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Abstract. We extend the FLUSH+RELOAD side-channel attack of Benger et al. to extract a significantly larger
number of bits of information per observed signature when using OpenSSL. This means that by observing only
25 signatures, we can recover secret keys of the secp256k1 curve, used in the Bitcoin protocol, with a probability
greater than 50 percent. This is an order of magnitude improvement over the previously best known result.
The new method of attack exploits two points: Unlike previous partial disclosure attacks we utilize all information
obtained and not just that in the least significant or most significant bits, this is enabled by a property of the “stan-
dard” curves choice of group order which enables extra bits of information to be extracted. Furthermore, whereas
previous works require direct information on ephemeral key bits, our attack utilizes the indirect information from
the wNAF double and add chain.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Sig-
nature Algorithm (DSA). It has been well known for over a decade that the randomization used within the
DSA/ECDSA algorithm makes it susceptible to side-channel attacks. In particular a small leakage of infor-
mation on the emphermal secret key utlized in each signature can be amortized over a number of signatures
to obtain the entire key.

Howgrave-Graham and Smart [12] showed that DSA is vulnerable to such partial ephemeral key expo-
sure and their work was made rigourous by Nguyen and Shparlinski [19], who also extended these results to
ECDSA [20]. More specifically, if, for a polynomially bounded number of random messages and ephemeral
keys about log1/2 q least significant bits (LSBs) are known, the secret key α can be recovered in polynomial
time. A similar result holds for a consecutive sequence of the most significant bits (MSBs), with a potential
need for an additional leaked bit due to the paucity of information encoded in the most significant bit of
the ephemeral key. When an arbitrary sequence of consecutive bits in the ephemeral key is known, about
twice as many bits are required. The attack works by constructing a lattice problem from the obtained digital
signatures and side-channel information, and then applying lattice reduction techniques such as LLL [14] or
BKZ [21] to solve said lattice problem.

Brumley and co-workers employ this lattice attack to recover ECDSA keys using leaked LSBs (in [4])
and leaked MSBs (in [5]). The former uses a cache side-channel to extract the leaked information and the
latter exploits a timing side-channel. In both attacks, a fixed number of bits from each signature is used and
signatures are used only if the values of these bits are all zero. Signatures in which the value of any of these
bits are one are ignored. Consequently, both attacks require more than 2,500 signatures to break a 160-bit
private key.

More recently, again using a cache based side-channel, Benger et al. [2] use the LSBs of the ephemeral
key for a wNAF (a.k.a. sliding window algorithm) multiplication technique. By combining a new side-
channel called the FLUSH+RELOAD side-channel [24, 25], and a more precise lattice attack strategy, which
utilizes all of the leaked LSBs from every signature, Benger et al. are able to significantly reduces the number



of signatures required. In particular they report that the full secret key of a 256-bit system can be recovered
with about 200 signatures in a reasonable length of time, and with a reasonable probability of success.

In this work we extend the FLUSH+RELOAD technique of Benger et al. to reduce the number of required
signatures by an order of magnitude. Our methodology abandons the concentration on extraction of bits in
just the MSB and LSB positions, and instead focuses on all the information leaked by all the bits of the
ephemeral key. In particular we exploit a property of the standardized elliptic curves as used in OpenSSL.
Our method, just as in [2], applies the FLUSH+RELOAD side-channel technique to the wNAF elliptic curve
point multiplication algorithm in OpenSSL.

ECDSA Using Standard Elliptic Curves: The domain parameters for ECDSA are an elliptic curve E over
a field F, and a point G on E, of order q. Given a hash function h, the ECDSA signature of a message m,
with a private key 0 < α < q and public key Q = αG, is computed by:

– Selecting a random ephemeral key 0 < k < q
– Computing r = x(kG) (mod q), the X coordinate of kG.
– Computing s = k−1(h(m)+α · r) (mod q).

The process is repeated if either r = 0 or s = 0. The pair (r,s) is the signature.
To increase interoperability, standard bodies have published several sets of domain parameters for EC-

DSA [1, 7, 18]. The choice of moduli for the fields used in these standard curves is partly motivated by
efficiency arguments. For example, all of the moduli in the curves recommended by FIPS [18] are gener-
alised Mersenne primes [22] and many of them are pseudo-Mersenne primes [9]. This choice of moduli
facilitates efficient modular arithmetic by avoiding a division operation which may otherwise be required.

A consequence of using pseudo-Mersenne primes as moduli is that, due to Hasse’s Theorem, not only
is the finite field field order close to a power of two, but so is the elliptic curve group order. That is, q
can be expressed as 2n + ε , where |ε| < 2p for some p ≈ n/2. We demonstrate that such curves are more
susceptible to partial disclosure of ephemeral keys than was hitherto known. This property increases the
amount of information that can be used from partial disclosure and allows for a more effective attack on
ECDSA.

Our Contribution: We demonstrate that the above property of the standardized curves allows the utiliza-
tion of far more leaked information, in particular some arbitrary sequences of consecutive leaked bits. In a
nutshell, adding or subtracting q to or from an unknown number is unlikely to change any bits in positions
between p+ 1 and n. Based on this observation we are able to use (for wNAF multiplication algorithms)
all the information in consecutive bit sequences in positions above p+ 1. Since the standard curves utilize
a small value of p, this provides a large amount of leaked information per signature. (Assuming one can
extract the sequence of additions and doubles in an algorithm.) The same property also implies that tech-
niques for mitigating side-channel attack, such as the scalar blinding suggested in [4,16], do not protect bits
in positions above p+1.

