
Towards Optimally Efficient Secret-Key Authentication from

PRG

Ivan Damg̊ard1 and Sunoo Park2

1Aarhus University
2MIT

Abstract

We propose a new approach to the construction of secret-key authentication protocols making
black-box use of a pseudorandom generator (PRG). Our authentication protocols require only two
messages, have perfect completeness, and achieve concurrent man-in-the-middle security. Finally,
when based on a sufficiently efficient PRG, our protocol has (amortised) complexity O(n) bit opera-
tions where n is the security parameter. To the best of our knowledge, this construction is the first
with linear complexity. We achieve this at the cost of having the prover (but not the verifier) keep
a small amount of state. A variant of our construction, based on a stronger security notion for the
PRG, is secure even if the adversary is able to reset the prover an unbounded number of times. A
practical analysis of our protocol shows our prover computation time compares favorably against a
simple AES-based protocol.

1 Introduction

Secret-key authentication is one of most basic cryptographic tasks: a prover and a verifier share a secret
key K, and the aim is to design a protocol that will allow the prover (and the prover alone) to convince
the verifier that he indeed knows the key K. We call this one-sided authentication, to distinguish from
mutual authentication where both parties must be convinced of each other’s identity.

The strongest security notion in the authentication literature for one-sided authentication1 considers
an adversary who may first interact (concurrently) as many times as he wants with the honest prover
and verifier; after this, he is on his own and must attempt to falsely convince the verifier that he knows
the secret key. If no efficient adversary can win this game, we say the protocol is concurrent man-in-the-
middle (MIM) secure.

Let us consider what resources we need, in terms of communication and computation, to realise (one-
sided) authentication. It is easy to see that we need at least two messages, where the verifier sends the
first messages. Furthermore, both messages must be long enough to not be easily guessed. Informally, if
the prover’s message is short, the adversary can guess what to say in the final phase; on the other hand,
if the verifier’s message is short, the adversary can guess what the verifier will say in the final phase and
query the prover for the right answer in the first phase. Finally, we assume that both parties access n
key bits, where n is the security parameter, so it follows that the computational complexity must be
Ω(n) bit-operations.

It is therefore a natural theoretical goal to build two-message authentication protocols of complex-
ity O(n), where n is the bit length of the shared key. Also, from a practical point of view, efficient
“lightweight” authentication protocols are becoming ever more relevant as application scenarios emerge
where, for instance, the prover may be a low-cost RFID tag or smartcard.

1Bellare and Rogaway [BR93] proposed a definition for mutual authentication using an attack model that is essentially
the same as the concurrent man-in-the-middle attack we consider. We do not consider mutual authentication in this work,
as we focus on two-message protocols, in which of course only one party can be convinced of the other’s identity.

1

1.1 Background and motivation

The first solution to the authentication problem is from the cGoldreich, Goldwasser, and Micali [GGM86],
as follows. Suppose we are given a pseudorandom function family (PRF) F whose functions fK have
a key K and input/output size n bits. The crucial property of a PRF is that even an adversary who
chooses the input (but does not know the key) cannot distinguish the output of fK from random. Given
a PRF, we can simply let the verifier send a random input x, and have the prover respond with fK(x).
This simple two-round protocol already achieves concurrent MIM security2.

Asymptotic efficiency. From the perspective of efficiency, this simple solution is problematic in
general. The standard construction of a PRF (from [GGM86]) is based on a pseudorandom generator
(PRG), which is a much simpler primitive that expands a short key into a random-looking longer output.
However, the GGM construction does not yield a particularly efficient PRF: even assuming a very efficient
PRG that only requires a constant number of operations per output bit, the PRF will have complexity
Ω(n2).

There are in fact several very efficient and low-depth constructions of PRGs from specific problems,
such as Learning Parity with Noise (LPN); and furthermore, even linear-time computable PRGs with
linear stretch are known to follow from general and plausible assumptions3. Hence, it is compelling to
try to design authentication directly based on weaker pseudorandom primitives such as PRGs, in such
a way that the protocol inherits the efficiency. More specifically, we direct our attention to the open
question of designing a two-round protocol to achieve (optimal) linear computational complexity.

Practical efficiency. In practice, the way to implement the simple PRF-based authentication protocol
described above would be to use a block cipher such as AES in place of the PRF. While widely-used
block ciphers such as AES are highly streamlined, we observe that (synchronous) stream ciphers can be
used as PRGs and are often much faster even than block ciphers. Then, a natural question arises: can
we design authentication directly based on stream ciphers, in such a way that the protocol inherits the
efficiency? Efficiency gains at this scale could be particularly significant in settings where the prover is
a lightweight hardware device.

Prover-stateful protocols. In this work, we consider these questions in the prover-stateful setting
where the prover (but not the verifier) keeps a small amount4 of state. We remark that in the fully stateful
model where both prover and verifier keep state and are in sync with each other, the authentication
problem is straightforwardly resolvable– however, this model is much stronger than the prover-stateful
model, and may require the guarantee that state is always synchronized between the prover and verifier,
as well as raises questions of how to account for possible attacks where the adversary causes them to
go out of sync. In contrast, the prover-stateful model requires no synchrony assumptions, and indeed
amounts to the premise that the prover has a small amount of updatable memory in addition to the
space required for key storage – practically speaking, this is often true even when the prover is a small
hardware device.

The problem of optimally efficient two-round authentication has been long open in the (standard)
stateless model. In this paper we ask the following question: can we leverage a small amount of state on
the prover side to build far more efficient protocols?

2Note that for authentication, it is actually sufficient to have an unpredictable function, a computationally secure
“MAC”, rather than a PRF. However, we do not know of more efficient constructions of MACs either, so this does not
help in terms of efficiency. In [IKOS08], Ishai et al. construct constant-overhead PRFs and MACs, but in their work the
output size is much smaller than the input: in our context, this would make the prover’s answer much easier to guess than
the verifier’s challenge, making the protocol insecure.

3A number of different sufficient conditions for such PRGs are known. In [IKOS08] it is observed that such PRGs follow
from Alekhnovich’s variant of the Learning Parity with Noise assumption. Applebaum [App13] shows that such PRGs can
be obtained from the assumption that a natural variant of Goldreich’s candidate for a one-way function in NC0 is indeed
one-way. The improved HILL-style result of Vadhan and Zheng [VZ12] implies that such PRGs can be obtained from any
exponentially strong one-way function that can be computed by a linear-size circuit.

4For example, the state could be a 32-bit counter that is incremented with each protocol execution.

2

1.2 Related work

Authentication from weak pseudorandom primitives. This direction has been explored in a
work of Dodis et al. [DKPW12], which constructs a three-round protocol based on any weak PRF. A
weak PRF is a relaxed notion of PRF in which function outputs are only required to look random for
uniformly random (rather than adversarially chosen) inputs. The protocol of [DKPW12] achieves active
security (a weaker notion than MIM security). Subsequently, Lyubashevsky and Masny [LM13] proposed
a three-message protocol based on any weak PRF, which is secure against sequential MIM attacks5. In
addition, they give a variant three-message protocol that can be built from any randomized weak PRF, a
yet slightly weaker primitive. However, these protocols are not concurrent MIM secure (in fact, [LM13]
outlines an attack), and all require three messages.

Authentication from concrete hardness assumptions. An obvious alternative approach to au-
thentication is to build protocols directly from a concrete problem. Much work in this direction has been
based on the LPN problem, which can be briefly stated as follows: given polynomially many samples of
the form (a, 〈a, s〉+e), where a is a random n-bit vector, s is a secret n-bit vector fixed across all samples,
and e is a bit which is 1 with probability τ < 1/2, can we discover the secret s (or at least, distinguish
the samples from random)? Authentication from LPN has been studied in a series of papers, includ-
ing [HB01; JW05; KSS10; Hey+12]. The latest in this line of work [Kil+11; DKPW12] have proposed
two-message MIM secure protocols. Even based on a compact version of LPN (namely, the ring-LPN
problem [Hey+12]), these protocols have computational complexity Ω(n log n); and moreover, they are
not perfectly complete: the verifier may reject the honest prover with non-zero probability. In order to
keep this error probability low, the protocol’s communication (and hence also computational) complexity
must depend on the LPN noise parameter τ , and in fact the complexity grows quite dramatically as τ
approaches 1/2. Thus, these protocols incur a rather high price if we want to use a weaker variant of
the LPN assumption where τ is close to 1/2.

The well-known LWE problem is syntactically similar to LPN, but is defined over a larger field, and
the noise parameter e is chosen with a discrete Gaussian distribution. In [BPR12], Banerjee, Peikert and
Rosen suggest a construction of a PRF directly from LWE problem. Whereas this is indeed more efficient
than applying the [GGM86] construction on the PRG that follows naturally from LWE, the complexity
of the resulting PRF is still Ω(n log n).

Other related work. Very recent work by Cash, Kiltz, and Tessaro [CKT16] (which is subsequent to
but independent of our work) proposes MIM secure two-round authentication by a generic transformation
from actively-secure protocols which satisfy certain requirements. Their construction can be instantiated
from a number of existing protocols, including ones based on concrete assumptions such as LPN or
the decision Diffie-Hellman assumption, and also based on weak PRFs. However, the constructions of
[CKT16] only achieve sequential MIM security.

1.3 Our contribution

In order to describe the security our protocol achieves, the standard security notions for authentication
protocols must be extended to the prover-stateful setting. We formalize a natural extension of standard
concurrent man-in-the-middle security that makes sense for the prover-stateful setting, and also define a
yet stronger security notion called multi-instance concurrent MIM security which additionally captures
the possibility of the adversary resetting the prover’s state. In the latter definition, the adversary may,
in the first phase, have several concurrent sessions with different incarnations of the prover and the
verifier, where each incarnation will start from a fresh initial state. Note that for a stateless protocol,
the concurrent and multi-instance concurrent security notions coincide.

