
Towards Optimally Efficient Secret-Key Authentication from PRG

Ivan Damg̊ard1 and Sunoo Park2

1Aarhus University
2MIT

Abstract

We propose a new approach to the construction of secret-key authentication protocols mak-
ing black-box use of a pseudorandom generator (PRG). Our authentication protocols require
only two messages, have perfect completeness, and achieve concurrent man-in-the-middle secu-
rity. Finally, when based on a sufficiently efficient PRG, our protocol has (amortised) complexity
O(n) bit operations where n is the security parameter. To the best of our knowledge, this con-
struction is the first to have all these properties simultaneously, in particular the first with
linear complexity. We achieve this at the cost of having the prover (but not the verifier) keep
a small amount of state. Very practical PRGs can be constructed, for instance, based on the
Learning Parity with Noise (LPN) problem, and our protocol is in several respects an attractive
alternative even to protocols derived directly from LPN. A variant of our construction is secure
even if the adversary is able to reset the prover.

1 Introduction

Secret-key authentication is one of most basic cryptographic tasks: a prover and a verifier share a
secret key K, and the aim is to design a protocol that will allow the prover (and the prover alone),
to convince the verifier that he indeed knows the key K. We call this one-sided authentication,
to distinguish from mutual authentication where both parties must be convinced of each other’s
identity.

The strongest security notion in the authentication literature for one-sided authentication 1

considers an adversary who may first interact (concurrently) as many times as he wants with the
honest prover and the verifier; after this, he is on his own and must attempt to falsely convince
the verifier that he knows the secret key. If no efficient adversary can win this game, we say the
protocol is concurrent man-in-the-middle (MIM) secure. For stateful protocols one can consider an
even stronger variant of this notion: multi-instance concurrent MIM security. Here the adversary
may, in the first phase, have several concurrent sessions with different incarnations of the prover
and the verifier, where each incarnation will start from a fresh initial state. Thus, this stronger
notion captures also attacks where the adversary can reset the parties.

Let us consider what resources we need, in terms of communication and computation, to realise
(one-sided) authentication. It is easy to see that we need at least two messages, where the verifier
speaks first. Furthermore, both messages must be long enough to not be easily guessed. Informally,
if the prover’s message is short, the adversary can guess what to say in the final phase; on the other
hand, if the verifier’s message is short, the adversary can guess what the verifier will say in the final
phase and query the prover for the right answer in the first phase. Finally, we assume that both
parties access n key bits, where n is the security parameter, so it follows that the computational
complexity must be Ω(n) bit-operations.

1Bellare and Rogaway [BR93] proposed a definition for mutual authentication using an attack model that is
essentially the same as the concurrent MIM attack we consider. We do not consider mutual authentication here, as
we focus on two-message protocols, in which of course only one party can be convinced of the other’s identity.

1

It is therefore a natural theoretical goal to build two-message authentication protocols of com-
plexity O(n), where n is the bit length of the shared key. Also, from a practical point of view,
efficient “lightweight” authentication protocols are becoming ever more relevant as application
scenarios emerge where, for instance, the prover may be a low-cost RFID tag or smartcard.

1.1 Motivation and related work

The first solution to the authentication problem is from [GGM86], as follows. Suppose we are given
a pseudorandom function family (PRF) F whose functions fK have a key K and input/output
size n bits. The crucial property of a PRF is that even an adversary who chooses the input (but
does not know the key) cannot distinguish the output of fK from random. Given a PRF, we can
simply let the verifier send a random input x, and have the prover respond with fK(x). This simple
two-round protocol already achieves concurrent MIM security2.

However, from the perspective of efficiency, this simple solution is problematic in general: the
standard construction of a PRF (from [GGM86]), is based on a pseudorandom generator (PRG),
which is a much simpler primitive that expands a short key into a random-looking longer output.
However, the GGM construction does not yield a particularly efficient PRF: even assuming a very
efficient PRG that only requires a constant number of operations per output bit, the PRF will have
complexity Ω(n2). In [BPR12], a construction of a PRF directly from the well-known LWE problem
was suggested. Whereas this is indeed more efficient than applying the [GGM86] construction on
the PRG that follows naturally from LWE, the complexity of the resulting PRF is still Ω(n log n).

There are in fact several very efficient and low-depth constructions of PRGs from specific
problems, such as Learning Parity with Noise (LPN); and furthermore, even linear-time computable
PRGs with linear stretch are known to follow from general and plausible assumptions3. Hence, it
is compelling to try to design authentication directly based on weaker pseudorandom primitives
such as PRGs, in such a way that the protocol inherits the efficiency.

Authentication from weak pseudorandom primitives. This direction has been explored in
[DKPW12], which constructs a three-round protocol based on any weak PRF. A weak PRF is a
relaxed notion of PRF in which function outputs are only required to look random for uniformly
random (rather than adversarially chosen) inputs. The protocol of [DKPW12] achieves active
security (a weaker notion than MIM security). Subsequently, [LM13] proposed a three-round
protocol based on any weak PRF, which is secure against sequential MIM attacks4. In addition,
they give a variant three-round protocol that can be built from any randomized weak PRF, a yet
slightly weaker primitive. However, these protocols are not concurrent MIM secure (in fact, [LM13]
outlines an attack), and all require three rounds. Moreover, even a randomized weak PRF seems
to be a significantly stronger primitive than a PRG.

Authentication from concrete hardness assumptions. An obvious alternative approach to
authentication is to build protocols directly from a concrete problem. Much work in this direction
has been based on the LPN problem, which can be briefly stated as follows: given polynomially

2For authentication, it is actually sufficient to have an unpredictable function, a computationally secure “MAC”,
rather than a PRF; however, we do not know of more efficient constructions of MACs either. In [IKOS08], constant-
overhead PRFs and MACs are constructed, but here the output size is much smaller than the input, thus in our
context this would make the prover’s answer much easier to guess than the verifier’s challenge.

3A number of different sufficient conditions for such PRG’s are known. In [IKOS08] it is observed that such
PRGs follow from Alekhnovich’s variant of the Learning Parity with Noise assumption. Applebaum [App13] shows
that such PRGs can be obtained from the assumption that a natural variant of Goldreich’s candidate for a one-way
function in NC0 is indeed one-way. The improved HILL-style result of Vadhan and Zheng [VZ12] implies that such
PRGs can be obtained from any exponentially strong one-way function that can be computed by a linear-size circuit.

4Sequential MIM security is stronger than active security, but weaker than concurrent MIM security. In a
sequential MIM attack, the adversary can interact polynomially many times with an honest prover and verifier, but
the interactions cannot involve multiple concurrent sessions with the prover (or the verifier). In contrast, an active
adversary can interact only with the prover.

2

many samples of the form (a, 〈a, s〉 + e), where a is a random n-bit vector, s is a secret n-bit
vector fixed across all samples, and e is a bit which is 1 with probability τ < 1/2, can we discover
the secret s (or at least, distinguish the samples from random)? Authentication from LPN has
been studied in a series of papers, including [HB01; JW05; KSS10; Hey+12]. The latest in this
line of work [Kil+11; DKPW12] have proposed two-message MIM secure protocols. Even based
on a compact version of LPN (namely, the ring-LPN problem [Hey+12]), these protocols have
computational complexity Ω(n log n); and moreover, they are not perfectly complete: the verifier
may reject the honest prover with non-zero probability. In order to keep this error probability
low, the protocol’s communication (and hence also computational) complexity must depend on
the LPN noise parameter τ , and in fact the complexity grows quite dramatically as τ approaches
1/2. Thus, these protocols incur a rather high price if we want to use a weaker variant of the LPN
assumption where τ is close to 1/2.

1.2 Our contribution

We propose a new two-message authentication protocol that can be based on black-box access to
any PRG. The protocol has perfect completeness and is concurrent MIM secure. When based on a
linear-time PRG, the amortised complexity5 of the protocol is O(n). To the best of our knowledge,
our protocol is the first to have all these properties simultaneously. We achieve this by having
the prover (but not the verifier) keep a small amount of state that grows logarithmically with the
number of executions of the protocol.

A variant of the protocol is even multi-instance concurrent MIM secure for any polynomial
number of instances, as long as this polynomial is fixed when the system is set up. If the number
of instances is constant, we can maintain the linear complexity of the protocol, using a new con-
struction we propose of linear-time computable `-wise independent hash functions for any constant
`.

If we make a stronger assumption on the security of the PRG – namely, that it produces
pseudorandom output even when used with seeds that are chosen from an `-wise independent
distribution rather than at random – then the second protocol achieves multi-instance concurrent
MIM security (for any polynomial number of instances, which need not be known or bounded in
advance).

A concrete instantiation of our protocol could be based on PRGs that follow naturally from
LPN, and since we have perfect completeness (and thus avoid the bad dependence on τ mentioned
in the previous section), this offers an attractive alternative to known protocols based directly on
LPN. In particular, unlike previous protocols, our protocol has the property that as we move τ
towards 1/2 to weaken the underlying LPN assumption, we pay only in terms of computational
complexity: our communication complexity stays unchanged.

