
Tiny ORAM: A Low-Latency, Low-Area
Hardware ORAM Controller

Anonymized for submission

Abstract—We build and evaluate Tiny ORAM, an Oblivious
RAM prototype on FPGA. Oblivious RAM is a cryptographic
primitive that completely obfuscates an application’s data, access
pattern, and read/write behavior to/from external memory (such
as DRAM or disk).

Tiny ORAM makes two main contributions. First, by removing
an algorithmic bottleneck in prior work, Tiny ORAM is the
first hardware ORAM design to support arbitrary block sizes
(e.g., 64 Bytes to 4096 Bytes). With a 64 Byte block size, Tiny
ORAM can finish an access in 1.4µs, over 40× faster than prior
work. Second, through novel algorithmic and engineering-level
optimizations, Tiny ORAM reduces the number of symmetric
encryption operations by ∼ 3× compared to prior work. Tiny
ORAM is also the first design to implement and report real
numbers for the cost of symmetric encryption in hardware
ORAM constructions. Putting it together, Tiny ORAM requires
5%/13% of the FPGA logic/memory, including the cost of
encryption.

I. INTRODUCTION

With cloud computing becoming increasingly popular, pri-
vacy of users’ sensitive data has become a huge concern in
computation outsourcing. Ideally, users would like to “throw
their encrypted data over the wall” to a cloud service that
performs computation on that data, but cannot obtain any
information from within that data. It is well known, however,
that encryption is not sufficient to enforce privacy in this
environment, because a program’s memory access pattern
reveals a large percentage of its behavior [27] or the encrypted
data it is computing upon [14], [16].

Oblivious RAM (ORAM), introduced by Goldreich and Os-
trovsky [11], [12], is a cryptographic primitive that completely
eliminates the information leakage from a programs memory
access trace, i.e. the sequence of memory accesses. ORAM
is made up of trusted client logic (who runs the ORAM
algorithm and maintains some trusted state) that interacts with
an untrusted storage provider. Conceptually, ORAM blocks
information leakage by maintaining all memory contents en-
crypted and memory locations randomly shuffled. On each
access, memory is read and then reshuffled. Under ORAM, any
memory access pattern is computationally indistinguishable
from any other access pattern of the same length. Since the
original proposal, there has been significant work that has
resulted in more efficient and cryptographically-secure ORAM
schemes [18], [17], [6], [4], [13], [15], [24], [21], [23]. The
cost for ORAM security is performance: to read/write a block
(the atomic unit of data a client may request), ORAM moves
a logarithmic number of blocks over the chip pins.

An important use case for ORAM is in trusted hard-
ware [16], [8], [22], [23], [20], [7]. Figure 1 shows an example
target cloud configuration, where a client communicates with
trusted secure processor in the cloud, which is attached to
untrusted external memory such as disk, DRAM or flash. In

Secure FPGA/processor
ORAM controller (hardware)

Client

ORAM (DRAM)

TCB

Initialization,
Key exchange

Memory bus

TCB

Untrusted
cloud

Fig. 1. ORAM in the secure FPGA/processor setting.

this configuration, the ORAM client logic (called the ORAM
controller) is typically implemented in hardware and, thus,
needs to be simple. Therefore, most secure processor proposals
[16], [8], [23], [20], [7] have adopted Path ORAM because
of its small client storage and simplicity. For the rest of this
paper, we assume the untrusted memory is implemented in
DRAM and that the adversary is passive: it observes but does
not tamper with the memory. As in prior ORAM work, we
don’t consider leakage over timing, power, RF or other side
channels.

A. Opportunities and Challenges for ORAM on FPGA

Because of their programmability and high performance,
FPGAs have attracted significant attention as accelerators for
cryptographic primitives. FPGAs have a key advantage over
ASICs, namely programmability: it is easy to patch FPGA
designs in the event that a security bug is discovered or
a cryptographic primitive is rendered obsolete [25]. Partly
for this reason, major FPGA vendors have added dedicated
cryptographic key management logic into their mainstream
FPGAs to support secure sessions and bitstream reconfig-
uration [26], [5]. At the same time, FPGAs have a key
advantage over software on performance, due to hardware-
level optimization. For example an FPGA implementation of
Keccak [3], chosen by NIST as SHA-3, has been shown to
outperform an optimized software implementation by over
5× [9], [2].

Following this trend, we argue that FPGAs are also very
appealing as target platforms for ORAM. Beyond the points
we have already made, modern FPGAs are often designed

with dedicated memory controllers to achieve high memory
bandwidth. For example, the Xilinx Virtex-7 VC709 board can
achieve a memory bandwidth of 25 GigaByte/second using
dual DDR3 channels, which is similar to midrange desktop
systems like the Intel Core i7 processor family. Meanwhile,
FPGA designs typically run in 100-300 MHz range. This
fabric/memory clock disparity means the performance cost of
ORAM is significantly dampened on FPGA. Indeed, our Tiny
ORAM’s latency to access a block is less than 200 cycles,
compared to over 1000 cycles estimated on ASIC [20], [7].

The challenge in designing ORAM for FPGA is exactly how
to saturate this plentiful memory bandwidth. For instance, the
Virtex-7 VC709’s 25 GigaByte/second bandwidth translates
to 1024 bits/FPGA cycle, forcing the ORAM algorithm and
implementation to have 1024 bits/FPGA cycle throughput.
Recently Maas et al. [16] implemented Phantom, the first hard-
ware ORAM prototype for the trusted hardware setting. Their
design identifies several performance and resource bottlenecks
which we address in this paper.