We then propose a new two-message authentication protocol that can be based on black-box access
to any PRG. The prover (but not the verifier) keeps a state that grows logarithmically with the number

5Sequential MIM security is stronger than active security, but weaker than concurrent MIM security. In a sequential
MIM attack, the adversary can interact polynomially many times with an honest prover and verifier, but the interactions
cannot involve multiple concurrent sessions with the prover (or the verifier). In contrast, an active adversary can interact
only with the prover.

3

of executions. The protocol has perfect completeness and is concurrent MIM secure (but not multi-
instance). When based on a linear-time PRG, the amortised complexity6 of the protocol is O(n). To the
best of our knowledge, our protocol is the first to have all these properties simultaneously.

A variant of the protocol is multi-instance concurrent MIM secure for any polynomial number of
instances, as long as this polynomial is fixed when the system is set up. If the number of instances is
constant, we can maintain the linear complexity of the protocol – in order to achieve this, we propose a
construction of linear-time computable `-wise independent hash functions for any constant `. A recent
work of Ishai et al. [IKOS08] achieved linear time but only for ` = 2 (i.e. pairwise independent hash
functions), and we extend their construction to any constant ` by invoking very efficient error-correcting
codes.

Finally, we define a new and stronger security notion for PRGs. Consider a PRG G as a mapping
from n-bit seeds to n-bit outputs. Then clearly, the string G(s1), . . . , G(st) is pseudorandom for any
polynomial t, if the si’s are independent and random. We say thatG is (H, `)-wise secure if this still holds,
even if the si are not independent, but are chosen from an `-wise independent distribution generated by
a hash function from an `-wise independent family H.

Now, given PRG G and `-wise independent hash function family, a small modification of our authen-
tication protocol is multi-instance concurrent MIM secure for up to ` instances assuming only that G is
a PRG, just as before – and moreover, the same protocol is unbounded multi-instance concurrent MIM
secure if G is (H, `)-wise secure. In other words, the protocol is secure against ` resets of the prover if
the PRG is secure; and if the adversary can do more then ` resets, the protocol “degrades gracefully”
and is still secure, but under a stronger assumption. Note that one may instantiate both G and H to be
linear-time.

On the practical side, we analyse the efficiency of the prover in our protocol when instantiated with
the Trivium stream cipher, and find that the prover’s computation time compares favorably against the
simple PRF protocol instantiated with AES. See Section 1.4 for more details on this analysis.

Comparison to previous work. Let us first consider previous authentication protocols based on
general assumptions, where the best known results are [LM13] and [CKT16] (these works both base their
constructions on any weak PRF). In comparison to these works, we can use any PRG (which seems like
a simpler and easier to build primitive than weak PRF) and we have bounded concurrent MIM security,
where [LM13] has no concurrent security. Moreover, our protocol (and [CKT16]) achieves minimal round
complexity (2 rounds) whereas [LM13] requires 3 rounds. On the other hand, we need the prover to keep
state and we can tolerate only an a priori bounded number of reset attacks (which is a non-issue for a
stateless protocol). However, under a stronger but still general type of assumption ((H, `)-wise secure
PRG) we get unbounded instance concurrent MIM security which is a strictly stronger notion than what
[LM13] and [CKT16] achieve.

As for previous work on authentication from specific assumptions such as hardness of (ring-)LWE
it is less clear how to compare, because our construction is based on a general assumption that can be
supported by several different specific problems. But we can at least say that all previous protocols based
on specific problems such as ring-LPN or ring-LWE, have complexity Ω(n log n). On the other hand,
we can exhibit an assumption under which our protocol will have (amortised) complexity O(n), while
obtaining the same number of messages and same security notion as previous works. The assumption is
that there exists linear time PRG G, a constant ` and a linear time computable hash function family H
such that G is (H, `)-wise secure. Concrete candidates for G are known and we propose a candidate for
H and any ` in this paper.

Moreover, we note our protocol can be based on the PRG that follows naturally from LPN. Since
our construction achieves perfect completeness, we avoid the bad dependence on the noise parameter τ
which was mentioned in the previous section, which has been a common property of other LPN-based
authentication protocols proposed thus far.

Ideas and techniques. The basic idea of our protocol is that the verifier sends an n-bit random
challenge a to the prover, who responds with an unconditionally secure MAC on a computed from a

6It should be noted that this refers to the time spent in normal operation between the honest prover and verifier. An
adversary can force the verifier (but not the prover) to spend more time, but we do not view this as a significant problem:
in practice, an adversary could always waste the verifier’s time by doing a standard denial of service attack.

4

secret key that he shares with the verifier.
The good news is that unconditionally secure MACs (in contrast to computationally secure ones) can

give us the efficiency we are after. In particular we will use a MAC of the form C(a) ∗ s⊕ e where (s, e)
is the key, and where C is a linear-time encodable linear code that is good in the sense that both its
length and minimum distance are Θ(n). Then C(a) is the encoding of a and the product C(a) ∗ s is the
component-wise (Schur) product. This one-time MAC is linear-time computable and was proven secure
in a work of Damg̊ard and Zakarias [DZ13].

However, the bad news is that while s can be reused over several executions, e cannot: it must
be a fresh random value every time, or the key will be revealed. An obvious solution is to choose e
pseudorandomly using another shared key K. Computing it as e = fK(a) where f is PRF may seem
natural, but this would be pointless, because then the simpler PRF-based protocol mentioned above
might as well be used, and we will again face the efficiency issues associated with using a PRF in this
way. To get around this, we propose to have the prover keep a counter i that is incremented for each
execution, and compute e as e = fK(i). The point is that now the prover does not need to compute the
PRF on arbitrary unpredictable inputs, but only on values that arrive in a particular order i = 1, 2,
To see why this is an advantage, note that the GGM construction forms a tree with exponentially many
leaves, one for each possible input. Computing an output requires computing the path to the relevant
leaf, calling the PRG once for each vertex. Now the idea is to save the last path we computed and only
recompute the part that changes for the next input. If the inputs indeed arrive in order, it turns out
that on average we will only need to call the PRG twice per call to the PRF.

We also propose a variant of the GGM tree where every node delivers an output value. This allows us
to grow the tree as we go, so that the storage requirement only depends (logarithmically) on how many
times the protocol is actually executed whereas using the original GGM tree would force us to decide
in advance on an upper bound for the number of executions. Goldreich [Gol01] suggested a somewhat
related idea where the last leaf of the tree is used as the root of a new one. In the most “extreme”
variant of this technique we would get a linear list instead of a tree. This would lead to similar time
complexity for the prover, but an adversary could force the verifier to spend much more time than in
normal operation, potentially Ω(nt), where t is the number of times the protocol is executed. The worst
case for our approach is O(n log t).

The construction we just sketched achieves concurrent MIM security: the strongest security notion
in the case where the adversary cannot clone or reset the prover. If the adversary can clone or reset,
then we need multi-instance concurrent MIM security. We achieve this by modifying our protocol using
an additional technique based on universal hashing. In particular, we extend a result of [IKOS08] to
get a linear time computable `-wise independent hash function family H for any constant ` (rather than
pairwise independence as in [IKOS08]). If there exists a linear time PRG G that is (H, `)-secure, then
we get a protocol that is multi-instance concurrent MIM secure and has amortized complexity O(n).

Interestingly, the proof of security is not so straightforward as it may seem at first sight. One naturally
expects a simple two-step argument: first use the security of the PRF to replace the pseudorandom e
in the prover’s response C(a) ∗ s⊕ e by a really random value, and then use the unconditional security
of the MAC to conclude that the protocol is secure. However, while the first step is fine, the second
fails because an adversary against the protocol is more powerful than an adversary against the MAC: he
can arbitrarily schedule interactions with the verifier and with the prover, so we need first to argue that
access to the verifier is useless for the adversary. This requires an argument that is completely different
from the standard security proof for the MAC.

1.4 Use of our protocols in practice

Returning to a more practical perspective, we consider how our protocol would perform when instantiated
with a stream cipher acting as the PRG. In our analysis, we refer to the eSTREAM portfolio, and
focus on their Profile 2 (hardware-oriented7) stream ciphers, since fine-tuning the efficiency of one-sided
authentication is particularly relevant for lightweight hardware devices. By the same reasoning, we
compare performance at the relatively low 100kHz clock frequency which is common in low-end devices,
and analyse the prover’s performance which is the bottleneck in such applications. Specifically, our
benchmarks are based on the performance of Triviumx32 as documented in [GB08].

7Profile 2 ciphers are described as “Stream ciphers for hardware applications with restricted resources such as limited
storage, gate count, or power consumption.”

5

An interesting initial observation is that if one uses Triviumx32 in the GGM construction of a PRF
with 128 bits of security (in other words, 128-bit blocks), then the speed of a Triviumx32-based PRF
evaluation is “only” about 20 times slower than an AES evaluation. This suggests that the efficiency
advantage of stream ciphers over block ciphers is enough to counterbalance the relative inefficiency of
the GGM-style construction that is inherent in our protocols.

Indeed, as shown in Table 1, our protocol outperforms the simple AES-based protocol) in terms of
prover computation time by a factor of three8 when instantiated with 1024 bits of prover state. We
emphasize that this does not mean our protocol would necessarily outperform the simple AES protocol
overall, because the figures are only for computation time, without accounting for write time. We did
not include the write time in the table, in order to have a fairer comparison of the computation times,
since write times vary greatly across different chips / types of memory.

Simple PRF-based protocol Our protocol
AES Trivium (+GGM) Trivium (32-bit state) Trivium (1024-bit state)
0.54 10.24 3.84 0.18

Table 1: Expected prover computation time (in ms) in two-round authentication

Size of the prover’s state. In Table 1, “32-bit state” refers to the scenario when the prover stores
only a (32-bit) counter value, whereas “1024-bit state” refers to the variant when the prover stores partial
paths in the modified GGM tree.

