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Abstract
Private set intersection (PSI) allows two parties to com-
pute the intersection of their sets without revealing any
information about items that are not in the intersection.
It is one of the best studied applications of secure com-
putation and many PSI protocols have been proposed.
However, the variety of existing PSI protocols makes it
difficult to identify the solution that performs best in a re-
spective scenario, especially since they were not all im-
plemented and compared in the same setting.

In this work, we give an overview on existing PSI pro-
tocols that are secure against semi-honest adversaries.
We take advantage of the most recent efficiency improve-
ments in OT extension to propose significant optimiza-
tions to previous PSI protocols and to suggest a new PSI
protocol whose runtime is superior to that of existing pro-
tocols. We compare the performance of the protocols
both theoretically and experimentally, by implementing
all protocols on the same platform, and give recommen-
dations on which protocol to use in a particular setting.

1 Introduction

Private set intersection (PSI) allows two parties P1 and P2
holding sets X and Y , respectively, to identify the inter-
section X ∩Y without revealing any information about
elements that are not in the intersection. The basic PSI
functionality can be used in applications where two par-
ties want to perform JOIN operations over database ta-
bles that they must keep private, e.g., private lists of
preferences, properties, or personal records of clients or

∗Please cite the conference version of this work published at
USENIX Security’14 [53].

patients. PSI is used for privacy-preserving computa-
tion of functionalities such as relationship path discov-
ery in social networks [41], botnet detection [45], test-
ing of fully-sequenced human genomes [3], proximity
testing [48], or cheater detection in online games [11].
Another use case is measurement of the performance
of web ad campaigns, by comparing purchases by users
who were shown a specific ad to purchases of users who
were not shown the ad. This is essentially a variant of
PSI where the input of the web advertising party is the
identities of the users who were shown the ad, and the
input of the merchant, or of an agency that operates on
its behalf, is the identities of the buyers. It was published
that Facebook and Datalogix, a consumer data collection
company, perform this type of measurements.1 (They
used the insecure hash-based solution described in §1.1,
but can instead use a properly secure PSI protocol while
still being reasonably efficient.)

PSI has been a very active research field, and there
have been many suggestions for PSI protocols. The large
number of proposed protocols makes it non-trivial to
perform comprehensive cross-evaluations. This is fur-
ther complicated by the fact that many protocol designs
have not been implemented and evaluated, were analyzed
under different assumptions and observations, and were
often optimized w.r.t. overall runtime while neglecting
other relevant factors such as communication.

In this paper, we give an overview on existing effi-
cient PSI protocols, optimize the recently proposed PSI
protocols of [30] and [19], based on garbled circuits and
Bloom filters, respectively, and describe a new PSI pro-

1https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-
whats-actually-getting-shared-and-how-you-can-opt
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tocol based on recent results in the area of efficient OT
extensions [1, 38]. We compare both the theoretical and
empirical performance of all protocols on the same plat-
form and conclude with remarks on the protocols and
their suitability for different scenarios.

1.1 Classification of PSI Protocols
A naive solution When confronted with the PSI prob-
lem, most novices come up with a solution where both
parties apply a cryptographic hash function to their in-
puts and then compare the resulting hashes. Although
this protocol is very efficient, it is insecure if the input
domain is not large or does not have high entropy, since
one party could easily run a brute force attack that applies
the hash function to all items that are likely to be in the
input set and compare the results to the received hashes.
(When inputs to PSI have a high entropy, a protocol that
compares hashes of the inputs can be used [46].)

PSI is one of the best studied problems in secure
computation. Since its introduction, several techniques
have been used to realize PSI protocols. While the
first PSI protocols were special-purpose solutions based
on public-key primitives, other solutions were based on
circuit-based generic techniques of secure-computation,
that are mostly based on symmetric cryptography. A
recent development are PSI protocols that are based on
oblivious transfer (OT) alone, and combine the efficiency
of symmetric cryptographic primitives with special pur-
pose optimizations. Finally, we describe PSI protocols
that utilize a third party to achieve even better efficiency.

Public-Key-Based PSI A PSI protocol based on the
Diffie-Hellmann (DH) key agreement scheme was pre-
sented in [32] (related ideas were presented earlier
in [40]). This protocol is based on the commutative prop-
erties of the DH function and was used for private prefer-
ence matching, which allows two parties to verify if their
preferences match to some degree.

Freedman et al. [24] introduced PSI protocols se-
cure against semi-honest and malicious adversaries in the
standard model (rather than in the random oracle model
assumed in the DH-based protocol). This protocol was
based on polynomial interpolation, and was extended
in [22], which presents protocols with simulation-based
security against malicious adversaries, and evaluates the
practical efficiency of the proposed hashing schemes. We
discuss the proposed hashing schemes in §6. A similar
approach that uses oblivious pseudo-random functions to
perform PSI was presented in [23]. A protocol that uses
polynomial interpolation and differentiation for finding
intersections between multi-sets was presented in [37].

Another PSI protocol that uses public-key cryptogra-
phy (more specifically, blind-RSA operations) and scales

linearly in the number of elements was presented in [16]
and efficiently implemented and benchmarked in [17].

A PSI protocol based on additively homomorphic en-
cryption was described in [12], but is excluded from this
evaluation since it scales quadratically in the number of
elements and is hence slower than related solutions.

Circuit-Based PSI Generic secure computation proto-
cols have been subject to huge efficiency improvements
in the last decade. They allow the secure evaluation of
arbitrary functions, expressed as Arithmetic or Boolean
circuits. Several Boolean circuits for PSI were proposed
in [30] and evaluated using the Yao’s garbled circuits
framework of [31]. The authors showed that their Java
implementation scales very well with increasing secu-
rity parameter and outperforms the blind-RSA protocol
of [16] for larger security parameter.2 We reflect on and
present new optimizations for circuit-based PSI in §3.

