, the algorithms Hj can be explained in
more intuitive terms as follows. For each j, the outputs of Hj behave as a random oracle up to and
including depth j of the tree. Below depth j, the outputs are obtained deterministically by the
lookupGn,m(ρ, ·) function, with the appropriate depth-j value ρ (which is randomly chosen) acting
as the “root node” of the subtree in which the lookup is performed.

8 More precisely, the distinguisher cannot make queries that would require a super-polynomial depth look-up in
the tree structure of lookupGn,m. This is because in this case, lookupGn,m would not run in polynomial time.
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Observe that H0 behaves exactly as lookupGn,m(ρ, ·) for random ρ ← {0, 1}n. Moreover, Hk

behaves exactly like a random oracle in the distinguishing experiment, provided that all of D̂’s
queries can be retrieved from depth at most k. Since the input size is n′ = poly(n) bits, there
exists such a maximum depth k from which queries can be retrieved, with k = poly(n).

Let pi = Pr[D̂Hi() = 1] denote the probability that the distinguisher outputs 1 given Hi as an
oracle. By our earlier supposition, |p0 − pk| > 1/q(κ). It follows that for some k∗ ∈ [k], we have
|pk∗−1− pk∗ | > 1

k·q(κ) . Such a k∗ can be found in polynomial time with non-negligible probability9.

We now construct a new distinguisher D̂PRG attacking the PRG Gn→m+2n: specifically, we will
show that the following expression is non-negligible:∣∣∣Pr

[
D̂PRG((r1, . . . , rT )) = 1

]
− Pr

[
D̂PRG((Gn→m+2n(s1), . . . , Gn→m+2n(sT ))) = 1

]∣∣∣ ,
where r1, . . . , rT ← {0, 1}m+2n and s1, . . . , sT ← {0, 1}n.

D̂PRG operates as follows. Given input (r̃1, . . . , r̃T ), D̂PRG first determines a k∗ ∈ [k] as described
above, then runs D̂ and responds to the oracle queries of D̂ in the following way: when D̂ makes
query i, D̂PRG responds with H̃k∗(r̃1, . . . , r̃T ), where H̃k∗ is a variant algorithm based on Hk∗ . H̃k∗

takes as input (r̃1, . . . , r̃T ), and then behaves exactly like Hk∗ , except that the values associated
with nodes at depth k∗ of the tree are obtained as substrings of the input values r̃1, . . . , r̃T . (For
a detailed formal description of H̃k∗ , refer to Appendix A.)

By construction, it holds that if the inputs r̃i are truly random, then H̃k∗ and Hk∗ behave iden-
tically; on the other hand, if the inputs r̃i are generated by Gn→m+2n, then H̃k∗ and Hk∗−1 behave
identically. By the choice of k∗, we know that D̂ distinguishes Hk∗ and Hk∗−1 with non-negligible
probability. Hence, D̂PRG distinguishes with (the same) non-negligible probability between the
case where the r̃1, . . . , r̃T are random and the case where they are generated by Gn→m+2n. By
Lemma 4.1, this contradicts that Gn→m+2n is a PRG. Therefore, our initial supposition was false:
that is, there cannot exist a D̂ which distinguishes between lookupGn,m(ρ0, ·) and R with non-
negligible probability. The lemma follows.

4.2 The protocol constructions

We now present our protocol constructions which can be instantiated by any PRG.

4.2.1 Sequential man-in-the-middle secure protocol

Public parameters. PRG G, security parameter n ∈ Z.
Key generation. Gen(1n) samples s, s′ ← {0, 1}n and outputs secret key (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

e := lookupGn,n(s′, i)
z := a · s+ e

i := i+ 1

z, i−−−−−−−−−→ accept iff z + a · s = lookupGn,n(s′, i)

Protocol 2: Sequential MIM secure protocol based on any PRG

9 This can be done by running D̂ polynomially many times on the oracles H0, . . . , Hk, and taking the adjacent
pair (k∗ − 1, k∗) for which there were the most differences in output.

10



Note that the teal color in the protocol diagram indicates (updating of) the prover’s state.

Lemma 4.3. Protocol 2 is perfectly complete.

Proof. This is clear since lookupGn,n is deterministic.

We first prove that Protocol 2 is actively secure, which serves as a stepping-stone to the proof
of sequential MIM security.

Lemma 4.4. If G is a PRG, Protocol 2 is secure against active attacks.

Proof. In the following, let ej denote the noise string for index j. We begin by establishing that
ej are indistinguishable from uniformly random noise. Consider the following games:

Game 1. P,V and the adversary A play the active security game.
Game 2. P,V and the adversary A play the active security game as before, except that P,V

no longer have access to the key s′: instead, they have oracle access to lookupGn,n(s′, ·).
Game 3. Like Game 2, except that the oracle lookupGn,n(s′, ·) is replaced by a random oracle.

It is clear that Games 1 and 2 are perfectly indistinguishable from the adversary’s point of
view, since the messages sent by P,V are distributed identically in the two games. Now suppose,
for contradiction, that there exists an adversary A which can efficiently distinguish between Games
2 and 3. Then, this adversary could be used to efficiently distinguish between (oracle access to)
lookupGn,n(s′, ·) and a random oracle – this contradicts Theorem 4.2. Therefore, Games 1, 2, and 3
are computationally indistinguishable from each other.