Ideas and techniques. The basic idea of our protocol is that the verifier sends an n-bit random
challenge a to the prover, who responds with an unconditionally secure MAC on a computed from
a secret key that he shares with the verifier.

The good news is that unconditionally secure MACs (in contrast to computationally secure
ones) can give us the efficiency we are after. In particular we will use a MAC of the form C(a)∗s⊕e
where (s, e) is the key, and where C is a linear-time encodable linear code that is good in the
sense that both its length and minimum distance are Θ(n). Then C(a) is the encoding of a and
the product C(a) ∗ s is the component-wise (Schur) product. This one-time MAC is linear-time
computable and was proven secure in [DZ13].

However, the bad news is that while s can be reused over several executions, e cannot: e must
be a fresh random value every time, or the MAC is not secure. An obvious solution is to choose

5It should be noted that this refers to the time spent in normal operation between the honest prover and verifier.
An adversary can force the verifier (but not the prover) to spend more time, but we do not view this as a significant
problem: in practice, an adversary could always waste the verifier’s time by doing a standard denial of service attack.

3

e pseudorandomly using another shared key K. Computing it as e = fK(a) where f is PRF may
seem natural, but this would be pointless, because then the simpler PRF-based protocol mentioned
above might as well be used, and we will again face the efficiency issues associated with using a
PRF in this way. To get around this, we propose to have the prover keep a counter i that is
incremented for each execution, and compute e as e = fK(i). The point is that now the prover
does not need to compute the PRF on arbitrary unpredictable inputs, but only on values that
arrive in a particular order i = 1, 2, To see why this is an advantage, consider that the GGM
construction basically forms a tree with exponentially many leaves, one for each possible input.
Computing an output requires computing the path to the relevant leaf, calling the PRG once for
each vertex. Then, to achieve linear time, the idea is to save the last path we computed and only
recompute the part that changes for the next input. If the inputs indeed arrive in order, it turns
out that on average we will only need to call the PRG twice per call to the PRF.

Using the original GGM tree in this way requires that we build a tree large enough to accom-
modate the maximal number of times we expect that the protocol will be executed. The storage
requirement will depend on the bound that we decide. This is not desirable: to make sure we stay
out of trouble, we may have to use more storage than it turns out we really need. We therefore
propose a variant of the GGM construction where every node delivers an output value. This allows
us to grow the tree as we go, so that the storage requirement only depends (logarithmically) on
how many times the protocol is actually executed6.

This construction achieves concurrent MIM security: the strongest security notion in the case
where the adversary cannot clone or reset the prover. If the adversary can clone or reset, then we
need multi-instance concurrent MIM security. We achieve this by modifying our protocol using an
additional technique based on universal hashing. To this end, we propose an extension of a result
by Ishai et al.[IKOS08]: they give the first construction of pairwise-independent hash functions
that can be computed in linear time, but this construction fails already for 3-wise independence.
We show a simple way to extend the construction to get `-wise independence for any constant `
while maintaining the linear time complexity. This seems to be optimal in the sense that if the
function outputs Ω(n) bits and is `-wise independent, the randomness used to select the function
must be of size Ω(`n) bits – and if the evaluation algorithm must look at all these random bits,
linear time is not possible if ` is super-constant in n.

Usage of our protocols in practice. Since we have presented our results in terms of asymptotic
complexity, one may wonder if they are of any use in practice. After all, in a practical scenario, it
may seem much easier to just use your favourite block cipher as a PRF in the simple protocol we
mentioned at the start.

However, one should consider the fact that (synchronous) stream ciphers can be used as PRGs
and are often much faster than block ciphers. Seen from this angle, our protocol may offer an
advantage because it provides a way to do authentication using, instead, your favourite stream
cipher, where the prover on average calls it twice per execution, and in addition only needs to
compute an efficient unconditionally secure MAC.

Note that in software, using a more standard MAC of form a · s + e, where the product is in
the field with 2n elements, may be an advantage (even if it is not preferable asymptotically). For
instance, for n = 64, we can multiply by a fixed element s using 8 table look-ups in 16 KB of
precomputed tables. However, if the prover is a small hardware device, whereas the verifier has
more power, then using the MAC C(a) ∗ s + e that we suggest may be even better, since we can
ask the verifier to send the encoding C(a) rather than a. Our proof of security still applies if the
prover checks that he receives a codeword, and this can be extremely fast in hardware if we use an

6Goldreich [Gol01] suggested a somewhat related idea where the last leaf of the tree is used as the root of a new
one. Using this technique instead could give us the similar time complexity for the prover, but an adversary could
force the verifier to spend much more time than in normal operation, potentially Ω(nt), where t is the number of
times the protocol is executed. The worst case for our approach is O(n log t).

4

LDPC (low-density parity check) code. This reduces the prover’s computation essentially to the
cost of running the stream cipher.

2 Preliminaries

Notation. For a finite set B, we will write b← B to denote that b is drawn uniformly randomly

from B. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The relation
s
≈ between distributions denotes

statistical indistinguishability, and
c
≈ denotes computational indistinguishability. negl(n) denotes

a negligible function in parameter n, and poly(n) denotes a polynomial function. An efficient
algorithm is one which runs in probabilistic polynomial time (ppt).

The definitions of pseudorandom generators (PRGs) and pseudorandom function families (PRFs)
are given in Appendix A.

2.1 Authentication protocols

A authentication protocol is an interactive two-party protocol (P,V) between a prover P and a
verifier V: these may be respectively thought of as a (lightweight) tag, and a reader to which the
tag is identifying itself. Both parties are ppt, and hold a shared secret s generated according to
some generation algorithm Gen(1κ) (where κ denotes the security parameter) in an initial phase.
After an execution of the protocol, the verifier V outputs either accept or reject – this is also called
the output of the protocol execution.

In this work we consider prover-stateful protocols where the prover also maintains some (small
amount of) state between protocol executions.

Definition 2.1 (Completeness). The completeness error of a protocol is:

Pr
s←Gen(1κ)

[(P(s),V(s)) = reject].

A protocol is complete if its completeness error is negligible in a security parameter. It is perfectly
complete if its completeness error is zero.

Common definitions of security for authentication protocols are given below. Note that these
definitions are adapted for the prover-stateful setting; they have natural analogues in the stateless
setting which is more common in the literature.

Definition 2.2 (Active security). An authentication protocol (P,V) is secure against active at-
tacks if for any secret s ← Gen(1κ), for any ppt adversary A which first can interact arbitrarily
polynomially many times with an honest prover P (but cannot reset the prover’s state), and then
afterward (now, without access to P) interacts once with an honest verifier V, it holds that

Pr[(A,V(s)) = accept] ≤ negl(κ).

Definition 2.3 (Concurrent man-in-the-middle (MIM) security). An authentication protocol (P,V)
is secure against concurrent man-in-the-middle attacks if for any ppt adversary A which first can
interact arbitrarily polynomially many times with an honest prover P and/or an honest verifier V
(the interactions may be concurrent, but the adversary cannot reset the prover’s state), and then
afterward (now, without access to P,V) interacts once with an honest verifier V ′, it holds that

Pr[(A,V ′(s)) = accept] ≤ negl(κ).

In this setting, the adversary learns the accept/reject decisions of the verifier.

5

Definition 2.4 (Multi-instance concurrent MIM security). An authentication protocol (P,V) is
secure against multi-instance concurrent man-in-the-middle attacks if for any ppt adversary A
which first can interact arbitrarily polynomially many times with polynomially many honest provers
P1, . . . ,Pk and/or honest verifiers V1, . . . ,Vk, and then afterward (now, without access to the Pi,Vi)
interacts once with an honest verifier V ′, it holds that

Pr[(A,V ′(s)) = accept] ≤ negl(κ).

As above, the adversary learns the accept/reject decisions of the verifier(s).

A natural relaxation of multi-instance concurrent MIM security addresses the case when the
adversary has access to only a ` provers and verifiers, where ` = poly(n) is bounded in advance.
We write `-instance concurrent MIM security to denote security against an adversary who has
concurrent access to up to ` honest provers (and verifiers), but no more. This definition allows
a construction to take advantage of the fact that ` is chosen and fixed initially. Furthermore, we
define `-instance active security to be the corresponding notion for active security: that is, where
the adversary has access to up to ` honest provers.

Note that for stateful protocols, the multi-instance definition covers the case of an adversary
who can reset, e.g., the prover’s state: clearly, an adversary who can do this k times can be
emulated by an adversary having access to k copies of the prover.

3 Authentication via “one-time” MACs

In this section, our approach is to build authentication protocols from very efficient MACs. It
was observed in earlier sections that known MAC constructions are not very efficient as they are
based on PRFs – however, this is only true of computationally secure MACs. In contrast, there
are unconditionally secure MACs that are very efficient – but these are only secure for one-time
use, so have not thus far been considered suitable for authentication protocols.