OT-Based PSI A recent PSI protocol of [19] uses
Bloom filters [10] and OT extension [33] to obtain very
efficient PSI protocols with security against semi-honest
and malicious adversaries. We describe this protocol and
our optimization using random OT extension [1] in §4.

Third Party-Based PSI Several PSI protocols have
been proposed that utilize additional parties, e.g., [4].
In [28], a trusted hardware token is used to evaluate an
oblivious pseudo-random function. This approach was
extended to multiple untrusted hardware tokens in [20].
Several efficient server-aided protocol for PSI were pre-
sented and benchmarked in [35]. For their PSI protocol
with a semi-honest server, the authors report a runtime
of 1.7 s for server-aided PSI on one million elements us-
ing 20 threads between cloud instances in the US east
- and west coast and 10 MB of communicated data. In
comparison, our fastest PSI protocol without a server re-
quires 4.9 s for 218 elements using four threads and sends
78 MB (cf. Tab. 1 and Tab. 8). Note that this comparison
is sketchy and is only meant to demonstrate that using
a third party can increase performance. In our work we
focus on PSI protocols without a third party.

1.2 Our Contributions

We describe in detail the PSI protocols based on generic
secure computation and on Bloom filters, and suggest
how to improve their performance using carefully ana-
lyzed features of OT extension. We then introduce a new

2Subsequent work of [17] claimed that the blind-RSA protocol
of [16] runs faster than the circuit-based protocol of [30] even for larger
security parameter. Their implementation is in C++ instead of Java.
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OT-based PSI protocol, and perform a detailed experi-
mental comparison of all the PSI protocols that we de-
scribed. In the following, we detail our contributions.

Optimizations of Existing Protocols We improve the
circuit- and Bloom-filter-based PSI protocols using re-
cent optimizations for OT extension [1]. In particular,
in §3 we evaluate the circuit-based solution of [30] on a
secure evaluation of the GMW protocol, and utilize fea-
tures of random OT (cf. §2.2) to optimize the perfor-
mance of multiplexer gates (which form about two thirds
of the circuit). In §4.3 we redesign the Bloom filter-based
protocol of [19] to benefit from using random OT and to
support multi-core environments.

A Novel OT-Based PSI Protocol We present a new
PSI protocol that is directly based on OT (§5) and di-
rectly benefits from recent improvements in efficient OT
extensions [1, 38]. The basic version of the protocol can
efficiently compare one element with many elements,
but for PSI on n elements it requires O(n2 logn) com-
munication. In §6 we use carefully analyzed hashing
techniques in order to achieve O(n logn) communication.
The resulting protocol has very low computation com-
plexity since it mostly requires symmetric key operations
and has even less communication than some public-key-
based PSI protocols.

A Detailed Comparison of PSI Protocols We imple-
ment the most promising candidate PSI protocols us-
ing state-of-the-art cryptographic techniques and com-
pare their performance on the same platform. As far as
we know, this is the first time that such a wide compar-
ison has been made, since previous comparisons were
either theoretical, compared implementations on differ-
ent platforms or programming languages, or used imple-
mentations without state-of-the-art optimizations. Our
implementations and experiments are described in detail
in §7. Certain experimental results were unexpected. We
give a partial summary of our results in Tab. 1: the values
in parenthesis give the overhead of the original protocols
and highlight the gains achieved by our optimizations.

PSI Protocol DH Circuit [30] Bloom Filter OT
ECC optimized GMW §3.2 optimized §4.3 §5+§6
[32] (original GMW [1]) (original [19])

Runtime (s) 416 762 (1,304) 68 (154) 14
Comm. (MB) 24 14,040 (23,400) 740 (1,393) 78

Table 1: Runtime and transferred data for private set in-
tersection protocols on sets with 218 32-bit elements and
128-bit security with a single thread over Gigabit LAN.

We highlight here the conclusions of our results:

• The Diffie-Hellman-based protocol [32], which was
the first PSI protocol, is actually the most efficient
w.r.t. communication (when implemented using
elliptic-curve crypto). Therefore it is suitable for
settings with distant parties which have strong com-
putation capabilities but limited connectivity.

• Generic circuit-based protocols [30] are less effi-
cient than the newer, OT-based constructions, but
they are more flexible and can easily be adapted for
computing variants of the set intersection function-
ality (e.g., computing whether the size of the inter-
section exceeds some threshold). Our experiments
also support the claim of [30] that circuit-based PSI
protocols are faster than the blind-RSA-based PSI
protocol of [16] for larger security parameters and
given sufficient bandwidth.

• While for larger security parameter previously pro-
posed circuit- and OT-based protocols can be faster
than the public-key-based protocols on a Gigabit
LAN, the DH-based protocol of [32] outperforms
all of them in an Internet network setting. Our new
OT-based protocol (§5+§6) is the only protocol that
maintains its performance advantage in this setting
and even outperforms public-key-based PSI proto-
cols for a mobile network setting.

2 Preliminaries

We give our notation and security definitions in §2.1 and
review recent relevant work on oblivious transfer in §2.2.

2.1 Notation and Security Definitions
We denote the parties as P1 and P2, and their respective
input sets as X and Y with |X |= n1 and |Y |= n2. When
the two input sets are of equal size, we use n = n1 = n2.
We refer to elements from X as x and elements from Y
as y. All elements in X and Y have bit-length σ (cf. §A
for the relation between n and σ ).

We write b[i] for the i-th element of a list b, denote the
bitwise-AND between two bit strings a and b of equal
length as a∧b and the bitwise-XOR as a⊕b.