We have established that the prover’s message z = a ·s+ej is indistinguishable from a ·s+r for
random r, Hence, z is indistinguishable from random to any active adversary (even after observing
polynomially many honest transcripts), regardless of the adversary’s choice of a. So, to prove active
security, it remains only to consider the interaction of A with the verifier. Given a challenge a
from an honest verifier V, we argue that A can have no more than negligible advantage at guessing
the (unique) value of z that will cause V to accept, by considering the following two cases:

1. A sends an index i that was not used when talking to the honest prover. In this case, we
could give the adversary the e values for this i for free (as it is independent of the what
happens for the other indices). Now the adversary’s task is equivalent to guessing a ·s, which
he cannot do since he has no information about s.

2. A sends an index i that was previously used in a query to the prover. Let z, i be the response
(to a) from the honest prover. Say the honest verifier sends a′ and let z′, i be the adversary’s
response. If there is a non-negligible probability that z′ is accepted, then it follows that
z− z′ = (a− a′) · s, and thus s = (z− z′)(a− a′)−1. This happens with negligible probability
since all of a, a′, z, z′ were chosen independently of s.

Theorem 4.5. If G is a PRG, Protocol 2 is secure against sequential man-in-the-middle attacks.

Proof. We show that given an adversary A which achieves a certain advantage when conducting a
sequential MIM attack, it is possible to build a new adversary A′ that only talks to the prover in
Protocol 2 and achieves essentially the same advantage. First, we will replace the honest verifier
by a fake verifier V ′ who has no access to s or the ej but still gives essentially the same answers as
V. Then we argue that for any sequential man-in-the-middle attack, there is an equally successful
active attack, and finally refer to Lemma 4.4 for the active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does).

When A returns an answer z, j (i.e. the second protocol message), there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = a′ · s + ej and a′ is A’s query to P.
Here we have two possibilities:

11



(a) a = a′ (which could be the case if A queried P during the current protocol execution):
in this case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. The challenge produced by V has exactly the
same distribution as the one V ′ outputs. Now, in case 1a, notice that V will accept if and only
if z has the correct value a · s + ej : so V ′ always makes the same decision as V. In case 1b, V
rejects except with negligible probability, so V ′ is statistically close to the right behavior. This
is because accepting would imply that z = a · s + ej , but we also have z′ = a′ · s + ej so then
s = (z− z′)(a− a′)−1. This happens with negligible probability because s is random and z, z′, a, a′

are all independent of s. This holds because all of P’s responses (including z′) are independent of
s. Moreover, since this is the first query, V has not even looked at s yet, so a, a′ and z must be
independent of s too. Finally, in case 2, note that no one sees ej before the adversary produces
z, j. If V accepts, we have z = a · s+ ej , so ej = z−a · s, which happens with negligible probability
since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query, and the adversary’s
advantage changes at most negligibly as a result. Repeating the same argument for all the queries,
we reach the game where V is entirely replaced by V ′, and the adversary’s advantage is still at
most negligibly different from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”. So
for any adversary A which has non-negligible advantage in a man-in-the-middle attack, we can
construct an adversary A′ that emulates both A and V ′ “in his head” and achieves the same
advantage, but conducting an active attack (since he need not interact with the real verifier V).

Finally, the security of the protocol against sequential man-in-the-middle attacks follows from
the security against active attacks, which was shown in Lemma 4.4.

Building upon the ideas of Protocol 2, our next protocol achieves `-concurrent MIM security
for any polynomial `, at very little extra cost.

4.2.2 `-concurrent man-in-the-middle secure protocol

In the concurrent MIM secure version of our protocol, we use `-independent hashing, defined below.

Public parameters. PRG G, security parameter n ∈ Z, concurrency parameter ` = poly(n),
function family H = {hr}r∈{0,1}β of 2`-wise independent hash functions
mapping (`+ 1) · n bits to n bits.

Key generation. Gen(1n) samples s← R, s′ ← {0, 1}n and outputs secret key (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

ri := lookupGn,(`+1)·n+β(s′, i)

e := h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

)
z := a · s+ e

i := i+ 1

z, i−−−−−−−−−→

ri := lookupGn,(`+1)·n+β(s′, i)
accept iff z + a · s =

h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

)

Protocol 3: `-concurrent MIM secure protocol based on any PRG
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Definition 4.6 (`-independent hash function family). Let H be a family of hash functions, where
each hash function h ∈ H maps from a domain {0, 1}n to a codomain {0, 1}m. H is said to be
`-independent if for any fixed sequence of ` distinct inputs (k1, . . . , k`) ∈ D` and for h← H chosen
at random, the sequence (h(x1), . . . , h(x`)) is uniformly random in C`.

Note that a hash function as required by the protocol can be chosen as a random polynomial
of degree at most 2` over the field with 2n elements. To compute the hash function, evaluate the
polynomial at the input point, and output the least significant m bits of the result. In this paper,
we will assume that this is how all our hash functions are instantiated.

Lemma 4.7. Protocol 3 is perfectly complete.

Proof. This is clear since lookupGn,(`+1)·n+β is deterministic.

Our security proofs follow a similar structure to those of Protocol 2: we first prove (concurrent)
active security, then use this to prove man-in-the-middle security. Additionally, we require the
following technical lemma, which can be seen as a generalization of the leftover hash lemma and
has a similar proof.

Lemma 4.8 ([DFMV13]). Let (X1, X2, . . . , X`) ∈ X ` be ` (possibly dependent) random variables
such that H∞(Xi) ≥ γ and (X1, . . . , X`) are pairwise different. Let H = {h : X → Y} be a family
of 2`-wise independent hash functions, with |Y| = 2k. Then for random h ← H we have that the
statistical distance satisfies

∆((h, h(X1), h(X2), . . . , h(X`)); (h, U1
Y , . . . , U

`
Y)) ≤ `

2
· 2(`·k−γ)/2,

where U1
Y , . . . , U

`
Y are ` independent and uniformly distributed variables.

