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Abstract. The security of HMAC (and similar hash-based MACs) against
state-recovery and universal forgery attacks was very recently shown to
be suboptimal, following a series of surprising results by Leurent et al.
and Peyrin et al.. These results have shown that such powerful attacks
require much less than 2° computations, contradicting the common belief
(where ¢ denotes the internal state size). In this work, we revisit and ex-
tend these results, with a focus on properties of concrete hash functions
such as a limited message length, and special iteration modes.

We begin by devising the first state-recovery attack on HMAC with a
HAIFA hash function (using a block counter in every compression func-
tion call), with complexity 24475, Then, we describe improved trade-offs
between the message length and the complexity of a state-recovery at-
tack on HMAC. Consequently, we obtain improved attacks on several
HMAC constructions used in practice, in which the the hash functions
limit the maximal message length (e.g., SHA-1 and SHA-2). Finally, we
present the first universal forgery attacks, which can be applied with
short message queries to the MAC oracle. In particular, we devise the first
universal forgery attacks applicable to SHA-1 and SHA-2.

Keywords: Hash functions, MAC, HMAC, Merkle-Damgard, HAIFA,
state-recovery attack, universal forgery attack, GOST, Streebog, SHA
family.

1 Introduction

MAC algorithms are an important symmetric cryptography primitive, used to
verify the integrity and authenticity of messages. First, the sender appends to
the message a tag, computed from the message and a key. The receiver can
recompute the tag using the key and reject the message when the computed tag
does not match the received one. The main security requirement of a MAC is
the resistance to existential forgery. Namely, after querying the MAC oracle to
obtain the tags of some carefully chosen messages, it should be hard to forge a
valid tag for a different message.

One of the most widely used MAC algorithms in practice is HMAC, a MAC
construction using a hash function designed by Bellare, Canetti and Krawczyk
in 1996 [4]. The algorithm has been standardized by ANSI, IETF, ISO and

* Some of the work presented in this paper was done during Dagstuhl Seminar 14021.
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Fig. 1. Trade-offs between the message length and the complexity

NIST, and is widely deployed to secure internet communications (e.g. SSL, SSH,
IPSec). As these protocols are widely used, the security of HMAC has been ex-
tensively studied, and several security proofs [3/4] show that it gives a secure
MAC and a secure PRF up to the birthday bound (assuming good properties of
the underlying compression function). At the same time, there is a simple exis-
tential forgery attack on any iterative MAC with an ¢-bit state, with complexity
2¢/2 matching the security proof. Nevertheless, security beyond the birthday
bound for stronger attacks (such as state-recovery and universal forgery) is still
an important topic.

Surprisingly, the security of HMAC beyond the birthday bound has not been
thoroughly studied until 2012, when Peyrin and Sasaki described an attack on
HMAUC in the related-key setting [I8]. Later work focused on single-key security,
and included a paper by Naito, Sasaki, Wang and Yasuda [16], which described
state-recovery attacks with complexity 2¢/¢. At Asiacrypt 2013, Leurent, Peyrin
and Wang [15] gave state-recovery attacks with complexity 2¢/2 closing the gap
with the security proof. Even more recently, at Eurocrypt 2014, Peyrin and
Wang [19] described a universal forgery attack with complexity 25¢/6 showing
that even this very strong attack is possible with less than 2¢ work. These generic
attacks have also been used as a first step to build specific attacks against HMAC
with the concrete hash function Whirlpool [91g].

These very recent and surprising results show that more work is needed to
better understand the exact security provided by HMAC and hash-based MACs.

1.1 Our results

In this paper, we provide several important contributions to the security analysis
of HMAC and similar hash-based MAC constructions. In particular, we devise



improved attacks when HMAC is used with many popular concrete hash func-
tions, and in several cases our attacks are the first to be applicable to HMAC
with the given hash function. Some results with concrete instantiations are sum-
marized in Table [Il

As a first contribution, we focus on the HAIFA [5] mode of operation, used in
many recent designs such as BLAKE [1I2], Skein [7], or Streebog [6]. The HAIFA
construction uses a block counter to tweak the compression functions, such that
they resemble independent random functions, in order to thwart some narrow-
pipe attacks (e.g. the second-preimage attack of Kelsey and Schneier [13]). In-
deed, the recent attacks against HMAC [I5I9] use in a very strong way the
assumption that the same compression function is applied to all the message
blocks, and thus they cannot be applied to HAIFA. In this work, we present the
first state-recovery attack on HMAC using these hash functions, whose optimal
complexity is 24/5.

In an interesting application of our state-recovery attack on HAIFA (given
in Appendix , we show how to extend it into a key-recovery attack on the
new Russian standard Streebog, recovering the 512-bit key of HMAC-Streebog
with a complexity of 2410 This key recovery attack is similar to the one of [I5]
for Merkle-Damgard, and confirms its surprising observation: adding an internal
checksums in a hash function (such as Streebog) weakens the design when used
in HMAC, even for hash functions based on the HAIFA mode.

As a second contribution of this paper, we revisit the results of [I5], and give
a formal proof of the conjectures used in its short message attacks. Some of our
proofs are of broad interest, as they give insight into the behavior of classical
collision search algorithms for random functions. These proofs explain for the
first time an interesting phenomenon experimentally observed in several previous
works (such as [I7]), namely, that the collisions found by such algorithms are
likely to belong to a restricted set of a surprisingly small size.

Then, based on our proofs, we describe several new algorithms with various
improved trade-offs between the message length and the complexity as shown in
Figure [l As many concrete hash functions restrict the message size, we obtain
improved attacks in many cases: for instance, we reduce the complexity of a
state-recovery attack against HMAC-SHA-1 from 2'%° to 2'97 (see Table [1).

Finally, we focus on universal forgery attacks, and devise attacks using tech-
niques which are different from those of Peyrin and Wang [19]. While the attack
of [19] is much more efficient than exhaustive search, it requires, in an inher-
ent way, querying the MAC oracle with very long messages of about 2¢/2 blocks,
and thus has limited impact in practice. On the other hand, our attacks can be
efficiently applied with much shorter queries to the MAC oracle, and thus have
many more applications. In particular, we devise the first universal forgery attack
applicable to HMAC with SHA-1 and SHA-2 (see Table .

1.2 Framework of the attacks

In order to recover an internal state, computed by the MAC oracle during the
processing of some message, we use a framework with is similar to the framework



Table 1. Complexity of attacks on HMAC instantiated with some concrete hash func-
tions. The state size is denoted as ¢, and the maximum message length as s. We give
a reference to the Attack number for the new results.