The first bottleneck occurs when the application block size
is small. Phantom was parameterized for 4-KiloByte blocks
and, even after optimizations to decrease minimum block size,
cannot support less than 704-1408 Byte blocks without intro-
ducing pipeline stalls (§ III). This minimum block size grows
with FPGA memory bandwidth. While benefiting applications
with good data locality, a large block size (like 4KBytes
in Phantom) severely hurt performance for applications with
erratic data locality1. The first goal in this paper is to develop
schemes that flexibly support any block size (e.g., we evaluate
64-Byte blocks) without incurring performance loss.

The second bottleneck is that to keep up with FPGAs’
large memory bandwidth, an ORAM controller requires many
encryption units, imposing large area overheads. This is be-
cause in prior art ORAM algorithms, all blocks transferred
must be decrypted/re-encrypted, so encryption bandwidth must
scale with memory bandwidth. Phantom projects that AES
units alone would take ∼ 50% of the logic of a state-
of-the-art FPGA device. The second goal in this paper is
to develop new ORAM schemes that reduce the required
encryption bandwidth, and to carefully engineer the system
to save hardware area.

B. Contributions

In this paper, we present Tiny ORAM, a complete hard-
ware ORAM controller prototype implemented on an FPGA.
Through novel algorithmic improvements and careful hard-
ware design, Tiny ORAM makes two major contributions:
(1) it enables configuration with small blocks, achieving low
latency, and (2) it has an extremely small hardware area foot-
print. We achieve these goals through two novel techniques:

Bit-based stash management to enable small blocks
size (§ III). We develop a new stash management scheme
using efficient bit tricks that, when implemented in hardware,
removes the block size bottleneck in the Phantom design [16].
In particular, our scheme can support any reasonable block size
(e.g., from 64-4096 Bytes) without sacrificing system perfor-
mance. With a 64 Byte block size, Tiny ORAM improves

1Most modern processors have a 64-Byte cache block size for this reason.

TABLE I
ORAM PARAMETERS AND NOTATIONS.

Notation Meaning

L Depth of Path ORAM tree
Z Data blocks per ORAM tree bucket
N Number of real data blocks in tree
B Data block size (in bits)
C Stash capacity (in blocks, excluding transient storage)
K Session key (controlled by trusted processor)
P(l) Path to leaf l in ORAM tree
P(l)[i] i-th bucket on Path P(l)

RAW ORAM (§ IV) only
A The number of RO accesses per RW access

the access latency by ≥ 40× in the best case compared to
Phantom.

RAW ORAM Path Write Predictability to reduce the
required encryption engines (§ IV). Inspired by Gentry
et al. [10], we propose RAW ORAM and path write pre-
dictability (PWP) to reduce the number of encryption units
by ∼ 3× while maintaining comparable bandwidth to basic
Path ORAM.

We implement the above ideas in hardware, and evaluate
our design for performance and area on a Virtex-7 VC707
FPGA board. With the VC707 board’s 12.8 GB/s DRAM
bandwidth, Tiny ORAM can complete an access for a 64 Byte
block in 1.4µs. This design (with encryption units) requires
5% of the FPGA’s logic and 13% of its on-chip memory,
demonstrating a significantly reduced hardware footprint over
existing alternatives. Our design is written entirely in Verilog-
2001 with no proprietary components.

We have given an overview of related work and this work in
the introduction. The rest of the paper is organized as follows.
Section II provides necessary background on ORAM and Path
ORAM. Section III introduces the bit-based stash management
method, while Section IV introduces RAW ORAM and path
write predictability. Section V presents and evaluates our
overall Tiny ORAM design, demonstrating improvements over
existing ORAM designs on FPGA.

II. BACKGROUND

As did Phantom, Tiny ORAM originates from and extends
Path ORAM [23]. We now explain Path ORAM in detail.
Parameters and notations are summarized in Table I.

A. Basic Path ORAM
Path ORAM organizes untrusted external DRAM as a binary

tree which we refer to as the ORAM tree. The root node of
the ORAM tree is referred to as level 0, and the leaf nodes as
level L. We denote each leaf node with a unique leaf label l
for 0 ≤ l ≤ 2L−1. We refer to the list of buckets on the path
from the root to leaf l as P(l).

Each node in the tree is called a bucket and can hold up
to a small constant number of blocks denoted Z (typically
Z = 4). We denote the block size in bits as B. In this paper,
each block is a processor cache line (so we correspondingly
set B = 512). Buckets that have less than Z blocks are padded
with dummy blocks. Each bucket is encrypted using symmetric

ORAM
Backend

ORAM tree: external memory (untrusted)

Return block
to client

From client: Req for addr a

3Stash

4

ORAM Frontend PosMap1
a, Leaf 1

Address logic

FPGA pins

0 1 2 3 4 5 6 7

DRAM addrs
for Leaf 15

2

(Unmodified) FPGA Memory controller

Fig. 2. A Path ORAM of L = 3 levels and Z = 4 slots per bucket.
Suppose block a, shaded black, is mapped to path l = 1. At any
time, block a can be located in any of the shaded structures (i.e., on
path 1 or in the stash).

probabilistic encryption (e.g., AES in counter mode). Thus, an
observer cannot distinguish real blocks from dummy blocks.

The Path ORAM controller (trusted hardware) contains a
position map, a stash and associated control logic. The position
map (PosMap for short) is a lookup table that associates each
data block’s logical address with a leaf in the ORAM tree.
The stash is a random access memory (e.g., an SRAM) that
stores up to a small number of data blocks. The stash capacity
is the maximum number of data blocks on a path plus a
small number, i.e., C + (L + 1)Z. We say that the stash
has overflowed if, at the beginning of an ORAM access, the
number of blocks in the stash is > C. To achieve negligible
stash overflow probability for real security parameters, C = 50
to 100 is typical. Together, the PosMap and stash make up Path
ORAM’s client storage.