Lemma 4.9. If G is a PRG, Protocol 3 is secure against `-concurrent active attacks.

Proof. Recall that an `-concurrent active adversary may have concurrent access to up to ` honest
provers, but as usual, he cannot reset the provers. The updating of the prover’s state in Protocol 3
ensures that for any given prover, the value ri is freshly pseudorandomly sampled for each exe-

cution (that is, each value of the counter i). In particular, the hash function seed r
[1,β]
i is freshly

pseudorandomly sampled for each value of i, and this means that for any polynomial number of
executions, with overwhelming probably all the hash function seeds will be distinct.

Therefore, an `-concurrent active adversary can obtain at most ` outputs of the hash function

hs for any given seed s. For any i ∈ N, let s
def
= r

[1,β]
i be the corresponding seed, and let x

def
=

r
[β+1,(`+1)·n+β]
i be the summand inside the hash function argument. Suppose that the adversary

obtains samples hs(a1 + x), . . . , hs(a` + x) from the honest provers. If the adversary chooses some
ai, aj to be equal, then the samples hs(ai + x), hs(aj + x) will also be equal, so the adversary will
not gain more information than if he made just one query ai. Hence, we assume without loss of
generality that the a1, . . . , a` are distinct.

Since G is a PRG, we can replace s and x with uniformly randomly chosen s′ ← {0, 1}β and
x′ ← {0, 1}(`+1)·n, and the adversary’s advantage will change at most negligibly. Let U(`+1)·n be
a random variable that is uniformly distributed over the set of ((` + 1) · n)-bit strings. Consider
the random variables U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has
entropy H(U(`+1)·n + ai) = H∞(U(`+1)·n + ai) = (` + 1) · n. They are not independent, but they
are pairwise different because the ai’s are distinct. Therefore, by Lemma 4.8,

{hs, hs(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hs, U1

n, . . . U
`
n}.

(In the notation of the lemma: we have k = n and γ = (`+ 1) · n, so the distance is `
22−n, which

is negligible given that ` = poly(n).)
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Finally, since the seeds si
def
= r

[1,β]
i are freshly pseudorandomly sampled for each value of i, the

hash functions hs1 , hs2 , . . . used in the protocol are indistinguishable from independent random
hash functions. Therefore, the output of any hash function hsi is indistinguishable from random
even given the outputs of the other hash functions hsi′ , hsi′′ , . . . from different executions of the
protocol.

Theorem 4.10. If G is a PRG, Protocol 3 is secure against `-concurrent MIM attacks.

The proof of Theorem 4.10 is very similar to that of Theorem 4.5, and is given in Appendix B.

Depth of computation. Since the multiplication and hash function sampling and evaluation
can be done in depth O(log(n)), it holds that if the PRG G is of poly-logarithmic depth, then
Protocols 2 and 3 require only poly-log depth computation.

5 PRG-based authentication via “public randomizers”

In this section we take a different approach to constructing authentication protocols from PRGs,
which yields man-in-the-middle secure constructions that are incomparable to the protocols of
Section 4. The differences will be discussed in detail later in this section.

Our primary building block is a PRG of a special format, which we call a “PRG with public
randomizer”. The definition follows.

Definition 5.1 (Pseudorandom generator with public randomizer). Let g : {0, 1}n′ × {0, 1}n →
{0, 1}m(n,n′) be a deterministic polynomial-time algorithm. g is a pseudorandom generator with
public randomizer if m(n, n′) ≥ n+n′ and for any efficient distinguisher D that outputs a single bit,
it holds that |Pr[D(r′, r) = 1] − Pr[D(a, g(a, s)) = 1]| ≤ negl(n, n′), where r ← {0, 1}m(n,n′), r′ ←
{0, 1}n′ , s← {0, 1}n are chosen uniformly at random, and the probabilities are taken over r, r′, s,
and the random coins of D.

A PRG with public randomizer g can trivially be built from a PRG G by setting g(a, x) = G(x).
In the initial exposition of the protocol, we assume a black-box PRG with public randomizer;
however, in Section 5.3, we will discuss efficient PRGs with public randomizers from specific as-
sumptions (namely, LPN and subset sum) which are particularly suitable for use in our protocol.

The new protocol makes use of `-independent hashing (as introduced in Section 4). In this case,
the hashing is used to build from any PRG (with public randomizer) a (bounded) PRF, which is
invoked in our authentication protocols.

5.1 The PRF construction

We start by constructing a WPRF family F (g,`,H), parametrized by: a PRG with public randomizer
g : {0, 1}n′×{0, 1}n → {0, 1}m, a concurrency parameter ` = poly(n), and a familyH = {hr}r∈{0,1}β
of 2`-wise independent hash functions mapping (` + 1) · n bits to n bits. We require that m ≥
(`+ 1) · n+ β. The input to the WPRF will be of the form (a, s)← {0, 1}n′ × {0, 1}n.

Now we define F (g,`,H) = {Fs} as follows:

Fs(a) = g (a, hs′(x+ a)) ,

where x = g(a, s)[1,(`+1)·n] ∈ {0, 1}(`+1)·n and s′ = g(a, s)[(`+1)·n+1,(`+1)·n+1+β] ∈ {0, 1}β.
The next theorem proves that our construction is a WPRF if the adversary makes at most `

queries, and after this we consider what happens for more than ` queries10.