State-recovery Universal forgery
Function Mode L s [15] [19]
SHA-1 MD 160 2% 2120 N/A
SHA-256 MD 256 2°5 2201 N/A
SHA-512 MD 512 2l18 9394 N/A
HAVAL MD 256 250 2202 N/A
WHIRLPOOL MD 512 2247 9384 N/A
BLAKE-256 HAIFA 256 2%°  N/A 223 () N/A
BLAKE-512  HAIFA 512 2% N/A 2 () N/A
Skein-512 HAIFA 512 2 N/A 2'¥ (@) N/A
Key recovery
[15] New
Streebog HAIFA+o 512 oo N/A 29 (1) N/A  2'7 ()

of [15]. Namely, we match states that are computed offline with (unknown) states
that are computed online (during the processing of messages by the MAC oracle).
However, as arbitrary states match with low probability (which does not lead to
efficient attacks), we only match special states, which have a higher probability to
be equal. These special states are the result of iterating random functions using
chains, computed by applying the compression function on a fixed message from
arbitrary initial states. In this paper, we exploit special states of two types, which
were also exploited in [I5]: states on which two evaluated chains collide, and
states on which a single chain collides with itself to form a cycle. Additionally,
some of our attacks (and in particular our attacks on HAIFA) use special states
which are a result of the reduction of the image space that occurs when applying
a fixed sequence of random functions.

As described above, after we compute special states both online and offline,
we need to match them in order to recover an online state. However, since the
online states are unknown, the matching cannot be performed directly, and we
are forced to match the nodes indirectly using filters. A filter for a node (state)
is a property that identifies it with high probability, i.e., once the filters of
two nodes match, then the nodes themselves match with high probability. Since
the complexity of the matching steps in a state-recovery attack depend on the
complexity on building a filter for a node and testing a filter on a node, we are
interested in building filters efficiently. In this paper, we use two types of filters:
collision filters (which were also used in [I5]) and diamond filters, which exploit
the diamond structure (proposed in [12]) in order to build filters for a large set
of nodes with reduced average complexity. Furthermore, in this paper we use a
novel online construction of the diamond structure via the MAC oracle, whereas



such a structure is typically computed offline. In particular, we show that despite
the fact that the online diamond filter increases the complexity of building the
filter, the complexity of the actual matching phase is significantly reduced, and
gives improved attacks in many cases.

Outline. The paper is organized as follows: we begin with a description of
HMAC in Section 2] We then describe and analyze the algorithms we use to
compute special states in Section [3] and the filters we use in our attacks in
Section 4] Next, we present a simple attack against HMAC with a HAIFA hash
function in Section [5} and revisit the results of [15] in Section [6] presenting new
trade-offs for attacks on Merkle-Damgard hash functions. In Section [7 we give
more complex attacks for shorter messages. Finally, in Section |8 we present our
universal forgery attacks with short queries, and conclude in Section [0}

2 HMAC and hash-based M ACs

In this paper we study MAC algorithms based on a hash function, such as
HMAC. HMAC is defined using a hash function H as HMAC(K, M) = H(K &
opad || H(K @ ipad | M)). More generally, we consider a class of designs defined
as:

ro = Ix Tit1 :hi(xiymi) tZQ(K733pa|M|)-

The message processing updates an internal state of size ¢, starting from a key-
dependant value Ix, and the output is produced with a key-dependant final-
ization function g. In particular, we note that the state update does not de-
pend on the key. Our description covers HMAC [], Sandwich-MAC [2I] and
envelope-MAC [20] with any common hash function. The hash function can use
the message length in the finalization process, which is a common practice, and
the rounds function can depend on a block counter, as in the HAIFA mode. If
the hash function uses the plain Merkle-Damgard mode, the round functions h;
are all identical (this is the model of previous attacks [I5/19]).

In this work, we assume that the tag length n is larger than ¢, so that collision
in the tag result from collisions in the internal state with very high probability.
This greatly simplifies the description of the attacks, and does not restrict the
scope of our results. Indeed from a function MAC; (K, M) with an output of n bits,
we can build a function MACo (K, M) with a 2n-bit output by appending message
blocks [0] and [1] to M, as MACo(K, M) = MACy (K, M || [0]) || MAC, (K, M || [1]).
Our attacks applied to MACs can immediately be turned to attacks on MAC;.

3 Description and Analysis of Collision Search
Algorithms

In this section, we describe and analyze the collision search algorithms which are
used in our state-recovery attacks in order to compute special states. We then



analyze these algorithms and prove the conjectures of [I5]. Lemma [1] proves
the first conjecture, while Lemma [2] proves the second conjecture. We also give
further results in Appendix [A]

3.1 Collision search algorithms

We use standard collision search algorithms, which evaluate chains starting from
arbitrary points. Namely, a chain 7 starts from T, and is constructed interac-
tively by the equation x; = f;(x;—1) up to i = 2° for a fixed value of s < /2.
We consider two different types of collisions between two chains 7 and 7: free-
offset collisions (x; = y; for any 4, j, with all the f;’s being equal), and same-offset
collisions (x; = y;).

Free-offset collision search. When searching offline for collisions in iterations
of a fized random function f, we evaluate 2! chains starting from arbitrary points,
and extended to length 2° for s < £/2.

Assuming that 2¢ - 2t7% < 2¢ (i.e., 2t + s < /), then each of the chains is not
expected to collide with more than one other chain in the structure. This implies
that the structure contains a total of about 2¢*# distinct points, and (according to
the birthday paradox) we expect it to contain a total of 2¢ = 22(t+5)=¢ collisions.
We can easily recover all of these collisions in O(2!+%) = O(2(¢+9/2) time by
storing all the evaluated points and checking for collisions in memory.

We note that we can reduce the memory requirements of the algorithm by
using the parallel collision search algorithm of van Oorschot and Wiener [17].
However, in this paper, we generally focus on time complexity and do not try to
optimize the memory complexity of our attacks.

Same-offset collision search. While free-offset collisions are the most general
form of collisions, they cannot always be efficiently detected and exploited by our
attacks. In particular, they cannot be efficiently detected in queries to the online
oracle (as a collision between messages of different lengths would lead to different
values after the finalization function). Furthermore, if the hash function uses the
HAITFA iteration mode, it is also not clear how to exploit free-offset collisions
offline, as the colliding chains do not merge after the collision (and thus we do
not have any easily detectable non-random property).

In the cases above, we are forced to only use collisions that occur at the
same-offset. When computing 2! chains of length 2% (for ¢ not too large), a pair
of chains collide at a fixed offset 4 with probability 27¢, and thus a pair of chains
collide with probability 2°~¢. As we have 2% pairs of chains, we expect to find
about 22175~ fixed-offset collisions.

Locating collisions online. Online collisions are detected by sorting and compar-
ing the tags obtained by querying the MAC oracle with chains of a fixed length 2°.
If we find two massages such that MAC(M) = MAC(M’), we can easily compute
the message prefix that gives the (unknown) collision state, as described in [I5].
Namely, if we denote by M); the i-block prefix of M, then we find the smallest ¢
such that MAC(M);) = MAC(M};) using binary search. This algorithm queries the

|2



MAC oracle with O(s) messages of length O(2%), and thus the time complexity of

locating a collision online is s - 2° = O(2%).