Remarks on protocol implementation. Note that in software, using a more standard MAC of
form a · s+ e, where the product is in the field with 2n elements, may be an advantage (even if it is not
preferable asymptotically). For instance, for n = 64, we can multiply by a fixed element s using 8 table
look-ups in 16 KB of precomputed tables. However, if the prover is a small hardware device, whereas
the verifier has more power, then using the MAC C(a) ∗ s+ e that we suggest may be even better, since
we can ask the verifier to send the encoding C(a) rather than a. Our proof of security still applies if
the prover checks that he receives a codeword, and this can be extremely fast in hardware if we use an
LDPC (low-density parity check) code: the codeword check consists of computing parity functions of a
small constant (say, 3 or 4) number of bits, and all the parity functions could be computed in parallel.
This reduces the prover’s computation essentially to the cost of running the stream cipher (and we have
assumed that this is the case, in computing the figures in Table 1).

2 Preliminaries

Notation. For a finite set B, we will write b← B to denote that b is drawn uniformly randomly from

B. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The relation
s
≈ between distributions denotes statisti-

cal indistinguishability, and
c
≈ denotes computational indistinguishability. negl(n) denotes a negligible

function in parameter n, and poly(n) denotes a polynomial function. An efficient algorithm is one which
runs in probabilistic polynomial time (ppt).

The definitions of pseudorandom generators (PRGs) and pseudorandom function families (PRFs) are
given in Appendix A.

2.1 Authentication protocols

A authentication protocol is an interactive two-party protocol (P,V) between a prover P and a verifier V:
these may be respectively thought of as a (lightweight) tag, and a reader to which the tag is identifying
itself. Both parties are ppt, and hold a shared secret s generated according to some generation algorithm
Gen(1κ) (where κ denotes the security parameter) in an initial phase. After an execution of the protocol,
the verifier V outputs either accept or reject – this is also called the output of the protocol execution.

8Note that the fastest of the eSTREAM Profile 2 stream ciphers is Triviumx64, which would give a factor of two
improvement over Triviumx32.

6

In this work we consider prover-stateful protocols where the prover also maintains some (small amount
of) state between protocol executions.

Definition 2.1 (Completeness). The completeness error of a protocol is:

Pr
s←Gen(1κ)

[(P(s),V(s)) = reject].

A protocol is complete if its completeness error is negligible in a security parameter. It is perfectly
complete if its completeness error is zero.

Common definitions of security for authentication protocols are given below. Note that these defi-
nitions are adapted for the prover-stateful setting; they have natural analogues in the stateless setting
which is more common in the literature.

Definition 2.2 (Active security). An authentication protocol (P,V) is secure against active attacks if
for any secret s ← Gen(1κ), for any ppt adversary A which first can interact arbitrarily polynomially
many times with an honest prover P (but cannot reset the prover’s state), and then afterward (now,
without access to P) interacts once with an honest verifier V, it holds that

Pr[(A,V(s)) = accept] ≤ negl(κ).

Definition 2.3 (Concurrent man-in-the-middle (MIM) security). An authentication protocol (P,V) is
secure against concurrent man-in-the-middle attacks if for any ppt adversary A which first can interact
arbitrarily polynomially many times with an honest prover P and/or an honest verifier V (the interactions
may be concurrent, but the adversary cannot reset the prover’s state), and then afterward (now, without
access to P,V) interacts once with an honest verifier V ′, it holds that

Pr[(A,V ′(s)) = accept] ≤ negl(κ).

In this setting, the adversary learns the accept/reject decisions of the verifier.

Definition 2.4 (Multi-instance concurrent MIM security). An authentication protocol (P,V) is secure
against multi-instance concurrent man-in-the-middle attacks if for any ppt adversary A which first can
interact arbitrarily polynomially many times with polynomially many honest provers P1, . . . ,Pk and/or
honest verifiers V1, . . . ,Vk, and then afterward (now, without access to the Pi,Vi) interacts once with an
honest verifier V ′, it holds that

Pr[(A,V ′(s)) = accept] ≤ negl(κ).

As above, the adversary learns the accept/reject decisions of the verifier(s).

A natural relaxation of multi-instance concurrent MIM security addresses the case when the adversary
has access to only a ` provers and verifiers, where ` = poly(n) is bounded in advance. We write `-instance
concurrent MIM security to denote security against an adversary who has concurrent access to up to
` honest provers (and verifiers), but no more. This definition allows a construction to take advantage
of the fact that ` is chosen and fixed initially. Furthermore, we define `-instance active security to be
the corresponding notion for active security: that is, where the adversary has access to up to ` honest
provers.

Note that for stateful protocols, the multi-instance definition covers the case of an adversary who
can reset, e.g., the prover’s state: clearly, an adversary who can do this k times can be emulated by an
adversary having access to k copies of the prover.

3 Authentication via “one-time” MACs

In this section, our approach is to build authentication protocols from very efficient MACs. It was
observed in earlier sections that known MAC constructions are not very efficient as they are based on
PRFs – however, this is only true of computationally secure MACs. In contrast, there are unconditionally
secure MACs that are very efficient – but these are only secure for one-time use, so have not thus far
been considered suitable for authentication protocols.

7

Notation. For vectors v, w ∈ {0, 1}n, v ∗ w denotes the component-wise (Schur) product, and v · w is
the field product (in F2n). For an error-correcting code C, C.Enc and C.Dec denote the encoding and
decoding functions, respectively.

Consider the following simple and unconditionally secure MAC: for a message a ∈ {0, 1}n, the MAC
on the message is a · s + e, where (s, e) ∈ {0, 1}n × {0, 1}n is the secret key (which is chosen uniformly
at random). MACs of this form are well known, and it is also known that although a key for an
unconditionally secure MAC can usually be used only once, in this case the multiplier (s) can be reused
provided that e is freshly chosen for each message (see e.g. [BDOZ11]).

In this work, we focus on a slightly different MAC, which might be considered a variant of the above.
For a message a ∈ {0, 1}n, the MAC on the message is C.Enc(a) ∗ s+ e ∈ {0, 1}cn where C is an error-
correcting code (with constant-fraction distance) with expansion c, and (s, e) ∈ {0, 1}cn×{0, 1}cn is the
secret key. The security of this variant MAC is shown in [DZ13].

In our protocols, we consider s to be the secret key, and generate e pseudorandomly per execution. The
man-in-the-middle security of our protocol does not follow from MAC security, however: the standard
security notion for MACs simply requires that an adversary who observes a message and a valid MAC
cannot produce a different message and valid MAC. We consider a more complicated game where the
adversary interacts with prover and verifier concurrently.

Finally, we remark that although our protocols are presented in terms of the variant MAC, the proofs
of correctness and security all go through (with almost no changes) also when using the “a · s+ e” MAC.
Which version is better in a concrete application would be determined by the encoding efficiency of the
error-correcting code for the relevant parameters.

3.1 Pseudorandom look-up function

As a building block for our authentication protocols, we construct a logarithmic-depth “look-up function”
for efficient retrieval of pseudorandom values using the PRG, and show that the look-up function is a
PRF. Note that this technique may be of independent interest towards generic constructions of low-depth
PRFs.

Notation. Since a PRG G can be used to build a PRG of any stretch, we write Gn→m to denote the
PRG based on G which maps n bits to m bits. We write Gn→m(r)[i,j] to denote the substring of the
PRG output Gn→m(r) ∈ {0, 1}m ranging from the ith bit to the jth bit, inclusive.

Given a PRG G taking an n-bit input, our goal is to generate a series of polynomially many pseudo-
random values r1, r2, r3, . . . , such that each ri can be looked up in time (poly-)logarithmic in i. This is
achieved using the tree structure below.

Note that while the PRF construction of [GGM86] also performs lookups in logarithmic time (and
can be easily adapted to support an unlimited input domain {0, 1}∗, as pointed out in [Gol01]), their
construction does not satisfy our required property: in their case, the lookup time for any output ri is
poly-logarithmic in the total number of queries that will ever be made to the PRF.

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Figure 1: Tree illustrating efficient look-up of pseudorandom values (first 4 levels)

In Figure 1, ρ0 ∈ {0, 1}n is the original (random) input to the PRG Gn→m+2n. The ρi ∈ {0, 1}n
are values which are subsequently pseudorandomly generated, which are used again as input to the

8

PRG to produce more pseudorandom values: in particular, if ρi is a child of ρj in the tree, then ρi =
Gn→m+2n(ρj)

[m+1,m+n] if i is even, and ρi = Gn→m+2n(ρj)
[m+n+1,m+2n] if i is odd. The boxed nodes

ri ∈ {0, 1}m are leaves that represent the output pseudorandom values which we want to look up, and
they are generated by ri = Gn(ρj)

[1,m] where ρj is the parent node of ri.

Let lookupGn,m(ρ0, i) ∈ {0, 1}m denote the ith output value, ri ∈ {0, 1}m, obtained using the above
tree method. It is clear that for any i of polynomial size, the number of PRG evaluations required to
look up ri is logarithmic. This gives rise to a PRF family with logarithmic-depth evaluations, as proven
in Theorem 3.2 below. Before proving that the look-up function is a PRF, we give a simple supporting
lemma.

Lemma 3.1. Let G : {0, 1}n → {0, 1}m be a PRG. Then for any polynomial q = q(n), it holds that there
is no efficient distinguisher D for which it holds that

|Pr [D((r1, . . . , rq)) = 1]− Pr [D((G(s1), . . . , G(sq))) = 1]| ≥ negl(n)

for all negligible functions negl, where r1, . . . , rq ← {0, 1}m(n) and s1, . . . , sq ← {0, 1}n.

Proof. Suppose, for contradiction, that there is a distinguisher D̂ for which∣∣∣Pr
[
D̂((r1, . . . , rq)) = 1

]
− Pr

[
D̂((G(s1), . . . , G(sq))) = 1

]∣∣∣ ≥ 1/P (n)

where P is a polynomial. For i ∈ [q], define tupi to be the distribution of tuples whose first i elements
are uniformly random in {0, 1}m and whose remaining elements are sampled as G(si+1), . . . , G(sq) for

si+1, . . . , sq ← {0, 1}n. Let pi = Pr[D̂(tupi) = 1] denote the probability that D̂ outputs 1 on input from
tupi.