We refer to a correlation resistant one-way function
as CRF, and to a pseudo-random generator as PRG.

We write
(N

1

)
-OTm

` for m parallel 1-out-of-N oblivious
transfers on `-bit strings, and write OTm

` for
(2

1

)
-OTm

` .

Security parameters We denote the symmetric secu-
rity parameter as κ , the asymmetric security parameter
as ρ , the statistical security parameter as λ , and use the
recommended key sizes of the NIST guideline [50], sum-
marized in Tab. 2. We denote the bit size of elliptic curve
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points with ϕ , i.e., ϕ = 284 for Koblitz curve K-283
when using point compression.

Security SYM (κ) FFC and IFC (ρ) ECC (ϕ) Hash
80-bit 80 1,024 K-163 SHA-1
128-bit 128 3,072 K-283 SHA-256

Table 2: NIST recommended key sizes for symmetric
cryptography (SYM), finite field cryptography (FFC),
integer factorization cryptography (IFC), elliptic curve
cryptography (ECC) and hash functions.

Adversary definition The secure computation litera-
ture considers two types of adversaries with different
strengths: A semi-honest adversary tries to learn as much
information as possible from a given protocol execution
but is not able to deviate from the protocol steps. The
semi-honest adversary model is appropriate for scenarios
where software attestation is enforced or where an un-
trusted third party is able obtain the transcript of the pro-
tocol after its execution, either by stealing it or by legally
enforcing its disclosure. The stronger, malicious adver-
sary extends the semi-honest adversary by being able to
deviate arbitrarily from the protocol steps.

Most protocols for private set intersection, as well
as this work, focus on solutions that are secure against
semi-honest adversaries. PSI protocols for the mali-
cious setting exist, but they are considerably less ef-
ficient than protocols for the semi-honest setting (see,
e.g., [15, 18, 22, 24, 29, 34]).

The random oracle model As most previous works on
efficient PSI, we use the random oracle model to achieve
more efficient implementations [9]. We provide details
and argue about the use of random oracles in §B.

2.2 Oblivious Transfer
Oblivious transfer (OT) is a major building block for
secure computation. When executing m invocations of
1-out-of-2 OT on `-bit strings (denoted

(2
1

)
-OTm

` ), the
sender S holds m message pairs (xi

0,x
i
1) with xi

0,x
i
1 ∈

{0,1}`, while the receiver R holds an m-bit choice vector
b. At the end of the protocol, R receives xi

b[i] but learns
nothing about xi

1−b[i], and S learns nothing about b. Many
OT protocols have been proposed, most notably (for the
semi-honest model) the Naor-Pinkas OT [47], which uses
public-key operations and has amortized complexity of
3m public-key operations when performing m OTs.

OT extension [7, 33] reduces the number of expen-
sive public-key operations for OTm

` to that of only OTκ
κ ,

and computes the rest of the protocol using more efficient
symmetric cryptographic operations which are orders of

magnitude faster. The security parameter κ is essentially
independent of the number of OTs m, and can be as small
as 80 or 128. Thereby, the computational complexity for
performing OT is reduced to such an extent, that the net-
work bandwidth becomes the main bottleneck [1, 21].

Recently, the efficiency of OT extension protocols has
gained a lot of attention. In [38], an efficient 1-out-of-
N OT extension protocol was shown, that has sub-linear
communication in κ for short messages. Another proto-
col improvement is outlined in [1, 38], which decreases
the communication from R to S by half. Additionally,
several works [1,49] improve the efficiency of OT by us-
ing an OT variant, called random OT. In random OT,
(xi

0,x
i
1) are chosen uniformly and randomly within the

OT and are output to S, thereby removing the final mes-
sage from S to R. Random OT is useful for many appli-
cations, and we show how it can reduce the overhead of
PSI. We elaborate on these OT extension protocols in §C.

3 Circuit-Based PSI

Unlike special purpose private set intersection protocols,
the protocols that we describe in this section are based on
a generic secure computation protocol that can be used
for computing arbitrary functionalities. State-of-the-art
for computing the PSI functionality is the sort-compare-
shuffle (SCS) circuit of [30], which has size O(n logn)
(cf. §D.1 for details.) We discuss these protocols by
reflecting on the generic secure computation protocol
of Goldreich-Micali-Wigderson (GMW) [26] (§3.1) and
outlining major optimizations for evaluating the SCS cir-
cuit for PSI using GMW (§3.2).

The usage of generic protocols holds the advantage
that the functionality of the protocol can easily be ex-
tended, without having to change the protocol or the
security of the resulting protocol. For example, it is
straightforward to change the protocol to compute the
size of the intersection, or a function that outputs 1 iff
the intersection is greater than some threshold, or com-
pute a summation of values (e.g., revenues) associated
with the items that are in the intersection. Computing
these variants using other PSI protocols is non-trivial.

3.1 The GMW Protocol
We focus on the GMW protocol [26] for generic secure
computation, which was implemented in the semi-honest
model for multiple parties in [13], optimized for two par-
ties in [55], and extended to the malicious model in [49].

The GMW protocol represents the function to be
computed as a Boolean circuit and uses an XOR-based
secret-sharing and OT to evaluate the circuit. A cir-
cuit with input bit u from P1 and v from P2 is evaluated
as follows. First, P1 and P2 secret-share their input bit
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u = u1 ⊕ u2 and v = v1 ⊕ v2 and Pi obtains the shares
labeled with i. The parties then evaluate the Boolean cir-
cuit gate-by-gate, as detailed next. To evaluate an XOR
gate with input wires u and v and output wire w, P1 lo-
cally computes w1 = u1⊕ v1 while P2 locally computes
w2 = u2⊕ v2.