Notation. For vectors v, w ∈ {0, 1}n, v ∗ w denotes the component-wise (Schur) product, and
v · w is the field product (in F2n). For an error-correcting code C, C.Enc and C.Dec denote the
encoding and decoding functions, respectively.

Consider the following simple and unconditionally secure MAC: for a message a ∈ {0, 1}n, the
MAC on the message is a · s+ e, where (s, e) ∈ {0, 1}n × {0, 1}n is the secret key (which is chosen
uniformly at random). MACs of this form are well known, and it is also known that although a
key for an unconditionally secure MAC can usually be used only once, in this case the multiplier
(s) can be reused provided that e is freshly chosen for each message (see e.g. [BDOZ11]).

In this work, we focus on a slightly different MAC, which might be considered a variant of the
above. For a message a ∈ {0, 1}n, the MAC on the message is C.Enc(a) ∗ s + e ∈ {0, 1}cn where
C is an error-correcting code (with constant-fraction distance) with expansion c, and (s, e) ∈
{0, 1}cn × {0, 1}cn is the secret key. The security of this variant MAC is shown in [DZ13].

In our protocols, we consider s to be the secret key, and generate e pseudorandomly per
execution. The man-in-the-middle security of our protocol does not follow from MAC security,
however: the standard security notion for MACs simply requires that an adversary who observes
a message and a valid MAC cannot produce a different message and valid MAC. We consider a
more complicated game where the adversary interacts with prover and verifier concurrently.

Finally, we remark that although our protocols are presented in terms of the variant MAC, the
proofs of correctness and security all go through (with almost no changes) also when using the
“a · s + e” MAC. Which version is better in a concrete application would be determined by the
encoding efficiency of the error-correcting code for the relevant parameters.

6

3.1 Pseudorandom look-up function

As a building block for our authentication protocols, we construct a logarithmic-depth “look-up
function” for efficient retrieval of pseudorandom values using the PRG, and show that the look-
up function is a PRF. Note that this technique may be of independent interest towards generic
constructions of low-depth PRFs.

Notation. Since a PRG G can be used to build a PRG of any stretch, we write Gn→m to denote
the PRG based on G which maps n bits to m bits. We write Gn→m(r)[i,j] to denote the substring
of the PRG output Gn→m(r) ∈ {0, 1}m ranging from the ith bit to the jth bit, inclusive.

Given a PRG G taking an n-bit input, our goal is to generate a series of polynomially many
pseudorandom values r1, r2, r3, . . . , such that each ri can be looked up in time (poly-)logarithmic
in i. This is achieved using the tree structure below.

Note that while the PRF construction of [GGM86] also performs lookups in logarithmic time
(and can be easily adapted to support an unlimited input domain {0, 1}∗, as pointed out in [Gol01]),
their construction does not satisfy our required property: in their case, the lookup time for any
output ri is poly-logarithmic in the total number of queries that will ever be made to the PRF.

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Figure 1: Tree illustrating efficient look-up of pseudorandom values (first 4 levels)

In Figure 1, ρ0 ∈ {0, 1}n is the original (random) input to the PRG Gn→m+2n. The ρi ∈ {0, 1}n
are values which are subsequently pseudorandomly generated, which are used again as input to
the PRG to produce more pseudorandom values: in particular, if ρi is a child of ρj in the tree,
then ρi = Gn→m+2n(ρj)

[m+1,m+n] if i is even, and ρi = Gn→m+2n(ρj)
[m+n+1,m+2n] if i is odd. The

boxed nodes ri ∈ {0, 1}m are leaves that represent the output pseudorandom values which we want
to look up, and they are generated by ri = Gn(ρj)

[1,m] where ρj is the parent node of ri.
Let lookupGn,m(ρ0, i) ∈ {0, 1}m denote the ith output value, ri ∈ {0, 1}m, obtained using the

above tree method. It is clear that for any i of polynomial size, the number of PRG evaluations
required to look up ri is logarithmic. This gives rise to a PRF family with logarithmic-depth
evaluations, as proven in Theorem 3.2 below. Before proving that the look-up function is a PRF,
we give a simple supporting lemma.

Lemma 3.1. Let G : {0, 1}n → {0, 1}m be a PRG. Then for any polynomial q = q(n), it holds
that there is no efficient distinguisher D for which it holds that

|Pr [D((r1, . . . , rq)) = 1]− Pr [D((G(s1), . . . , G(sq))) = 1]| ≥ negl(n)

for all negligible functions negl, where r1, . . . , rq ← {0, 1}m(n) and s1, . . . , sq ← {0, 1}n.

Proof. Suppose, for contradiction, that there is a distinguisher D̂ for which∣∣∣Pr
[
D̂((r1, . . . , rq)) = 1

]
− Pr

[
D̂((G(s1), . . . , G(sq))) = 1

]∣∣∣ ≥ 1/P (n)

7

where P is a polynomial. For i ∈ [q], define tupi to be the distribution of tuples whose first i ele-
ments are uniformly random in {0, 1}m and whose remaining elements are sampled asG(si+1), . . . , G(sq)

for si+1, . . . , sq ← {0, 1}n. Let pi = Pr[D̂(tupi) = 1] denote the probability that D̂ outputs 1 on
input from tupi.

By our supposition, we know |p0 − pq| ≥ P (n). Then, since p0 − pq =
∑

i∈[q](pi−1 − pi), there

must exist i∗ ∈ [q] such that |pi∗−1 − pi∗ | ≥ 1
q·P (n) , which is non-negligible. Then there exists

a distinguisher D̂′ which can distinguish a single output of the PRG from random, as follows:
on input r ∈ {0, 1}m, D̂′ generates a tuple t whose first i∗ − 1 elements are random in {0, 1}m,
whose (i∗)th element is r, and whose remaining elements are generated as G(si∗+1), . . . , G(sq) for
si+1, . . . , sq ← {0, 1}n. If r is truly random then t← tupi∗ ; otherwise, t← tupi∗−1. Hence, running

D̂ on input t will distinguish with non-negligible probability between these cases. This contradicts
that G is a PRG.

Theorem 3.2. Let G be a PRG and n,m ∈ N be positive integers with m = poly(n). Then the

family of functions F (n,m) def
= {lookupGn,m(ρ, ·)}ρ∈{0,1}n is a PRF with input size n′ bits and output

size n bits, for any n′ = poly(n).

Proof. The statement to prove is that for any PRG G and random ρ0 ← {0, 1}n, there is no efficient
distinguisher D that satisfies∣∣∣Pr

[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > negl(κ)

for all negligible functions negl and all sufficiently large values of the security parameter κ. In the
above, R is a random oracle, and DO may make any polynomial number of “polynomial-depth”7

queries to the oracle O.
Suppose, for contradiction, that there exists such a distinguisher D̂, for which the above in-

equality does not hold: that is, there is a polynomial q for which∣∣∣Pr
[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > 1/q(κ).

Let T = T (κ) be the run-time of distinguisher D̂, and let Hj be a stateful algorithm which is
defined as follows. (Note that when referring to tree structure, the root node is considered to be
at depth 0.) On input i, the algorithm Hj does the following:

• if i has already been queried previously, look up the stored tuple (leaf, i, ρi), and output ρi;

• else if i < 2j+1 (that is, the ith output node is at depth less than or equal to j in the tree),
then choose some ρi ← Z2

n uniformly at random, store the tuple (leaf, i, ρi) in memory, and
output ρi;

• otherwise (that is, the ith output node is at depth greater than j in the tree):

– if there is no stored tuple of the form (root, α, ρ), then choose some ρ ← Z2
n uniformly

at random, store the tuple (root, α, ρ) in memory, and output lookupGn,m(ρ, γ);

– otherwise, look up the stored tuple (root, α, ρ) and output lookupGn,m(ρ, γ);

where α = α(i,j), γ = γ(i,j) are defined by the following:

α(i,j) = b(i− 2blog2(i)c)/2jc

β(i,j) = i− 2blog2(i)c mod 2blog2(i)c−j

γ(i,j) = 2(2
blog2(i)c−j) + β(i,j).

7 More precisely, the distinguisher cannot make queries that would require a super-polynomial depth look-up in
the tree structure of lookupGn,m. This is because in this case, lookupGn,m would not run in polynomial time.

8

When considering the tree representation of lookupGn,m, the algorithms Hj can be explained in
more intuitive terms as follows. For each j, the outputs of Hj behave as a random oracle up to and
including depth j of the tree. Below depth j, the outputs are obtained deterministically by the
lookupGn,m(ρ, ·) function, with the appropriate depth-j value ρ (which is randomly chosen) acting
as the “root node” of the subtree in which the lookup is performed.

Observe that H0 behaves exactly as lookupGn,m(ρ, ·) for random ρ ← {0, 1}n. Moreover, Hk

behaves exactly like a random oracle in the distinguishing experiment, provided that all of D̂’s
queries can be retrieved from depth at most k. Since the input size is n′ = poly(n) bits, there
exists such a maximum depth k from which queries can be retrieved, with k = poly(n).