By our supposition, we know |p0 − pq| ≥ P (n). Then, since p0 − pq =
∑
i∈[q](pi−1 − pi), there must

exist i∗ ∈ [q] such that |pi∗−1 − pi∗ | ≥ 1
q·P (n) , which is non-negligible. Then there exists a distinguisher

D̂′ which can distinguish a single output of the PRG from random, as follows: on input r ∈ {0, 1}m, D̂′

generates a tuple t whose first i∗−1 elements are random in {0, 1}m, whose (i∗)th element is r, and whose
remaining elements are generated as G(si∗+1), . . . , G(sq) for si+1, . . . , sq ← {0, 1}n. If r is truly random

then t← tupi∗ ; otherwise, t← tupi∗−1. Hence, running D̂ on input t will distinguish with non-negligible
probability between these cases. This contradicts that G is a PRG.

Theorem 3.2. Let G be a PRG and n,m ∈ N be positive integers with m = poly(n). Then the family

of functions F (n,m) def
= {lookupGn,m(ρ, ·)}ρ∈{0,1}n is a PRF with input size n′ bits and output size n bits,

for any n′ = poly(n).

Proof. The statement to prove is that for any PRG G and random ρ0 ← {0, 1}n, there is no efficient
distinguisher D that satisfies∣∣∣Pr

[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > negl(κ)

for all negligible functions negl and all sufficiently large values of the security parameter κ. In the above,
R is a random oracle, and DO may make any polynomial number of “polynomial-depth”9 queries to the
oracle O.

Suppose, for contradiction, that there exists such a distinguisher D̂, for which the above inequality
does not hold: that is, there is a polynomial q for which∣∣∣Pr

[
DlookupGn,m(ρ0,·)() = 1

]
− Pr

[
DR(·)() = 1

]∣∣∣ > 1/q(κ).

Let T = T (κ) be the run-time of distinguisher D̂, and let Hj be a stateful algorithm which is defined
as follows. (Note that when referring to tree structure, the root node is considered to be at depth 0.)
On input i, the algorithm Hj does the following:

9 More precisely, the distinguisher cannot make queries that would require a super-polynomial depth look-up in the tree
structure of lookupGn,m. This is because in this case, lookupGn,m would not run in polynomial time.

9

• if i has already been queried previously, look up the stored tuple (leaf, i, ρi), and output ρi;

• else if i < 2j+1 (that is, the ith output node is at depth less than or equal to j in the tree), then
choose some ρi ← Z2

n uniformly at random, store the tuple (leaf, i, ρi) in memory, and output ρi;

• otherwise (that is, the ith output node is at depth greater than j in the tree):

– if there is no stored tuple of the form (root, α, ρ), then choose some ρ ← Z2
n uniformly at

random, store the tuple (root, α, ρ) in memory, and output lookupGn,m(ρ, γ);

– otherwise, look up the stored tuple (root, α, ρ) and output lookupGn,m(ρ, γ);

where α = α(i,j), γ = γ(i,j) are defined by the following:

α(i,j) = b(i− 2blog2(i)c)/2jc
β(i,j) = i− 2blog2(i)c mod 2blog2(i)c−j

γ(i,j) = 2(2
blog2(i)c−j) + β(i,j).

When considering the tree representation of lookupGn,m, the algorithms Hj can be explained in more
intuitive terms as follows. For each j, the outputs of Hj behave as a random oracle up to and including

depth j of the tree. Below depth j, the outputs are obtained deterministically by the lookupGn,m(ρ, ·)
function, with the appropriate depth-j value ρ (which is randomly chosen) acting as the “root node” of
the subtree in which the lookup is performed.

Observe that H0 behaves exactly as lookupGn,m(ρ, ·) for random ρ ← {0, 1}n. Moreover, Hk behaves

exactly like a random oracle in the distinguishing experiment, provided that all of D̂’s queries can be
retrieved from depth at most k. Since the input size is n′ = poly(n) bits, there exists such a maximum
depth k from which queries can be retrieved, with k = poly(n).

Let pi = Pr[D̂Hi() = 1] denote the probability that the distinguisher outputs 1 given Hi as an
oracle. By our earlier supposition, |p0 − pk| > 1/q(κ). It follows that for some k∗ ∈ [k], we have
|pk∗−1 − pk∗ | > 1

k·q(κ) . Such a k∗ can be found in polynomial time with non-negligible probability10.

We now construct a new distinguisher D̂PRG attacking the PRG Gn→m+2n: specifically, we will show
that the following expression is non-negligible:∣∣∣Pr

[
D̂PRG((r1, . . . , rT)) = 1

]
− Pr

[
D̂PRG((Gn→m+2n(s1), . . . , Gn→m+2n(sT))) = 1

]∣∣∣ ,
where r1, . . . , rT ← {0, 1}m+2n and s1, . . . , sT ← {0, 1}n.

D̂PRG operates as follows. Given input (r̃1, . . . , r̃T), D̂PRG first determines a k∗ ∈ [k] as described

above, then runs D̂ and responds to the oracle queries of D̂ in the following way: when D̂ makes query i,
D̂PRG responds with H̃k∗(r̃1, . . . , r̃T), where H̃k∗ is a variant algorithm based on Hk∗ . H̃k∗ takes as input
(r̃1, . . . , r̃T), and then behaves exactly like Hk∗ , except that the values associated with nodes at depth
k∗ of the tree are obtained as substrings of the input values r̃1, . . . , r̃T . (For a detailed formal description

of H̃k∗ , refer to Appendix B.)

By construction, it holds that if the inputs r̃i are truly random, then H̃k∗ and Hk∗ behave identically;
on the other hand, if the inputs r̃i are generated by Gn→m+2n, then H̃k∗ and Hk∗−1 behave identically.

By the choice of k∗, we know that D̂ distinguishes Hk∗ and Hk∗−1 with non-negligible probability. Hence,

D̂PRG distinguishes with (the same) non-negligible probability between the case where the r̃1, . . . , r̃T are
random and the case where they are generated by Gn→m+2n. By Lemma 3.1, this contradicts that

Gn→m+2n is a PRG. Therefore, our initial supposition was false: that is, there cannot exist a D̂ which
distinguishes between lookupGn,m(ρ0, ·) and R with non-negligible probability. The result follows.

10 This can be done by running D̂ polynomially many times on the oracles H0, . . . , Hk, and taking the adjacent pair
(k∗ − 1, k∗) for which there were the most differences in output.

10

3.1.1 Looking up random values in order.

We would like to look up the random values lookupGn,m(ρ0, ·) in order, that is, first r1, then r2, and
so on. This can be done more efficiently than by traversing the tree starting at the root for each new
value, essentially by storing the path to the most recently retrieved leaf, and implementing a “next leaf”
function which takes the stored path as an input. Naturally, this incurs additional (logarithmic) storage
cost, compared to looking up each leaf starting afresh from the root.

An algorithm to find the next leaf in a binary tree given the path to the “current” leaf is given in
Algorithm 1. The description given in Algorithm 1 is recursive, for clarity of exposition. Note that in
practice, there is a more efficient implementation that avoids recursion. The method returns the entire
path to the next leaf, rather than just the leaf node, because the path must be passed into the next
invocation of the method to obtain the following leaf.

1 Path pathToNextLeaf(int depth ,

2 Path currentPath , int currentLeafNum) {

3 if (depth = 1) {

4 Leaf nextLeaf = currentPath.root.rightChild ();

5 return currentPath.removeEndNode (). append(nextLeaf);

6 } else if (depth > 1) {

7 if (currentLeafNum is even) {

8 Leaf nextLeaf = currentPath.endNode.rightChild ();

9 return currentPath.removeEndNode (). append(nextLeaf);

10 } else {

11 Path pathToParent = currentPath.removeEndNode ();

12 int parentLeafNum = floor(currentLeafNum /2);

13 Path pathToNextParent =

14 pathToNextLeaf(depth -1, pathToParent , parentLeafNum);

15 return pathToNextParent.append(

16 pathToNextParent.endNode.leftChild ());

17 }

18 }

19 }

Algorithm 1: Recursive method to find next leaf from path to current leaf

Lemma 3.3. For any given depth d, when Algorithm 1 is used to compute all the leaves of a complete
binary tree (of depth d) in order, the leftChild() and rightChild() methods are called exactly once
for each non-leaf node in the tree. More precisely, the method employed is the following: in order to
obtain the first leaf, the standard method traversing the tree downwards from the root is used; and then
subsequent leaves are obtained in order by calling pathToLeaf1 = nextLeafPath(d, pathToLeaf0, 0),
then pathToLeaf2 = nextLeafPath(d, pathToLeaf1, 1), etc.

Proof. Given in Appendix C.

In order to apply this method to our lookup tree, we observe that the non-leaf nodes of the lookup
tree constitute a binary tree (shown in blue in Figure 2). We show that applying Algorithm 1 to this
binary tree allows in-order retrieval of the first k leaf values in the look-up tree in time O(k), for any
k ∈ N. The storage requirement is log(k) · log(n) where n is the number of input bits to G.

Lemma 3.4. For any given depth d ≥ 1, when all the output values (boxed nodes) at depth d of the
lookup tree are computed in order (from left to right) by:

• first, computing the leftmost output value by traversing the tree downwards from the root,

• then, computing each subsequent output value by applying Algorithm 1 to the binary tree of non-leaf
nodes up to and including depth d− 1, and calling the underlying PRG to obtain each actual (leaf)
output value,

11

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Figure 2: A binary tree within the lookup tree

the total number C of calls to the underlying PRG G that is required to compute all the output values at
depth d is exactly 2d + 2d−1 − 2. (Note that in order to use Algorithm 1, the path to the most recently
retrieved output node must be stored at all times: this incurs logarithmic storage space.)

Proof. By the construction of the lookup tree, leftChild() and rightChild() can each be implemented
by a single invocation of the PRG G. By Lemma 3.3, when Algorithm 1 is used to look up all nodes at
a particular depth d − 1 in a binary tree (in order), the leftChild() and rightChild() methods will
each be called exactly once for every node at depth less than d − 1 in the tree. Thus, G will be called
twice for every node at depth less than d− 1 in the binary tree. There are 2d−1− 1 such nodes, so G will
be called a total of 2d − 2 times while traversing the tree. In addition, there is one invocation of G per
output value, which we have not counted in the above analysis, because it is not within the binary tree.
There are 2d−1 output values at depth d of the lookup tree, so this adds 2d−1 invocations to our total.
Hence, the total number of calls of G required to compute all the output values at depth d (in order) is
2d + 2d−1 − 2.