Prior works deal with the case of partial disclosure of consecutive sequences of bits of the ephemeral
key. Our work offers two improvements: It demonstrates how to use partial information leaked from the
double and add chains of the wNAF scalar multiplication algorithm [11, 17]. In most cases, the double and
add chain does not provide direct information on the value of bits. It only identifies sequences of repeating
bits without identifying the value of these bits. We show how to use this information to construct a lattice
attack on the private key. Secondly, our attack does not depend on the leaked bits being consecutive. We use
information leaked through the double and add chain even though it is spread out along the ephemeral key.
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By using more leaked information and exploiting the above property of the elliptic curves, our attack
only requires a handful of leaked signatures to fully break the private key. Our experiments show that the
information leaked by perfect double and add chains of only 13 signatures is sufficient for recovering the
256 bit private key of the secp256k1 curve used in the Bitcoin protocol, with probability greater than 50
percent. For the 521 bit curve secp521r1, 40 signatures are required. We further demonstrate that for the
secp256k1 case observing 25 signatures is highly likely to recover 13 perfect double and add chains. Hence,
by observing 25 Bitcoin transactions using the same key, an attacker can expect to recover the private key.
For most of the paper we discuss the case of perfect side channels which result in perfect double and add
chains, then in Section 7 we show how this assumption can be removed in the context of a real FLUSH+
RELOAD attack.

2 Background

In this section we discuss three basic procedures we will be referring to throughout. Namely the FLU-
SH+RELOAD side-channel attack technique, wNAF scalar multiplication method and the use of lattices to
extract secret keys from triples. The side-channel information we obtain from executing the wNAF algorithm
produces instances of the Hidden Number Problem (HNP) [3]. Since the HNP is traditionally studied via
lattice reduction it is therefore not surprising that we are led to lattice reduction in our analysis.

2.1 The FLUSH+RELOAD Side-Channel Attack Technique

FLUSH+RELOAD is a recently discovered cache side-channel attack [24,25]. The attack exploits a weakness
in the Intel implementation of the popular X86 architecture, which allows a spy program to monitor other
programs’ read or execute access to shared regions of memory. The spy program only requires read access
to the monitored memory.

Unlike most cache side-channel attacks, FLUSH+RELOAD uses the Last-Level Cache (LLC), which is
the cache level closest to the memory. The LLC is shared by the execution cores in the processor, allowing
the attack to operate when the spy and victim processes execute on different cores. Furthermore, as most vir-
tual machine hypervisors (VMMs) actively share memory between co-resident virtual machines, the attack
is applicable to virtualized environment and works cross-VM.

Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time← current time()
tmp← read(adrs)
readTime← current time()-time
return readTime < threshold

end

Algorithm 1: FLUSH+RELOAD Algorithm

To monitor access to memory, the spy repeatedly evicts the contents of the monitored memory from the
LLC, waits for some time and then measures the time to read the contents of the monitored memory. See
Algorithm 1 for a pseudo-code of the attack. FLUSH+RELOAD uses the X86 clflush instruction to evict
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contents from the cache. To measure time the spy uses the rdtsc instruction which returns the time since
processor reset measured in processor cycles.

As reading from the LLC is much faster than reading from memory, the spy can differentiate between
these two cases. If, following the wait, the contents of memory is retrieved from the cache, it indicates that
another process has accessed the memory. Thus, by measuring the time to read the contents of memory, the
spy can decide whether the victim has accessed the monitored memory since the last time it was evicted.

To implement the attack, the spy needs to share the monitored memory with the victim. For attacks
occurring within the same machine, the spy can map files used by the victim into its own address space.
Examples of these files include the victim program file, shared libraries or data files that the victim accesses.
As all mapped copies of files are shared, this gives the spy access to memory pages accessed by the victim.
In virtualized environments, the spy does not have access to the victim’s files. The spy can, however, map
copies of the victim files to its own address space, and rely on the VMM to merge the two copies using
page de-duplication [13, 23]. It should be pointed that, as the LLC is physically tagged, the virtual address
in which the spy maps the files is irrelevant for the attack. Hence, FLUSH+RELOAD is oblivious to address
space layout randomization [15].

This sharing only works when the victim does not make private modifications to the contents of the
shared pages. Consequently, all published FLUSH+RELOAD attacks target executable code pages, monitor-
ing the times the victim executes specific code. The spy typically divides time into fixed width time slots.
In each time slot the spy monitors a few memory locations and records the times that these locations were
accessed by the victim. By reconstructing a trace of victim access, the spy is able to infer the data the victim
is operating on. Prior works used this attack to recover the private key of GnuPG RSA [25] as well as for
recovering the ephemeral key used in OpenSSL ECDSA signatures either completely, for curves over binary
fields [24], or partially, for curves over prime fields [2].