Let pi = Pr[D̂Hi() = 1] denote the probability that the distinguisher outputs 1 given Hi as an
oracle. By our earlier supposition, |p0 − pk| > 1/q(κ). It follows that for some k∗ ∈ [k], we have
|pk∗−1− pk∗ | > 1

k·q(κ) . Such a k∗ can be found in polynomial time with non-negligible probability8.

We now construct a new distinguisher D̂PRG attacking the PRG Gn→m+2n: specifically, we will
show that the following expression is non-negligible:∣∣∣Pr

[
D̂PRG((r1, . . . , rT)) = 1

]
− Pr

[
D̂PRG((Gn→m+2n(s1), . . . , Gn→m+2n(sT))) = 1

]∣∣∣ ,
where r1, . . . , rT ← {0, 1}m+2n and s1, . . . , sT ← {0, 1}n.

D̂PRG operates as follows. Given input (r̃1, . . . , r̃T), D̂PRG first determines a k∗ ∈ [k] as described
above, then runs D̂ and responds to the oracle queries of D̂ in the following way: when D̂ makes
query i, D̂PRG responds with H̃k∗(r̃1, . . . , r̃T), where H̃k∗ is a variant algorithm based on Hk∗ . H̃k∗

takes as input (r̃1, . . . , r̃T), and then behaves exactly like Hk∗ , except that the values associated
with nodes at depth k∗ of the tree are obtained as substrings of the input values r̃1, . . . , r̃T . (For
a detailed formal description of H̃k∗ , refer to Appendix B.)

By construction, it holds that if the inputs r̃i are truly random, then H̃k∗ and Hk∗ behave iden-
tically; on the other hand, if the inputs r̃i are generated by Gn→m+2n, then H̃k∗ and Hk∗−1 behave
identically. By the choice of k∗, we know that D̂ distinguishes Hk∗ and Hk∗−1 with non-negligible
probability. Hence, D̂PRG distinguishes with (the same) non-negligible probability between the
case where the r̃1, . . . , r̃T are random and the case where they are generated by Gn→m+2n. By
Lemma 3.1, this contradicts that Gn→m+2n is a PRG. Therefore, our initial supposition was false:
that is, there cannot exist a D̂ which distinguishes between lookupGn,m(ρ0, ·) and R with non-
negligible probability. The result follows.

3.1.1 Looking up random values in order.

We would like to look up the random values lookupGn,m(ρ0, ·) in order, that is, first r1, then r2, and
so on. This can be done more efficiently than by traversing the tree starting at the root for each
new value, essentially by storing the path to the most recently retrieved leaf, and implementing
a “next leaf” function which takes the stored path as an input. Naturally, this incurs additional
(logarithmic) storage cost, compared to looking up each leaf starting afresh from the root.

An algorithm to find the next leaf in a binary tree given the path to the “current” leaf is
given in Algorithm 1. The description given in Algorithm 1 is recursive, for clarity of exposition.
Note that in practice, there is a more efficient implementation that avoids recursion. The method
returns the entire path to the next leaf, rather than just the leaf node, because the path must be
passed into the next invocation of the method to obtain the following leaf.

Lemma 3.3. For any given depth d, when Algorithm 1 is used to compute all the leaves of a
complete binary tree (of depth d) in order, the leftChild() and rightChild() methods are called
exactly once for each non-leaf node in the tree. More precisely, the method employed is the following:
in order to obtain the first leaf, the standard method traversing the tree downwards from the root is

8 This can be done by running D̂ polynomially many times on the oracles H0, . . . , Hk, and taking the adjacent
pair (k∗ − 1, k∗) for which there were the most differences in output.

9

1 Path pathToNextLeaf(int depth ,

2 Path currentPath , int currentLeafNum) {

3 if (depth = 1) {

4 Leaf nextLeaf = currentPath.root.rightChild ();

5 return currentPath.removeEndNode (). append(nextLeaf);

6 } else if (depth > 1) {

7 if (currentLeafNum is even) {

8 Leaf nextLeaf = currentPath.endNode.rightChild ();

9 return currentPath.removeEndNode (). append(nextLeaf);

10 } else {

11 Path pathToParent = currentPath.removeEndNode ();

12 int parentLeafNum = floor(currentLeafNum /2);

13 Path pathToNextParent =

14 pathToNextLeaf(depth -1, pathToParent , parentLeafNum);

15 return pathToNextParent.append(

16 pathToNextParent.endNode.leftChild ());

17 }

18 }

19 }

Algorithm 1: Recursive method to find next leaf from path to current leaf

used; and then subsequent leaves are obtained in order by calling pathToLeaf1 = nextLeafPath(d,

pathToLeaf0, 0), then pathToLeaf2 = nextLeafPath(d, pathToLeaf1, 1), etc.

Proof. Given in Appendix C.

In order to apply this method to our lookup tree, we observe that the non-leaf nodes of the
lookup tree constitute a binary tree (shown in blue in Figure 2). We show that applying Algorithm 1
to this binary tree allows in-order retrieval of the first k leaf values in the look-up tree in time
O(k), for any k ∈ N. The storage requirement is log(k) · log(n) where n is the number of input bits
to G.

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Figure 2: A binary tree within the lookup tree

Lemma 3.4. For any given depth d ≥ 1, when all the output values (boxed nodes) at depth d of
the lookup tree are computed in order (from left to right) by:

• first, computing the leftmost output value by traversing the tree downwards from the root,

• then, computing each subsequent output value by applying Algorithm 1 to the binary tree of
non-leaf nodes up to and including depth d − 1, and calling the underlying PRG to obtain
each actual (leaf) output value,

10

the total number C of calls to the underlying PRG G that is required to compute all the output
values at depth d is exactly 2d + 2d−1 − 2. (Note that in order to use Algorithm 1, the path to
the most recently retrieved output node must be stored at all times: this incurs logarithmic storage
space.)

Proof. By the construction of the lookup tree, leftChild() and rightChild() can each be im-
plemented by a single invocation of the PRG G. By Lemma 3.3, when Algorithm 1 is used to
look up all nodes at a particular depth d − 1 in a binary tree (in order), the leftChild() and
rightChild() methods will each be called exactly once for every node at depth less than d − 1
in the tree. Thus, G will be called twice for every node at depth less than d − 1 in the binary
tree. There are 2d−1− 1 such nodes, so G will be called a total of 2d− 2 times while traversing the
tree. In addition, there is one invocation of G per output value, which we have not counted in the
above analysis, because it is not within the binary tree. There are 2d−1 output values at depth d
of the lookup tree, so this adds 2d−1 invocations to our total. Hence, the total number of calls of
G required to compute all the output values at depth d (in order) is 2d + 2d−1 − 2.

Corollary 3.5. When computing the values lookupGn,m(ρ0, i) for i = 1, 2, . . . (in order) by the
method described in Lemma 3.4, the amortized number of calls to G per output value looked up is
constant. To be precise, it is less than 1.5.

Proof. For any given depth d > 1, there are 2d−1 output values at that depth. By Lemma 3.4, all
of these values can be looked up with a total of 2d + 2d−1 − 2 calls to G. Hence, the number of
calls to G per output value (at depth d) is 2d+2d−1−2

2d
< 1.5.

3.2 Concurrent man-in-the-middle secure protocol

The protocol construction which follows can be realized with black-box access to any PRG, and
achieves concurrent man-in-the-middle security.

Public parameters. PRG G, security parameter n ∈ Z, error-correcting code C with
constant-fraction distance.

Key generation. Gen(1n) samples s, s′ ← {0, 1}n and outputs secret key (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

e := lookupGn,n(s′, i)
z := C.Enc(a) ∗ s+ e

i := i+ 1

z, i−−−−−−−−−→
accept iff
z + C.Enc(a) ∗ s = lookupGn,n(s′, i)

Protocol 1: Concurrent MIM secure protocol

The blue color in the protocol indicates (updating of) the prover’s state.

Lemma 3.6. Protocol 1 is perfectly complete.

Proof. This is clear since lookupGn,n is deterministic.

We first prove that Protocol 1 is actively secure, which serves as a stepping-stone to the proof
of concurrent MIM security.

Lemma 3.7. Protocol 1 is secure against active attacks.

11

Proof. Let ej denote the noise string for index j. Consider the following games:

Game 1. P,V and the adversary A play the active security game.
Game 2. P,V and A play the active security game as before, except that P,V no longer know

s′, but instead have oracle access to lookupGn,n(s′, ·).
Game 3. Like Game 2, but lookupGn,n(s′, ·) is replaced by a random oracle.

Games 1 and 2 are perfectly indistinguishable for the adversary, since the messages sent by are
distributed identically in the two games. Suppose, for contradiction, that there exists an adversary
A which can efficiently distinguish between Games 2 and 3. Then, this adversary could be used
to efficiently distinguish between (oracle access to) lookupGn,n(s′, ·) and a random oracle – this
contradicts Theorem 3.2. Therefore, Games 1, 2, and 3 are computationally indistinguishable, and
so the ej are indistinguishable from uniformly random noise.