10 Note that if we were only interested in security for ` queries this could be done much more simply: we could use
an `-wise independent hash function family H = {hs}s, set some s∗ as our secret key and output hs∗(x) on input x.
However, such a construction would be completely insecure if more than ` queries are asked.
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Theorem 5.2. If G is a PRG, F (g,`,H) is a weak pseudorandom function family for any adversary
making no more than ` queries to its oracle.

Proof. Since g is a PRG with public randomizer, we can modify the oracle OFK from Definition
2.8 so that it uses uniformly chosen x and h (rather than choosing them according to the output
of g), and the advantage of any adversary will change by at most a negligible amount.

Let a1, . . . , a` be the (uniformly random) inputs to the oracle. Let U(`+1)·n be a random
variable that is uniformly distributed over the set of ((`+ 1) · n)-bit strings. Consider the random
variables U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has entropy
H(U(`+1)·n + ai) = H∞(U(`+1)·n + ai) = (` + 1) · n. They are not independent, but they are
pairwise different because the ai’s are distinct (with overwhelming probability). Therefore, by

Lemma 4.8, {hs, hs(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hs, U1

m, . . . U
`
n}. (In the notation of

the lemma: we have k = n and γ = (` + 1) · n, so the distance is `
22−n, which is negligible given

that ` = poly(n).) We can therefore modify oracle OFK again so it outputs (ai, g(ai, ei)) where ei
is chosen as a fresh random value for each query. Finally, we can replace the second component by
a uniformly random value since g is a PRG with public randomizer. Therefore, the final modified
OFK is computationally indistinguishable from OR where R is a random oracle.

Note that the choice of ` does not affect the required secret key size for the WPRF.
Our next step is to construct a PRF from this WPRF, for which we require the following result

of [NR99]. Their result refers to the concept of a synthesizer, which was introduced in their paper
(along with weak PRFs). For our construction, it is not necessary to formally define a synthesizer,
so we refer the interested reader to [NR99] for further details.

Theorem 5.3 ([NR99]). A secure PRF can be constructed from any synthesizer, and a synthesizer
can be constructed from any WPRF whose input and output sets are equal. Furthermore, if the
WPRF can be evaluated in poly-logarithmic depth, then so can the resulting PRF.

It follows from the construction of [NR99] that if we build a PRF from a WPRF using their
method, and the adversary makes no more than ` queries to the PRF, then no more than ` queries
are made to any instance of the WPRF (their construction uses several instances of the WPRF
with different keys). Therefore, since F (g,`,H) is a secure `-bounded WPRF, the function family
F̃ (g,`,H) obtained by applying Theorem 5.3 to F (g,`,H) is a secure `-bounded PRF.

Such `-bounded (weak) PRFs can already be useful in certain settings, where there is a guaran-
teed maximum number of queries that will be made to the PRF during its use. Our authentication
protocol in Section 5.2 is an example of such an application.

In some settings, however, such a bound on the number of queries is not a realistic assumption.
However, all is not lost: we can actually prove security of the WPRF F (},`,H) in general, if the
PRG g has a stronger property: namely, that even if the second elements (the “keys”) s of the
input to g(a, s) are only `-wise independent between samples, then as long as ` is large enough,
it is still hard to distinguish any polynomial number of samples from uniformly random. In this
case, by Theorem 5.3, we obtain that F̃ (g,`,H) is a secure PRF. Proofs of (weak) PRF security for
F (g,`,H) and F̃ (g,`,H) when there is no bound on the number of queries are given in Appendix C.

We now give a formal definition of the additional property required of g.

Definition 5.4. Let Dn` (a1, . . . , ak) be the distribution defined by the following sampling procedure:

choose a random u← Z(`+1)·n
2 and a 2`-wise independent hash function h mapping (`+ 1) · n bits

to n bits (a random polynomial, as described above), and then output (h(u+ a1), . . . , h(u+ ak)).

Property 5.5. Let κ be a security parameter for a PRG with randomizer g : {0, 1}n′ × {0, 1}n →
{0, 1}m. For any k = poly(κ), let a1, . . . , ak ← {0, 1}n

′
and (s1, . . . , sk) ← Dn` (a1, . . . , ak). Then

there exists a polynomial f such that if we set ` = f(κ), then it holds that

((a1, g(a1, s1)), . . . , (ak, g(ak, sk)))
c
≈ ((a1, u1), . . . , (ak, uk))

where the ui ← {0, 1}m are uniformly random.
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We show the security of the PRF F̃ (g,`,H) in general (that is, for any polynomial number of
queries). The proofs of Theorems 5.6 and 5.7 are given in Appendix C.

Theorem 5.6. If g is a PRG with public randomizer that satisfies Property 5.5, then F (g,`,H) is a
secure WPRF.

Theorem 5.7. Let F̃ (g,`,H) = {F̃s} be the function family obtained by applying the [NR99] tech-
nique to the function family F (g,`,H) defined above, for parameters n, ` ∈ Z and H a family of
2`-wise independent hash functions mapping (` + 1) · n bits to n bits. Then, if g is a PRG with
public randomizer, F̃ (g,`,H) is a secure PRF family for any adversary making at most ` queries. If
g furthermore satisfies Property 5.5, then F̃ (g,`,H) is a secure PRF family (for any ppt adversary).

It is not known whether (some) existing PRG constructions satisfy Property 5.5 (under their
respective hardness assumptions). While we cannot give a concrete function that provably has
the property, we give a couple of arguments in favor of the plausibility of PRGs that satisfy the
property. For any polynomial value of k, the probability that the ai’s are not distinct is negligible,
and therefore by Lemma 4.8 the ei’s are `-wise independent. Hence, an attack must consider at
least ` + 1 of the k instances simultaneously. Furthermore, the `-wise independence holds even if
the hash function hs is given. In our setting the adversary does not get hs, so this should add to
the difficulty of the problem.