3.2 Analysis of the collision search algorithms

In this section, we provide useful lemmas regarding the collision search algo-
rithms described above. These lemmas are used in order to estimate the collision
probability of special states that are calculated by our attacks and thus to bound
their complexity. Lemma |1| can generally be considered as common knowledge
in the field, and its proof is given in Appendix [A] Perhaps, the most interesting
results in this section are lemmas [2| and [3| These lemmas show that the prob-
ability that our collision search algorithms reach the same collision twice from
different arbitrary starting points, is perhaps higher than one would expect. This
phenomenon was already observed in previous works such as [I7], but to the best
of our knowledge, this is the first time that this lemma is formally proven. As the
proof of lemma [3]is very similar to that of lemma[2] it is given in Appendix [A]

Lemma 1. Let s < £/2 be a non-negative integer. Let f1, fa,..., fos be a se-
quence of random functions over the set of 2° elements, and g; = fio...o fyo fi
(with the f; being either all identical, or independently distributed). Then, the
images of two arbitrary inputs to gas collide with probability of about 257¢, i.e.
Pr, y [gos () = g2+ (y)] = O(2°7F).

Lemma 2. Let & and § be two random collisions (same-offset or free-offset)
found by a collision search algorithm using chains of length 2°, with a fixed
£-bit function f such that s < /2. Then Pr[i = ] = ©(227%).

Proof. First, we note that we generally have 4 cases to analyze, according to
whether & and § were found using a free-offset, or a same-offset collision search
algorithm. However, the number of cases can be easily reduced to 3, as we have
2 symmetric cases, where one collision is free-offset, and the other is same-offset.
In this proof, we assume that & is a same-offset collision and ¢ is a free-offset
collision (this is the configuration used in our attacks). However, the proof can
easily be adapted to the 2 other different settings.

We denote the starting points of the chains which collide on & by (zg,xp),
and the actual corresponding colliding points of the chains by (z;, z}), and thus
f(z;) = f(z}) = &. In the following, we assume that 0.25-2° < ¢ < 0.75-2°, which
occurs with probability about 1/2 since the offset of the collision & is roughly
uniformly distributed in the interval [0, 25]E| This can be shown using Lemma
as increasing the length of the chains, increases the collision probability by the
same multiplicative factor.

Fixing (zo,z}), we now calculate the probability that 2 chains of length 2%
starting from arbitrary points (yo, (), collide on &. This occurs if yo, y1, - - - , Y2s—;
collides with xg,z1,...,2;, and y{, ¥, ..., yh._; collides with x{,z],...,x} (or

vise-versa), which happens with probability ©(22(25=%) (assuming 0.25 - 2° <

3 The assumption simplifies the proof of the lower bound on the collision probability.



i < 0.75 - 2% all chains are of length ©(2°)). This lower bounds the collision
probability on & by 2(22(=9). At the same time, the collision on Z is also
upper bounded by 0(22(2*=9), as all 4 chains are of length O(2°). We conclude
that the collision probability on & is ©(22(2s=4).

On the other hand, the probability that the chains starting from (yo,y)
collide on any point is ©(22°~*). Assuming that the collision search algorithm
evaluates 2! chains such that 2t + s < ¢, then each evaluated chain is not ex-
pected to collide with more than one different chain, and the pairs of chains can
essentially be analyzed independently.

We denote by A the event that the chains starting from (yo,y() collide
on Z, and by B the event that the chains starting from (yo,y() collide. We
are interested in calculating the conditional probability Pr[A|B], and we have
Pr[A|B] = Pr[AN B]/ Pr[B] = Pr[A]/Pr[B] = 6(222s-0-(2s=0)) = g(225-¢),
as required. a

Lemma 3. Let & and y be two arbitrary same-offset collisions found, respec-
tively, at offsets i and j by a collision search algorithm using chains of fized
length 2%, with independent €-bit functions f;, such that s < ¢/2. Then
Pr[(2,4) = (9,7)] = ©(2°"). Furthermore, given thati = j, we have Pr[& = §] =
@(225—2).

4 Filters

We describe the two types of filters that we use in our attacks in order to match
(known) states computed offline with unknown states computed online.

4.1 Collision filters.

A simple filter that we use in some of our attacks was also used in the previous
work of [I5]. We build a collision filter ([b], [0']) for a state z offline by finding
message blocks ([b],[b']) such that the states, obtained after processing these
blocks from z, collide. In order to build this filter, we find a collision in the
underlying hash function by evaluating its compression function for about 2¢/2
different messages blocks from the state x. In order to test this filter online on
the unknown node 2z’ obtained after processing a message m’, we simply check
whether the tags of m’ || [b] and m/ || [b'] collide. As the message pair m/ || [b] and
m' || [¥'] collide with probability 27" < 27¢, we can conclude that the collision
filter identifies the state = with high probability.

The complexity of building a collision filter offline is O(2/?). Testing the
filter online requires querying the MAC oracle with m’ || [b] and m' || [b], and
assuming that the length of m/ is 2¢, then it requires O(2%") time.

4.2 Diamond filters.

In order to build filters for 2! nodes, we can build a collision filter for each one of
them separately, requiring a total of O(2¢+¢/2) time. However, this process can



be optimized using the diamond structure, introduced by Kelsey and Kohno in
the herding attack [I2]. We now recall the details of this construction.

The diamond structure is built from a set of 2¢ states x;, constructing a set
of messages m; of length O(t), such that iterating the compression function from
any state x; using message m; leads to a fixed final state y. The structure is built
in O(t) iterations, where each iteration processes a layer of nodes, and outputs
a smaller layer to be processed by the next iteration. This process terminates
once the layer contains only one node, which is denoted by y.

Starting from the first layer with 2¢ points, we evaluate the compression
function from each point z; with about 2(¢~9/2 random message blocks. This
gives a total of about 2(¢**)/2 random values, and we expect them to contain
about 2' collisions. Each collision allows to match two different values z;, z; and
to send them to a common value in the next layer, such that its size is reduced
to about 1/2. The message m; for a state x; is constructed by concatenating the
O(t) message blocks on its path leading to y. According to the detailed analysis
of [14], the time complexity of building the structure is is ©(2(¢+1)/2).

Once we finish building the diamond structure, we construct a standard colli-
sion filter for the final node y, using some message blocks ([b], [b']). Thus, building
a diamond filter offline for 2 states requires O(2(**)/2) time, which is faster than
the O(2¢+%/2) time required to build a collision filter for each node separately.

In order to test the filter for a state z; (in the first layer of the diamond
structure), on the unknown node z’ obtained after processing a message m’
online, we simply check whether the tags of m/ ||m; || [b] and m/ || m; || |[b] collide.
Assuming that the length of m’ is 25/, then the online test requires O(t + 251)
time.