Evaluating AND gates using multiplication triples
An AND gate with input wire u and v and output wire w
requires an interaction between both parties using a mul-
tiplication triple [6]. A multiplication triple is a set
of shares α1,α2,β1,β2,γ1,γ2 ∈ {0,1} with (α1⊕α2)∧
(β1⊕β2) = γ1⊕γ2. Given a multiplication triple, to eval-
uate an AND gate implementing u AND v, the parties
compute di = αi⊕ui and ei = βi⊕vi, exchange di,ei, re-
construct d = d1⊕ d2 and e = e1⊕ e2, and compute the
shares of the gate output wire as w1 =(d∧e)⊕(d∧β1)⊕
(e∧α1)⊕ γ1 and w2 = (d ∧ β2)⊕ (e∧α2)⊕ γ2. These
are all extremely efficient operations and therefore the
efficiency of the evaluation depends on the efficiency of
generating multiplication triples.

As described in [1], multiplication triples can be gen-
erated using two random OTs on one-bit strings as fol-
lows: both parties choose αi ∈R {0,1} and run two ran-
dom OTs, where in the first OT P1 acts as sender and P2
as receiver with choice bit α2, and in the second OT P2
acts as sender and P1 as receiver with choice bit α1. From
each OT, the sender obtains (xi

0,x
i
1) and sets βi = xi

0⊕xi
1

and the receiver obtains xi
αi

. To compute valid γ0,γ1
values for the triple, note that (α1⊕α2)∧ (β1⊕ β2) =
(α1 ∧β1)⊕ (α1 ∧β2)⊕ (α2 ∧β1)⊕ (α2 ∧β2) = γ0⊕ γ1.
Pi locally computes αi ∧βi. Values α1 ∧β2 and α2 ∧β1
are computed using the output of the random OT as
α1 ∧ β2 = x2

α1
⊕ x2

0 and α2 ∧ β1 = x1
α2
⊕ x1

0. 3 Fi-
nally, P1 sets γ1 = (α1 ∧β1)⊕ x1

0⊕ x2
a1

and P2 sets γ2 =

(α2∧β2)⊕x2
0⊕x1

α2
. These computations can be done in

a preprocessing step before the input is known, are inde-
pendent of circuit’s structure, and highly parallelizable.

3.2 Optimized Circuit-Based PSI

We describe in this section an optimization which greatly
reduces the overhead of circuit based PSI for GMW (as
is detailed in Tab. 5 in §7, the reduction in the runtime
for inputs of size 218 is about 40%). The optimization is
based on a protocol proposed in [43].

As outlined in §D.1, the size of the SCS circuit is dom-
inated by the multiplexer gates. In each multiplexer op-
eration with σ -bit inputs x and y and a choice bit s, we
compute z[ j] = s∧ (x[ j]⊕y[ j])⊕x[ j] for each 1≤ j ≤ σ

3To verify the correctness of the equations, note that we can rewrite
α1 ∧ β2 = α1 ∧ (x2

0⊕ x2
1) = (α1 ∧ (x2

0⊕ x2
1)⊕ x2

0)⊕ x2
0 = x2

α1
⊕ x2

0 and
α2 ∧β1 as x1

α2
⊕ x1

0, analogously.

using σ AND gates in total. The evaluation of this mul-
tiplexer circuit in the GMW protocol requires random
OT2σ

1 , namely 2σ random OTs of single-bit inputs. We
observe that the same wire s is input to multiple AND
gates which allows for the following optimization.

Consider an input wire u that is the input to multiple
AND gates of the form w[1] = (u AND v[1]), . . . ,w[σ ] =
(u AND v[σ ]). Similar to the evaluation of a single AND
gate described in §3.1, these gates can be evaluated using
a multiplication triple generalized to vectors, which we
call a vector multiplication triple.

A vector multiplication triple has the following form:
α1,α2 ∈ {0,1}; β1,β2,γ1,γ2 ∈ {0,1}σ , where Pi holds
the shares labeled with i that satisfy the condition (α1⊕
α2) ∧ (β1[ j]⊕ β2[ j]) = γ1[ j]⊕ γ2[ j]. To evaluate the
AND gates, both parties compute di = αi ⊕ ui and
ei[ j] = βi[ j]⊕ vi[ j], exchange di,ei[ j], set d = d1⊕ d2,
e[ j] = e1[ j]⊕ e2[ j], and wi[ j] = (d∧ e[ j])⊕ (d∧βi[ j])⊕
(e[ j]∧αi)⊕ γi[ j]. The vector multiplication triple can
be pre-computed analogously to the regular multiplica-
tion triples described in §3.1, but using random OT2

σ ,
namely only two random OTs applied to σ -bit strings:
The parties each choose α1,α2 ∈R {0,1} and perform
a random OT1

σ with P1 acting as sender and P2 acting
as receiver with choice bit α2, and a second random
OT1

σ with P2 acting as sender and P1 acting as receiver
with choice bit α1. From these random OTs, Pi obtains
βi ∈ {0,1}σ = xi

0 ⊕ xi
1 and, analogously to the regular

multiplication triple generation, a valid γi ∈ {0,1}σ .

Efficiency Overall, evaluating σ AND gates with a
vector multiplication triple requires to send 2σ + 2 bits
(instead of 4σ bits with σ regular multiplication triples).
Generating a vector multiplication triple requires 2 ran-
dom OTs on σ -bit strings (instead of 2σ random OTs
with σ regular multiplication triples); as the communi-
cation of random OT is independent of the input length,
this improves communication by factor σ .

In the SCS circuit we have 2n log2 n+n+1 multiplex-
ers, each of which can be evaluated using a single vector
multiplication triple. This reduces the number of random
OTs from 2σ(2n log2 n+n+1) to 2(2n log2 n+n+1).