We have established that the prover’s message z = C.Enc(a) ∗ s+ ej is indistinguishable from
C.Enc(a) ∗ s+ r for random r. Hence, z is indistinguishable from random to any active adversary,
regardless of the choice of a. It remains only to consider the interaction of A with the jonest verifier
V. Given a challenge a from V, A can have at most negligible advantage at guessing the (unique)
value of z that V will accept, as shown by considering the following two cases:

1. A sends an index i that was not used when talking to the honest prover. In this case, we could
give the adversary the e values for this i for free (as it is independent of the what happens
for the other indices). Now the adversary’s task is equivalent to guessing C.Enc(a) ∗ s, which
he cannot do since he has no information about s.

2. A sends an index i that was previously used in a query to the prover. Let z, i be the response
(to a) from the honest prover. Say the honest verifier sends a′ and let z′, i be the adversary’s
response. If there is a non-negligible probability that z′ is accepted, then it follows that
z − z′ = (C.Enc(a) − C.Enc(a′)) ∗ s. This happens with negligible probability since all of
a, a′, z, z′ were chosen independently of s.

Theorem 3.8. Protocol 1 is secure against concurrent MIM attacks.

Proof. We show that if there is an adversary A which achieves a certain advantage when conducting
a concurrent MIM attack, then there is another adversary A′ that only talks to the prover in
Protocol 1 and achieves essentially the same advantage. First, we replace the honest verifier by a
fake verifier V ′ who has no access to s or the ej but still gives essentially the same answers as V.
Then we argue that for any concurrent MIM attack, there is an equally successful active attack,
and finally refer to Lemma 3.7 for the active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does).

When A returns an answer z, j, there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = C.Enc(a′) ∗ s+ ej and a′ is A’s query
to P. Here we have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution):
in this case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. V’s challenge is distributed identically to that
of V ′. In case 1a, V will accept if and only if z has the correct value C.Enc(a) ∗ s + ej : so V ′
always makes the same decision as V. In case 1b, V only accepts if z = C.Enc(a) ∗ s+ ej , but since

12

z′ = C.Enc(a′) ∗ s + ej it must be that (z − z′) = (C.Enc(a) − C.Enc(a′)) ∗ s. This happens with
negligible probability because s is random and z, z′, a, a′ are all independent of s: P’s responses,
including z′, are independent of s; and since this is the first query, V has not seen s yet, so a, a′

and z must be independent of s too. Thus, V rejects with overwhelming probability, so V ′ is
statistically close to the right behavior. Finally, in case 2, no one sees ej before A produces z, j. If
V accepts, we have z = C.Enc(a) ∗ s+ ej , so ej = z − C.Enc(a) ∗ s, which happens with negligible
probability since z, a and s are independent of ej .

Therefore, we can replace V with V ′ for the first query, and A’s advantage changes at most
negligibly as a result. Repeating this argument for all the queries, we reach the game where V is
entirely replaced by V ′, and A’s advantage is still at most negligibly different from in the original
game. Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”.
So for any adversary A which has non-negligible advantage in a man-in-the-middle attack, we
can construct an adversary A′ that emulates both A and V ′ “in his head” and achieves the same
advantage, but conducting an active attack (since he need not interact with the real verifier V).
The result then follows from Lemma 3.7.

3.2.1 Linear-time implementation.

The prover in Protocol 1 can run in time O(n) and space O(log(n) · log(k)), where k is the number
of protocol executions run so far9: this is possible by using Algorithm 1 to compute lookupGn,n(·, ·)
as described in Lemma 3.4. This follows from Corollary 3.5, and the fact that there exist linear-
time, linear-stretch PRGs and linear-time encodable codes with constant-factor expansion and
large constant-fraction distance (such as [GI05]).

The verifier can also be implemented to run in linear time for honest executions, by using
the same method as the prover to compute lookupGn,n(·, ·). Clearly, if the prover is honest, the
verifier will run in linear time. If the prover cheats and breaks the sequence, then the verifier can
retrieve the required lookupGn,n(·, ·) value by the “backup method” of traversing the lookup tree
downwards from the root, which takes O(n · log(k)) time instead. This implementation requires
N · O(log(n) · log(k)) space, where N is the number of different provers with which the verifier
interacts. Note that since the multiplication can be done in depth O(log(n)), if the PRG G is
of poly-logarithmic depth, then the verifier does only poly-logarithmic depth computation (even
when the prover cheats).

3.3 `-instance concurrent MIM secure protocol

Building upon the ideas of Protocol 1, our next protocol achieves `-instance concurrent MIM
security for any polynomial `. Moreover, if ` is constant, we can still get (amortised) linear time.
The next protocol makes use of `-wise independent hashing, which is defined below.

Definition 3.9 (`-wise independent hash function family). A function family H of functions that
map n bits to m bits is a `-wise independent hash function family if for all y1, . . . , y` ∈ {0, 1}m and
for all distinct x1, . . . , x` ∈ {0, 1}n, it holds that Prh←H [h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(x`) = y`] =
2−`m.

Lemma 3.10. Protocol 2 is perfectly complete.

Proof. This is clear since lookupGn,(`+1)·n+β is deterministic.

Our security proofs follow a similar structure to those of Protocol 1: we first prove `-instance
active security, then use this to prove `-instance concurrent MIM security. The proofs of Lemma

9In other words, k is the number of leaf values in the lookup tree that have been retrieved so far. Note that if
desired, the value of k can be upper-bounded by some polynomial-size K, by “starting a new tree” after K values
have been retrieved from the initial tree: the (K + 1)th leaf value in the first tree serves as the root of a new tree in
which subsequent lookups are done. This technique was suggested in [Gol01].

13

Public parameters. ` = poly(n), PRG G, security parameter n ∈ Z, error-correcting code
C with constant-fraction distance, function family H = {hr}r∈{0,1}β of
2`-wise independent hash functions mapping (`+ 1) · n bits to n bits.

Key generation. Gen(1n) samples s← R, s′ ← {0, 1}n and outputs (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

ri := lookupGn,(`+1)·n+β(s′, i)

e := h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

)
z := C.Enc(a) ∗ s+ e

i := i+ 1

z, i−−−−−−−−−→

ri := lookupGn,(`+1)·n+β(s′, i)
accept iff z + C.Enc(a) ∗ s =

h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

)

Protocol 2: `-instance concurrent MIM secure protocol

3.11 and Theorem 3.12 are given in Appendix D, due to space constraints. We remark that the
proof of Theorem 3.12 is very similar to that of Theorem 3.8

Lemma 3.11. Protocol 2 is secure against `-instance active attacks.

Theorem 3.12. Protocol 2 is secure against `-instance concurrent MIM attacks.

3.3.1 Linear-time implementation.

If ` is constant, then the prover in Protocol 2 can run in (amortised) time O(n) and space O(log(n)·
log(k)), where k is the number of protocol executions run so far: as with Protocol 1, this requires
the use of Algorithm 1 to compute lookupGn,n(·, ·), and the use of a linear-time PRG and linear-
time encodable code. In addition, we require an `-wise independent hash function family whose
functions can be sampled and computed in linear time. A construction of a hash function family
satisfying these properties for constant ` is given in Section E. As in the case of Protocol 1, the
verifier in Protocol 2 can also be implemented to run in linear time when the prover is honest.

3.3.2 On achieving (unbounded) Multi-instance MIM security.

Consider the PRG G as a mapping from n-bit seeds to n-bit outputs. Then clearly the string
G(s1), ..., G(st) is pseudorandom for any polynomial k, if the si’s are independent and random.
We say that G is strongly H, `-wise secure if this still holds, even if the si are not independent,
but are chosen from an `-wise independent distribution generated by a hash function from `-
wise independent family H -= more precisely, any subset of ` seeds are uniformly random and
independent, and si = h(xi) for h chosen at random from H and distinct xi. We can now define a
small change to Protocol 2: namely, in Step 2 of the Prover’s computation, e is computed as

e := G
(
h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

))
.

(That is, we do the same as before, but apply G at the end.) Now, assuming G is strongly H, `-wise
secure, where H is the hash function family used in the protocol, we will get pseudorandom output
after applying G, no matter how (polynomially) many outputs we generate, As a result this variant
of the protocol is Multi-instance MIM secure (with an unbounded number of instances), if G is

14

strongly H, `-wise secure. If G has this property even for a constant `, the protocol can run in
linear time, by using the `-wise independent hash functions described in Appendix E.

We emphasise that this security notion for a PRG is non-standard and its plausibility depends
very much on how the concrete PRG and hash function family relate to each other. It should
therefore not be used without a careful analysis of the building blocks.

References

[App13] Benny Applebaum. “Pseudorandom generators with long stretch and low locality
from random local one-way functions”. In: SIAM Journal on Computing 42.5 (2013),
pp. 2008–2037.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions and
Lattices”. In: EUROCRYPT. Ed. by David Pointcheval and Thomas Johansson.
Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 719–737. isbn:
978-3-642-29010-7. doi: 10.1007/978-3-642-29011-4. url: http://dx.doi.org/
10.1007/978-3-642-29011-4.