Path ORAM Invariant. At any time, each data block in
Path ORAM is mapped to a random leaf via the PosMap. Path
ORAM maintains the following invariant: If a block is mapped
to leaf l, then it must be either in some bucket on path l or in
the stash. Blocks are stored in the stash or ORAM tree along
with their current leaf and block address.

To make a request for a block with address a (block a for
short), the Last Level Cache (LLC) or FPGA user design calls
the ORAM controller via accessORAM(a, op, d′), where op is
either read or write and d′ is the new data is op =write. The
steps are also shown in Figure 2.

1) Look up PosMap with a, yielding the corresponding leaf
label l. Randomly generate a new leaf l′ and update the
PosMap for a with l′.

2) Read and decrypt all the blocks along path l. Add all the
real blocks to the stash (dummies are discarded). Due to
the Path ORAM invariant, block a must be in the stash
at this point.

3) Update block a in the stash to have leaf l′.

4) If op = read, return block a to the LLC. If op = write,
replace the contents of block a with data d′.

5) Evict and encrypt as many blocks as possible from the
stash to path l in the ORAM tree (to keep the stash
occupancy low) while keeping the invariant. Fill any
remaining space on the path with encrypted dummy
blocks.

Note that all DRAM read/write steps are performed through
an unmodified FPGA memory controller (e.g., Xilinx MIG).

To simplify the presentation, we refer to Step 1 (the PosMap
lookup) as the Frontend(a), or Frontend, and Steps 2-5 as the
Backend(a, l, l′, op, d′), or Backend. This work optimizes the
Backend only, but we demonstrate a complete system with a
working Frontend in our evaluation for completeness.

Stash eviction in hardware. In the above algorithm, per-
forming Step 5 efficiently is a big challenge for hardware
designs [16]. One contribution in this paper is a simple
mechanism that solves the problem for any reasonable block
size or memory bandwidth (§ III).

Bucket header. Implicit in the Path ORAM algorithm, each
block is stored in the stash and ORAM tree alongside its
program address and current leaf. Besides Z data blocks,
each bucket also stores the bucket header, which includes
addresses/leaves of the blocks and an initialization vector
used for symmetric encryption. Dummy blocks have a special
program address ⊥. All bucket fields are shown in Figure 3
for the parameterization we evaluate at the end of the paper.

22 x 4

IV Block addresses Block leaves Block data

64Bits: 512 x 420 x 4

Fig. 3. Bucket fields. We show field sizes for the parameterization
we evaluate in § V, namely using a 1 GB DRAM DIMM. For this
setting, we set L = 20, Z = 4 (as suggested by prior work [16],
[23]) and fill the ORAM tree until 50% of available slots are used
for data blocks (following [20]). IV refers to the initialization vector
used for encryption.

Path ORAM Security. The intuition for Path ORAM’s
security is that every PosMap lookup (Step 1) will yield a
fresh random leaf that has never been revealed before. This
makes the sequence of ORAM tree paths accessed and the
program address trace independent. Further, probabilistic en-
cryption ensures computational indistinguishability regardless
of whicheverblock is read on the path. We use AES counter
mode with counter width being 64 bits (see Figure 3). Each
counter increments once per ORAM access; i.e., no counter
will overflow even after 100s of years of constant accesses.
For stash overflow probability, we set bucket size Z = 4
following [23], [16], and provision a stash capacity of C = 78,
which gives a stash overflow probability of 2−80 (using the
methodology from [16]).

B. Recursive Path ORAM

In basic Path ORAM, the number of entries in the PosMap
(§ II-A) scales linearly with the number of data blocks in
the ORAM. This results in a significant amount of on-chip
storage — indeed, Phantom [16] required multiple FPGA’s just

to store the PosMap for sufficiently large ORAMs. Recursive
ORAM was first proposed by Shi et al. [21] to solve this
problem and has been studied through simulation in trusted
hardware proposals [8], [20]. The idea is to store the PosMap
in a separate ORAM, and store the new ORAM’s (smaller)
PosMap on-chip.

We refer to the original ORAM as the Data ORAM, the
second ORAM a PosMap ORAM. Accessing data block a in
the recursive construction involves two ORAM accesses. The
first is to the PosMap ORAM, to retrieve the leaf label of
block a, and the second is to Data ORAM for block a. Of
course, the new on-chip PosMap might still be too large. In
that case, additional PosMap ORAMs may be added to further
shrink the on-chip PosMap.

[7] demonstrates how to reduce the bandwidth cost of recur-
sion by 95% while increasing the area of a baseline Recursive
design by ∼ 5%. Similarly to our work, [7] breaks ORAM
into a Frontend and a Backend, with the same interfaces, and
implements recursion entirely as changes to the Frontend. As
we mentioned earlier, this paper’s focus is to optimize the
Backend only. Thus, our optimizations naturally extend to the
recursive setting of [7] and we evaluate a combined system,
using the optimized Frontend of [7], for completeness.

III. STASH MANAGEMENT

As mentioned in § II-A, evicting blocks from the stash
is a challenge for efficient Path ORAM hardware designs.
Conceptually, we need to push every block in the stash to the
deepest possible bucket on path P(l) while maintaining the
Path ORAM invariant. A naı̈ve implementation is, for each
slot on the path, to scan the stash sequentially and choose
at the end of each scan which block should be pushed to that
slot [16]. This design takes O(C+L∗Z) cycles per block and
must run L ∗ Z times per ORAM access. As pointed out by
Phantom, this method causes serious hardware performance
bottlenecks. To lessen this bottleneck, Phantom proposes an
FPGA-optimized heap sort algorithm to manage the stash. The
idea is to write blocks to the stash in eviction-sorted order,
so that each block eviction can be done in a single cycle.
With this scheme, writing each block to the stash requires
O(log(C + L ∗ Z)) cycles per block.