Further applications of vector multiplication triples
As a side note, we comment that our vector multipli-
cation triples can be used in every circuit where wires
are used as input in two or more AND gates. As such,
another beneficial application is multiplication. When
computing a multiplication between two σ -bit numbers
x and y using the school method multiplication cir-
cuit [55], each bit xi is multiplied with every bit of y:
∀1≤i≤σ∀1≤ j≤σ (xi ∧ y j). Here, using vector multiplica-
tion triples allows to reduce the total number of random
OTs by a factor two, from 4σ2−2σ OTs to 2σ2.
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4 Bloom Filter-Based PSI

The recent PSI protocol of [19] uses Bloom Filters (BF)
and OT to compute set intersection. We summarize
Bloom filters in §4.1 and the PSI protocol of [19] in §4.2.
We then present a redesigned optimized version of the
protocol in §4.3. This optimization reduces the runtime
for inputs of size 218 by 55%−60% (cf. §7, Tab. 5).

4.1 The Bloom Filter
A BF that represents a set of n elements consists of an
m-bit string F and k independent uniform hash functions
h1, ...,hk with hi : {0,1}∗ 7→ [1,m], for 1 ≤ i ≤ k. Ini-
tially, all bits in F are set to zero. An element x is in-
serted into the BF by setting F [hi(x)] = 1 for all i. To
query if the BF contains an item y, one checks all bits
F [hi(y)]. If there is at least one j such that BF [h j(y)] = 0,
then y is not in the BF. If, on the other hand, all bits
BF [hi(y)] are set to one, then y is in the BF except for
a false positive probability ε . An upper bound on ε

can be computed as ε = pk(1+O( k
p

√
lnm−k ln p

m )), where

p = 1−(1− 1
m )

kn. The authors of [19] propose to choose
the number of hash functions as k = 1/ε and the size of
the BF as m = kn/ ln2 ≈ 1.44kn. In their experiments,
they set ε = 2−κ , resulting in k = κ and a filter of size
m≈ 1.44κn. 4

The intersection between two BFs FX and FY , repre-
senting sets X and Y , respectively, can be computed as
F(X∧Y ) = FX ∧FY . However, as described in [19], F(X∧Y )
has more bits set to one than a BF F(X∩Y ) that was gen-
erated from the intersection X ∩Y . For example, as-
sume that there are two sets X = {x} and Y = {y} with
x 6= y. If there exist i, j such that hi(x) = h j(y), we have
F(X∧Y )[hi(x)] = 1. However, the intersection X ∩Y =∅,
results in F(X∩Y )[hi(x)] = 0. Thus, learning F(X∧Y ) re-
veals more information about the set of the other party
than is revealed by only obtaining the result, so a differ-
ent approach is needed, as described next.

4.2 Garbled Bloom Filter-Based PSI
To avoid unintentional information leakage when using
Bloom filters for PSI, the authors of [19] introduced a
variant of the BF, called Garbled Bloom Filter (GBF).
Like a BF, a GBF G uses κ hash functions h1, ...,hκ ,
but instead of single bits, it holds shares of length ` at
each position G[i], for 1 ≤ i ≤ m. These shares are cho-
sen uniformly at random, subject to the constraint that

4In our application it is insufficient to set ε to be equal to the sta-
tistical security parameter, since in the PSI protocol one of the parties
might mount a brute force attack where it attempts to find items that
are mapped to “1” locations in the Bloom filter. The parameters must
ensure that the success probability of this attack is negligible.

for every element x contained in the filter G it holds that⊕
κ
j=1 G[h j(x)] = x.
To represent a set X using a GBF G, all positions

of G are initially marked as unoccupied. Each element
x ∈ X is then inserted as follows. First, the insertion
algorithm tries to find a hash function t ∈ [1...κ] such
that G[ht(x)] is unoccupied (the probability of not find-
ing such a function is equal to the probability of a false
positive in the BF, which is negligible due to the choice
of parameters). All other unoccupied positions G[h j(x)]
are set to random `-bit shares. Finally, G[ht(x)] is set
to G[ht(x)] = x⊕

(⊕
κ
j=1, j 6=t G[h j(x)]

)
to obtain a valid

sharing of x. We emphasize that because existing shares
need to be re-used, the generation of the GBF cannot be
fully parallelized. (We describe below in §4.3 how the
protocol can be modified to enable a parallel execution.)

In the semi-honest secure PSI protocol of [19], P1 gen-
erates a m-bit GBF GX from its set X and P2 generates
a m-bit BF FY from its set Y . P1 and P2 then perform
OTm

` , where for the i-th OT P1 acts as a sender with input
(0,GX [i]) and P2 acts as a receiver with choice bit FY [i].
Thereby, P2 obtains an intersection GBF G(X∧Y ), for
which G(X∧Y )[i] = 0 if FY [i] = 0 and G(X∧Y )[i] = GX [i] if
FY [i] = 1. P2 can check whether an element y is in the in-

tersection by checking whether
⊕k

i=1 G(X∧Y )[hi(y)]
?
= y.

(Note that P2 cannot perform this check for any value
which is not in its input set, since the probability that
it learns all GBF locations associated with that value is
equal to the probability of a false positive, which is neg-
ligible due to the choice of parameters.) The bit-length
of the shares in the GBF can be set to `= λ .

Optimization Since one input of the sender in the OT
is fixed to zero, the OT extension protocol can be opti-
mized such that only one value needs to be transferred
from sender to receiver, similarly to the correlated OT
extension protocol of [1] which reduces both the compu-
tation and the communication complexity. Additionally,
the parties only need to evaluate the hash function when
the bit in the Bloom filter is set to 1, which reduces the
computation complexity for both by half.