Even in the absence of a definite candidate function, characterizing this property allows for the
“graceful degradation” of our security guarantee for Protocol 4 in the case that more than ` queries
are made by the adversary: the enhanced guarantee is that if the PRG g used to build the function
family F additionally satisfies Property 5.5, then F is a WPRF secure against any polynomial-time
adversary, and thus F̃ is a PRF secure against any efficient adversary too. When using PRGs based
on specific hardness assumptions, having the property translates to a stronger `-wise independence
assumption on the hardness of the underlying problem, as we see in Section 5.3.

5.2 The protocol

We now present a new authentication protocol based on the PRF construction from Section 5.1.
This can be based on any PRG with public randomizer, which in turn can be based on any PRG.
Let G be the PRG underlying our construction, and let g be a PRG with public randomizer (such
as the simple example g : (a, s) 7→ G(s) which is based on G).

Public parameters. PRG G, security parameter n ∈ Z, concurrency parameters `, `′ =
poly(n) with `′ < `, function family H = {hr}r∈{0,1}β of 2`-wise in-
dependent hash functions mapping (`+ 1) · n bits to n bits.

Key generation. Gen(1κ) samples secret key s0 ← R.
Initial state. The prover’s state consists of i, j ∈ Z, both initialized to 1.

P(s0; i, j) V(s0)

a←−−−−−−−− a← R

s := lookupGn,n(s0, i)

z := F̃s(a)
j := j + 1

if j = `′ + 1 then {i := i+ 1; j = 1}

z, i−−−−−−−−−→
s := lookupGn,n(s0, i)

accept iff z = F̃s(a)

Protocol 4: MIM secure protocol based on (bounded) PRF from any PRG

In the below protocol, F̃s is the function belonging to the PRF F̃ (g,`,H), with key s.
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Lemma 5.8. Protocol 4 is perfectly complete.

Proof. This is clear since lookupGn,n and F̃s are deterministic.

Theorem 5.9. If g is a PRG with public randomizer, Protocol 4 is secure against b`/`′c-concurrent
man-in-the-middle attacks.

Proof. G is a PRG, so by Lemma 4.2, since the secret s0 is chosen at random, the values s =
lookupGn(s0, i) for i = 1, 2, . . . used as PRF seeds in the protocol are indistinguishable from

random. By Theorem 5.7, F̃ (g,`,H) is a secure `-bounded PRF family. The updating of the prover’s
state in Protocol 4 guarantees that for each prover that he interacts with, the adversary makes no
more than `′ < ` queries to F̃s for any given seed s. Hence, interacting (concurrently) with up to
b`/`′c copies of the honest prover will give the adversary at most ` queries to F̃s for any given seed
s, and so the prover responses z are indistinguishable from outputs of a random oracle. Therefore,
the adversary can gain no more than negligible advantage from interacting with the provers.

The other option available to the adversary is to interact with up to b`/`′c honest verifiers V and
observe their accept/reject decisions. However, the adversary gains no advantage from interacting
with more than one verifier, since the verifier’s accept/reject decision is completely determined by
the protocol transcript and the secret key. (For a formal proof of the last statement, see Lemma B.1
in Appendix B.) Now we consider whether the adversary can gain an advantage from access to the
accept/reject decisions of a single honest verifier. For initial message a, the verifier V accepts if
and only if z = F̃s(a). V’s response for any given input a is distributed as one of these two cases:

1. If A already queried the prover P on input a, then A already knows (given a) the true
distribution of z, so the verifier’s response gives the adversary no additional information.

2. Otherwise, if A has not queried P on input a, then since F (g,`,H) is a PRF family (for up
to ` queries) and s is randomly chosen and unknown to A, the verifier’s decision on any
transcript (a, z′) where z′ is chosen by A is indistinguishable, to the adversary, from the
decision procedure that always outputs reject. So, again, the verifier’s response gives the
adversary no additional information.

Let D1 denote the distribution defined in item 1, and D2 denote the distribution defined in
item 2 above. Now consider an adversary who makes polynomially many queries a1, . . . , ak. In
this case, by a hybrid argument replacing each ai by bi for each i one by one, we argue that the
joint distribution of the verifier’s responses to all the queries is indistinguishable from the joint
distribution of b1, . . . , bk where each bi is drawn (independently) from either D1 or D2. It follows
that the adversary who makes polynomially many queries gains at most negligible advantage from
interacting with V. Therefore, the protocol is secure against b`/`′c-concurrent MIM attacks.

Theorem 5.10. If g is a PRG with public randomizer that satisfies Property 5.5, Protocol 4 is
secure against fully concurrent man-in-the-middle attacks, even for adversaries with the power to
reset the prover during the query stage.

Proof. By Theorem 5.7, since g is a PRG with public randomizer and satisfies Property 5.5, F̃ (g,`,H)

is a secure PRF family. The rest of the proof is exactly as in the proof of Theorem 5.9.

5.3 Non-black-box constructions from LPN and subset sum

Having designed Protocol 4 in a black-box way with the aim of generality and efficiency, a natural
next step is to consider what concrete low-depth PRGs it might be instantiated with.