Unfortunately, Phantom’s heap-sort-based stash manage-
ment algorithm still implies a performance bottleneck for small
block sizes. With Phantom’s parameters, the pipelined heap
sort design takes 11 cycles to evict a block (see Appendix A
of [16]). Assuming a memory bandwidth between 512-1024
bits/cycle for modern FPGAs, this constrains the block size
B to be at least 11 times 512-1024 bits, to hide the heap-
sort latency. In other words, when the block size is < 704 to
1408 Bytes, the ORAM controller’s performance bottleneck is
stash management logic, rather than memory bandwidth.

We now detail a new and simple stash eviction algorithm
based on bit-level hardware tricks that takes a single cycle
to evict a block and can be implemented efficiently in FPGA
logic. This eliminates the above performance overhead for any
practical block size and memory bandwidth.

A. PushToLeaf With Bit Hacks
Our proposal, the PushToLeaf() routine, is shown in Al-

gorithm 1. PushToLeaf(Stash, l) is run at the beginning of

Step 5 during each ORAM access (§ II-A) and yields an array
of blocks, denoted S, in the order that they should be written
back to P(l) of the ORAM tree. S[i] represents the block to
be written back to the i-th position on P(l), of which there are
(L+1)∗Z. Index 0 is in the root bucket. At a high level, our
PushToLeaf() routine is a hardware circuit that sequentially,
for each block in the stash, pushes that block (PushBack())
as far towards to the leaf bucket along P(l) as possible using
combinational logic.

Suppose l is the current leaf being accessed. We represent
leaves as L-bit words which are read right-to-left: the i-th bit
indicates whether the i-th bucket’s child is the left child (0)
or right child (1). On Line 3, we initialize the contents of S
to all dummy blocks, represented by ⊥. Occupied is an L+1
entry memory that records the number of real blocks that have
been pushed back to each bucket so far.

Algorithm 1 Bit operation-based stash scan. 2C stands for
two’s complement arithmetic.

1: Inputs: The current leaf l being accessed
2: function PUSHTOLEAF(Stash, l)
3: S ← {⊥ for i = 0, . . . , (L+ 1) ∗ Z − 1}
4: Occupied ← {0 for i = 0, . . . , L}
5: for i← 0 to C + L ∗ Z − 1 do
6: (a, li, D) ← Stash[i] . Leaf assigned to i-th block
7: level ← PushBack(l, li)
8: if a 6= ⊥ and level > −1 then
9: offset ← level ∗ Z + Occupied[level]

10: S[offset] ← (a, li, D)
11: Occupied[level] ← Occupied[level] + 1

12: function PUSHBACK(l, l′)
13: t1 ← (l ⊕ l′)||0 . Bitwise XOR
14: t2 ← t1 & −t1 . Bitwise AND, 2C negation
15: t3 ← t2 − 1 . 2C subtraction
16: full ← {(Occupied[i]

?
= Z) for i = 0 to L}

17: t4 ← t3 & ∼full . Bitwise AND/negation
18: t5 ← reverse(t4) . Bitwise reverse
19: t6 ← t5 & −t5
20: t7 ← reverse(t6)

21: if t7
?
= 0 then

22: return −1 . Block is stuck in stash
23: return log2(t7) . Note: t7 must be one-hot

We now explain the PushBack() routine in detail. Line 13
first concatenates 0 to both l and l′ and XORs these vectors
together. t1 now represents in which levels the paths P (l) and
P (l′) diverge. Line 14 then clears all remaining bits except for
the right-most set bit. t2 is now called “one-hot” (meaning it
contains exactly 1 set bit) and its set bit indicates the first level
where P (l) and P (l′) diverge. Line 15 converts t2 to a vector
of the form 000 . . . 111, where set bits indicate which levels
the block can be pushed back to. Line 17 further excludes
buckets that already contain Z blocks (i.e., from previous calls
to PushBack()). Finally, Lines 18-20 turns all current bits off
except for the left-most set bit, which indicates the highest
level towards the leaves that the block can be pushed back to.

Since our PushToLeaf() routine does not assume any order
of blocks in the stash (i.e., is unsorted), we can also add a
block to the stash in 1 cycle per block. In our current design,
we manage the stash as a simple linked-list and simply add a
node to the list to insert a block.

B. Hardware Implementation and Pipelining
Algorithm 1 runs O(C + L ∗ Z) iterations of PushBack()

per ORAM access. O(C) iterations are spent scanning blocks
that may have been in the stash at the beginning of the access.
The remaining iterations process blocks on the current path.
In hardware, we pipeline Algorithm 1 in three respects to hide
this O(C + L ∗ Z) operation.

First, the PushBack() circuit itself is pipelined to have
(amortized) throughput of 1 block / cycle. PushBack() itself
synthesizes to simple combinational logic where the most
expensive operation is two’s complement arithmetic of (L+1)-
bit words (which is also cheap due to optimized FPGA
carry chains). Implemented in hardware, reverse() costs no
additional logic and the other bit operations (including log2(x)
when x is one-hot) synthesize to LUTs. To meet our FPGA’s
clock frequency, we had to add 2 pipeline stages after Lines 14
and 15. Thus, performing C iterations of PushBack() requires
C + 2 cycles.

Second, as soon as an ORAM access starts and the leaf
being read is presented to the Backend (i.e., concurrent with
Step 2 in § II-A), blocks already in the stash are sent to
the PushBack() circuit “in the background”. Following the
previous paragraph, C + 2 is the number of cycles it takes to
perform the background scan in the worst case.