4.3 Random GBF-Based PSI
We introduce a further optimization of the GBF-based
PSI protocol of [19], which we call the random Garbled
Bloom Filter protocol. The core idea is to have parties
collaboratively generate a random GBF. This is in con-
trast to the original protocol where the GBF had to be
of a specific structure (i.e., have the XOR of the entries
of x ∈ X be x). The modified protocol can be based on
random OT extension (in fact, on a version of the proto-
col which is even more efficient than the original random
OT extension). For each position in the filter, each party
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learns a random value if the corresponding bit in its BF
is 1. P1 then sends to P2 the XOR of the GBF values cor-
responding to each of its inputs, and P2 compares these
values to the XOR of the GBF values of its own inputs.

The primitive that enables this solution is a variant of
random OT extension, which we denote as an oblivious
pseudo-random generator (OPRG). It takes as inputs bits
b1,b2 from each party, respectively, generates a random
string s, and outputs to Pt s if bt = 1 and nothing oth-
erwise, for t ∈ {0,1}. Additionally, we require that the
parties remain oblivious to whether the other party ob-
tained s. A protocol for computing this functionality is
obtained by modifying the existing random OT extension
protocol of [1] as follows.

Recall that in random OT extension, S has no input in
the i-th OT and outputs two values (xi

0,x
i
1) as xi

0 = H(qi),
xi

1 = H(qi⊕ s), while R inputs a choice bit vector b and
outputs xi

b[i] = H(ti) (cf. §2.2 and §C). The new function-
ality is obtained by having S ignore the xi

0 output that it
receives, and ignore also the xi

1 output if b1 = 0. Simi-
larly, R ignores its output if b2 = 0. The random OT ex-
tension protocol thus becomes more efficient, since the
parties can ignore the parts of the computation in the
original protocol that are required for computing the val-
ues that they now ignore.

Our resulting Bloom filter-based protocol works as
follows. First, P1 and P2 each generate a BF, FX and FY
respectively. They evaluate the OPRG with P1 being
the sender and P2 being the receiver, using the bits of
FX and FY as inputs, to obtain random GBFs GX and
GY with entries in {0,1}`. For each element x j in its
set X , P1 then computes mP1 [ j] =

⊕
κ
i=1 GX [hi(x j)], with

1 ≤ j ≤ n1. Finally, P1 sends all mP1 values in random
order to P2, which identifies whether an element y in its
set is in the intersection by checking whether a j exists
such that mP1 [ j] =

⊕
κ
i=1 GY [hi(y)].

Correctness For each item in the intersection, P2 gets
from P1 the same XOR value that it computed from its
own GBF, and therefore identifies that the item is in
the intersection. For any item which is not in the in-
tersection, it holds with overwhelming probability that
the XOR value computed by P2 is independent of the n1
values received from P1. The probability of a false posi-
tive identification for that value is therefore n1 ·2−`. The
probability of a false positive identification for any of the
values is n1n2 · 2−`. To achieve correctness with proba-
bility 1-2−λ , we therefore set `= λ + log2 n1 + log2 n2.

Security The security of each party can be easily
proved using a simulation argument. P2’s security is ob-
vious, since the only information that P1 learns are the
random outputs of the random OT protocol, which are

independent of P2’s input and can be easily simulated
by P1. P1’s security is apparent from observing that the
information that P2 receives from P1 is composed of

• The XOR values that P2 computed for each item in
the intersection.

• The XOR values that P1 computed for its n1−|X ∩
Y | items that are not in the intersection. These val-
ues are independent of P2’s BF unless one of these
items is a false-positive identification in the filter,
which happens with negligible probability ε .

Therefore, the information received from P1 can be easily
simulated by P2 given its legitimate output, i.e., X ∩Y .

Efficiency As shown in Tab. 3, our resulting random
GBF-based PSI protocol has less computation and com-
munication complexity than the original GBF protocol
in [19] (even with the optimizations described in §4.2
that are based on the OT extension protocol of [1]). In
terms of communication, in our new protocol, P1 has to
send the n1`-bit vector mP1 and P2 has to send mκ bits
in the random OTs. (This is compared to 2mλ bits and
2mκ bits sent in the original protocol. Later in our exper-
iments in §7 we show that the communication is reduced
by a factor between 1.9 and 3, cf. Tab. 6.)

The computation complexity of our protocol is
HW(FX ) hash function evaluations for P1 and HW(FY )
hash function evaluations for P2, where HW(·) denotes
the Hamming weight. When the number of hash func-
tions k and the size of the BF m are chosen optimally, we
can approximate the average Hamming weight in a BF
using the probability that a single bit is set to 1, which is
1− (1− ( 1

m ))
kn ≈ 1

2 . Thus, HW(F)≈ m
2 .

A main advantage of our protocol is that it allows to
parallelize all operations: BFs can be generated in paral-
lel (bits in the BF are changed only from 0 to 1) and, most
importantly, the random GBF can also be constructed in
parallel, in contrast to the original GBF-based protocol.

Optimization Party # Bits Sent # calls to H

Original GBF-based PSI [19] P1 2mλ 2m
P2 2mκ m

[19] with OT of [1] P1 mλ m
P2 mκ m/2

Random GBF-based PSI (§4.3) P1 n1` m/2
P2 mκ m/2

Table 3: Communication and computation complexities
for Bloom-filter-based PSI of [19] and our optimiza-
tion. (λ : statistical security parameter, κ: symmetric
security parameter, ni: number of elements of party Pi,
m≈ 1.44κ max(n1,n2), `= λ + log2 n1 + log2 n2).
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5 Private Set Intersection via OT

We propose a new private set intersection protocol that
is based on the most efficient OT extension techniques,
in particular the random OT functionality [1, 49] and the
efficient 1-out-of-N OT of [38]. This PSI protocol scales
very efficiently with an increasing set size.