2.2 The wNAF Scalar Multiplication Method

Several algorithms for computing the scalar multiplication kG have been proposed. One of the suggested
methods is to use the windowed nonadjacent form (wNAF) representation of the scalar k, see [11]. In wNAF
a number is represented by a sequence of digits ki. The value of a digit ki is either 0 or an odd number
−2w < ki < 2w, with each pair of non-zero digits separated by at least w zero digits. The value of k can be
calculated from its wNAF representation using k = ∑2i ·ki. See Algorithm 2 for a method to convert a scalar
k into its wNAF representation. We use | · |x to denote the reduction modulo x into the range [−x/2, . . . ,x/2).

Input: Scalar k and window width w
Output: k in wNAF: k0, . . . ,k`−1
begin

`← 0
while k > 0 do

if k mod 2 = 1 then
k`← |k|2w+1

k← k− k`
else

k`← 0
end
k← k/2
`← `+1

end
end

Algorithm 2: Conversion to Non-Adjacent Form
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Let k` be the value of the variable k at the start of the `th iteration in Algorithm 2. From the algorithm, it
is clear that

k` =
{

0 k` is even
|k`|2w+1 k` is odd

(1)

Furthermore:
k = 2` · k`+∑

i<`

2i · ki (2)

Let m and m + l be the position of two consecutive non-zero digits of the wNAF representation of the
ephemeral key k. That is, km,km+l 6= 0 and km+i = 0 for all 0 < i < l. From (2) we obtain km = km−2l ·km+l .

One consequence of subtracting negative wNAF components is that the wNAF representation may be
one digit longer than the binary representation of the number. For n-digits binary numbers Möller [17]
suggests using k` ← bkc2w when ` = n−w− 1 and k is odd, where b·cx denotes the reduction modulo x
into the interval [0, . . . ,x). This avoids extending the wNAF representation in half the cases at the cost of
weakening the non-adjacency property of the representation.

2.3 Lattice background

Before we describe how to get the necessary information from the side-channel attack, we recall from
previous works what kind of information we are looking for. As in previous works [2, 4, 5, 12, 19, 20], the
side-channel information is used to construct a lattice basis and the secret key is then retrieved by solving
a lattice problem on this lattice. Generally, in previous works the authors somehow derive triples (ti,ui,zi)
from the side-channel information such that

vi = |α · ti−ui|q < q/2zi+1. (3)

The use of a different zi per equation was introduced in [2]. If we take d such triples we can construct the
following lattice basis

B =


2z1+1 ·q

. . .
2zd+1 ·q

2z1+1 · t1 . . . 2zd+1 · td 1

 ,

whose rows generate the lattice that we use to retrieve the secret key. Now consider the vector u = (2z1+1 ·
u1, . . . ,2zd+1 · ud ,0), which consists of known quantities. Equation (3) implies the existence of integers
(λ1, . . . ,λd) such that for the vectors x = (λ1, . . . ,λd ,α) and y = (2z1+1 · v1, . . . ,2zd+1 · vd ,α) we have

x ·B−u = y.

Again using Equation (3), we see that the 2-norm of the vector y is at most
√

d ·q2 +α2 ≈
√

d +1 · q.
Because the lattice determinant of L(B) is 2d+∑zi · qd , the lattice vector x ·B is heuristically the closest
lattice vector to u. By solving the Closest Vector Problem (CVP) on input of the basis B and the target
vector u, we obtain x and hence the secret key α .

There are two important methods of solving the closest vector problem: using an exact CVP-solver or us-
ing the heuristic embedding technique to convert it to a Shortest Vector Problem (SVP). Exact CVP-solvers
require exponential time in the lattice rank (d +1 in our case), whereas the SVP instance that follows from
the embedding technique can sometimes be solved using approximation methods that run in polynomial

5



time. Because the ranks of the lattices in this work become quite high when attacking a 521 bit key, we
mostly focus on using the embedding technique and solving the associated SVP instance in this case.

The embedding technique transforms the previously described basis B and target vector u to a new basis
B′, resulting in a new lattice of dimension one higher than that generated by B:

B′ =
(

B 0
u′ q

)
,

where u′ = (u,0). Following the same reasoning as above, we can set x′ = (x,α,−1) and obtain the lattice
vector y′= x′ ·B′=(y,−q). The 2-norm of y′ is upper bounded by approximately

√
d +2 ·q, whereas this lat-

tice has determinant 2d+∑zi ·q(d+1). Note, however, that this lattice also contains the vector(−t1, . . . ,−td ,q,0)·
B′ = (0, . . . ,0,q,0), which will most likely be the shortest vector of the lattice. Still, our approximation al-
gorithms for SVP work on bases and it is obvious to see that any basis of the same lattice must contain a
vector ending in±q. Thus, it is heuristically likely that the resulting basis contains the short vector y′, which
reveals α .

To summarize, we turn the side-channel information into a lattice and claim that, heuristically, finding
the secret key is equivalent to solving a CVP instance. Then, we claim that, again heuristically, solving this
CVP instance is equivalent to solving an SVP instance using the embedding technique. In Section 6 we will
apply the attack to simulated data to see whether these heuristics hold up.

3 Improving the Past Results

We first, as a warm up, improve the results on arbitrary sequences of consecutive bits presented in [20]. Our
improvement is based on two assumptions:

1. The value q is close to a power of two. More precisely, q = 2n + ε where |ε| < 2p for some p ≈ n/2.
This assumption holds for many of the standard curves.