[BR93] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”.
In: Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings. Ed.
by Douglas R. Stinson. Vol. 773. Lecture Notes in Computer Science. Springer, 1993,
pp. 232–249. isbn: 3-540-57766-1. doi: 10.1007/3-540-48329-2_21. url: http:
//dx.doi.org/10.1007/3-540-48329-2_21.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. “Semi-homomorphic
Encryption and Multiparty Computation”. In: EUROCRYPT. Ed. by Kenneth G. Pa-
terson. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 169–188.
isbn: 978-3-642-20464-7.

[Can+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. “Exposure-
Resilient Functions and All-or-Nothing Transforms”. In: Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Ed. by
Bart Preneel. Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 453–
469. isbn: 3-540-67517-5. doi: 10.1007/3-540-45539-6_33. url: http://dx.doi.
org/10.1007/3-540-45539-6_33.

[Cho+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Ro-
man Smolensky. “The Bit Extraction Problem of t-Resilient Functions (Preliminary
Version)”. In: 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21-23 October 1985. IEEE Computer Society, 1985, pp. 396–407.
isbn: 0-8186-0644-4. doi: 10.1109/SFCS.1985.55. url: http://dx.doi.org/10.
1109/SFCS.1985.55.

[DFMV13] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. “Tamper
Resilient Cryptography Without Self-Destruct”. In: IACR Cryptology ePrint Archive
2013 (2013), p. 124.

[DZ13] Ivan Damgrd and Sarah Zakarias. “Constant-Overhead Secure Computation of Boolean
Circuits using Preprocessing”. English. In: Theory of Cryptography. Ed. by Amit Sa-
hai. Vol. 7785. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 621–641. isbn: 978-3-642-36593-5. doi: 10.1007/978-3-642-36594-2_35. url:
http://dx.doi.org/10.1007/978-3-642-36594-2_35.

15

http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. “Message Au-
thentication, Revisited”. In: EUROCRYPT. Ed. by David Pointcheval and Thomas
Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 355–
374. isbn: 978-3-642-29010-7. doi: 10.1007/978- 3- 642- 29011- 4. url: http:

//dx.doi.org/10.1007/978-3-642-29011-4.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Techniques. Cambridge Univer-
sity Press, 2001. isbn: 0-521-79172-3.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random
functions”. In: J. ACM 33.4 (1986), pp. 792–807.

[GI05] Venkatesan Guruswami and Piotr Indyk. “Linear-time encodable/decodable codes
with near-optimal rate”. In: IEEE Transactions on Information Theory 51.10 (2005),
pp. 3393–3400. doi: 10.1109/TIT.2005.855587. url: http://dx.doi.org/10.
1109/TIT.2005.855587.

[Hey+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
“Lapin: An Efficient Authentication Protocol Based on Ring-LPN”. In: FSE. Ed.
by Anne Canteaut. Vol. 7549. Lecture Notes in Computer Science. Springer, 2012,
pp. 346–365. isbn: 978-3-642-34046-8.

[HB01] NicholasJ. Hopper and Manuel Blum. “Secure Human Identification Protocols”. En-
glish. In: Advances in Cryptology ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001, pp. 52–66.
isbn: 978-3-540-42987-6. doi: 10.1007/3-540-45682-1_4. url: http://dx.doi.
org/10.1007/3-540-45682-1_4.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptography
with constant computational overhead”. In: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-
20, 2008. Ed. by Cynthia Dwork. ACM, 2008, pp. 433–442. isbn: 978-1-60558-047-0.
doi: 10.1145/1374376.1374438. url: http://doi.acm.org/10.1145/1374376.
1374438.

[JW05] Ari Juels and Stephen A. Weis. “Authenticating Pervasive Devices with Human Pro-
tocols”. In: CRYPTO. Ed. by Victor Shoup. Vol. 3621. Lecture Notes in Computer
Science. Springer, 2005, pp. 293–308. isbn: 3-540-28114-2.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. “Parallel and Concurrent Security of
the HB and HB+ Protocols”. In: J. Cryptology 23.3 (2010), pp. 402–421.

[Kil+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi.
“Efficient Authentication from Hard Learning Problems”. In: EUROCRYPT. Ed. by
Kenneth G. Paterson. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011,
pp. 7–26. isbn: 978-3-642-20464-7.

[LM13] Vadim Lyubashevsky and Daniel Masny. “Man-in-the-Middle Secure Authentication
Schemes from LPN and Weak PRFs”. English. In: Advances in Cryptology CRYPTO
2013. Ed. by Ran Canetti and JuanA. Garay. Vol. 8043. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 308–325. isbn: 978-3-642-40083-4. doi:
10.1007/978-3-642-40084-1_18. url: http://dx.doi.org/10.1007/978-3-642-
40084-1_18.

[MNT90] Y. Mansour, N. Nisan, and P. Tiwari. “The Computational Complexity of Universal
Hashing”. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory
of Computing. STOC ’90. Baltimore, Maryland, USA: ACM, 1990, pp. 235–243. isbn:
0-89791-361-2. doi: 10.1145/100216.100246. url: http://doi.acm.org/10.1145/
100216.100246.

16

http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1145/1374376.1374438
http://doi.acm.org/10.1145/1374376.1374438
http://doi.acm.org/10.1145/1374376.1374438
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1145/100216.100246
http://doi.acm.org/10.1145/100216.100246
http://doi.acm.org/10.1145/100216.100246

[Pat11] Kenneth G. Paterson, ed. Advances in Cryptology - EUROCRYPT 2011 - 30th An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Vol. 6632. Lecture Notes in
Computer Science. Springer, 2011. isbn: 978-3-642-20464-7.

[PJ12] David Pointcheval and Thomas Johansson, eds. Advances in Cryptology - EURO-
CRYPT 2012 - 31st Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings.
Vol. 7237. Lecture Notes in Computer Science. Springer, 2012. isbn: 978-3-642-29010-
7. doi: 10.1007/978-3-642-29011-4. url: http://dx.doi.org/10.1007/978-3-
642-29011-4.

[VZ12] Salil Vadhan and Colin Jia Zheng. “Characterizing pseudoentropy and simplifying
pseudorandom generator constructions”. In: Proceedings of the 44th symposium on
Theory of Computing. ACM. 2012, pp. 817–836.

A Pseudorandom primitives

We give the standard definitions of pseudorandom generators (PRGs) and pseudorandom function
families (PRFs).

Definition A.1 (Pseudorandom generator). Let G : {0, 1}n → {0, 1}m(n) be a deterministic
polynomial-time algorithm. G is a pseudorandom generator (PRG) if m(n) > n and for any
efficient distinguisher D that outputs a single bit, it holds that |Pr[D(r) = 1]−Pr[D(G(s)) = 1]| ≤
negl(n), where r ← {0, 1}m(n), s ← {0, 1}n are chosen uniformly at random, and the probabilities
are taken over r, s, and the random coins of D.

It is well known that any pseudorandom generator implies pseudorandom generation with any
polynomial expansion factor m(n), by applying the PRG to its own output repeatedly.

Definition A.2 (Pseudorandom function family (PRF)). Let F = {FK} be family of deterministic
polynomial-time keyed algorithms mapping n bits to m bits. F is a pseudorandom function family
(PRF), if for any efficient distinguisher D that outputs a single bit, it holds that |Pr[DFK =
1]−Pr[DRn→m = 1]| ≤ negl(n), where Rn→m is a random oracle mapping n bits to m bits, and the
probabilities are taken over the random coins of D and the key K which is randomly chosen.

B Formal specification of hybrid H̃k∗

In this section we give a formal description of the algorithm H̃k∗ used in the proof of Theorem 3.2.
H̃k∗ takes as input (r̃1, . . . , r̃T), and then behaves exactly like Hk∗ , except in the following aspects:

• when H̃k∗ is initialised, it sets a variable next := 0; and

• if blog2(i)c + 1 ≥ k∗ (that is, the depth of the output node for query i is at least k∗) then
H̃k∗ first stores the three tuples

(leaf, `, (r̃next)
[1,m]),

(root, α0, (r̃next)
[m+1,m+n]),

(root, α0 + 1, (r̃next)
[m+n+1,m+2n]),

where α0, ` are defined by

α0 =

{
2 · (i− 2blog2(i)c − 1) if blog2(i)c+ 1 = k∗

2 · bα(i,k∗)/2c otherwise
,

` =

{
i if blog2(i)c+ 1 = k∗

2(k
∗−1) + (α0/2) otherwise

;

17

http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4

then H̃k∗ increments next by 1, and outputs ρi, defined by:

ρi =

(r̃next)

[1,m] if blog2(i)c+ 1 = k∗

lookupGn,m
(
(r̃next)

[m+1,m+n], γ(i,j∗)
)

if α(i,k∗) = α0

lookupGn,m
(
(r̃next)

[m+n+1,m+2n], γ(i,j∗)
)

if α(i,k∗) = α0 + 1

.