An LPN-based solution would be a first candidate, since LPN has already been well-studied as
a building block for lightweight authentication, and efficient PRGs based on LPN are known.
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5.3.1 Public randomizers based on LPN

The original LPN-based pseudorandom generator of [BFKL94] takes a (uniformly random) input
r and uses it to sample A, s uniformly, and e with each bit distributed as Berτ , and then outputs
(A,As+e). Building upon this, [ACPS09] constructed an efficient (quasi-linear time) linear-stretch
PRG based on the LPN problem. In particular, their construction makes use of the fact that s ∈ Zl2
and e ∈ Zm2 together have l + m ·H(τ) bits of entropy, and can be very efficiently sampled using
roughly that many random bits by a method of [AIK08]. (A can be fixed as a public parameter
and thus need not be sampled afresh each time.) However, the [ACPS09] construction is defined
only for τ = 2−t for t ∈ N. In Appendix D, we give a generalization of their construction for
any real-valued τ ∈ (0, 1

2 ]. Let GLPN
n,τ denote the LPN-based PRG described in Appendix D, for

parameters n ∈ N, τ ∈ (0, 1
2 ]. Note that GLPN

n,τ takes as input a random triple (A, s, e) and outputs
(A,As+ e′) where e′ is obtained by sampling Bernoulli-distributed bits using e.

While Protocol 4 could, of course, be built using this PRG GLPN
n,τ as a black box, we can in

fact do better by making use of the PRG’s internal structure. In the black-box case, the protocol
would be `-concurrent MIM secure assuming that the LPN problem is hard; and Property 5.5
would correspond to the assumption that the LPN problem is hard even when the triple (A, s, e)
is sampled using a 2`-wise independent hash function rather than uniformly at random.

However, since GLPN
n,τ is already a PRG with public randomizer, the function g in the construc-

tion of Protocol 4 can be instantiated directly by GLPN
n,τ . Then, as before, the resulting protocol is

`-concurrent MIM secure assuming that the LPN problem is hard. Moreover, full concurrent MIM
security can be achieved with a weaker assumption this time, which does not involve A. Formally,
the assumption is that the following conjecture holds – this may be considered a “stronger variant”
of the standard LPN assumption.

Definition 5.11. Let Dn,τ` (a1, . . . , ak) be the distribution defined by the following sampling pro-

cedure: choose a random u ← Z(`+1)·n
2 and a 2`-wise independent hash function h with input size

(`+ 1) · n bits and output size n bits (a polynomial, as described above), and then output

(BerSampnτ (h(u+ a1)), . . . ,BerSampnτ (h(u+ ak)))

(with zero-padding where necessary to match summand lengths).

In the above, BerSampnτ is a function for sampling from Bernτ which takes as input a short
(pseudo)random vector. For a formal definition of the sampling function, refer to Appendix D.

Conjecture 5.12. Let κ be a security parameter, let n, k = poly(κ) and τ ∈ (0, 1
2 ]. Let a1, . . . , ak ←

{0, 1}m × n and s← {0, 1}n, and e1, . . . , ek ← Dn,τ` (a1, . . . , ak). Then there exists a polynomial f
such that if we set ` = f(κ), then it holds that

((a1, a1 · s+ e1), . . . , (ak, ak · s+ ek))
c
≈ ((a1, u1), . . . , (ak, uk))

where the ui ← {0, 1}m are uniformly random.

Of course, this assumption is new and should be studied carefully before it is used. As an argu-
ment in favor of the assumption, note that the ai’s will be distinct with overwhelming probability,
and therefore (by Lemma 4.8) the ei’s are `-wise independent. Hence, any attack that is faster
than trying to solve LPN directly must consider at least ` + 1 of the k instances simultaneously.
Moreover, as noted in Section 5.1, the `-wise independence holds even if the hash function h is
known – but the adversary in our protocol does not even know h.

In the context of LPN-based authentication. In existing LPN-based schemes, though any
constant noise rate τ ∈ (0, 1

2) is supported, the completeness guarantees are asymptotic: in fact,
as τ → 1

2 , the tradeoff between efficiency and completeness is rather poor. This is because these
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schemes all involve a “threshold check” similar to the one in Protocol 1. Concretely, for τ = 1
2 − ε,

if we want a completeness error of at most e−w for some fixed w, then by a Chernoff bound,
n = O(1/ε2). Hence, to get arbitrarily low error probability we must have extremely large n (and
thus, very slow algorithms and large memory requirements). This is undesirable since we want τ
close to 1

2 in order to use the weakest hardness assumption possible11.
In contrast, by making use of an LPN-based PRG as in our protocols, we diverge from the

“threshold check” paradigm which was introduced by [HB01] and has remained pervasive in the
LPN-based authentication literature. Our protocols are perfectly complete, and moreover, as
τ → 1

2 , the communication complexity of our protocols remains unaffected (although computational
complexity of the PRG increases).

In the context of LPN-based PRFs. LPN is particularly appropriate for consideration in our
setting because it has the interesting properties that it is a promising assumption from a practical
perspective, and efficient LPN-based PRGs are known [BFKL94; ACPS09], yet it is not known
whether (even weak) PRFs can be constructed from LPN with better efficiency than the rather
slow [GGM86] construction. This, for example, makes LPN ineligible for effective use with the
WPRF-based authentication protocols of [DKPW12; LM13], at least from our current state of
knowledge. In this light, we remark that the `-bounded PRF of Section 5.1 could be of broader
interest to serve as an LPN-based PRF also in other applications, where it is reasonable to place
a bound on the number of queries.