2. If a sequence of bits leaks, then the least significant bit in the leaked sequence is in position m > p.

The second assumption implies that we obtain some leakage information of the form

k = a ·2m+l +b ·2m + c

where 0 ≤ a < 2n−m−l,0 ≤ c < 2m are unknown and 0 ≤ b < 2l is the leaked information for some known
values of l and m. Rearranging the signing equation in the ECDSA algorithm for calculating s gives us

k = α · r · s−1 +h · s−1 (mod q) (4)

Or, equivalently,(
2n−l−m · (k−b ·2m)

)
−2n−l−1 =

(
α · r · s−1 ·2n−l−m

)
+
(
(h · s−1−b ·2m) ·2n−l−m

)
−2n−l−1 (mod q)

(5)
We now define the values

t = br · s−1 ·2n−l−mcq
u = b2n−l−1− (h · s−1−b ·2m) ·2n−l−mcq
v = |α · t−u|q
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By equation (5) we then obtain,

|v|=
∣∣ |2n−l−m · (k−b2m)−2n−l−1|q

∣∣= ∣∣ |2n−l−m · (a ·2m+l + c)−2n−l−1|q
∣∣

=
∣∣ |a ·2n + c ·2n−l−m−2n−l−1|q

∣∣= ∣∣ |a ·q−a · ε + c ·2n−l−m−2n−l−1|q
∣∣

=
∣∣ |(c−2m−1) ·2n−l−m−a · ε|q

∣∣
≤
∣∣ |(c−2m−1) ·2n−l−m|q

∣∣+ ∣∣| a · ε|q∣∣≤ 2n−l+1 +2n−l−m+p ≤ 2n−l+2 ≈ q/2l−2.

Thus (t,u, l−3) is one of our triples described in Subsection 2.3. Furthermore, if 2p < c < 2m−2p, as is the
case when leaking steps in the wNAF algorithm, we find v ≤ 2n−l−1 ≈ q/2l−1, thus in this case we obtain
the slightly better triple (t,u, l−2). The rest follows using the same method of Nguyen and Shparlinski [19].
These results demonstrate a potential problem with curves whose group order is close to a power of two,
making them more vulnerable than other curves to partially exposed ephemeral keys.

Recall that when given an arbitrary sequence of l consecutive leaked bits Nguyen and Shparlinski [19,
Section 5.1] obtain a similar quantity v for DSA where

|v| ≤ q/2l/2−1,

which they extend to ECDSA [20]. Note that this is for the general case, i.e., q can be of any form and the
leaked bits can be in any position. Thus, under our two assumptions we get a factor two improvement on the
number of leaked bits.

Having an order close to a power of two also negates the protection provided by scalar blinding [4, 16].
The method suggested by these works is to compute (k+ h · q+ h̄)G− h̄G where h and h̄ are small (e.g.
32-bit) random numbers. As |ε| is significantly smaller than q and as (k+h ·q+ h̄) = h2n +(k+h · ε + h̄),
the blog(h)cMSB bits of (k+hq+ h̄) are exactly h for almost any value of k, allowing an attacker to remove
a significant part of the blinding. Furthermore, even if the leak does not expose h, all the bits in positions
p+ blog(h)c to n−1 are the same in both k and in (k+h ·q+ h̄). Consequently, a leak of these bits in the
blinded form also implies a leak of bits in the unblinded form.

Brumley and Hakala [4] also suggest that the requirement of h̄ being a small number can be relaxed and
that a similar performance can be achieved if h̄ has a low Hamming weight. This form of blinding masks
some of the high bits of k; However, for a low Hamming weight, the number of masked bits will be low, and
a leak of bits in the blinded form still translates to a leak in the unblinded form.

We next show how to combine this analysis with the information obtained from a FLUSH+RELOAD

attack against the wNAF algorithm.

4 Using the wNAF Information

In this section we extend the the technique described above to the double and add chains extracted from the
wNAF multiplication as implemented in OpenSSL. The main issue addressed in this section is that while
the double and add chain for the wNAF algorithm identifies groups of repeating bits, it does not provide
information on the value of these bits. Thus, the technique in Section 3 does not apply directly to the wNAF
double and add chains.

In this section, we assume a perfect side-channel, i.e. a side-channel which can produce the exact double
and add chain used by a point multiplication algorithm without any errors. We discuss the practical issues
of handling real-life side-channels in Section 7.

As described in [2], the OpenSSL implementation departs slightly from the descriptions of ECDSA in
Section 1. As a countermeasure to the Brumley and Tuveri remote timing attack [5], OpenSSL adds q or 2 ·q
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to the randomly chosen ephemeral key, ensuring that k is n+1 bits long. While the attack is only applicable
to curves defined over binary fields, the countermeasure is applied to all curves. Consequently, our analysis
assumes that 2n ≤ k < 2n+1.