Third, after cycle C + 2, we send each block read on the
path to the PushBack() circuit as soon as it arrives from
DRAM. Since a new block can be processed each cycle, we are
guaranteed to be able to start writing back blocks to the ORAM
tree several cycles after the last block read from DRAM is
processed by PushBack().

C. Data-Independent Timing for Security
Following Phantom, we design each Tiny ORAM access

to have data-independent timing: the timing of all observable
behaviors of Tiny ORAM (read/write DRAM, return data to
requester, etc.) can be predicted based on public information.
Let C ′ be the number of cycles between when an ORAM
access starts and when the first block from DRAM arrives
at the stash. We design Tiny ORAM to always incur a
max(0, C + 2− C ′) worst-case stall to avoid data-dependent
timing variations. This cost is once per ORAM access and in
the tens of cycles in practice. (We will give a concrete example
assuming our evaluation parameters in § V-B.)

IV. MINIMIZING DESIGN AREA

Another serious problem for ORAM design is the area
needed for symmetric encryption units. Recall from § II-A
that all data read and written by ORAM must get decrypted
and re-encrypted to preserve privacy. Encryption bandwidth
hence scales with memory bandwidth and quickly becomes the
area bottleneck. Indeed, Phantom [16] did not implement real
encryption units in their design but predicted that encryption
would take 50% area of a high-end Virtex 6 FPGA.

To handle this problem, we now propose a new ORAM
design, which we call RAW ORAM, optimized to minimize
symmetric encryption bandwidth at the algorithmic and engi-
neering level. At a high level, our construction is two parts:

Asymmetric operations for inexpensive reads. First, we
split PORAMBackend() into two flavors: read-only (RO)

Block
Addresses

Block
Leaves

IV2

RAW
ORAM

Path
ORAM

Read from memory Read from memory & decrypted

IV1

Encrypted under IV2

RAW ORAM
Bucket Header

Requested
block

Z * L = 160 bits

B = 512 bits

Unused space



Fig. 4. Data read vs. data decrypted on a RAW ORAM RO read
(left) and Path ORAM access (right) with Z = 3. IV1 and IV2 are
initialization vectors used for encryption.

and read-write (RW) accesses. RO accesses perform ORAM
requests (i.e., memory read/writes) for the client and RW
accesses perform evictions (to empty the stash) in the back-
ground. To reduce the number of encryption units needed by
ORAM, we optimize RO accesses to only decrypt the block
of interest and a small amount of metadata as opposed to the
entire path. RW accesses require more encryption/decryption,
but occur less frequently.

Path write predictability to ease pipelining. Unfortu-
nately, unless care is taken, the periodic (and expensive) RW
accesses cause pipeline stalls requiring that we overprovision
encryption units just to handle the RW operation. Our key
observation is: if RW accesses are made to a predictable order
of paths, we can pre-compute all encryption operations off the
critical path.

With these techniques combined, RAW ORAM reduces the
required encryption bandwidth by ∼ 3×. We remark that
Ring ORAM [19] also breaks accesses into RO/RW and uses
a predictable access pattern for RW accesses. That work,
however, does not aim to reduce encryptions on RO accesses
and does not recognize or exploit path write predictability.

A. RO and RW Operations
Parameter A. We introduce a new parameter A, set at

system boot time. For a given A, RAW ORAM obeys a strict
schedule that the ORAM controller performs one RW access
after every A RO accesses.

An RO access performs only the operations needed to read
the requested block into the stash, and logically remove it
from the ORAM tree. The requested block is then returned
or updated as with basic Path ORAM. This corresponds to
Steps 2-4 in § II-A with three important changes. First, we
will only decrypt the minimum amount of information needed
to find the requested block and add it to the stash. Precisely,
we decrypt the Z block addresses stored in each bucket header
(§ II-A), to identify the requested block, and then decrypt the
requested block itself (if it is found). The amount of data read
vs. decrypted is illustrated in Figure 4. Note that for security,
we still read the entire path into the ORAM controller; our
optimization is to decrypt less of the path than in Path ORAM.

Second, we add only the requested block to the stash (as
opposed to the whole path). Third, we update the bucket
header containing the requested block to indicate a block was
removed (e.g., by changing its program address to ⊥), and
re-encrypt/write back to memory the corresponding state for

each bucket. To re-encrypt header state only, we encrypt that
state with a second initialization vector denoted IV2. The rest
of the bucket is encrypted under IV1. A strawman design may
store both IV1 and IV2 in the bucket header (as in Figure 4).
We describe an optimized design in § IV-C.

An RW access performs a normal (read+writeback) but
dummy ORAM access to a static sequence of leaves cor-
responding to a reverse lexicographic order of paths (first
proposed in [10]). Dummy accesses skip Steps 3-4 in § II-A
and read a path randomly chosen without looking up the
position map—i.e., their only purpose is to evict blocks from
the stash which have accumulated over the A RO accesses.

Security. RO accesses always read paths in the ORAM
tree at random, just like Path ORAM. RW accesses occur
at predetermined times (always after A RO accesses) and
are to predictable/data-independent paths. Thus, RAW ORAM
achieves obliviousness assuming the stash does not overflow
(discussed in the next section).

B. Performance and Area Characteristics
We compare the memory and encryption bandwidth needed

to serve A frontend requests for RAW ORAM and Path
ORAM. For both proposals, we assume that bucket headers
are stored externally, alongside each bucket and padded to the
data block size (64 Bytes). Thus, there are (L + 1)(Z + 1)
blocks on a path. For Path ORAM, both the memory and
encryption bandwidth per ORAM access is 2(L+ 1)(Zp + 1)
blocks, where Zp is a competitive bucket size for Path ORAM
(Zp = 4 following [16], [23]). We say the relative memory and
encryption bandwidth for Path ORAM is 2(Zp + 1) blocks.