We first describe the protocol for a private equality test
(PEQT) between two elements x and y (§5.1) and then
describe how to efficiently extend it for comparing y to
a set X = {x1, ...,xn} (§5.2). The resulting protocol can
then be simply extended to perform PSI between sets X
and Y by applying the parallel comparison protocol for
each element y ∈ Y (§5.3). The overhead of the protocol
can be greatly improved using hashing (§6).

5.1 The Basic PEQT Protocol

In the most basic private equality test (PEQT) protocol,
P1 and P2 check whether their σ -bit elements x and y are
equal by engaging in random

(2
1

)
OTσ

` , where P2 uses
the bits of y as its choice vector. From each random OT,
P1 obtains two uniformly distributed and random `-bit
strings (si

0,s
i
1), and P2 obtains si

y[i]. P1 then computes
mP1 =

⊕
σ
i=1 si

x[i] (the XOR of the strings corresponding
to the binary representation of x) and sends it to P2. P2
compares this value to mP2 =

⊕
σ
i=1 si

y[i] and decides that
x = y iff mP1 = mP2 .

The basic private equality test can be improved by us-
ing a base-N representation of the inputs and a

(N
1

)
OT

in the protocol. Specifically, let N = 2η . P1 and P2 check
whether their σ -bit elements x and y are equal by repre-
senting them using t = σ/η letters from an alphabet of
size N, and then engaging in random

(N
1

)
-OTt

`.
For this, P2 cuts its σ -bit element y into t blocks y[i]

of bitlength η each: y = y[1]|| . . . ||y[t]; similarly, P1 in-
terprets x = x[1]|| . . . ||x[t]. In the i-th random

(N
1

)
-OT, P2

inputs y[i] as choice bits and P1 obtains N random and
uniformly distributed `-bit strings (si

0, ...,s
i
N−1); P2 ob-

tains si
y[i]. P1 sends mP1 =

⊕t
i=1 si

x[i] to P2 who compares
it to mP2 =

⊕t
i=1 si

y[i] and decides that x= y iff mP1 =mP2 .

Correctness If x = y then the choices that both parties
make for their sums are equal, i.e., mP1 =

⊕t
i=1 si

x[i] =⊕t
i=1 si

y[i] = mP2 , and P2 successfully identifies equality.

If x 6= y then the probability that mP1 = mP2 is 2−`. To
see that this is true, assume w.l.o.g. that the inputs dif-
fer in their last sub-string, i.e., x[t] 6= y[t]. Equality only
holds if the last element received by P2, namely st

y[t], is

equal to
⊕t

i=1 si
x[i]⊕

⊕t−1
i=1 si

y[i]. The value of st
y[t] is inde-

pendent of the other values, and therefore this equality

happens with probability 2−` and thus we can set ` to be
equal to the statistical security parameter λ .

Security P2’s security is obvious, since the only infor-
mation that P1 learns are the random values chosen in the
random OT, which are independent of P2’s input.

As for P1’s security, note that P2’s view in the protocol
consists of its t outputs in the random

(N
1

)
-OT protocols,

and of the value mP1 sent by P1. If x = y then mP1 is equal
to the XOR of the first t values. Otherwise, all t +1 val-
ues are uniformly distributed. In both cases, the view of
P2 can be easily simulated given the output of the pro-
tocol (i.e., knowledge whether x = y). The protocol is
therefore secure according to the common security defi-
nitions of secure computation [25].

Efficiency Since in the i-th random OT P1 needs only
the output si

x[i], it suffices to evaluate one hash function

per random OT. When using the random
(2

1

)
-OT exten-

sion protocol5 of [1] and `= λ , the parties perform ran-
dom OTσ

λ
, send σκ + λ bits, and do σ hash function

evaluations each. In comparison, when using the random(N
1

)
-OT extension protocol of [38], the parties perform

only σ/η OTs and send 2κ bits per OT (cf. §C.3); in to-
tal, they have to send 2σκ/η +λ bits and do σ/η hash
function evaluations each. The analysis in §C.3 shows
that setting η = 8 results in optimal performance for our
PSI protocols.

5.2 Private Set Inclusion Protocol
In a private set inclusion protocol, P1 and P2 check
whether y equals any of the values in X = {x1, ...,xn1}.
The set inclusion protocol is similar to the basic PEQT
protocol, but in order to perform multiple comparisons
in parallel, the OTs are computed over longer strings,
essentially transferring (in parallel) a random string for
each element in the set X .

In more detail, both parties run a random
(N

1

)
-OTt

n1`
,

where P2 uses the bits of y as choice bits. Each received
string is of length n1` bits. That is, in the i-th random OT,
P1 obtains N random strings (si

0, ...,s
i
N−1) ∈ {0,1}n1`,

and P2 obtains one random string si
y[i]. The strings are

parsed as a list of n1 sub-strings of length ` bits each.
We refer to the j-th sub-string in these lists as si

w[ j], for
1 ≤ j ≤ n1 and 0 ≤ w < N. Using these sub-strings, P1
and P2 can then compute the XOR of the strings corre-
sponding to their respective inputs, compare the results
and decide on equality, as was described in the basic
PEQT protocol in §5.1. In more detail, P1 computes

5Note that for σ < κ we can perform σ base-OTs instead of using
OT extension. However, here we analyze the costs when using OT
extension for simplicity and consistency reasons.
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mP1 [ j] =
⊕t

i=1 si
x j [i]

[ j] and sends the n1`-bit string mP1 to
P2. P2 decides whether y matches any of the elements in
X by computing mP2 =

⊕t
i=1 si

y[i] and checking whether
a j exists with mP1 [ j] = mP2 .