Given a double and add chain, the positions of the add operations in the chain correspond to the non-zero
digits in the wNAF representation of the ephemeral key k. Let m and m+ l be the position of two consecutive
add operations in the chain such that p−w+2 < m < n− l. Set the following values:

a =
km+l−1

2
c = ∑

i<m
2i · ki +2m · bkmc2w = k−2m · km +2m · bkmc2w

b =
k−a ·2m+l+1− c

2m+w =
2m · km−2m+l · km+l +2m+l−2m · bkmc2w

2m+w

=
2m+l +2m · km−2m · bkmc2w

2m+w = 2l−w +(km−bkmc2w) ·2−w

By equation (1), km = |km|2w+1 , hence, km−bkmc2w is either 0 or −2w. Thus, the value of b is either 2l−w

or 2l−w − 1 and, consequently, k can be written as k = a · 2m+l+1 + b · 2m+w + c, where 0 ≤ c < 2m+w,
0≤ a < 2n−m−l and b is either 2l−w or 2l−w−1. Alternatively,

k+2m+w = a ·2m+l+1 +2m+l + c′ (6)

where 0≤ c′ < 2m+w+1. On the other hand, by equation (4),

2n−m−l−1 · (k+2m+w−2m+l)−2n+w−l−1 = α · r · s−1 ·2n−m−l−1

+(h · s−1 +2m+w−2m+l) ·2n−m−l−1−2n+w−l−1 (7)

Following the method in Section 3, we now define the values:

t = br · s−1 ·2n−m−l−1cq,
u = b2n+w−l−1− (h · s−1 +2m+w−2m+l) ·2n−m−l−1cq,
v = |α · t−u|q.

Using the same method as above, for m > p−w+2 by equation (4) we obtain,

|v|=
∣∣ |2n−m−l−1(k+2m+w−2m+l)−2n+w−l−1|q

∣∣= ∣∣ |2n−l−m−1(a2m+l+1 + c′)−2n+w−l−1|q
∣∣

=
∣∣ |a2n + c′2n−l−m−1−2n+w−l−1|q

∣∣= ∣∣ |aq−aε + c′2n−l−m−1−2n+w−l−1|q
∣∣

=
∣∣ |(c′−2m+w)2n−m−l−1−aε|q

∣∣
≤
∣∣ |(c′−2m+w)2n−m−l−1|q

∣∣+ ∣∣ |aε|q
∣∣≤ 2n−l+w−1 +2n−m−l+p ≤ 2n−l+w ≈ q/2l−w

Note that if m > p+1, then the ephemeral key bits at position m and m−1 are different, and consequently,
2p+1 < c′ < 2m+w+1− 2p+1 and, therefore, 0 < c′+ 2 · ε < 2m+w+1. Hence, if m > p+ 1 we obtain the
slightly stronger inequality |v| ≤ q/2l−w+1. In terms of the lattice attack outlined in Subsection 2.3, we have
that |v| ≤ q/2z+1 for z equal to l−w− 1 or l−w. This means we have a triple (t,u,z) that we can use to
construct the lattice.

8



5 Heuristic Analysis

Now we know how to derive our triples ti, ui and zi that are used to construct the lattice. The next obvious
question is: How many do we need before we can retrieve the private key α? Because the lattice attack relies
on several heuristics, it is hard to give a definitive analysis. However, we will give heuristic reasons here,
similar to those for past results.

Each triple (ti,ui,zi) gives us zi bits of information. If this triple comes from a pair (m, l) such that
p+1 < m < n− l, then zi = l−w. Roughly speaking, we have that in half of the cases l = w+1, in a quarter
of the cases l = w+ 2 and so on. Thus, on average we have that l = w+∑i i/2i = w+ 2. On average we
lose (w+ 2)/2 bits before the first usable triple and (w+ 2)/2 after the last usable triple, which leaves us
with n−1− (p+2)− (w+2) bits where our triples can be. The average number of triples is now given by
(n− p−3− (w+2))/(w+2) and each of these triples gives us l−w = 2 bits on average. Combining this
yields 2 · (n− p−3− (w+2))/(w+2) = 2 · (n− p−3)/(w+2)−2 bits per signature. For the secp256k1
curve we have that n = 256, p = 129 and w = 3, leading to 47.6 bits per signature on average. Our data
obtained from perfect side-channels associated to 1001 signatures gives us an average of 47.6 with a 95%
confidence interval of ±0.2664. For the secp521r1 curve, we have that n = 521, p = 259 and w = 4, which
suggests 84.33 bits per signature on average. The data average here is 84.1658 with a 95% confidence
interval of ±0.3825. See also the Z = 1 cases of Figures 1 and 2, which show the distribution of the bits
leaked per signature in the 256-bit and 521-bit cases, respectively.

This formula suggests that on average, six signatures would be enough to break a 256-bit key (assuming
a perfect side channel), since 47.6 · 6 = 285.6 > 256. However, in our preliminary experiments the attack
did not succeed once when using six or even seven signatures. Even eight or nine signatures gave a minimal
success probability. This indicates that something is wrong with the heuristic. In general there are two
possible reasons for failure. Either the lattice problem has the correct solution but it was too hard to solve,
or the solution to the lattice problem does not correspond to the private key α . We will now examine these
two possibilities and how to deal with them.

5.1 Hardness of the lattice problem

Generally, the lattice problem becomes easier when adding more information to the lattice, but it also be-
comes harder as the rank increases. Since each triple adds information but also increases the rank of the
lattice, it is not always clear whether adding more triples will solve the problem or make it worse. Each
triple contributes zi bits of information, so we would always prefer triples with a higher zi value. Therefore,
we set a bound Z ≥ 1 and only keep those triples that have zi ≥ Z. However, this decreases the total number
of bits of information we obtain per signature. If Z is small enough, then roughly speaking we only keep a
fraction 21−Z of the triples, but now each triple contributes Z + 1 bits on average. Hence, the new formula
of bits per signature becomes

21−Z · (Z +1) · ((n− p−3)/(w+2)−1).