In RAW ORAM, each RO access reads (L+1)Z on the path,
but only decrypts 1 block; it also reads/writes and decrypts/re-
encrypts the L + 1 headers on the path. An RW access
reads/writes and decrypts/re-encrypts all the (L + 1)(Z + 1)
blocks on a path. Then, the relative memory bandwidth of
RAW ORAM is Z + 2 + 2(Z+1)

A , and the relative encryption
bandwidth of RAW ORAM is roughly 1 + 2(Z+1)

A .
The remaining question for RAW ORAM is: what A and Z

combinations result in a stash that will not overflow, yet at the
same time minimize encryption and memory bandwidth? We
visualize the relative memory band encryption bandwidth of
RAW ORAM with different parameter settings in Figure 5.
The Ring ORAM paper [19] showed that these parameter
settings give negligible stash overflow probability. We see that
Z = 5, A = 5 (Z5A5) achieves 6% memory bandwidth im-
provement and ∼ 3× encryption reduction over Path ORAM.
We will use Z5A5 in the evaluation and remark that this
configuration requires C = 64 to achieve a stash overflow
probability of 2−80.

C. Removing AES Bottlenecks With Path Write Predictability
Despite RAW ORAM’s theoretic area savings for encryption

units, careful engineering is needed to prevent that savings
from turning into performance loss. The basic problem is
shown in Figure 6 where w/o AES unit reduction uses our
techniques but is built with the same number of encryption
(AES) units as Path ORAM. While there are enough AES
units to rate match memory on a RW access, AES units during
RO accesses are left idle because RO accesses require less

2 4 6 8 10
Relative encryption overhead

8

10

12

Re
la

tiv
e

m
em

or
y

ov
er

he
ad

Z2A1

Z3A2Z4A3Z5A5

Z6A6
Z7A8

Z4

Fig. 5. The relative memory and encryption bandwidth overhead of RAW
ORAM with different parameter settings.

RO

w/o AES
unit reduction

RWAccess type:

w/ AES
unit reduction

Con: AES becomes
bottleneck on RW accesses

RO

Pro: Good AES utilization
on RO accesses

Con: Bad AES utilization
on RO accesses

Pro: AES rate matches
memory on RW accesses

RO

Fig. 6. Potential RAW ORAM performance bottleneck. AES refers
to symmetric encryption.

encryptions. In Figure 6 w AES unit reduction applies our
techniques and uses the desired 3× less AES units. While
AES is saturated on RO accesses, DRAM transfers data faster
than the available AES bandwidth on RW accesses, which
creates a performance bottleneck.

Path Write Predictability. To remove this bottleneck while
maintaining the AES unit reduction, we make the following
key observation: Since RW accesses occur in a fixed order, we
can determine exactly how many times any bucket along any
path has been written in the past. Suppose G is the number
of RW accesses made so far. At startup, the ORAM controller
sets G = 0 and increments G once after each RW access. The
ORAM leaf that is accessed on each RW access is then simply
the low-order L bits in G, namely G mod 2L. (We allocate
a 64-bit counter in the ORAM controller to store G.) Now,
due to load-balancing nature of reverse lexicographic order, if
P(l)[i] has been written gi times in the past, then P(l)[i+ 1]
has been written gi+1 = b(gi +1− li)/2c where li is the i-th
bit in leaf l.2

Implementation. For the rest of the paper, we assume
encryption is implemented using AES-128 in counter/CTR
mode. With path write predictability, we know which paths
will be read/written on future RW accesses, and can pre-
compute the AES-CTR initialization vector IV1 from § IV-A.
In other words, we can generate RW AES masks “in the
background” during concurrent RO accesses.

To decrypt the i-th 128-bit ciphertext chunk of the
bucket with unique ID BucketID, as done on an RW
ORAM path read, we XOR it with the following mask:
AESK(g || BucketID || i) where g is the bucket write
count mentioned above. Correspondingly, re-encryption of that

2This can be easily computed in hardware as gi+1 = (gi + ∼li) � 1,
where � is a right bit-shift and ∼ is bit-wise negation.

chunk on the RW path writeback is done by generating a new
mask where the write count has been incremented by 1. We
note that with this scheme, g takes the place of IV1 and since
g can be derived internally, we need not store it externally.

On both RO and RW accesses, we must decrypt program
addresses and valid bits of all blocks in each bucket (§ IV-A).
For this we apply the same type of mask as in Ren et al. [20],
namely AESK(IV2 || BucketID || i), where IV2 is stored
externally as part of each bucket’s header.

At the implementation level, we time-multiplex an AES core
between generating masks for IV1 and IV2. The AES core
prioritizes IV2 operations; when the core is not servicing IV2

requests, it generates masks for IV1 in the background and
stores them in a FIFO.

V. EVALUATION

We now describe our hardware prototype of Tiny ORAM
on a Virtex-7 VC707 FPGA board and analyze its area and
performance characteristics.

A. Metrics and Baselines

We evaluate our design in terms of performance and area.
Performance is measured as the latency (in FPGA cycles or
real time) between when an FPGA user design requests a
block and Tiny ORAM returns that block. Area is calculated
in terms of FPGA lookup-tables (LUT), flip-flops (FF) and
block RAM (BRAM), and is measured post place-and-route
(i.e., represents final hardware area numbers). For the rest of
the paper we count BRAM in terms of 36 Kb BRAM.

We compare Tiny ORAM with two baselines shown in
Table II. The first one is Phantom [16]; we will normalize
it to our ORAM capacity and the 512 bits/cycle DRAM band-
width of our VC707 board, and assume no tree top caching.
Phantom’s performance/area numbers are taken/approximated
from the figures in their paper, to our best efforts. The second
baseline is a basic Path ORAM with our stash management,
to show the area saving of RAW ORAM.