In terms of the tree representation of the pseudorandom look-up function: H̃k∗ behaves exactly
like Hk∗ , except that the values associated with nodes at depth k∗ are taken from the input values
r̃1, . . . , r̃T . Note that although the number of nodes at depth k∗ may be greater than T , next can
never become greater than T during an execution of D̂PRG, because D̂ cannot make more than T
queries: therefore, r̃next is always well-defined.

C Ordered traversal of leaves of a binary tree

Lemma 3.3. For any given depth d, when Algorithm 1 is used to compute all the leaves of a
complete binary tree (of depth d) in order, the leftChild() and rightChild() methods are
called exactly once for each non-leaf node in the tree. More precisely, the method employed is the
following: in order to obtain the first leaf, the standard method traversing the tree downwards
from the root is used; and then subsequent leaves are obtained in order by calling pathToLeaf1

= nextLeafPath(d, pathToLeaf0, 0), then pathToLeaf2 = nextLeafPath(d, pathToLeaf1,

1), etc.

Proof. In order to obtain the the first leaf node (and the path thereto), we need to call leftChild()
exactly once on all nodes along that path. When d = 1, this means that leftChild() is called on
the root node when obtaining the first leaf node. Moreover, when d = 1, it is clear (from lines 2-4)
that rightChild() is called on the root node exactly once (when obtaining the second leaf node).
Hence, the lemma holds for d = 1.

For d > 1, we argue by induction. It is sufficient to prove that for any d > 1:

1. pathToNextLeaf is called10 exactly once for every node at depth d− 1, except the final node
at depth d− 1 (since for that node, there is no next leaf); and

2. leftChild() and rightChild() are called exactly once on each node at depth d− 1.

We call nextLeafPath() once for each currentLeafNum ∈ {0, . . . , 2depth − 2} (from the state-
ment of the lemma). In particular, nextLeafPath() is called once for the left child of each node
at depth depth−1 (these nodes are exactly those for which currentLeafNum is even). From lines
6-8, it follows that for every node at depth depth−1, the rightChild() method is called exactly
once at line 7.

The recursive call to pathToNextLeaf() occurs on line 12, and is only executed when currentLeafNum

is odd (by the if-clause on lines 6-14). To be precise, the odd values of currentLeafNum for
which we run pathToNextLeaf() are {1, 3, . . . , 2depth − 3}. This corresponds exactly to the set of
right-children of nodes at depth depth−1, except the last one. We see on line 12 that the path
passed into the recursive call is pathToParent, the path to the parent of the current node. Thus,
pathToNextLeaf() is recursively called exactly once for each node at depth depth−1, except the
last one. This satisfies condition 1.

Finally, for each path (of depth depth−1) which is returned by a recursive call to pathToNextLeaf(),
leftChild() is called on the end node of the path (on line 13). Since we have already established
that pathToNextLeaf() is recursively called exactly once for each node at depth depth−1, except

10 To be precise, when we write “pathToNextLeaf is called for a given node” we mean that pathToNextLeaf(depth,
path, leafNum) is called, where depth is the depth of the node in the tree, path is the path from the root to that
node, and leafNum is the number of the node when counting the nodes at depth depth from left to right.

18

the last node, and the functionality of pathToNextLeaf() is to return the next node at a given
depth, it follows that the paths returned by such recursive calls to pathToNextLeaf() lead to each
node at depth depth−1, except the first node. We conclude that leftChild() is called exactly
once for each node at depth depth−1, except the first node. Moreover, leftChild() is called on
the first node at depth depth−1 when we initially retrieve the first leaf. So, leftChild() is called
exactly once on each node at depth depth−1. In conjunction with our earlier observatiosn about
calls to rightChild(), this means that condition 2 is satisfied. The result follows.

D Proof of `-instance concurrent MIM security of Protocol 2

In this section, we show the `-instance concurrent MIM security of Protocol 2. We require the
following technical lemma, which can be seen as a generalization of the leftover hash lemma and
has a similar proof.

Lemma D.1 ([DFMV13]). Let (X1, X2, . . . , X`) ∈ X ` be ` (possibly dependent) random variables
such that H∞(Xi) ≥ γ and (X1, . . . , X`) are pairwise different. Let H = {h : X → Y} be a family
of 2`-wise independent hash functions, with |Y| = 2k. Then for random h ← H we have that the
statistical distance satisfies

∆((h, h(X1), h(X2), . . . , h(X`)); (h, U1
Y , . . . , U

`
Y)) ≤ `

2
· 2(`·k−γ)/2,

where U1
Y , . . . , U

`
Y are ` independent and uniformly distributed variables.

We now prove two supporting lemmas, before the main theorem.

Lemma 3.11. Protocol 2 is secure against `-instance active attacks.

Proof. Recall that an `-instance active adversary may have concurrent access to up to ` honest
provers, but as usual, he cannot reset the provers. The updating of the prover’s state in Protocol 2
ensures that for any given prover, the value ri is freshly pseudorandomly sampled for each exe-

cution (that is, each value of the counter i). In particular, the hash function seed r
[1,β]
i is freshly

pseudorandomly sampled for each value of i, and this means that for any polynomial number of
executions, with overwhelming probablity, all the hash function seeds will be distinct. Therefore,
an `-instance active adversary can obtain at most ` outputs of the hash function hs for any given

seed s. For any i ∈ N, let s
def
= r

[1,β]
i be the corresponding seed, and let x

def
= r

[β+1,(`+1)·n+β]
i be

the summand inside the hash function argument. Suppose that the adversary obtains samples
hs(a1 +x), . . . , hs(a`+x) from the honest provers. If the adversary chooses some ai, aj to be equal,
then the samples hs(ai + x), hs(aj + x) will also be equal, so the adversary will not gain more
information than if he made just one query ai. Hence, we assume without loss of generality that
the a1, . . . , a` are distinct.

Since G is a PRG, we can replace s and x with uniformly randomly chosen s′ ← {0, 1}β and
x′ ← {0, 1}(`+1)·n, and the adversary’s advantage will change at most negligibly. Let U(`+1)·n be
a random variable that is uniformly distributed over the set of ((` + 1) · n)-bit strings. Consider
the random variables U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has
entropy H(U(`+1)·n + ai) = H∞(U(`+1)·n + ai) = (` + 1) · n. They are not independent, but they
are pairwise different because the ai’s are distinct. Therefore, by Lemma D.1,

{hs, hs(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hs, U1

n, . . . U
`
n}.

(In the notation of the lemma: we have k = n and γ = (`+ 1) · n, so the distance is `
22−n, which

is negligible given that ` = poly(n).)

Finally, since the seeds si
def
= r

[1,β]
i are freshly pseudorandomly sampled for each value of i, the

hash functions hs1 , hs2 , . . . used in the protocol are indistinguishable from independent random

19

hash functions. Therefore, the output of any hash function hsi is indistinguishable from random
even given the outputs of the other hash functions hsi′ , hsi′′ , . . . from different executions of the
protocol.

Lemma D.2. For any two-round authentication protocol in which the verifier sends the first mes-
sage, and where the verifier’s accept/reject decision is a deterministic function of the secret key,
the initial message of the verifier, and the prover’s response: it holds that any adversary A with
access to multiple honest verifiers V1, . . . ,V` can be perfectly simulated by another adversary A′
with access to only one honest verifier V

Proof. The simulation works as follows: A′ runs A, and for every protocol session that A begins
with honest verifier Vj , A′ starts a new session with verifier V and forwards the initial message
a of V to A. Then, when A returns to the open session with Vj and sends a response b, A′
returns to the corresponding session with V and forwards b to V; and finally, A′ returns to A the
accept/reject decision of V. This is a perfect simulation since for any session, the verifier’s decision
is a deterministic function of the secret key, the initial message a and the (adversarial) prover’s
response b.

Theorem 3.12. Protocol 2 is secure against `-instance concurrent MIM attacks.

Proof. We show that given an adversary A which achieves a certain advantage when conducting
an `-instance concurrent MIM attack, it is possible to build a new adversary A′′ that only talks to
the ` provers and achieves essentially the same advantage.

By Lemma D.2, A can be perfectly simulated with access to just one honest verifier, so we
assume henceforth that there is only one honest verifier V. Next, we replace the single honest
verifier V by a fake verifier V ′ who has no access to s or the e values, but still gives essentially the
same answers as V. Then we argue that for any `-instance concurrent man-in-the-middle attack,
there is an equally successful `-instance active attack, and finally refer to Lemma 3.11 for the
`-instance active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does).