Our data reflects this formula as well as can be seen in Figures 1 and 2 for the 256-bit and the 521-bit cases,
respectively. In our experiments we will set an additional bound d on the number of triples we use in total,
which limits the lattice rank to d +1. To this end, we sort the triples by zi and then pick the first d triples to
construct the lattice. We adopt this approach for our experiments and the results can be found in Section 6.
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5.2 Incorrect solutions

The analysis of Nguyen and Shparlinski [20] requires that the ti values in the triples are taken uniformly
and independently from a distribution that satisfies some conditions. However, it is easy to see that when
two triples are taken from the same signature, the values for the ti = br · s−1 ·2n−mi−li−1cq and t j = br · s−1 ·
2n−m j−l j−1cq are not even independent, as they differ mod q by a factor that is a power of 2 less than 2n.

Recall from Sections 2.3 and 4 how the triples are used and created, respectively. Consider a triple
(ti j,ui j,zi j) corresponding to a signature (ri,si,hi). The corresponding vi j = |α · ti j−ui j|q satisfies

|vi j|=
∣∣|α · (ri · s−1

i ·2
n−m j−l j−1)−2n+w−l j−1 +(hi · s−1

i +2m j+w−2m j+l) ·2n−m j−l j−1|q
∣∣≤ q/2zi j+1,

which is equivalent to

|vi j|=
∣∣|(α · ri +hi) · s−1

i ·2
n−m j−l j−1−2n−1|q

∣∣≤ q/2zi j+1,

where p+1 < m j < n− l j and zi j = l−w. Now (α · ri+hi) · s−1
i = ki mod q and we know that the previous

statement holds due to the structure of ki, specifically due to its bits m j +w, . . . ,m j + l j−1 repeating, with
bit m j + l j being different than the preceding bit. But the map x 7→ (x · ri +hi) · s−1

i is a bijection mod q, and
hence for each i there will be many numbers X such that for all j

|vi j(X)|=
∣∣|(X · ri +hi) · s−1

i ·2
n−m j−l j−1−2n−1|q

∣∣≤ q/2zi j+1.

Let Si = {X : |vi j(X)| ≤ q/2zi j+1 for all j}. If we now have that there exists an X ∈
⋂

i Si such that

X2 +∑
i, j
(2zi j · vi j(X))2 < α

2 +∑
i, j
(2zi j · vi j(α))2,

then it is very unlikely that the lattice algorithm will find α , because X corresponds to a better solution to the
lattice problem. Note that this problem arises when fewer signatures are used, because this leads to fewer
distinct values for (ri,si,hi) and hence fewer sets Si that need to intersect. This suggests that increasing the
number of signatures could increase the success probability.

Assuming that the Si are random, we want to determine what is the probability that their intersection is
non-empty. First we consider the size of the Si. Recall that Si consists of all X mod q such that vi j(X) has ‘the
same structure as ki’. This means that for each triple specified by m j and l j, the bits m j +w, . . . ,m j + l j−1
repeat, and bit m j + l j is the opposite of the preceding bits. There are approximately 2n−(l j−w+1)+1 numbers
modq that have this structure. Let fi be the number of triples of signature i and gi j = (l j−w+ 1) be the
number of bits fixed by triple j of signature i. Then, because the triples do not overlap and because vi j(.) is
a bijection, we have that

log2(|Si|) = n−
fi

∑
j=1

(1−gi j) = n− fi +
fi

∑
j=1

gi j.

Let si = |Si| and assume that the Si are chosen randomly and independently from all the subsets of integers
in the range [0, . . . ,N−1] (of size si), where N = 2n. Consider the following probability

pi = P(0 ∈ Si) = si/N,

since Si is randomly chosen. Now, because the Si are also chosen independently, we have

P

(
0 ∈

⋂
i

Si

)
= ∏

i
pi.
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Finally, since this argument holds for any j ∈ [0, . . . ,N−1], we can apply the union bound to obtain

pfail = P

(⋃
j

(
j ∈
⋂

i

Si

))
≤∑

j
P

(
0 ∈

⋂
i

Si

)
= N ·∏

i
pi. (8)

Recall that each signature has fi = 21−Z · ((n− p− 3)/(w+ 2)− 1) triples on average and each triple
contributes Z +1 bits on average, which means gi j = Z +2 on average. If we plug in the numbers n = 256,
p = 129, w = 3 and Z = 3, we get that fi ≈ 6, gi j = 5 and hence pi ≈ 2−6·(5−1) ≈ 2−24 if we assume an
average number of triples and bits in each signature. This in turn gives us an upper bound of pfail ≤ N/224·k.
If k ≥ 11, this upper bound is less than one, so this clearly suggests that from about eleven signatures and
up, we should succeed with some probability, which is indeed the case from our experiments.