Corollary 3.5. When computing the values lookupGn,m(ρ0, i) for i = 1, 2, . . . (in order) by the method
described in Lemma 3.4, the amortized number of calls to G per output value looked up is constant. To
be precise, it is less than 1.5.

Proof. For any given depth d > 1, there are 2d−1 output values at that depth. By Lemma 3.4, all of
these values can be looked up with a total of 2d + 2d−1 − 2 calls to G. Hence, the number of calls to G

per output value (at depth d) is 2d+2d−1−2
2d

< 1.5.

3.2 Concurrent man-in-the-middle secure protocol

The protocol construction which follows can be realized with black-box access to any PRG, and achieves
concurrent man-in-the-middle security.

The blue color in the protocol indicates (updating of) the prover’s state.

Lemma 3.6. Protocol 1 is perfectly complete.

Proof. This is clear since lookupGn,n is deterministic.

We first prove that Protocol 1 is actively secure, which serves as a stepping-stone to the proof of
concurrent MIM security.

Lemma 3.7. Protocol 1 is secure against active attacks.

Proof. Let ej denote the noise string for index j. Consider the following games:

Game 1. P,V and the adversary A play the active security game.
Game 2. P,V and A play the active security game as before, except that P,V no longer know s′,

but instead have oracle access to lookupGn,n(s′, ·).
Game 3. Like Game 2, but lookupGn,n(s′, ·) is replaced by a random oracle.

12

Public parameters. PRG G, security parameter n ∈ Z, error-correcting code C with constant-
fraction distance.

Key generation. Gen(1n) samples s, s′ ← {0, 1}n and outputs secret key (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

e := lookupGn,n(s′, i)
z := C.Enc(a) ∗ s + e

i := i + 1

z, i−−−−−−−−−→
accept iff
z + C.Enc(a) ∗ s = lookupGn,n(s′, i)

Protocol 1: Concurrent MIM secure protocol

Games 1 and 2 are perfectly indistinguishable for the adversary, since the messages sent by are
distributed identically in the two games. Suppose, for contradiction, that there exists an adversary A
which can efficiently distinguish between Games 2 and 3. Then, this adversary could be used to efficiently
distinguish between (oracle access to) lookupGn,n(s′, ·) and a random oracle – this contradicts Theorem 3.2.
Therefore, Games 1, 2, and 3 are computationally indistinguishable, and so the ej are indistinguishable
from uniformly random noise.

We have established that the prover’s message z = C.Enc(a)∗s+ej is indistinguishable from C.Enc(a)∗
s+ r for random r. Hence, z is indistinguishable from random to any active adversary, regardless of the
choice of a. It remains only to consider the interaction of A with the jonest verifier V. Given a challenge
a from V, A can have at most negligible advantage at guessing the (unique) value of z that V will accept,
as shown by considering the following two cases:

1. A sends an index i that was not used when talking to the honest prover. In this case, we could
give the adversary the e values for this i for free (as it is independent of the what happens for the
other indices). Now the adversary’s task is equivalent to guessing C.Enc(a) ∗ s, which he cannot
do since he has no information about s.

2. A sends an index i that was previously used in a query to the prover. Let z, i be the response
(to a) from the honest prover. Say the honest verifier sends a′ and let z′, i be the adversary’s
response. If there is a non-negligible probability that z′ is accepted, then it follows that z − z′ =
(C.Enc(a) − C.Enc(a′)) ∗ s. This happens with negligible probability since all of a, a′, z, z′ were
chosen independently of s.

Theorem 3.8. Protocol 1 is secure against concurrent MIM attacks.

Proof. We show that if there is an adversary A which achieves a certain advantage when conducting a
concurrent MIM attack, then there is another adversary A′ that only talks to the prover in Protocol 1
and achieves essentially the same advantage. First, we replace the honest verifier by a fake verifier V ′
who has no access to s or the ej but still gives essentially the same answers as V. Then we argue that for
any concurrent MIM attack, there is an equally successful active attack, and finally refer to Lemma 3.7
for the active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does). When A

returns an answer z, j, there are two cases to consider:

1. A previously received answer z′, j from P, where z′ = C.Enc(a′) ∗ s+ ej and a′ is A’s query to P.
Here we have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution): in this
case, if z = z′, V ′ accepts; else, it rejects.

13

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. V’s challenge is distributed identically to that of V ′.
In case 1a, V will accept if and only if z has the correct value C.Enc(a) ∗ s+ ej : so V ′ always makes the
same decision as V. In case 1b, V only accepts if z = C.Enc(a) ∗ s+ ej , but since z′ = C.Enc(a′) ∗ s+ ej
it must be that (z− z′) = (C.Enc(a)−C.Enc(a′)) ∗ s. This happens with negligible probability because s
is random and z, z′, a, a′ are all independent of s: P’s responses, including z′, are independent of s; and
since this is the first query, V has not seen s yet, so a, a′ and z must be independent of s too. Thus, V
rejects with overwhelming probability, so V ′ is statistically close to the right behavior. Finally, in case 2,
no one sees ej before A produces z, j. If V accepts, we have z = C.Enc(a)∗s+ej , so ej = z−C.Enc(a)∗s,
which happens with negligible probability since z, a and s are independent of ej .

Therefore, we can replace V with V ′ for the first query, and A’s advantage changes at most negligibly
as a result. Repeating this argument for all the queries, we reach the game where V is entirely replaced
by V ′, and A’s advantage is still at most negligibly different from in the original game. Since V ′ does not
possess any secret information, an adversary can run V ′ “in his head”. So for any adversary A which has
non-negligible advantage in a man-in-the-middle attack, we can construct an adversary A′ that emulates
both A and V ′ “in his head” and achieves the same advantage, but conducting an active attack (since
he need not interact with the real verifier V). The result then follows from Lemma 3.7.

3.2.1 Linear-time implementation.

The prover in Protocol 1 can run in time O(n) and space O(log(n) · log(k)), where k is the number
of protocol executions run so far11: this is possible by using Algorithm 1 to compute lookupGn,n(·, ·) as
described in Lemma 3.4. This follows from Corollary 3.5, and the fact that there exist linear-time, linear-
stretch PRGs and linear-time encodable codes with constant-factor expansion and large constant-fraction
distance (such as those of Guruswami and Indyk [GI05]).

The verifier can also be implemented to run in linear time for honest executions, by using the same
method as the prover to compute lookupGn,n(·, ·). Clearly, if the prover is honest, the verifier will run
in linear time. If the prover cheats and breaks the sequence, then the verifier can retrieve the required
lookupGn,n(·, ·) value by the “backup method” of traversing the lookup tree downwards from the root,
which takes O(n · log(k)) time instead. This implementation requires N ·O(log(n) · log(k)) space, where
N is the number of different provers with which the verifier interacts. Note that since the multiplication
can be done in depth O(log(n)), if the PRG G is of poly-logarithmic depth, then the verifier does only
poly-logarithmic depth computation (even when the prover cheats).

3.3 `-instance concurrent MIM secure protocol

Building upon the ideas of Protocol 1, our next protocol achieves `-instance concurrent MIM security for
any polynomial `. Moreover, if ` is constant, we can still get (amortised) linear time. The next protocol
makes use of `-wise independent hashing, which is defined below.

Definition 3.9 (`-wise independent hash function family). A function family H of functions that map
n bits to m bits is a `-wise independent hash function family if for all y1, . . . , y` ∈ {0, 1}m and for all
distinct x1, . . . , x` ∈ {0, 1}n, it holds that Prh←H [h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(x`) = y`] = 2−`m.

Lemma 3.10. Protocol 2 is perfectly complete.

Proof. This is clear since lookupGn,(`+1)·n+β is deterministic.

Our security proofs follow a similar structure to those of Protocol 1: we first prove `-instance active
security, then use this to prove `-instance concurrent MIM security. The proofs of Lemma 3.11 and
Theorem 3.12 are given in Appendix D, due to space constraints. We remark that the proof of Theorem
3.12 is very similar to that of Theorem 3.8

11In other words, k is the number of leaf values in the lookup tree that have been retrieved so far. Note that if desired, the
value of k can be upper-bounded by some polynomial-size K, by “starting a new tree” after K values have been retrieved
from the initial tree: the (K + 1)th leaf value in the first tree serves as the root of a new tree in which subsequent lookups
are done. This technique was suggested in [Gol01].

14

Public parameters. ` = poly(n), PRG G, security parameter n ∈ Z, error-correcting code C
with constant-fraction distance, function family H = {hr}r∈{0,1}β of 2`-wise
independent hash functions mapping (` + 1) · n bits to n bits.

Key generation. Gen(1n) samples s← R, s′ ← {0, 1}n and outputs (s, s′).
Initial state. The prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−−−−−−− a← R

ri := lookupGn,(`+1)·n+β(s′, i)

e := h
r
[1,β]
i

(
a + r

[β+1,(`+1)·n+β]
i

)
z := C.Enc(a) ∗ s + e

i := i + 1

z, i−−−−−−−−−→

ri := lookupGn,(`+1)·n+β(s′, i)
accept iff z + C.Enc(a) ∗ s =

h
r
[1,β]
i

(
a + r

[β+1,(`+1)·n+β]
i

)

Protocol 2: `-instance concurrent MIM secure protocol

Lemma 3.11. Protocol 2 is secure against `-instance active attacks.

Theorem 3.12. Protocol 2 is secure against `-instance concurrent MIM attacks.