Online diamond filter. A novel observation that we use in this paper, is that in
some attacks it is more efficient to build the diamond structure online by calling
the MAC oracle. Namely, we construct a diamond structure for the set of 2¢ states
x;, where (the unknown) z; is a result of querying the MAC oracle with a message
M;. Note the online construction is indeed possible, as the construction algorithm
does not explicitly require the value of x;, but rather builds the corresponding
m; by testing for collisions between the states (which can be detected according
to collisions in the corresponding tags). However, testing for collisions online
requires that all the messages M;, for which we build the online diamond filter,
are of the same length. Assuming that the messages M; are of length 2°, this
construction requires O(25+(¢+9/2) calls to the compression function.

In order to test the filter for an unknown online state z;, on a known state z’,
we simply evaluate the compression function from =’ on m; || [b] and m; || |[p’], and
check whether the resulting two states are equal. Thus, the offline test requires
O(t) time.

5 Internal state-recovery for NMAC and HMAC with HAIFA

In this section, we describe the first internal state-recovery attack applicable to
HATFA (which can also be used as a distinguishing-H attack). Our optimized



attack has a complexity of O(2¢~%) using messages of length 2%, but this only
applies with s < £/5; the lowest complexity we can reach is 24¢/5 We note
that attacks against HAIFA can also be used to attack a Merkle-Damgard hash
function; this gives more freedom in the queried messages by removing the need
for long series of identical blocks as in [I5].

In this attack, we fix a long sequence of random functions in order to reduce
the entropy of the image states, based on Lemma [df We then use an online
diamond structure to match the states computed online with states that are
compute offline. The detailed attack is as follows:

Attack 1: State-recovery attack against HMAC with HAIFA
Complexity O(2¢*), with s < £/5 (min: 24¢/°)

1. (online) Fix a message C' of length 2¢. Query the oracle with 2* messages
M; = [i]||C. Build an online diamond filter for the set of unknown states
X, obtained after M;.

2. (offline) Starting from 2! arbitrary starting points, iterate the compres-
sion function with the fixed message C.

3. (offline) Test each image point 2’, obtained in Step 2, against each of
the unknown states of X. If a match is found, then with high probability
the state reached after the corresponding M; is .

C
[4] c .
Ju ;§>@ 2§ :
I - H
14 2° { } 2° {
Online structure Offline structure

We detect a match between the grey points (e) using the diamond test built
online.

Complexity analysis. In Step 3, we match the set X of size 2% (implicitly
computed during Step 1), and a set of size 2¢ (computed during Step 2). We
compare 2% pairs of points, and each pair collides with probability 25~¢ ac-
cording to Lemma [I| Therefore, the attack is successful with high probability if
t+u > {¢—s. We now assume that t = ¢ — s — u, and evaluate the complexity
of each step of the attack:

Step 1: 251%/2+4/2 GQtep 2: 25Tt =27% Step 3: 21Tv .y =274

The lowest complexity is reached when all the steps of the attack have the same
complexity, with s = £/5. More generally, we assume that s < £/5 and we set
u = s. This give an attack with complexity O(2¢7%) since s + u/2 + £/2 =
3s/2+€/2<4L/5 <l —s.



6 New Tradeoffs for Merkle-Damgard

In this section, we revisit the results of [I5], and give more flexible tradeoffs for
various message lengths.

6.1 Trade-off based on iteration chains

In this attack, we match special states obtained using collision, based on Lemma2]
This attack extends the original tradeoff of [15] by using two improved tech-
niques: first, while [15] used a fixed-offset offline collision search, we use a more
general, free-offset offline collision search, which enables us to find collisions
more efficiently. Second, while [15] used collision filters, we use a more efficient
diamond filter.

Attack 2: Chain-based trade-off for HMAC with Merkle-Damgard
Complexity O(2¢7%), with s < £/3 (min: 22¢/3)

1. (offline) Use free-offset collision search from 2¢~2% starting points with
chains of length 2%, and find 2¢ collisions (denoted by the set X).

2. (offline) Build a diamond filter for the points in X.

3. (online) Query the oracle with 2¢ messages M; = [i] || [0]*". Sort the
tags, and locate 1 collision.

4. (online) Use a binary search to find the message prefix giving unknown
online collision state 4.

5. (online) Match the unknown online state § which each offline state in
X using the diamond filter. If a match with # € X is found, then with
very high probability ¢ = z.

[0] * {2 collisions}

e ° < u [’L] [O]* {1 collision}
2t-2:0 § — ? 2!
L L Ik
f 2° { 1At 2° {
Offline structure Online structure

We generate collisions offline using free-offset collision search, build a diamond
filter for the collision points (e), and recover the state of an online collision.

Complexity analysis. In Step 1, we use free-offset collision search with 2¢=2
starting points and chains of length 2°, and thus according to Section [3.1] we
find 2/=2% collisions (i.e. ¢ = £ —2s). Furthermore, according to Lemma 6 X
with high probability, in which case the attack succeeds.

In Step 3, we use fixed-offset collision search with 2¢ starting points and chains
of length 2° and thus according to Section we find 22+5=¢ collisions. As we
require one collision, we have t = (¢ — s)/2. We now compute the complexity of



each step of the attack:

Step 1: ot/2+e/2 — gt=s Step 2: ot/2+e/2 — gl=s
Step 3: otts — g(t+s)/2 Step 4: 5-2°
Step 5: gcts — o(f+s)/2

With s < £/3, we have ({ + s)/2 < 2/3-¢ < { — s, and the complexity of the
attack is O(2°7%).

6.2 Trade-off based on cycles

In this paper, we also generalize the cycle-based state-recovery attack of [I5],
which uses messages of length 2¢/2 and has a complexity of 2¢/2. Our attack uses
(potentially) shorter messages of length 2% for s < /2, and has a complexity of
22¢=35 The full attack and its analysis is given in Appendix

7 Shorter Message Attacks

In this section, we describe more complex attacks that can reach a tradeoff of
26725 for relatively small values of s. These attacks are useful in cases where
the message length of the underlying hash function is very restricted (e.g. the
SHA-2 family). In order to reach a complexity of 272%, we combine the idea of
building filters in the online phase with lemmas 2] and

In the case of Merkle-Damgard with identical compression functions, we reach
a complexity of 2¢72% for s < £/8, i.e. the optimal complexity of this attack is
23/4L With the HAIFA mode of operation, we reach a complexity of 2¢=2% for
s < £/10 i.e. the optimal complexity of 24/5¢ matching the optimal complexity
of the attack of Section [l

7.1 Merkle-Damgard

Attack 3: Short message attack for HMAC with Merkle-Damgard
Complexity O(2¢72%), with s < £/8 (min: 23¢/4)

1. (online) Query the oracle with 2 messages M; = [i] || [0}, and locate
2¢t collisions.

2. (online) For each collision (i, j), use a binary search to find the distance
(offset) p;; from the starting point to the collision, and denote the
(unknown) state reach after M; (or M;) by y;;.