When A returns an answer z, j (i.e. the second protocol message), there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = a′ · s + ej and a′ is A’s query to P.
Here we have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution):
in this case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. The challenge produced by V has exactly the
same distribution as the one V ′ outputs. Now, in case 1a, notice that V will accept if and only
if z has the correct value a · s + ej : so V ′ always makes the same decision as V. In case 1b, V
rejects except with negligible probability, so V ′ is statistically close to the right behavior. This
is because accepting would imply that z = a · s + ej , but we also have z′ = a′ · s + ej so then
s = (z− z′)(a− a′)−1. This happens with negligible probability because s is random and z, z′, a, a′

are all independent of s. This holds because all of P’s responses (including z′) are independent of
s. Moreover, since this is the first query, V has not even looked at s yet, so a, a′ and z must be
independent of s too. Finally, in case 2, note that no one sees ej before the adversary produces
z, j. If V accepts, we have z = a · s+ ej , so ej = z−a · s, which happens with negligible probability
since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query, and the adversary’s
advantage changes at most negligibly as a result. Repeating the same argument for all the queries,

20

we reach the game where V is entirely replaced by V ′, and the adversary’s advantage is still at
most negligibly different from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”. So
for any adversary A which has non-negligible advantage in a `-instance concurrent MIM attack,
we can construct an adversary A′′ that emulates both A and V ′ “in his head” and achieves the
same advantage, but conducting an `-instance active attack (since he need not interact with the
real verifier V).

Finally, the security of the protocol against `-instance concurrent man-in-the-middle attacks fol-
lows from the security against `-instance concurrent active attacks, which was shown in Lemma 3.11.

E Linear-time `-independent hashing

Mansour, Nisan, and Tiwari [MNT90] conjectured that pairwise-independent hash functions can-
not be computed in linear time – in particular, that computing them requires Ω(n log(n)) time.
Recently, Ishai et al. [IKOS08] disproved this conjecture, and gave a construction of a linear-
time computable pairwise-independent hash function. In this section, we show that the [IKOS08]
construction can be extended to achieve `-wise independence for constant ` ∈ N.

Notation. For a vector v ∈ {0, 1}n and a subset of indices S ⊆ [n], we write v[S] to denote
the |S|-bit vector obtained by restricting v to the coordinates in S. For a tuple of indices t =
(t1, . . . , td) ∈ [n]d, we write v[t] to denote the d-bit vector (vt1 , . . . , vtd). We write || for vector
concatenation.

Exposure resilient functions [Can+00] (also known as deterministic bit-fixing extractors [Cho+85]),
are used as a building block in the construction. The definition is given below.

Definition E.1 (Exposure resilient function). A function f : {0, 1}n → {0, 1}m is an λ-exposure
resilient function if for any L ⊂ [n] of size |L| = n − λ, and for r ← {0, 1}n and R ← {0, 1}m
chosen uniformly at random, the distributions (r[L], f(r)) and (r[L], R) are identical.

Our construction works as follows. For n ∈ N, there is an `-wise independent hash function
family HC,G,En of functions mapping n bits to n bits. Each family is parametrized by the following:

• C : {0, 1}n → Σm is the encoding algorithm of an error-correcting code with a constant-size
alphabet Σ. The code has minimum distance c = Θ(n) and constant expansion factor (that
is, m = Θ(n)).

• G is a `-wise independent hash function family mapping Σ to Σ.

• E : Σm → {0, 1}n is an λ-exposure resilient function where λ = Θ(n).

Each function in the family HC,G,En = {hg}g∈Gm is indexed by a vector of hash functions
g = (g1, . . . , gm), where each gi is a member of the (smaller) `-wise independent hash function family
G. To sample a hash function in hg ← Hn, simply sample M small hash functions g1, . . . , gm ← G.

Each hash function hg is computed as follows.

1. Encode the input x ∈ {0, 1}n to obtain codeword y = C(x) ∈ Σm.

2. For each i ∈ [m], let zi = gi(yi) ∈ Σ.

3. Let z ∈ Σm denote the concatenation of all zi, that is, z = z1||z2|| . . . ||zm. The output of the
hash function is E(z).

21

We remark that this procedure for computing the hash function is the same as in the [IKOS08]
construction, except that in their work, G is a family of pairwise (rather than `-wise) independent
hash functions.

Theorem E.2 (`-wise independence of HC,G,En). Let ` ≥ 2 be any constant. For any m = Θ(n),
there exist λ, c = Θ(n) such that if C is an error-correcting code with minimum distance c and
codeword length m, and E is a λ-exposure resilient function, then HC,G,En is a family of `-wise
independent hash functions.

Proof. Let c = Θ(n) be the following:

c = m− 2m

`(`− 1) + 1
. (1)

Note that the right-hand side is Θ(n), because m = Θ(n) and ` = O(1). Moreover, since ` > 2,
inequality 1 implies that 0 < c < m as required.

Let x1, . . . , x` be any distinct vectors in {0, 1}n, and let hg ← Hn be a hash function sam-

pled from the family HC,G,En . Let the set of corresponding codewords be denoted by Y =
{C(x1), . . . , C(x`)}.

Define the overlap of two codewords y, y′ ∈ Σm as the set of positions k ∈ [m] for which the
kth elements are equal: that is, where yk = y′k. Formally,

Overlap(y, y′) =
{
k ∈ [m] : yk = y′k

}
.

Building on this, we define the set L as follows:

L = [m] \
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′) =

{
k ∈ [m] : ∀y, y′ ∈ Y, yk 6= y′k

}
.

In other words, L is the set of positions k for which the kth elements of of the codewords in Y are
pairwise distinct.

Due to the minimum distance of the error-correcting code,

|Overlap(C(x), C(x′))| ≤ m− c

for all distinct x, x′ ∈ {0, 1}n. Then, since |Y | = `:∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ ≤ (m− c) · ` · (`− 1)

2
(2)

≤ m. (3)

Inequality 3 follows by substituting equation 1 into inequality 2. Moreover, the right-hand side of
inequality 2 is clearly Θ(m) since c = Θ(m) and ` is constant. From this, it follows that

∣∣L∣∣ = m−

∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ = Θ(m) and
∣∣L∣∣ > 0. (4)

Recall that for each position k ∈ L, it holds that the kth elements of of the codewords in Y
are pairwise distinct. Then, since gk is an `-wise independent hash function, the ` hash function
outputs gk(C(x1)), . . . , gk(C(x`)) will be independent and uniformly distributed. Moreover, since
the hash function g1, . . . , gk are chosen independently, the following set consists of independent
and uniformly distributed elements:{

gk(C(x1)), . . . , gk(C(x`)) : k ∈ L
}
. (5)

22

Recall that when computing hg(xi) (in step 3 of the description above), the input to E is the con-
catenation of them “small hashes”, g1(C(xi))|| . . . ||gm(C(xi)). Let zi denote g1(C(xi))|| . . . ||gm(C(xi)).
Define L = [m] \ L and λ = |L| = Θ(m). For each input xi ∈ {0, 1}n to the hash function hg, E
is evaluated on an input zi for which (zi)[L] is distributed independently at random (this follows

from 5). Hence, by the λ-exposure resilience of E, the outputs E(z1), . . . , E(z`) are distributed
independently and randomly. The theorem follows.

Finally, we show that the hash functions in HC,T,G,En can be computed and sampled in linear
time.

Theorem E.3. If C and E are computable in linear time, then each hash function hg ∈ HC,G,En

can be computed in linear time. Moreover, sampling a hash function hg ← HC,G,En can be done in
linear time.

Proof. Since C is linear-time computable, step 1 is computable in linear time, and has a linear-size
output y ∈ {0, 1}m. In step 2, many small hashes of the form gi(yi) are computed, where gi ← G.
Since the input to the hash function gi is of constant size, each such evaluation of gi will take
constant time. The total number of small hashes computed is m = Θ(n) which is linear, so step 2
takes linear time. Finally, since E is computable in linear time, and is evaluated on a linear-size
input z ∈ {0, 1}M , step 3 also takes linear time.

The sampling of a hash function hg ← HC,G,En consists of samplingm hash functions g1, . . . , gm ←
G. Since the family G is of constant size, each gi can be sampled in constant time, and there are
linearly many of them, so the whole sampling process takes linear time.

There are known constructions of linear-time computable functions that satisfy the properties
required by C and E (for any constant `):

• Guruswami and Indyk [GI05] construct error correcting codes which have linear-time en-
coding (and decoding) algorithms, and for any positive constant ε < 1, their construction
can achieve minimum distance c such that c/m = ε with a constant-factor expansion. The
encoding function of these codes would be suitable for use as C.

• Ishai et al. [IKOS08] give a construction of an infinite family of λ-exposure resilient functions
mapping n bits to m bits, where λ = Θ(n) and m = Θ(n).

23

	Introduction
	Motivation and related work
	Our contribution

	Preliminaries
	Authentication protocols

	Authentication via ``one-time'' MACs
	Pseudorandom look-up function
	Looking up random values in order.

	Concurrent man-in-the-middle secure protocol
	Linear-time implementation.

	-instance concurrent MIM secure protocol
	Linear-time implementation.
	On achieving (unbounded) Multi-instance MIM security.

	Pseudorandom primitives
	Formal specification of hybrid H"0365Hk*
	Ordered traversal of leaves of a binary tree
	Proof of -instance concurrent MIM security of Protocol 2
	Linear-time -independent hashing