3.3.1 Linear-time implementation.

If ` is constant, then the prover in Protocol 2 can run in (amortised) timeO(n) and spaceO(log(n)·log(k)),
where k is the number of protocol executions run so far: as with Protocol 1, this requires the use of
Algorithm 1 to compute lookupGn,n(·, ·), and the use of a linear-time PRG and linear-time encodable code.
In addition, we require an `-wise independent hash function family whose functions can be sampled and
computed in linear time. A construction of a hash function family satisfying these properties for constant
` is given in Section E. As in the case of Protocol 1, the verifier in Protocol 2 can also be implemented
to run in linear time when the prover is honest.

3.3.2 On achieving unbounded multi-instance MIM security.

Consider the PRGG as a mapping from n-bit seeds to n-bit outputs. Then clearly the stringG(s1), ..., G(st)
is pseudorandom for any polynomial k, if the si’s are independent and random. We say that G is (H, `)-
wise secure if this still holds, even if the si are not independent, but are chosen from an `-wise independent
distribution generated by a hash function from `-wise independent family H – more precisely, any sub-
set of ` seeds are uniformly random and independent, and si = h(xi) for h chosen at random from H
and distinct xi. We can now define a small change to Protocol 2: namely, in Step 2 of the Prover’s
computation, e is computed as

e := G
(
h
r
[1,β]
i

(
a+ r

[β+1,(`+1)·n+β]
i

))
.

(That is, we do the same as before, but apply G at the end.) Now, assuming G is strongly (H, `)-wise
secure, where H is the hash function family used in the protocol, we will get pseudorandom output after
applying G, no matter how (polynomially) many outputs we generate, As a result this variant of the
protocol is Multi-instance MIM secure (with an unbounded number of instances), if G is (H, `)-wise
secure. If G has this property even for a constant `, the protocol can run in linear time, by using the
`-wise independent hash functions described in Appendix E.

It is easy to see that if the adversary in fact does not invoke more than ` instances of the prover, then
this protocol is secure based only on the assumption that G is a secure PRG. This is simply because `-
wise independence of H implies that is such a case G is in fact invoked on independent seeds. Therefore
the protocol has “graceful degradation”: it is bounded instance MIM secure for at most ` instances

15

assuming only that G is a PRG, and the same protocol is also unbounded instance secure under the
stronger security notion.

We emphasise that the (H, `) security notion for a PRG is new and its plausibility depends very much
on how the concrete PRG and hash function family relate to each other. It should therefore not be used
without a careful analysis of the building blocks.

References

[App13] Benny Applebaum. “Pseudorandom generators with long stretch and low locality from
random local one-way functions”. In: SIAM Journal on Computing 42.5 (2013), pp. 2008–
2037.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions and Lat-
tices”. In: EUROCRYPT. Ed. by David Pointcheval and Thomas Johansson. Vol. 7237.
Lecture Notes in Computer Science. Springer, 2012, pp. 719–737. isbn: 978-3-642-29010-7.
doi: 10.1007/978-3-642-29011-4. url: http://dx.doi.org/10.1007/978-3-642-
29011-4.

[BR93] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”. In: Ad-
vances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings. Ed. by Douglas R. Stin-
son. Vol. 773. Lecture Notes in Computer Science. Springer, 1993, pp. 232–249. isbn: 3-
540-57766-1. doi: 10.1007/3-540-48329-2_21. url: http://dx.doi.org/10.1007/3-
540-48329-2_21.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. “Semi-homomorphic
Encryption and Multiparty Computation”. In: EUROCRYPT. Ed. by Kenneth G. Paterson.
Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 169–188. isbn: 978-3-
642-20464-7.

[Can+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. “Exposure-
Resilient Functions and All-or-Nothing Transforms”. In: Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Ed. by Bart Preneel. Vol. 1807.
Lecture Notes in Computer Science. Springer, 2000, pp. 453–469. isbn: 3-540-67517-5. doi:
10.1007/3-540-45539-6_33. url: http://dx.doi.org/10.1007/3-540-45539-6_33.

[CKT16] David Cash, Eike Kiltz, and Stefano Tessaro. “Two-Round Man-in-the-Middle Security
from LPN”. In: TCC. 2016.

[Cho+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Roman
Smolensky. “The Bit Extraction Problem of t-Resilient Functions (Preliminary Version)”.
In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985. IEEE Computer Society, 1985, pp. 396–407. isbn: 0-8186-0644-4. doi:
10.1109/SFCS.1985.55. url: http://dx.doi.org/10.1109/SFCS.1985.55.

[DFMV13] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. “Tamper Re-
silient Cryptography Without Self-Destruct”. In: IACR Cryptology ePrint Archive 2013
(2013), p. 124.

[DZ13] Ivan Damgrd and Sarah Zakarias. “Constant-Overhead Secure Computation of Boolean
Circuits using Preprocessing”. English. In: Theory of Cryptography. Ed. by Amit Sahai.
Vol. 7785. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 621–
641. isbn: 978-3-642-36593-5. doi: 10.1007/978-3-642-36594-2_35. url: http://dx.
doi.org/10.1007/978-3-642-36594-2_35.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. “Message Authenti-
cation, Revisited”. In: EUROCRYPT. Ed. by David Pointcheval and Thomas Johansson.
Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 355–374. isbn: 978-3-642-
29010-7. doi: 10.1007/978-3-642-29011-4. url: http://dx.doi.org/10.1007/978-3-
642-29011-4.

16

http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1007/3-540-45539-6_33
http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1109/SFCS.1985.55
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Techniques. Cambridge University
Press, 2001. isbn: 0-521-79172-3.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random functions”.
In: J. ACM 33.4 (1986), pp. 792–807.

[GB08] T. Good and M. Benaissa. “Hardware performance of eSTREAM phase-III stream cipher
candidates”. In: In SASC. 2008.

[GI05] Venkatesan Guruswami and Piotr Indyk. “Linear-time encodable/decodable codes with
near-optimal rate”. In: IEEE Transactions on Information Theory 51.10 (2005), pp. 3393–
3400. doi: 10.1109/TIT.2005.855587. url: http://dx.doi.org/10.1109/TIT.2005.
855587.

[Hey+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
“Lapin: An Efficient Authentication Protocol Based on Ring-LPN”. In: FSE. Ed. by Anne
Canteaut. Vol. 7549. Lecture Notes in Computer Science. Springer, 2012, pp. 346–365. isbn:
978-3-642-34046-8.

[HB01] NicholasJ. Hopper and Manuel Blum. “Secure Human Identification Protocols”. English. In:
Advances in Cryptology ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp. 52–66. isbn: 978-3-540-42987-6.
doi: 10.1007/3-540-45682-1_4. url: http://dx.doi.org/10.1007/3-540-45682-1_4.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptography with con-
stant computational overhead”. In: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. Ed. by Cyn-
thia Dwork. ACM, 2008, pp. 433–442. isbn: 978-1-60558-047-0. doi: 10.1145/1374376.
1374438. url: http://doi.acm.org/10.1145/1374376.1374438.

[JW05] Ari Juels and Stephen A. Weis. “Authenticating Pervasive Devices with Human Protocols”.
In: CRYPTO. Ed. by Victor Shoup. Vol. 3621. Lecture Notes in Computer Science. Springer,
2005, pp. 293–308. isbn: 3-540-28114-2.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. “Parallel and Concurrent Security of the
HB and HB+ Protocols”. In: J. Cryptology 23.3 (2010), pp. 402–421.

[Kil+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. “Efficient
Authentication from Hard Learning Problems”. In: EUROCRYPT. Ed. by Kenneth G.
Paterson. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 7–26. isbn:
978-3-642-20464-7.

[LM13] Vadim Lyubashevsky and Daniel Masny. “Man-in-the-Middle Secure Authentication Schemes
from LPN and Weak PRFs”. English. In: Advances in Cryptology CRYPTO 2013. Ed. by
Ran Canetti and JuanA. Garay. Vol. 8043. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 308–325. isbn: 978-3-642-40083-4. doi: 10.1007/978-3-642-
40084-1_18. url: http://dx.doi.org/10.1007/978-3-642-40084-1_18.

[MNT90] Y. Mansour, N. Nisan, and P. Tiwari. “The Computational Complexity of Universal Hash-
ing”. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Comput-
ing. STOC ’90. Baltimore, Maryland, USA: ACM, 1990, pp. 235–243. isbn: 0-89791-361-2.
doi: 10.1145/100216.100246. url: http://doi.acm.org/10.1145/100216.100246.

[Pat11] Kenneth G. Paterson, ed. Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings. Vol. 6632. Lecture Notes in Computer
Science. Springer, 2011. isbn: 978-3-642-20464-7.

[PJ12] David Pointcheval and Thomas Johansson, eds. Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Vol. 7237. Lecture
Notes in Computer Science. Springer, 2012. isbn: 978-3-642-29010-7. doi: 10.1007/978-
3-642-29011-4. url: http://dx.doi.org/10.1007/978-3-642-29011-4.

17

http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1109/TIT.2005.855587
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1145/1374376.1374438
http://dx.doi.org/10.1145/1374376.1374438
http://doi.acm.org/10.1145/1374376.1374438
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1007/978-3-642-40084-1_18
http://dx.doi.org/10.1145/100216.100246
http://doi.acm.org/10.1145/100216.100246
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4

[VZ12] Salil Vadhan and Colin Jia Zheng. “Characterizing pseudoentropy and simplifying pseu-
dorandom generator constructions”. In: Proceedings of the 44th symposium on Theory of
Computing. ACM. 2012, pp. 817–836.

A Pseudorandom primitives

We give the standard definitions of pseudorandom generators (PRGs) and pseudorandom function fam-
ilies (PRFs).

Definition A.1 (Pseudorandom generator). Let G : {0, 1}n → {0, 1}m(n) be a deterministic polynomial-
time algorithm. G is a pseudorandom generator (PRG) if m(n) > n and for any efficient distinguisher
D that outputs a single bit, it holds that |Pr[D(r) = 1] − Pr[D(G(s)) = 1]| ≤ negl(n), where r ←
{0, 1}m(n), s ← {0, 1}n are chosen uniformly at random, and the probabilities are taken over r, s, and
the random coins of D.

It is well known that any pseudorandom generator implies pseudorandom generation with any poly-
nomial expansion factor m(n), by applying the PRG to its own output repeatedly.