B. Implementation

Parameterization. Both of our designs (Path ORAM and
RAW ORAM) use B = 512 and L = 20. We chose B = 512
(64 Bytes) to show that Tiny ORAM can run even very
small block sizes without imposing hardware performance
bottlenecks. We are constrained to set L = 20 because this
setting fills the VC707’s 1 GB DRAM DIMM, but will discuss
working set scaling in §V-E.

Clock regions. The DRAM controller on the VC707 board
runs at 200 MHz and transfers 512 bits/cycle. To ensure
that DRAM is Tiny ORAM’s bottleneck, we optimized our
design’s timing to run at 200 MHz.

DRAM controller. We interface with DDR3 DRAM
through a stock Xilinx on-chip DRAM controller with 512
bits/cycle throughput. From when a read request is presented
to the DRAM controller, it takes ∼ 30 FPGA cycles to return
data for that read (i.e., without ORAM). The DRAM controller
pipelines requests. That is, if two reads are issued in consec-
utive cycles, two 512 bit responses arrive in cycle 30 and 31.
To minimize DRAM row buffer misses, we implemented the
subtree layout scheme from [20] which allows us to achieve

near-optimal DRAM bandwidth (i.e., > 90%, which is similar
to Phantom) for our 64 Byte block size.

Encryption. We use “tiny aes,” a pipelined AES core that is
freely downloadable from Open Cores [1]. Tiny aes has a 21
cycle latency and produces 128 bits of output per cycle. One
tiny aes core costs 2865/3585 FPGA LUT/FF and 86 BRAM.
To implement the time-multiplexing scheme from § IV-C, we
simply add state to track whether tiny aes’s output (during
each cycle) corresponds to IV1 or IV2.

Given our DRAM bandwidth, RAW ORAM requires 1.5
(has to be rounded to 2) tiny aes cores to completely hide
mask generation for RW accesses at 200 MHz. To reduce area
further, we optimized our design to run tiny aes and associated
control logic at 300 MHz. Thus, our final design requires only
a single tiny aes core. Basic Path ORAM would require 3 tiny
aes cores clocked at 300 MHz, which matches our 3× AES
saving in the analysis from § IV-B. We did not optimize the
tiny aes clock for basic Path ORAM, and use 4 of them running
at 200 MHz.

Data-independent timing and stash scan penalty. Recall
from § III-C that we must ensure each ORAM access takes
a data-independent amount of time. We will now derive how
long Tiny ORAM must stall to respect this requirement. Using
the notation from § III-C, tiny aes and our FPGA’s DRAM
read latency, C ′ is at least 21 + 30 cycles (this assumes a
300 MHz AES clock frequency, and does not consider other
small latencies introduced by the implementation). Recall from
§ III-B and § IV-B that, for 2−80 stash overflow probability,
Path ORAM with Z = 4 and RAW Path ORAM with Z5A5
require C = 78 and C = 64, respectively. Thus, the stash
scan algorithm from § III introduces less than 78 + 3−C ′ =
30 cycles and 64 + 3 − C ′ = 16 cycles per ORAM access,
respectively.

C. Access Latency Comparison

For the rest of the evaluation, all access latencies are
averages when running on a live hardware prototype. Our
RAW ORAM backend can finish an access in 276 cycles
(1.4µs) on average. This is very close to basic Path ORAM;
we did not get the 6% theoretical performance improvement
because of the slightly more complicated control logic of RAW
ORAM.

After normalizing to our DRAM bandwidth and ORAM
capacity, Phantom should be able to fetch a 4 KiloByte block
in ∼ 60µs. This shows the large speedup potential for small
blocks. With bad locality, a 64 Byte block size can improve
ORAM latency by 40×. We note that Phantom was run at
150 MHz: if optimized to run at 200 MHz like our design,
our improvement is ∼ 32×. Even with perfect locality where
the entire 4 KiloByte data is needed, using a 64 Byte block size
introduces only 1.5×−2× slowdown relative to the 4 KiloByte
design.

D. Hardware Area Comparison

Our RAW ORAM backend is extremely low area as shown
in Table II. The slightly larger control logic in RAW ORAM
dampens the area reduction from AES saving. Despite this,
RAW ORAM achieves an ≥ 2× reduction in BRAM usage
relative to Path ORAM. Note that Phantom [16] did not

TABLE II
PARAMETERS, PERFORMANCE AND AREA SUMMARY OF DIFFERENT
DESIGNS. ACCESS LATENCIES FOR PHANTOM ARE NORMALIZED TO

200 MHZ. ALL %S ARE RELATIVE TO THE XILINX XC7VX485T FPGA.
FOR PHANTOM AREA ESTIMATES, “∼ 235 + 344” BRAM MEANS 235

BRAM WAS REPORTED IN [16], PLUS 344 FOR TINY AES.

Design Phantom Path ORAM RAW ORAM

Parameters
Z, A 4, N/A 4, N/A 5, 5

Block size 4 KByte 64 Byte 64 Byte
of tiny aes cores 4 4 1

Performance (cycles)
Access 64 B ∼ 12000 270 276
Access 4 KB ∼ 12000 17280 17664

ORAM Backend Area
LUT (%) ∼ 6000 + 11460 18977 (7%) 14427 (5%)
FF (%) not reported 16442 (3%) 11359 (2%)

BRAM (%) ∼ 172 + 344 357 (34%) 129 (13%)

Total Area (Backend+Frontend)
LUT (%) ∼ 10000 + 11460 22775 (8%) 18381 (6%)
FF (%) not reported 18252 (3%) 13298 (2%)

BRAM (%) ∼ 235 + 344 371 (36%) 146 (14%)

implement encryption: we extrapolate their area by adding 4
tiny aes cores to their design and estimate a BRAM savings
of 4× relative to RAW ORAM.