5.3.2 Construction based on subset sum

The subset sum problem is in a somewhat similar situation to LPN, in that while an efficient SS-
based PRG is known, the best known PRF construction is again via [GGM86] and thus too slow
to be useful in many applications. We find that the SS-based PRG of [IN96] is a PRG with public
randomizer that can be used directly to instantiate the function g in our protocol construction,
allowing security under a milder assumption than by the black-box method. Details of the SS-
based PRG with public randomizer may be found in Appendix E. To our knowledge, the subset
sum problem has not been proposed for use in the authentication setting before.
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A Formal specification of hybrid H̃k∗

In this section we give a formal description of the algorithm H̃k∗ used in the proof of Theorem 4.2.
H̃k∗ takes as input (r̃1, . . . , r̃T ), and then behaves exactly like Hk∗ , except in the following aspects:

• when H̃k∗ is initialised, it sets a variable next := 0; and

• if blog2(i)c + 1 ≥ k∗ (that is, the depth of the output node for query i is at least k∗) then
H̃k∗ first stores the three tuples

(leaf, `, (r̃next)
[1,m]), (root, α0, (r̃next)

[m+1,m+n]), (root, α0 + 1, (r̃next)
[m+n+1,m+2n]),

where α0, ` are defined by

α0 =

{
2 · (i− 2blog2(i)c − 1) if blog2(i)c+ 1 = k∗

2 · bα(i,k∗)/2c otherwise
,

` =

{
i if blog2(i)c+ 1 = k∗

2(k∗−1) + (α0/2) otherwise
;

then H̃k∗ increments next by 1, and outputs ρi, defined by:

ρi =


(r̃next)

[1,m] if blog2(i)c+ 1 = k∗

lookupGn,m
(
(r̃next)

[m+1,m+n], γ(i,j∗)

)
if α(i,k∗) = α0

lookupGn,m
(
(r̃next)

[m+n+1,m+2n], γ(i,j∗)

)
if α(i,k∗) = α0 + 1

.

In terms of the tree representation of the pseudorandom look-up function: H̃k∗ behaves exactly
like Hk∗ , except that the values associated with nodes at depth k∗ are taken from the input values
r̃1, . . . , r̃T . Note that although the number of nodes at depth k∗ may be greater than T , next can
never become greater than T during an execution of D̂PRG, because D̂ cannot make more than T
queries: therefore, r̃next is always well-defined.

B Proof of `-concurrent MIM security of Protocol 3

Lemma B.1. For any two-round authentication protocol in which the verifier sends the first mes-
sage, and where the verifier’s accept/reject decision is a deterministic function of the secret key,
the initial message of the verifier, and the prover’s response: it holds that any adversary A with
access to multiple honest verifiers V1, . . . ,V` can be perfectly simulated by another adversary A′
with access to only one honest verifier V

Proof. The simulation works as follows: A′ runs A, and for every protocol session that A begins
with honest verifier Vj , A′ starts a new session with verifier V and forwards the initial message
a of V to A. Then, when A returns to the open session with Vj and sends a response b, A′
returns to the corresponding session with V and forwards b to V; and finally, A′ returns to A the
accept/reject decision of V. This is a perfect simulation since for any session, the verifier’s decision
is a deterministic function of the secret key, the initial message a and the (adversarial) prover’s
response b.

Theorem B.2. If G is a PRG, Protocol 3 is secure against `-concurrent MIM attacks.

Proof. We show that given an adversary A which achieves a certain advantage when conducting a
concurrent MIM attack, it is possible to build a new adversary A′′ that only talks to the ` provers
and achieves essentially the same advantage.
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By Lemma B.1, A can be perfectly simulated with access to just one honest verifier, so we
assume henceforth that there is only one honest verifier V. Next, we replace the single honest
verifier V by a fake verifier V ′ who has no access to s or the e values, but still gives essentially the
same answers as V. Then we argue that for any concurrent man-in-the-middle attack, there is an
equally successful concurrent active attack, and finally refer to Lemma 4.9 for the active security
of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does).

When A returns an answer z, j (i.e. the second protocol message), there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = a′ · s + ej and a′ is A’s query to P.
Here we have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution):
in this case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. The challenge produced by V has exactly the
same distribution as the one V ′ outputs. Now, in case 1a, notice that V will accept if and only
if z has the correct value a · s + ej : so V ′ always makes the same decision as V. In case 1b, V
rejects except with negligible probability, so V ′ is statistically close to the right behavior. This
is because accepting would imply that z = a · s + ej , but we also have z′ = a′ · s + ej so then
s = (z− z′)(a− a′)−1. This happens with negligible probability because s is random and z, z′, a, a′

are all independent of s. This holds because all of P’s responses (including z′) are independent of
s. Moreover, since this is the first query, V has not even looked at s yet, so a, a′ and z must be
independent of s too. Finally, in case 2, note that no one sees ej before the adversary produces
z, j. If V accepts, we have z = a · s+ ej , so ej = z−a · s, which happens with negligible probability
since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query, and the adversary’s
advantage changes at most negligibly as a result. Repeating the same argument for all the queries,
we reach the game where V is entirely replaced by V ′, and the adversary’s advantage is still at
most negligibly different from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”. So
for any adversary A which has non-negligible advantage in a man-in-the-middle attack, we can
construct an adversary A′′ that emulates both A and V ′ “in his head” and achieves the same
advantage, but conducting an active attack (since he need not interact with the real verifier V).

Finally, the security of the protocol against concurrent man-in-the-middle attacks follows from
the security against concurrent active attacks, which was shown in Lemma 4.9.

C Proof of PRF security for any polynomial number of queries

In this section we give proofs the security of the function families F (g,`,H) and F̃ (g,`,H) in general
(that is, for any polynomial number of queries).