Denote the set of all y;; (containing about 2°* states) by Y. Build an
online diamond filter for all the states in Y.

3. (offline) Run a free-offset collision search algorithm from 2' starting

points with chains of length 2°, and locate 2°2 collisions.




4. (offline) For each offline collision &, match its iterates with all points
¥i; € Y iterate the compression function with a zero message starting
from & (up to 2° times), and match iterate 2° — p;; (i.e., f2 14 (2))
with y;; using the diamond filter. If a match is found, then with high
probability y;; = f2 i (3).

. [0]* {21 collisions} [0]* {2¢2 collisions}
[i] g .~ : . ——n
2% e ot
—‘\—>@ $ —
1 : L.
F1d 2° | 1 2° |
Online structure Offline structure

We generate collisions and build a diamond filter online, and match them with
collisions found offline.

Complexity analysis. Using similar analysis to Section we have ¢; =
2u + s — £ (as a pair of chains collide at the same offset with probability 25—,
and we have 22* such pairs) and ¢y = 2t + 2s — £. The attack succeeds if the
sets of collisions found online and offline intersect. According to Lemma [2] this
occurs with high probability if ¢; + ¢o > £ — 2s. In the following, we assume
c1+co =40 —2s.

Step 1: 2uT* = 2%/2+1/2+0/2 Gtep 2: gsFer/24+/2 _ ol—ca/2
Step 3: 2Fs = of/2+e2/2 Step 4: 2021 fo0tez o — ge2Fs | of=2s )

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with co = ¢/2.
This reduces the complexity to:

Step 1: 93¢/4=s/2 Step 2: 3¢/4 Step 3: 93¢/4 Step 4: ol/2+s 4 ot=2s 4/2
With s < £/8, we have £/2+s < 5¢/8 and 3¢/4 < £—2s; therefore the complexity
of the attack is O(2¢729).

7.2 HAIFA

Since the attack is very similar to the previous attack on Merkle-Damgard, we
only specify the differences between the attacks.

Attack 4: Short message attack for HMAC with HAIFA
Complexity O(2¢72%), with s < £/10 (min: 24¢/°)

e In Step 1 of Attack[3] we fix an arbitrary suffix C' of length 2%, and use
M; = [i] || C.

e Correspondingly, in Step 3, we use a fixed-offset collision search by
iterating the compression function with C from 2¢ starting points.




e In Step 4, we match each offline collision &, only with online collisions
that occur at the same offset as . Thus, for each &, we test only the
end point of its chain (at offset 2°) with the corresponding states in Y.
Note that each % is matched with 2¢-27° states in Y on average.

. {21 collisions} ({22 collisions}
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We generate collisions and build an online diamond filter, and match them with
offline collisions using the collision offset as a first filter.

Analysis. The attack succeeds in case there is a match between the set of
collisions detected online and offline, that occurs at the same offset. According
to Lemma [3] this match occurs with high probability when ¢; +¢co > ¢ — s, and
thus we assume that ¢; + ¢ = /¢ — s.

Complexity analysis. Similar to the analysis of the previous attacks, we have
ci=2u+s—+fand co =2t +s— /.

Step 1:  2uts = 25/2Fc1/2Hl/2 GQpep 2. 25Te1/2HE/2 _ gl—c2/24s/2
Step 3:  2°Ft = 928/2%c2/2+l/2 Gpep 4:  2ateams gy = 2072y,

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with co = £/2.
This reduces the complexity to:

Step 1: 23Y/* Step 2: 23/4t/2 Step 3: 23¢/4+s/2 Step 4: 2572‘“36/4

With s < £/10, we have 3(/4+ s/2 < 40/5 < £ — 2s; therefore the complexity of
the attack is O(2°~29).

8 Universal Forgery Attacks with Short Queries

We now revisit the universal forgery attack of Peyrin and Wang [19]. In this
attack, the adversary receives a challenge message of length 2¢ at the beginning
of the game, and interacts with the oracle in order to predict the tag of the chal-
lenge. The attack of [I9] has two phases, where in the first phase, the adversary
recovers the internal state of the MAC at some step during the computation on
the challenge. In the second phase, the adversary uses a second-preimage attack
on long messages in order to generate a different message with the same tag as
the challenge.

The main draw back of the attack of Peyrin and Wang is that their first phase
uses very long queries to the MAC oracle, regardless of the length of the challenge.
In this section, we use the tools developed in this paper to devise two universal



forgery attacks which use shorter queries to the MAC oracle. Our first universal
forgery attack has a complexity of 2¢~* for ¢t < ¢/7, using queries to the MAC
oracle of length of at most 22! (which is much smaller than 2¢/2 for any ¢t < £/7).
Thus, the optimal complexity of this attack is 26¢/7, obtained with a challenge
of length at least 2¢/7. Our second universal forgery attack has a complexity
of only 2¢=%/2. However, it is applicable for any ¢t < 2/ /5, using queries to the
MAC oracle of length of at most 2¢. Thus, this attack has an improved optimal
complexity of 24/% which is obtained with a challenge of length at least 22¢/°.

In order to devise our attacks, we construct different state-recovery algo-
rithms than the one used in [19], but reuse its second phase (i.e., the second-
preimage attack) in both of the attacks. Thus, in the following, we concentrate
of the state-recovery algorithms, and note that since the complexity of the sec-
ond phase of the attack is 2¢=¢ for any value of ¢, it is not the bottleneck of the
attacks in terms of time complexity.

8.1 A universal forgery attack based on the reduction of the
image-set size

Directly matching the 2¢ states of the challenge message with some states evalu-
ated offline is too expensive. Thus, we first reduce the number of nodes we match
by computing and matching the images of the states under iterations of a fixed
function. After matching the images, we can efficiently match and recover on the
states of the challenge message.

We denote the challenge message as C, and the first x blocks of C' as C|,.
The details of the first phase of the attack are as follows.

Attack 5: Universal forgery attack based on the reduction of the
image-set size (first phase)
Complexity O(2¢%), with ¢t < £/7 (min: 26¢/7)

1. (online) Build a collision filter for the last (unknown) state z obtained
during the computation of MAC(C).

2. (online) Query the oracle with 2* messages M; = C|; || [O]ZQt*i. Denote
the set of (unknown) final states of the chains by Y. Build a diamond
filter for all states in Y.

3. (offline) Compute 2¢~% chainsE| of length 22! + 2t. Consider the set X
of the 2 final states of all the chains. According to Lemma |4} this set
cont;ifns about 2¢~2¢ distinct points, as all the points are in the image
of f#.

4. (offline) Match all the points 2 € X with the 2¢ points in Y. When a
match is found, consider all the corresponding chains that merge into
x, and restart them in order to locate all the points at a (backward)
distance of 22 — i from x. Denoted this set by CAN D(z).