Definition A.2 (Pseudorandom function family (PRF)). Let F = {FK} be family of deterministic
polynomial-time keyed algorithms mapping n bits to m bits. F is a pseudorandom function family (PRF),
if for any efficient distinguisher D that outputs a single bit, it holds that |Pr[DFK = 1] − Pr[DRn→m =
1]| ≤ negl(n), where Rn→m is a random oracle mapping n bits to m bits, and the probabilities are taken
over the random coins of D and the key K which is randomly chosen.

B Formal specification of hybrid H̃k∗

In this section we give a formal description of the algorithm H̃k∗ used in the proof of Theorem 3.2. H̃k∗

takes as input (r̃1, . . . , r̃T), and then behaves exactly like Hk∗ , except in the following aspects:

• when H̃k∗ is initialised, it sets a variable next := 0; and

• if blog2(i)c+ 1 ≥ k∗ (that is, the depth of the output node for query i is at least k∗) then H̃k∗ first
stores the three tuples

(leaf, `, (r̃next)
[1,m]),

(root, α0, (r̃next)
[m+1,m+n]),

(root, α0 + 1, (r̃next)
[m+n+1,m+2n]),

where α0, ` are defined by

α0 =

{
2 · (i− 2blog2(i)c − 1) if blog2(i)c+ 1 = k∗

2 · bα(i,k∗)/2c otherwise
,

` =

{
i if blog2(i)c+ 1 = k∗

2(k
∗−1) + (α0/2) otherwise

;

then H̃k∗ increments next by 1, and outputs ρi, defined by:

ρi =


(r̃next)

[1,m] if blog2(i)c+ 1 = k∗

lookupGn,m
(
(r̃next)

[m+1,m+n], γ(i,j∗)
)

if α(i,k∗) = α0

lookupGn,m
(
(r̃next)

[m+n+1,m+2n], γ(i,j∗)
)

if α(i,k∗) = α0 + 1

.

In terms of the tree representation of the pseudorandom look-up function: H̃k∗ behaves exactly like
Hk∗ , except that the values associated with nodes at depth k∗ are taken from the input values r̃1, . . . , r̃T .
Note that although the number of nodes at depth k∗ may be greater than T , next can never become
greater than T during an execution of D̂PRG, because D̂ cannot make more than T queries: therefore,
r̃next is always well-defined.

18

C Ordered traversal of leaves of a binary tree

Lemma 3.3. For any given depth d, when Algorithm 1 is used to compute all the leaves of a complete
binary tree (of depth d) in order, the leftChild() and rightChild() methods are called exactly once
for each non-leaf node in the tree. More precisely, the method employed is the following: in order to
obtain the first leaf, the standard method traversing the tree downwards from the root is used; and then
subsequent leaves are obtained in order by calling pathToLeaf1 = nextLeafPath(d, pathToLeaf0, 0),
then pathToLeaf2 = nextLeafPath(d, pathToLeaf1, 1), etc.

Proof. In order to obtain the the first leaf node (and the path thereto), we need to call leftChild()
exactly once on all nodes along that path. When d = 1, this means that leftChild() is called on the
root node when obtaining the first leaf node. Moreover, when d = 1, it is clear (from lines 2-4) that
rightChild() is called on the root node exactly once (when obtaining the second leaf node). Hence,
the lemma holds for d = 1.

For d > 1, we argue by induction. It is sufficient to prove that for any d > 1:

1. pathToNextLeaf is called12 exactly once for every node at depth d − 1, except the final node at
depth d− 1 (since for that node, there is no next leaf); and

2. leftChild() and rightChild() are called exactly once on each node at depth d− 1.

We call nextLeafPath() once for each currentLeafNum ∈ {0, . . . , 2depth − 2} (from the statement
of the lemma). In particular, nextLeafPath() is called once for the left child of each node at depth
depth−1 (these nodes are exactly those for which currentLeafNum is even). From lines 6-8, it follows
that for every node at depth depth−1, the rightChild() method is called exactly once at line 7.

The recursive call to pathToNextLeaf() occurs on line 12, and is only executed when currentLeafNum

is odd (by the if-clause on lines 6-14). To be precise, the odd values of currentLeafNum for which we
run pathToNextLeaf() are {1, 3, . . . , 2depth− 3}. This corresponds exactly to the set of right-children of
nodes at depth depth−1, except the last one. We see on line 12 that the path passed into the recursive
call is pathToParent, the path to the parent of the current node. Thus, pathToNextLeaf() is recursively
called exactly once for each node at depth depth−1, except the last one. This satisfies condition 1.

Finally, for each path (of depth depth−1) which is returned by a recursive call to pathToNextLeaf(),
leftChild() is called on the end node of the path (on line 13). Since we have already established
that pathToNextLeaf() is recursively called exactly once for each node at depth depth−1, except the
last node, and the functionality of pathToNextLeaf() is to return the next node at a given depth, it
follows that the paths returned by such recursive calls to pathToNextLeaf() lead to each node at depth
depth−1, except the first node. We conclude that leftChild() is called exactly once for each node
at depth depth−1, except the first node. Moreover, leftChild() is called on the first node at depth
depth−1 when we initially retrieve the first leaf. So, leftChild() is called exactly once on each node at
depth depth−1. In conjunction with our earlier observatiosn about calls to rightChild(), this means
that condition 2 is satisfied. The result follows.

D Proof of `-instance concurrent MIM security of Protocol 2

In this section, we show the `-instance concurrent MIM security of Protocol 2. We require the following
technical lemma, which can be seen as a generalization of the leftover hash lemma and has a similar
proof.

Lemma D.1 ([DFMV13]). Let (X1, X2, . . . , X`) ∈ X ` be ` (possibly dependent) random variables such
that H∞(Xi) ≥ γ and (X1, . . . , X`) are pairwise different. Let H = {h : X → Y} be a family of 2`-wise
independent hash functions, with |Y| = 2k. Then for random h← H we have that the statistical distance
satisfies

∆((h, h(X1), h(X2), . . . , h(X`)); (h, U1
Y , . . . , U

`
Y)) ≤ `

2
· 2(`·k−γ)/2,

where U1
Y , . . . , U

`
Y are ` independent and uniformly distributed variables.

12 To be precise, when we write “pathToNextLeaf is called for a given node” we mean that pathToNextLeaf(depth,

path, leafNum) is called, where depth is the depth of the node in the tree, path is the path from the root to that node,
and leafNum is the number of the node when counting the nodes at depth depth from left to right.

19

We now prove two supporting lemmas, before the main theorem.

Lemma 3.11. Protocol 2 is secure against `-instance active attacks.

Proof. Recall that an `-instance active adversary may have concurrent access to up to ` honest provers,
but as usual, he cannot reset the provers. The updating of the prover’s state in Protocol 2 ensures that
for any given prover, the value ri is freshly pseudorandomly sampled for each execution (that is, each

value of the counter i). In particular, the hash function seed r
[1,β]
i is freshly pseudorandomly sampled

for each value of i, and this means that for any polynomial number of executions, with overwhelming
probablity, all the hash function seeds will be distinct. Therefore, an `-instance active adversary can

obtain at most ` outputs of the hash function hs for any given seed s. For any i ∈ N, let s
def
= r

[1,β]
i be

the corresponding seed, and let x
def
= r

[β+1,(`+1)·n+β]
i be the summand inside the hash function argument.

Suppose that the adversary obtains samples hs(a1 + x), . . . , hs(a` + x) from the honest provers. If the
adversary chooses some ai, aj to be equal, then the samples hs(ai + x), hs(aj + x) will also be equal,
so the adversary will not gain more information than if he made just one query ai. Hence, we assume
without loss of generality that the a1, . . . , a` are distinct.

Since G is a PRG, we can replace s and x with uniformly randomly chosen s′ ← {0, 1}β and x′ ←
{0, 1}(`+1)·n, and the adversary’s advantage will change at most negligibly. Let U(`+1)·n be a random
variable that is uniformly distributed over the set of ((`+1)·n)-bit strings. Consider the random variables
U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has entropy H(U(`+1)·n + ai) =
H∞(U(`+1)·n + ai) = (` + 1) · n. They are not independent, but they are pairwise different because the
ai’s are distinct. Therefore, by Lemma D.1,

{hs, hs(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hs, U1

n, . . . U
`
n}.

(In the notation of the lemma: we have k = n and γ = (` + 1) · n, so the distance is `
22−n, which is

negligible given that ` = poly(n).)

Finally, since the seeds si
def
= r

[1,β]
i are freshly pseudorandomly sampled for each value of i, the hash

functions hs1 , hs2 , . . . used in the protocol are indistinguishable from independent random hash functions.
Therefore, the output of any hash function hsi is indistinguishable from random even given the outputs
of the other hash functions hsi′ , hsi′′ , . . . from different executions of the protocol.

Lemma D.2. For any two-round authentication protocol in which the verifier sends the first message,
and where the verifier’s accept/reject decision is a deterministic function of the secret key, the initial
message of the verifier, and the prover’s response: it holds that any adversary A with access to multiple
honest verifiers V1, . . . ,V` can be perfectly simulated by another adversary A′ with access to only one
honest verifier V

Proof. The simulation works as follows: A′ runs A, and for every protocol session that A begins with
honest verifier Vj , A′ starts a new session with verifier V and forwards the initial message a of V to A.
Then, when A returns to the open session with Vj and sends a response b, A′ returns to the corresponding
session with V and forwards b to V; and finally, A′ returns to A the accept/reject decision of V. This is
a perfect simulation since for any session, the verifier’s decision is a deterministic function of the secret
key, the initial message a and the (adversarial) prover’s response b.

Theorem 3.12. Protocol 2 is secure against `-instance concurrent MIM attacks.

Proof. We show that given an adversary A which achieves a certain advantage when conducting an
`-instance concurrent MIM attack, it is possible to build a new adversary A′′ that only talks to the `
provers and achieves essentially the same advantage.