Theorem C.1. If g is a PRG with public randomizer that satisfies Property 5.5, then F (g,`,H) is
a secure WPRF.

Proof. As in the proof of Theorem 5.2, since g is a PRG with public randomizer, we can modify the
oracle OFK (from Definition 2.8) so that the xs and hs are uniformly chosen, and the adversary’s
advantage can increase by at most a negligible amount as a result of this modification. Let a1, . . . , ak
be the (uniformly random) inputs to the oracle. Then the distribution of the hashes hs′(x+ ai) in
the PRF outputs g(ai, hs′(x+ ai)) as defined in the construction of F (g,`,H) is exactly according to
Dn` (a1, . . . , ak). Then since g satisfies Property 5.5, the outputs of OFK must be indistinguishable
from the outputs of OR where R is a random oracle.
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Theorem C.2. Let F̃ (g,`,H) = {F̃s} be the function family obtained by applying the [NR99] tech-
nique to the function family F (g,`,H) defined above, for parameters n, ` ∈ Z and H a family of
2`-wise independent hash functions mapping (` + 1) · n bits to n bits. Then, if g is a PRG with
public randomizer, F̃ (g,`,H) is a secure PRF family for any adversary making at most ` queries. If
g furthermore satisfies Property 5.5, then F̃ (g,`,H) is a secure PRF family (for any ppt adversary).

Proof. Follows directly from Theorems 5.3, 5.2, and 5.6.

D Efficient Bernoulli sampling, and LPN-based PRG for any τ

The PRG of [ACPS09] relies on the Bernoulli sampling technique of [AIK08], which is defined only
for τ = 2−t for t ∈ Z+.

Lemma D.1 ([AIK08]). There exist positive integers k > 1 and c > 2k and a sampling algorithm
Samp that uses (k+ k/c)n random bits and outputs a pair (e, v) whose joint distribution is 2−Ω(n)-
statistically close to (Bern2−k ,U({0, 1}kn)). Moreover, Samp can be implemented in NC0.

The sampling method of [AIK08] is as follows: each bit of the Bernoulli output vector e is
obtained by taking the product of t uniformly random input bits; and then to reduce entropy
waste, they also apply a randomness extractor to the input bits to obtain the pseudorandom part
of the output, v. The Bernoulli output is just a product of t and thus computable in NC0, and
[AIK08] constructs an extractor that is also in NC0 so that the whole sampler is in NC0.

We now generalize their technique to any real τ ∈ (0, 1
2 ]. The generalized construction is no

longer in NC0, but has logarithmic depth, which is what we require. For security parameter κ, let

τ ′ be the approximation of τ to κ binary places. Note that to a ppt adversary, Berτ
c
≈ Berτ ′ . Now,

we can sample from Berτ ′ by choosing a random value t ∈ {0, 1}κ and outputting 1 if t ≤ τ ′ ·2κ, and
0 otherwise (for the purposes of the comparison, t should be interpreted as an integer expressed
in binary). Sampling n Bernoulli-distributed bits in this way yields an output distribution which
is computationally indistinguishable from the desired Bernτ (and this can be done in logarithmic
depth). The randomness extractor of [AIK08] is then applied to the input bits just as in their
original construction.

For our protocol constructions, it is useful to generate Bernoulli samples separately from the
PRG construction, and derived from pseudorandom – rather than truly random – input. To capture
this, we define the following.

Definition D.2. For security parameter κ, let BerSampGn,τ : {0, 1}n → {0, 1}n be the function
that: takes as input x ∈ {0, 1}n (which is truly random), applies the pseudorandom generator G
to x to obtain a pseudorandom value x′ ∈ {0, 1}(k+k/c)n where k, c are the constants promised in
Lemma D.1 and κ ≤ k, then applies the generalized Bernoulli sampling algorithm of to x′ to obtain
a pair (e, v) whose distribution is computationally indistinguishable from (Bern2−k ,U({0, 1}kn)), and
finally outputs e.

E PRG with public randomizer from subset sum

The subset sum (SS) problem is the following: given a set of numbers {a1, . . . , ad} ∈ ZdM and a
target number t ∈ ZM , find a subset S ⊂ [d] such that

∑
i∈S ai = t mod M . This problem is

widely believed to be hard if the ai are random (subject to certain conditions on the parameters
d,M). Define the subset sum function GSubsetSum

d,M : [M ]d × {0, 1}d to be the following:

GSubsetSum
d,M (a, S) =

∑
i∈S

ai mod M.

Impagliazzo and Naor [IN96] showed that if the subset sum function is hard to invert, i.e.
one-way, then it is also a pseudorandom generator.
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Theorem E.1 ([IN96]). If the subset sum function GSubsetSum
d,M (a, S) is one-way, then(

a,GSubsetSum
d,M (a, S)

)
c
≈ (a, u) ,

where a ∈ ZdM , S ⊂ {1, . . . , d}, and u ∈ ZM are chosen uniformly at random.

This is a PRG with public randomizer, so as in Section 5.3.1, it can be used to directly instanti-
ate the function g in the construction of Protocol 4. Also in this case, applying this technique has
the advantage that the assumption that g has Property 5.5 corresponds to a weaker assumption
(on the hardness of the subset sum problem) than if GSubsetSum

d,M were used as a black-box PRG.
Thus we obtain an authentication protocol which is secure against `-concurrent MIM attacks if
the subset sum problem is hard, and is furthermore fully secure against concurrent MIM attacks if
the subset sum problem is hard even when the input subset S is chosen by a 2`-independent hash
function.
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