E. Full System Evaluation
For completeness, we evaluate a complete ORAM controller

by connecting our RAW ORAM backend to the optimized
ORAM frontend proposed in [7]. For our L = 20, we add
2 PosMap ORAMs, to attain a small on-chip position map
(< 8 KB).

We take memory traces from two real SPEC06-int bench-
marks that have very different locality characteristics —
libquantum and sjeng — and feed them into the complete
frontend + backend design. (Due to optimizations in [7],
performance depends on program locality.) libquantum is
known to have good locality, and an average our ORAM
controller can access 64 Bytes in 490 cycles. sjeng has bad
(almost zero) locality and fetching a 64 Byte block requires
∼ 950 cycles (4.75 µs at 200 MHz).

VI. CONCLUSION

In this paper we have presented Tiny ORAM, a low-latency
and low-area hardware ORAM controller. We propose a novel
stash management algorithm to unlock low latency and RAW
ORAM to decrease area. We demonstrate a working prototype
on a Virtex-7 VC707 FPGA board which can return a 64 Byte
block in ∼ 1.4 µs and requires 5% of the FPGA chip’s logic,
including the cost of symmetric encryption.

Taken as a whole, our work is an example of how ideas
from circuit design and cryptographic protocol design, coupled
with careful engineering, can lead to significant efficiencies in
practice.

REFERENCES

[1] Open cores. http://opencores.org/.
[2] D. J. Bernstein and T. Lange. The new sha-3 software shootout. Cryp-

tology ePrint Archive, Report 2012/004, 2012. http://eprint.iacr.org/.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge
function family main document. Submission to NIST (Round 2), 3, 2009.

[4] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage:
Making oblivious RAM practical. Manuscript, http://dspace.mit.edu/
bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[5] A. Corporation. Protecting the fpga design from common threats.
Whitepaper.

[6] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious
RAM without random oracles. In TCC, 2011.

[7] C. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas.
Freecursive oram: [nearly] free recursion and integrity verification
for position-based oblivious ram. In Proceedings of the 20th Int’l
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015. Through private correspon-
dance with the authors, they have agreed to release a preprint at:
http://csg.csail.mit.edu/pubs/memos/Memo-513/memo513.pdf.

[8] C. Fletcher, M. van Dijk, and S. Devadas. Secure Proces-
sor Architecture for Encrypted Computation on Untrusted Pro-
grams. In Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing; an extended version is located
at http://csg.csail.mit.edu/pubs/memos/Memo508/memo508.pdf (Mas-
ter’s thesis), pages 3–8, Oct. 2012.

[9] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif.
Comprehensive evaluation of high-speed and medium-speed implemen-
tations of five sha-3 finalists using xilinx and altera fpgas. Cryptology
ePrint Archive, Report 2012/368, 2012. http://eprint.iacr.org/.

[10] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova,
and D. Wichs. Optimizing oram and using it efficiently for secure
computation. In Privacy Enhancing Technologies (PET), 2013.

[11] O. Goldreich. Towards a theory of software protection and simulation
on oblivious rams. In STOC, 1987.

[12] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. In J. ACM, 1996.

[13] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In SODA, 2012.

[14] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In Network
and Distributed System Security Symposium (NDSS), 2012.

[15] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-
based oblivious ram and a new balancing scheme. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 143–156. SIAM, 2012.

[16] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song. Phantom: Practical oblivious computation
in a secure processor. ACM CCS, 2013.

[17] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.
[18] R. Ostrovsky and V. Shoup. Private information storage (extended

abstract). In STOC, pages 294–303, 1997.
[19] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. V. Dijk, and

S. Devadas. Ring oram: Closing the gap between small and large client
storage oblivious ram. Cryptology ePrint Archive, Report 2014/997,
2014. http://eprint.iacr.org/.

[20] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas. Design space
exploration and optimization of path oblivious ram in secure processors.
In Proceedings of the Int’l Symposium on Computer Architecture, June
2013. Available at Cryptology ePrint Archive, Report 2013/76.

[21] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with
o((logn)3) worst-case cost. In Asiacrypt, pages 197–214, 2011.

[22] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud
storage. In Proc. of IEEE Symposium on Security and Privacy, 2013.

[23] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the ACM Computer and Communication Security
Conference, 2013.

[24] P. Williams and R. Sion. Single round access privacy on outsourced
storage. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 293–304, New York, NY,
USA, 2012. ACM.

[25] T. Wollinger, J. Guajardo, and C. Paar. Cryptography on fpgas: State of
the art implementations and attacks. ACM Transactions in Embedded
Computing Systems (TECS), 2004.

[26] Xilinx. Developing tamper resistant designs with xilinx virtex-6 and 7
series fpgas. Whitepaper.

[27] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure for
efficiently protecting information leakage on the address bus. In
Proceedings of the 11th ASPLOS, 2004.

http://opencores.org/
http://eprint.iacr.org/
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Opportunities and Challenges for ORAM on FPGA
	Contributions

	Background
	Basic Path ORAM
	Recursive Path ORAM

	Stash Management
	PushToLeaf With Bit Hacks
	Hardware Implementation and Pipelining
	Data-Independent Timing for Security

	Minimizing Design Area
	RO and RW Operations
	Performance and Area Characteristics
	Removing AES Bottlenecks With Path Write Predictability

	Evaluation
	Metrics and Baselines
	Implementation
	Access Latency Comparison
	Hardware Area Comparison
	Full System Evaluation

	Conclusion
	References