Repeating this for n = 521, p = 259, w = 4 and Z = 4, we obtain fi ≈ 5, gi j = 6 and hence pi ≈
2−5·(6−1) ≈ 2−25. Consequently, pfail ≤ N/225·k, which is less than one when k ≥ 21. However, in our ex-
periments we require at least 30 signatures to obtain the secret key with some probability. Thus the above
analysis is only approximate as the secret key length increases.
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Fig. 1: Number of signatures against bits per signature in
the 256 bit case.
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Fig. 2: Number of signatures against bits per signature in
the 521 bit case.

6 Results With a Perfect Side-Channel

Subsection 2.3 outlined our (heuristic) approach to obtain the secret key from a number of triples (ti,ui,zi)
using lattices and Section 4 outlined how to generate these triples from the side-channel information. In this
section we will look at some experimental results to see if our heuristic assumptions are justified.

As per Section 5, we used the following approach for our experiments. First, we fix a number of signa-
tures s, a lattice rank d and a bound Z. We then take s signatures at random from our data set and derive all
triples such that zi ≥ Z, sorting them such that the zi are in descending order. If we have more than d triples,
we only take the first d to construct the lattice. Finally we attempt to solve the lattice problem and note the
result. All executions were performed in single thread on an Intel Core i7-3770S CPU running at 3.10 GHz.

When solving the CVP instances there are three possible outcomes. We obtain either no solution, the
private key or a wrong solution. No solution means that the lattice problem was too hard for the algorithm
and constraints we used, but spending more time and using stronger algorithms might still solve it. When a
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‘wrong’ solution is obtained, this means that our heuristics failed: the solution vector was not unique, in the
sense that there were other lattice vectors within the expected distance from our target vector.

When solving the SVP instance there are only two outcomes. Either we obtain the private key or not.
However, in this case it is not as clear whether a wrong solution means that there were other solutions due
to the additional heuristics involved. Full details of our experimental data is given in the Appendix.

6.1 256 bit key

For the 256 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP instances, as well as
to pre-process the CVP instances. To solve the CVP, we applied Schnorr-Euchner enumeration [21] using
linear pruning [10] and limiting the number of enumerated nodes to 229.

The CVP approach seems the best, as the lattice rank (d+1) remains quite small. We restrict our triples
to Z = 3 to keep the rank small, but a smaller Z would not improve our results much. See the appendix for
details. We observed that failures are mostly caused by ‘wrong’ solutions in this case, rather than the lattice
problem being too hard. In all cases we found that using 75 triples gave the best results. Table 1 lists the
runtimes and success probabilities of the lattice part of the attack for varying s. The results are graphically
presented in Figures 3 and 4.

s Time (s) psucc (%)
10 2.25 7.0
11 4.66 25.0
12 7.68 38.5
13 11.30 54.0

Table 1: CVP results for 75 triples taken from s signatures with a 256-bit key (Z = 3)

 0

 10

 20

 30

 40

 50

 60

 10  11  12  13

S
u
c
c
e
ss

 p
ro

b
a
b
il
it

y
 (

%
)

Signatures

SVP
CVP

Fig. 3: Success probability per number of signatures against
a 256 bit key

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  11  12  13

1
0

0
 x

 T
im

e
 /

 p
ro

b

Signatures

SVP
CVP

Fig. 4: Expected running time per number of signatures
against a 256 bit key

6.2 521 bit key

For the 521 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP instances. Due to the
higher lattice ranks in this case, solving the CVP instances proved much less efficient, even when restricting
the triples to Z = 4.
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With 30 signatures we get a small probability of success in the lattice attack whereas with 40 signatures
we can obtain the secret key in more than half of the cases. It should be noted that as the number of signatures
increases, the choice of d becomes less important, because the number of triples with more information
increases. See Table 2 for details and Figures 5 and 6 for a graphical representation.

s d Time (s) psucc (%)
30 130 50.10 4.0
31 130 48.50 7.5
32 150 70.77 9.5
33 150 70.54 13.5
34 140 62.83 16.0
35 135 55.33 24.5
36 145 62.32 29.0
37 155 69.14 34.5
38 145 61.31 42.5
39 145 57.08 47.5
40 130 47.73 53.0

Table 2: SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)
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7 Results in a Real-Life Attack

So far our discussion was based on the assumption of a perfect side-channel. That is, we assumed that the
double-and-add chains are recovered without any errors. Perfect side-channels are, however, very rare. In
this section we extend the results to the actual side-channel exposed by the FLUSH+RELOAD technique.

The attack was carried on an HP Elite 8300, running CentOS 6.5. The victim process runs OpenSSL
1.0.1f, compiled to include debugging symbols. These symbols are not used at run-time and do not affect
the performance of OpenSSL. We use them because they assist us in finding the addresses to probe by
avoiding reverse engineering [8].

The spy uses a time slot of 1,200 cycles (0.375µs). In each time slot it probes the memory lines con-
taining the last field multiplication within the group add and double functions. (ec GFp simple add and
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ec GFp simple dbl, respectively.) Memory lines that contain function calls are accessed both before and
after the call, reducing the chance of a spy missing the access due to overlap with the probe. Monitoring
code close to the end of the function eliminates false positives due to speculative execution. See Yarom and
Falkner [25] for a discussion of overlaps and speculative execution.
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Fig. 7: FLUSH+RELOAD spy output. Vertical bars indicate time-slot boundaries; ’A’ and ’D’ are probes for OpenSSL access to add
and double; dashes indicate missed time-slots.