By Lemma D.2, A can be perfectly simulated with access to just one honest verifier, so we assume
henceforth that there is only one honest verifier V. Next, we replace the single honest verifier V by
a fake verifier V ′ who has no access to s or the e values, but still gives essentially the same answers
as V. Then we argue that for any `-instance concurrent man-in-the-middle attack, there is an equally
successful `-instance active attack, and finally refer to Lemma 3.11 for the `-instance active security of
the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just like V does). When A

returns an answer z, j (i.e. the second protocol message), there are two cases to consider:

20

1. A previously received answer z′, j from P, where z′ = a′ · s+ ej and a′ is A’s query to P. Here we
have two possibilities:

(a) a = a′ (which could be the case if A queried P during the current protocol execution): in this
case, if z = z′, V ′ accepts; else, it rejects.

(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case V ′ always rejects.

Consider the first time A queries the verifier. The challenge produced by V has exactly the same
distribution as the one V ′ outputs. Now, in case 1a, notice that V will accept if and only if z has the
correct value a · s + ej : so V ′ always makes the same decision as V. In case 1b, V rejects except with
negligible probability, so V ′ is statistically close to the right behavior. This is because accepting would
imply that z = a ·s+ej , but we also have z′ = a′ ·s+ej so then s = (z−z′)(a−a′)−1. This happens with
negligible probability because s is random and z, z′, a, a′ are all independent of s. This holds because all
of P’s responses (including z′) are independent of s. Moreover, since this is the first query, V has not
even looked at s yet, so a, a′ and z must be independent of s too. Finally, in case 2, note that no one
sees ej before the adversary produces z, j. If V accepts, we have z = a · s + ej , so ej = z − a · s, which
happens with negligible probability since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query, and the adversary’s advantage
changes at most negligibly as a result. Repeating the same argument for all the queries, we reach the
game where V is entirely replaced by V ′, and the adversary’s advantage is still at most negligibly different
from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′ “in his head”. So for
any adversary A which has non-negligible advantage in a `-instance concurrent MIM attack, we can
construct an adversary A′′ that emulates both A and V ′ “in his head” and achieves the same advantage,
but conducting an `-instance active attack (since he need not interact with the real verifier V).

Finally, the security of the protocol against `-instance concurrent man-in-the-middle attacks follows
from the security against `-instance concurrent active attacks, which was shown in Lemma 3.11.

E Linear-time `-independent hashing

Mansour, Nisan, and Tiwari [MNT90] conjectured that pairwise-independent hash functions cannot be
computed in linear time – in particular, that computing them requires Ω(n log(n)) time. Recently, Ishai
et al. [IKOS08] disproved this conjecture, and gave a construction of a linear-time computable pairwise-
independent hash function. In this section, we show that the [IKOS08] construction can be extended to
achieve `-wise independence for constant ` ∈ N.

Notation. For a vector v ∈ {0, 1}n and a subset of indices S ⊆ [n], we write v[S] to denote the |S|-bit

vector obtained by restricting v to the coordinates in S. For a tuple of indices t = (t1, . . . , td) ∈ [n]d, we
write v[t] to denote the d-bit vector (vt1 , . . . , vtd). We write || for vector concatenation.

Exposure resilient functions [Can+00] (also known as deterministic bit-fixing extractors [Cho+85]),
are used as a building block in the construction. The definition is given below.

Definition E.1 (Exposure resilient function). A function f : {0, 1}n → {0, 1}m is an λ-exposure resilient
function if for any L ⊂ [n] of size |L| = n− λ, and for r ← {0, 1}n and R ← {0, 1}m chosen uniformly
at random, the distributions (r[L], f(r)) and (r[L], R) are identical.

Our construction works as follows. For n ∈ N, there is an `-wise independent hash function family
HC,G,En of functions mapping n bits to n bits. Each family is parametrized by the following:

• C : {0, 1}n → Σm is the encoding algorithm of an error-correcting code with a constant-size
alphabet Σ. The code has minimum distance c = Θ(n) and constant expansion factor (that is,
m = Θ(n)).

• G is a `-wise independent hash function family mapping Σ to Σ.

21

• E : Σm → {0, 1}n is an λ-exposure resilient function where λ = Θ(n).

Each function in the family HC,G,En = {hg}g∈Gm is indexed by a vector of hash functions g =
(g1, . . . , gm), where each gi is a member of the (smaller) `-wise independent hash function family G. To
sample a hash function in hg ← Hn, simply sample M small hash functions g1, . . . , gm ← G.

Each hash function hg is computed as follows.

1. Encode the input x ∈ {0, 1}n to obtain codeword y = C(x) ∈ Σm.

2. For each i ∈ [m], let zi = gi(yi) ∈ Σ.

3. Let z ∈ Σm denote the concatenation of all zi, that is, z = z1||z2|| . . . ||zm. The output of the hash
function is E(z).

We remark that this procedure for computing the hash function is the same as in the [IKOS08]
construction, except that in their work, G is a family of pairwise (rather than `-wise) independent hash
functions.

Theorem E.2 (`-wise independence of HC,G,En). Let ` ≥ 2 be any constant. For any m = Θ(n), there
exist λ, c = Θ(n) such that if C is an error-correcting code with minimum distance c and codeword
length m, and E is a λ-exposure resilient function, then HC,G,En is a family of `-wise independent hash
functions.

Proof. Let c = Θ(n) be the following:

c = m− 2m

`(`− 1) + 1
. (1)

Note that the right-hand side is Θ(n), because m = Θ(n) and ` = O(1). Moreover, since ` > 2, inequality
1 implies that 0 < c < m as required.

Let x1, . . . , x` be any distinct vectors in {0, 1}n, and let hg ← Hn be a hash function sampled from
the family HC,G,En . Let the set of corresponding codewords be denoted by Y = {C(x1), . . . , C(x`)}.

Define the overlap of two codewords y, y′ ∈ Σm as the set of positions k ∈ [m] for which the kth

elements are equal: that is, where yk = y′k. Formally,

Overlap(y, y′) = {k ∈ [m] : yk = y′k} .

Building on this, we define the set L as follows:

L = [m] \
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′) = {k ∈ [m] : ∀y, y′ ∈ Y, yk 6= y′k} .

In other words, L is the set of positions k for which the kth elements of of the codewords in Y are pairwise
distinct.

Due to the minimum distance of the error-correcting code,

|Overlap(C(x), C(x′))| ≤ m− c

for all distinct x, x′ ∈ {0, 1}n. Then, since |Y | = `:∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ ≤ (m− c) · ` · (`− 1)

2
(2)

≤ m. (3)

Inequality 3 follows by substituting equation 1 into inequality 2. Moreover, the right-hand side of
inequality 2 is clearly Θ(m) since c = Θ(m) and ` is constant. From this, it follows that

∣∣L∣∣ = m−

∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ = Θ(m) and
∣∣L∣∣ > 0. (4)

22

Recall that for each position k ∈ L, it holds that the kth elements of of the codewords in Y are
pairwise distinct. Then, since gk is an `-wise independent hash function, the ` hash function out-
puts gk(C(x1)), . . . , gk(C(x`)) will be independent and uniformly distributed. Moreover, since the hash
function g1, . . . , gk are chosen independently, the following set consists of independent and uniformly
distributed elements: {

gk(C(x1)), . . . , gk(C(x`)) : k ∈ L
}
. (5)

Recall that when computing hg(xi) (in step 3 of the description above), the input to E is the con-
catenation of the m “small hashes”, g1(C(xi))|| . . . ||gm(C(xi)). Let zi denote g1(C(xi))|| . . . ||gm(C(xi)).
Define L = [m] \ L and λ = |L| = Θ(m). For each input xi ∈ {0, 1}n to the hash function hg, E is
evaluated on an input zi for which (zi)[L] is distributed independently at random (this follows from 5).

Hence, by the λ-exposure resilience of E, the outputs E(z1), . . . , E(z`) are distributed independently and
randomly. The theorem follows.

Finally, we show that the hash functions in HC,T,G,En can be computed and sampled in linear time.

Theorem E.3. If C and E are computable in linear time, then each hash function hg ∈ HC,G,En can be
computed in linear time. Moreover, sampling a hash function hg ← HC,G,En can be done in linear time.

Proof. Since C is linear-time computable, step 1 is computable in linear time, and has a linear-size
output y ∈ {0, 1}m. In step 2, many small hashes of the form gi(yi) are computed, where gi ← G. Since
the input to the hash function gi is of constant size, each such evaluation of gi will take constant time.
The total number of small hashes computed is m = Θ(n) which is linear, so step 2 takes linear time.
Finally, since E is computable in linear time, and is evaluated on a linear-size input z ∈ {0, 1}M , step 3
also takes linear time.

The sampling of a hash function hg ← HC,G,En consists of sampling m hash functions g1, . . . , gm ← G.
Since the family G is of constant size, each gi can be sampled in constant time, and there are linearly
many of them, so the whole sampling process takes linear time.

There are known constructions of linear-time computable functions that satisfy the properties required
by C and E (for any constant `):

• Guruswami and Indyk [GI05] construct error correcting codes which have linear-time encoding
(and decoding) algorithms, and for any positive constant ε < 1, their construction can achieve
minimum distance c such that c/m = ε with a constant-factor expansion. The encoding function
of these codes would be suitable for use as C.

• Ishai et al. [IKOS08] give a construction of an infinite family of λ-exposure resilient functions
mapping n bits to m bits, where λ = Θ(n) and m = Θ(n).

23

	Introduction
	Background and motivation
	Related work
	Our contribution
	Use of our protocols in practice

	Preliminaries
	Authentication protocols

	Authentication via ``one-time'' MACs
	Pseudorandom look-up function
	Looking up random values in order.

	Concurrent man-in-the-middle secure protocol
	Linear-time implementation.

	-instance concurrent MIM secure protocol
	Linear-time implementation.
	On achieving unbounded multi-instance MIM security.

	Pseudorandom primitives
	Formal specification of hybrid H"0365Hk*
	Ordered traversal of leaves of a binary tree
	Proof of -instance concurrent MIM security of Protocol 2
	Linear-time -independent hashing