5. (offline) Test the candidates: for each #' € CAND(x), compute the
state obtained by following the last 2¢ — ¢ blocks of the challenge mes-
sage, and match this state with z using the collision filter. When a
match is found, the state obtained after C|; is 2’ with high probability.
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We efficiently detect a match between the black points () by first matching the
grey points ().

® This can be done efficiently, as shown in the analysis

Analysis. The first 2! iterations of the chains of Step 3 cover 2¢~* points (as
each chain is expected to collide with only one other chain). Thus, according
to the birthday paradox, they cover one of the 2¢ points of the challenge with
high probability. In this case, the attack will successfully recover the state of the
covered point.

In Step 3, we compute 2°=2 chains of length 2%. Fortunately, the chains
start merging extensively after 2 iterationﬂ and this step can be executed
in complexity of only 2¢=*. More precisely, after 2¢ iterations, all the points are
images of f 2t7 and they can only obtain about 2/~ possible values (see Lemma.
Therefore, we only need to evaluate f on 2~ different inputs

In Step 4, we essentially have in the offline set almost all 2¢=2 images of f2°'
(where each image is matched against 2¢ points). Therefore, we expect a match
for every 2 € X. Each match corresponds to about 2/=*/2¢=2* = 2 chains from
step 3, so we test a total of 22! candidates x’ in Step 5 (each 2’ is extended with
a message of length about 2?).

4 This property is well-known from Hellman’s time-memory tradeoff algorithm [10],
where a full Hellmann table contains 2°~2 chains of length 2'. When we extend
the chains, they start merging extensively, and we will not be able to cover many
more than 2¢7% points in one table. In this attack, we exploit this property to our
advantage.

5 For a concrete implementation, we can use distinguished points (as in the parallel
collision search algorithm [I7]) to reduce the memory requirement.



Complexity.

Step 1: 22/2+t Step 2: 22t+t/2+£/2 — 2@/2+5t/2
Step 3: 2t—t Step 4: -2t
Step 5: 23t

With ¢ < ¢/7, we have £/2 + 5t/2 < 66[7 < { — t; the complexity of the first
phase of the universal forgery attack is O(2¢7!), and as the second phase has a
similar complexity, this is also the complexity of the full attack.

8.2 A universal forgery attack based on collisions

In this attack, we devise a different algorithm which recovers one of the states
computed during the execution of the challenge message. The main idea here is
to find collisions between chains evaluated online, and directly match them with
collisions obtained offline. This is different from the previous algorithm, which
matched the endpoints of the chains, rather than nodes on which the collisions
occur. Once the collisions are matched, similarly to the previous algorithm, we
obtain a small set of candidate nodes, which we match with the actual challenge
nodes.

Attack 6: Universal forgery attack based on collisions (first phase)
Complexity O(2¢=4/2), with t < 2¢/5 (min: 24¢/°)

1. (online) Query the oracle with 2 messages M; = C|; || (027", and
sort the tags.

2. (online) Execute the state-recovery attack of |2/ using messages of length
min(2t, 25/3), and denote by W a message of length 2! whose last com-
puted state is recovered[]]

3. (online) Query the oracle with 2¢ messages W; = W || [j] || 02—, sort
the tags, and locate 2° collisions with the tags computed using the
messages M;. For each collision of tags between M; and W, find the first
collision point using binary search (note that the state of the collision
is known, as the state obtained after processing W is known). Store all
the collision states Z;; in a sorted list, each one next to its distance d;;
from C);.

4. (offline) Compute a structure of chains containing a total of 2~ points.
Each chain is extended to a maximal length of 2!, or until it collides
with a previous chain.

5. (offline) For each offline point in the structure y which collides with an
online collision Z;; (i.e., y = Z;;), retrieve candidate points CAND(y)
for the state obtained after processing C);. This is done by computing
the d;;-preimage points of y in the structure (i.e., the points which are
at distance d;; backwards from y). Assume that for each y = &;;, we
have an average of 2% candidate points, and thus we have a total of at




most 2T candidate points to test in the set U;;(CAND(y = ;5)).
Build a diamond filter for all the 2¢T* candidate points.

6. (online) For each (#;;,y), match the state obtained after C); with all
the corresponding 2* candidate points in CAN D(y) using the diamond
filter. If a match is found, then with high probability the state obtained
after processing C); is equal to the tested candidate.
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We match the known points (¢) in order to detect a match between the gray
points (e).

“1In case t > £/3, we first recover the last computed state of a message of size
2¢/3 and then complement it arbitrarily to a length of 2°.

Analysis. In Step 3 of the attack, we find 2¢ collisions between pairs of chains,
where the prefix of one chain in each pair is some challenge prefix C|;. Thus, the
2¢ collisions cover 2¢ such challenge prefixes, and moreover, the offline structure,
computed in Step 4, contains 2°~¢ points. Thus, according to the birthday para-
dox, with high probability, the offline structure covers one of the states obtained
after the computation of a prefix C|;, such that the message M; collides with
some W; on a point £;; in Step 3. Since the state obtained after the computation
of C); is covered by the offline structure, then #;; is also covered by the offline
structure, and thus the state corresponding to C}; will be matched as a candidate
and recovered in Step 6.

In order to calculate the value of ¢, note that the online structure, computed
in Step 1, contains 2! chains, each of length at least 2¢, and thus another arbitrary
chain of length 2¢ collides with one of the chains in this structure at the same
offset with probability of about 22*~¢. Since the structure computed in Step 3
contains 2¥ such chains, the expected number of detected collisions between the
structures is 2¢ = 2274 je. c=2t 4+ v — L.

In order to calculate the value of u, we first calculate the expected number
of the endpoints of the chains computed in Step 3 of the attack. As the chains
are of length of 2¢, we expect that after evaluating the first 2¢72¢ points (i.e., a
full Hellman table), only a constant fraction of the chains will collide, and thus
we have (at least) about 2% endpoints. Since the structure contains a total
of 27¢ points, each endpoint is a root of a tree of average size of (at most)



ol—c=(6=2t) — 92t—c_Thjig gives about 22t~¢~ = 2!=¢ candidates nodes at a fixed
depth, ie, u=t—c=0—1t—wv.

We note that the last argument we use here is heuristic, as we assume that
the average number of preimages at a certain distance for the specific collision
points y is similar to the average for arbitrary points. However, steps 4 and 5 are
not bottlenecks of the attack (as described in the complexity analysis below), and
thus even if their complexity is somewhat higher, it will not effect the complexity
of the full attack. Furthermore, we can perform a more complicated matching
phase, in which we iteratively build filters for the offline structure at depths
about 2¢71,2¢=2 ... and match them with the online structure. This guarantees
that the expected complexity of the attack is as claimed.

Complexity.
Step 1: 22t Step 2: maz (201, 2%/3)
Step 3: QU+t Step 4: gl—c _ 920—2t—v
Step 5: (c+u) oletutl/2 _ ¢ ol/24t/2 Gten 6: getutt _ 92t

We balance steps 3 and 4 by setting v+t = 20 — 2t —v, or v = £ — 3t/2. This
gives a total complexity of O(2/~%/2) for any t < 2¢/5.