Figure 7 shows an example of the output of the spy when OpenSSL signs using secp256k1. The dou-
ble and three addition operations at the beginning of the captured sequence are the calculation of the pre-
computed wNAF digits. Note the repeated capture of the double and add operations due to monitoring a
memory line that contains a function call. The actual wNAF multiplication starts closer to the end of the
line, with 7 double operations followed by a group addition.

In this example, the attack captures most of the double and add chain. It does, however, miss a few time-
slots and consequently a few group operations in the chain. The spy recognises missed time-slots by noting
inexplicable gaps in the processor cycle counter. As we do not know which operations are missed, we lose
the bit positions of the operations that precede the missed time-slots. We believe that the missed time-slots
are due to system activity which suspends the spy.

Occasionally OpenSSL suspends the calculation of the scalar multiplication to perform memory man-
agement functions. These suspends confuse our spy program, which assumes that the scalar multiplication
terminated. This, in turn, results in a short capture, which cannot be used for the lattice attack.

To test prevalence of capture errors we captured 1,000 scalar multiplications and compared the capture
results to the ground truth. 342 of these captures contained missed time-slots. Another 77 captures contains
less than 250 group operations and are, therefore, too short. Of the remaining 581 captures, 577 are perfect
while only four contain errors that we could not easily filter out.

Recall, from Section 6, that 13 perfectly captured signatures are sufficient for breaking the key of a 256
bits curve with over 50% probability. An attacker using FLUSH+RELOAD to capture 25 signatures can thus
expect to capture 14 that contain no obvious errors. With less than 1% probability that each of these 14
captures contains an error, the probability that more than one of these captures contains an error is also less
than 1%. Hence, the attacker only needs to test all the combination of choosing 13 captures out of these 14
to achieve a 50% probability of breaking the signing key.

Several optimisations can be used to improve the figure of 25 signatures. Some missed slots can be
recovered and the spy can be improved to correct short captures. Nevertheless, it should be noted that this
figure is still an order of magnitude than the previously best known result of 200 signatures [2].
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A Experimental results

SVP CVP
s d Time (s) psucc (%) Time (s) psucc (%)

10 60 1.47 0.0 1.56 0.5
10 65 1.42 1.0 1.90 2.5
10 70 1.44 1.5 2.45 4.0
10 75 1.50 1.5 2.25 7.0
11 60 1.28 0.0 1.63 0.5
11 65 1.68 5.0 2.35 6.5
11 70 1.86 2.5 3.15 19.0
11 75 2.05 7.5 4.66 25.0
11 80 2.12 6.0
12 60 1.27 2.0 1.69 7.0
12 65 1.71 2.5 2.45 10.5
12 70 2.20 7.5 3.99 29.5
12 75 2.57 10.5 7.68 38.5
12 80 2.90 13.0
12 85 3.12 8.5
12 90 3.21 15.5
13 60 1.30 3.5 1.92 8.5
13 65 1.77 6.0 2.79 25.5
13 70 2.39 11.0 4.48 46.5
13 75 3.16 19.0 11.30 54.0
13 80 3.67 18.5
13 85 3.81 21.5
13 90 4.37 25.0

Table 3: Results for d triples taken from s signatures with a 256-bit key (Z = 3)
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s d Time (s) psucc (%) s d Time (s) psucc (%)
30 130 50.10 4.0 31 130 48.50 7.5
30 135 58.80 3.0 31 135 59.91 3.5
30 140 66.65 3.5 31 140 67.35 6.0
30 145 69.68 2.5 31 145 69.96 5.5
32 130 50.15 6.5 33 130 49.70 8.0
32 135 58.07 6.5 33 135 56.52 11.5
32 140 62.55 4.0 33 140 60.31 11.5
32 145 67.46 5.0 33 145 66.39 8.5
32 150 70.77 9.5 33 150 70.54 13.5
34 130 50.00 15.5 33 155 75.49 8.5
34 135 55.93 10.5 35 130 49.76 12.0
34 140 62.83 16.0 35 135 55.33 24.5
34 145 64.41 14.0 35 140 59.50 15.5
34 150 70.50 16.0 35 145 65.59 19.5
34 155 71.07 11.5 35 150 66.93 24.0
36 130 48.71 24.5 35 155 69.67 20.0
36 135 54.74 21.0 37 130 48.20 24.0
36 140 59.25 22.5 37 135 54.79 23.5
36 145 62.32 29.0 37 140 58.60 28.0
36 150 65.60 29.0 37 145 60.05 29.0
36 155 68.57 24.5 37 150 63.40 27.5
38 130 49.04 38.5 37 155 69.14 34.5
38 135 53.86 36.0 39 135 50.99 45.5
38 140 57.14 38.5 39 140 58.81 46.0
38 145 61.31 42.5 39 145 57.08 47.5
38 150 66.75 36.5 39 150 62.35 41.5
38 155 66.52 36.5 39 155 64.99 42.5
40 130 47.73 53.0
40 135 50.80 49.0
40 140 54.88 52.0
40 145 60.47 47.0
40 150 64.77 53.0
40 155 64.95 52.5

Table 4: SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)
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