9 Conclusions and Open Problems

In this paper, we provided improved analysis of HMAC and similar hash-based
MAC constructions. More specifically, we devised the first state-recovery attacks
on HMAC built using hash functions based on the HAIFA mode, and provided
improved trade-offs between the message length and the complexity of state-
recovery attacks for HMAC built using Merkle-Damgard hash functions. Finally,
we presented the first universal forgery attacks which can be applied with short
queries to the MAC oracle. Since it is widely deployed, our attacks have many
applications to HMAC constructions used in practice, built using GOST, the SHA
family, and other concrete hash functions.

Our results raise several interesting future work items such as devising effi-
cient universal forgery attacks on HMAC built using hash functions based on
the HAIFA mode, or proving that this mode provides resistance against such
attacks. At the same time, there is also a wide gap between the complexity of
the best known attacks and the security proofs for HMAC built using Merkle-
Damgard hash functions. For example, the best universal forgery attacks on
these MACs are still significantly slower than the birthday bound, which is the
security guaranteed by the proofs.
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A Extended Analysis of Collision and Cycle Search
Algorithms

In this section, we prove the lemmas of Section [A] in addition to further results.
The collision probabilities in the lemmas are estimated up to a constant factor
(using the © notations), but in order to upper bound the running time of our
algorithms, we only need to lower bound these collision probabilities. Thus, for
the sake of simplicity, we only prove lower bounds on collision probabilities (for-
mulated using the © notation) in this paper, and note that the matching upper
bounds can be proven by standard probabilistic arguments.

Lemma (restated). Let s < {/2 be a non-negative integer. Let f1, fa,..., fos
be a sequence of random functions over the set of 2¢ elements, and g; = fio...o
fao f1 (with the f; being either all identical, or independently distributed). Then,
the images of two arbitrary inputs to gas collide with probability of about 257¢,

Le. Pryy [g2: (2) = g2 (y)] = ©(2°7F).

Proof. Let « and y be two arbitrary points, z; = g;(z) and y; = gi(y) (or
equivalently ¢ = z,x; = fi(x;—1) and yo = y,y; = fi(yi—1)). As f; is a random
function, at each step of the iteration, there is a probability of 2~¢ that the
two chains collide, given that they have not collides before (otherwise, they
collide with probability 1). This proves the lower bound Pr[gss (z) = gos(y)] <
1—(1-279% = 0(257%) O

Lemma (restated). Let & and § be two arbitrary same-offset collisions found,
respectively, at offsets i and j by a collision search algorithm using chains of
fized length 2%, with independent £-bit functions f;, such that s < (/2.
Then Pr[(2,1) = (9,7)] = ©(2°~F). Furthermore, assuming that i = j, we have
Pr[i = g] = ©(2%7).

Proof. The proof follows essentially the same line of arguments as the proof of
Lemma We assume that 0.25-2% <4 < 0.75-2° (which occurs with probability
1/2), and fix the collision &. We denote by A the event that chains starting from
arbitrary points (yo, y) collide on Z at offset 4, and by B the event that the chains
starting from (yo, ) collide at an arbitrary offset j. We have Pr[B] = ©(2°~¢)
(see Lemma and Pr[A] = 2(22(*=%), and thus Pr[A|B] = Pr[A( B]/ Pr[B] =
Pr[A]/ Pr[B] = 2(2°~*), which is the claimed lower bound.

When assuming that ¢ = j, we need to change the definition of event B
such that the chains starting from (yo, y() collide at the fixed offset 7. This gives
Pr[B] = 6(27%) and Pr[A|B] = Pr[A( B]/ Pr[B] = Pr[A]/Pr[B] = £2(2257%),
which is the claimed lower bound. O

Lemma 4. Let fi1, fo,..., fi be a sequence of random functions, then the image
of the function g; = f;0...0 fyo f1 contains at most O(2°/i) points.

Proof. Let a > 1 be a parameter, and consider a-(2¢)/i inputs to g; (denoted by
z; for 1 < j < a-(2%)/i) that generate distinct images. Let x be a different input
to gi, then for each j, Pr(gi(x) = gi(x;)) ~i/2°. Thus, for a = 1, g;(z) collides



with one of the (2¢)/i images with constant probability, and for a general a > 1,
this collision probability is about 1 — e™“. For a = £, the probability that g;(x)
is a new distinct image become exponentially small in ¢, and this allows us to
take a union bound on all the inputs 2 (whose number is about 2¢), and prove
the lemma.

Definition 1. A u-deep collision is a node with two distinct preimages, both of
them being u-th images.

Lemma 5. A random mapping f has at most O(2¢/u?) u-deep collisions.

Proof. Consider a structure of « - 2¢/u? chains, starting from « - 2¢/u? terminal
nodes (i.e., nodes with no preimages) for a > 1, and generating o - 2¢/u? u-
deep collisions. This structure contains at least a-2¢/u distinct points. Consider
another chain, starting from a different terminal node that is not contained in
the initial structure. This chain will collide with the structure of o - 2¢/u points
within the first u—1 iterations, with probability of about 1—e™%, and in this case,
it will not generate an additional u-deep collision. We choose a = ¢ and consider
all the chains starting from all the terminal nodes which are not contained in the
initial structure. Taking a union bound on all these chains, we conclude that with
high probability, none of the chains will generate an additional u-deep collision,
implying that f has at most £ - 2¢/u? u-deep collisions.

Cycle Search. Cycles are created when a chain collides with itself while iterat-
ing a fixed function f. In order to search offline for a cycle of length O(2%) (for
s < £/2), we evaluate 2°72° chains starting from arbitrary points, and extended
to length 2°. The probability that a chain collides with itself to form a cycle is
equal (up to a constant factor) to the probability that its first half (of length
2571) collides with its second half, which occurs with probability ©(225=). Thus,
we expect to find a cycle within the evaluated 2¢~2% chains.

Lemma 6. Let & be the entry point of an arbitrary cycle found by the cycle
search algorithm for the fixed £-bit function f, using chains of fixed length 2°
such that s < £/2. Let yo be an arbitrary point, and define the chain y;+1 = f(y;)
fori€{0,1,...,2° —1}. Then Pr[3i|2 = y;] = 6(2%~F).

Proof. We denote the starting points of the chain which collides (cycles) on &
by o, and the actual corresponding colliding points of the chain by (z;,z;)
(assuming ¢ < j), and thus f(x;) = f(z;) = &. In the following, we assume that
0.25-2° < ¢ < 0.75 - 2°, which occurs with constant probability. In order for

the event Ji|# = y; to occur, it is sufficient that yo,y1,...,y2:—; collides with
7o, T1,...,x;. This occurs with probability 2(22=) (assuming 0.25 - 2% < i <
0.75 - 2°, the two chains are of length ©(2%)). O

B State-Recovery Based on Cycles

The original cycle-based state-recovery attack of [I5] exploits the main cycle
of approximate length 2¢/2 in the graph of the random mapping, in order to



construct two colliding messages of the same length (thus having equal tags,
which can be detected at the output). Our attack uses the same idea with shorted
messages, and we refer the reader to [15] for a detailed description of the original
attack.

Attack 7: Cycle-based trade-off for HM AC with Merkle-Damgard
Complexity O(22/3%), with s < £/2 (min: 2¢/2)

1. (offline) Search for a cycle in the functional graph of hyy, using the
algorithm of Section with chains of length 2°. Denote the length of
the cycle by L, and its entry point by .

2. (online) For different values of the message block [b], query the MAC
oracle with two messages M = [b] || [0]*" || [1] || [0]* *¥ and M’ = [p] ||
(012" FL || [1] || [0]*" (both of length 14 2° +1+2° + L =242 4+ ),
until MAC(M) = MAC(M").

3. (online) Find the first point on which M and M’ collide using binary
search (i.e., detect the online collision, as described in Section .
With high probability, the online collision state is equal to Z.

Complexity analysis. First, both M, M’ are of the same length 2+2°t1 4+ L <
2512 and thus we can detect a collision in their final states by comparing the
output tags in Step 2. In order for M, M’ to collide on the final state, it is
sufficient that two conditions occur simultaneously: first, the states obtained
after evaluating the prefixes [b] || [0]2" and [b] || [0]>"+*, collide. This occurs if one
of the states computed during the evaluation of [b] || [0]?" collides with Z (and
thus enters the cycle of length L), which has probability 6(22*) according to
Lemma@ Second, the states obtained after evaluating the suffixes [1] || [0]>
and [1] || [0]*, collide. Assuming that the states obtained after evaluating the
prefixes collide, similarly to the previous case, this occurs if one of the states
computed during the evaluation of [1] || [0]?" collides with . Again, this event
occurs with probability 8(22°~¢) according to Lemma

Thus, the success probability of Step 2 is £2(22(25=9)) and we need to repeat
it for O(22(¢=29)) different values of [b] for the attack to succeed with high proba-
bility. Consequently, the time complexity of Step 2 is O(22(¢=25)+5) = 0(22¢-39),
The time complexity of all the steps is summarized below.

Step 1: 20725 =2=5 Step 2: 22 (=295 — 920-35  Ggep 3: 2°.20725.

Since s < £/2, the complexity of the attack is O(22¢73%).

C Key recovery attack on HMAC with GOST R 34.11-2012

In [15], the state-recovery attack on HMAC with a Merkle-Damgard hash func-
tion (with complexity 2t/ 2) is extended into a key-recovery attack, in case the
hash function uses an internal checksum like the GOST R 34.11-94 hash function

_ 2Z75 .



(with complexity 23/4%). In this section, we show that a similar attack can be
applied to a hash function based on HAIFA with an internal checksum. Namely,
the state-recovery attack (with complexity 24/ ) can be extended into a key-
recovery attack (with complexity 24/5).

In particular, this attack is applicable to the recent proposal GOST R 34.11-
2012, and gives a key-recovery attack with complexity 241 for the 512-bit ver-
sion. This result shows that HMAC-GOST R 34.11-2012 is significantly weaker
than HMAC-SHA-3-512.

C.1 Description of the attack.

The attack uses the same framework as [15], exploiting the structure of hash
functions with a checksum. We target the finalization function in the first hash
function call: the state value can be recovered using the previous state-recovery
attacks, and exploiting the fact that the checksum value is key dependant, but
can be controlled by injecting differences in the message: 0 = K @ opad @
Sum®(M). This allows for attacks which are somewhat similar to related-key
attacks.

More precisely, we first generate a large set of messages of length L, leading
to the same state x4, but with different checksums ¢. Then, we consider collisions
in the function o — g(x,, L, o), which can be detected using online calls to the
MAC oracle. At the same time, we can also generate collisions offline since x,
and L are known. Moreover, if we locate two collisions with the same difference
in the o input, then there is a high probability that the actual input pairs are
the same (on average, we expect a single collision with a fixed difference). If we
find an online collision and an offline collision with the same difference, we can
therefore recover the value of K using ¢ = K & opad & Sun®(M).

C.2 Detailed attack process

The first step of the attack is to use the state-recovery attack of Section In
order to deal with the checksum, we modify the attack so that we only look for
collisions between pairs of messages with same checksum:

e Instep 1, we use M; = [i] || [{] || C

e In step 2, when building the diamond structure, we extend the messages by
m || m. We do the same when building a collision pair for the end point of
the diamond.

For the offline steps, we ignore the checksum, and only look for collisions in
the iterated state.

Attack 8: Key recovery attack against HMAC with a GOST-like
hash function
Complexity O(24/5)




0. Use the Attack El to recover the state z; after some message M7, with
| M| = ¢/10.

1. (offline) Starting from state x1, use Joux’s multicollision attack [I1] to
generate a set of 27¢/19 messages that all collide on the internal state
before the checksum block, but with different checksums. Denote the
final state as x,, and the length of the messages as L.

2. (online) Query the set of messages from Step 1 to HMAC and collect
collisions (2%¢/5 collisions are expected). For each collision (M, M’),
compute the checksum difference AM = Sum®(M) @ Sum®(M’), and
store (AM, Sum® (M)).

3. (offline) Choose a set of 24¢/5 one-block random checksums o, compute
g(z4, L, o) and collect collisions (23¢/5 collisions are expected). For each
collision (o, ¢"), compute the difference o @ ¢’ and compare it with the
stored AM from Step 3. If a match is found, consider Sum® (M) & o
and Sum® (M) @ o’ as potential key candidates, and verify them using
a known tag.

Analysis. Since we have 22/ collisions in Step 2 and collisions 23¢/5 in step 3,
there is a high probability to find a match and recover the key.

Complexity. The total complexity is O~(24Z/ 5):

Step 0: O(24/%) Step 1: (.22
Step 2: 2t/10+7L/10 _ 94t/5 Step 3: 244/5

Comparison with previous works. In [I5], the attack uses a specific property
of the finalization of GOST R 34.11-94: the message length is only used as a
padding block, processed with the message input of the compression function.
As a result, it is possible to build messages including a padding block, and to
deduce the state of a short message from the state of a long message.

In general, the message length is used through a different function than the
message blocks (this is the case in GOST R 34.11-2012), and we cannot recover
the state of a short message as easily. In particular, the complexity of the state-
recovery attack for short messages is an important factor: an attack with com-
plexity 2% as in Section [5| (or in [I5], for the Merkle-Damgéard construction)
can only reach 2%¢/6 for the key recovery, while the attacks with complexity 2¢~2
(described in Section E[) allow to reach a complexity of 24¢/5.
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