Correctness and security follow from the properties of
the protocol of §5.1. However, now we require that the
value mP2 and all the n1 values mP1 [ j] are distinct, which
happens with probability n12−`. Thus, to achieve cor-
rectness with probability 1-2−λ , we must increase the
bit-length of the OTs to ` = λ + log2 n1. Also, note
that P2 learns the position j at which the match is found,
which can be avoided by randomly permuting the inputs.

Efficiency The set inclusion protocol that compares y
to many values has the same number of random OTs
as the basic comparison protocol comparing y to a sin-
gle value, but it requires the transferred strings to be of
length n1(λ + log2(n1)) bits instead of λ bits. Note, how-
ever, that since we use random OTs there is no need to
send these strings in the OT protocol. Instead, all strings
corresponding to the same value of the same input bit can
be generated from a single seed using a pseudo-random
generator. Therefore, the amount of data transferred in
the OTs is the same as for the single comparison PEQT
protocol.

The only additional data that is sent is the n1(λ +
log2 n1)-bit string mP1 , which P1 sends to P2. Hence,
the total amount of communication is 2σκ/η + n1(λ +
log2 n1) bits.

In addition, the PRG which is used to generate the out-
put string from the OT must be evaluated multiple times
to generate the n1(λ + log2 n1) bits. Therefore, the set
inclusion protocol, which compares y to n1 elements, is
less efficient than a single run of the PEQT protocol,
but is definitely more efficient than n1 invocations of the
PEQT protocol.

5.3 The OT-Based PSI Protocol
To obtain the final PSI protocol that computes X ∩Y , P2
simply invokes the private set inclusion protocol of §5.2
for each y ∈ Y . Correctness and security follow from the
properties of the private set inclusion protocol.

Efficiency Overall, to compute the intersection be-
tween sets X and Y of σ -bit elements, the protocol re-
quires n2σ/η random

(N
1

)
-OTs of n1(λ + log2 n1) bit-

strings and additionally n1n2(λ + log2 n1) bits to be sent.
Using the random

(N
1

)
-OT of [38], the total amount

of communication is 2n2σκ/η +n1n2(λ + log2 n1) bits.
For large n1 and n2, this amount of communication grows
too large for an efficient solution. In order to cope with
large sets, one can use a hashing scheme, as shown in §6.

6 Hashing Schemes and PSI

Several private set intersection protocols are based on
running many invocations of pairwise private equality
tests (PEQT). These protocols include [12, 24, 30] or our
set inclusion protocol in §5. A straightforward imple-
mentation of these protocols requires n2 invocations of
PEQT for sets of size n, and therefore does not scale well.
In [22,24] it was proposed to use hashing schemes to re-
duce the number of comparisons that have to be com-
puted. The idea is to have each party use a publicly
known random hashing scheme to map its input elements
to a set of bins. If an input element is in the intersection,
both parties map it to the same bin. Therefore, the pro-
tocol can check for intersections only between items that
were mapped to the same bin by both parties.

Naively, if n items are mapped to n bins then the av-
erage number of items in a bin is O(1), checking for an
intersection in a bin takes O(1) work, and the total over-
head is O(n). However, privacy requires that the par-
ties hide from each other how many of their inputs were
mapped to each bin.6 As a result, we must calculate in
advance the number of items that will be mapped to the
most populated bin (w.h.p.), and then set all bins to be of
that size. (This can be done by storing dummy items in
bins which are not fully occupied.) This change hides the
bin sizes but also increases the overhead of the protocol,
since the number of comparisons per bin now depends
on the size of the most populated bin rather than on the
actual number of items in the bin. However, while the
parties need to pretend externally that all their items are
real, they do not need to apply all their internal compu-
tations to their dummy items (since they know that these
items are not in the intersection). A careful implementa-
tion of this observation, which takes into account timing
attacks, can further optimize the computation complexity
of the underlying protocols.

The work of [22, 24] gave asymptotic values for the
bin sizes that are used with this technique, and of the
resulting overhead. They left the task of setting ap-
propriate parameters for the hashing schemes to future
work. We revisit the hashing schemes that were outlined
in [22,24], namely, simple hashing, balanced allocations,
and Cuckoo hashing (§6.1). We evaluate the performance
when using hashing schemes for PSI (§6.2), and describe
an analysis of the involved parameters (§6.3). We con-
clude that Cuckoo hashing yields the best performance
(for parameters which we find to be most reasonable).

6Otherwise, and since the hash function is public, some information
is leaked about the input. For example, if no items of P1 were mapped
to the first bin by the hash function h, then P2 learns that P1 has no
inputs in the set h−1(1), which covers about 1/n of the input range.
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6.1 Hashing Schemes
Simple Hashing In the simplest hashing scheme the
hash table consists of b bins B1...Bb. Hashing is done
by mapping each input element e to a bin Bh(e) using a
hash function h : {0,1}σ 7→ [1,b] that was chosen uni-
formly at random and independently of the input ele-
ments. An element is always added to the bin to which it
is mapped, regardless of whether other elements are al-
ready stored in that bin. Estimating the maximum num-
ber of elements that are mapped to any bin, denoted
maxb, is a non-trivial problem and has been subject to ex-
tensive research [27, 42, 54]. When hashing m elements
to b = m bins, [27] showed that maxb =

lnm
ln lnm (1+o(1))

w.h.p. In this case, there is a difference between the ex-
pected and the maximum number of elements mapped
to a bin, which are 1 and O( lnm

ln lnm ), respectively. When
decreasing the number of bins to a value b satisfying
c ·b lnb=m for some constant c, it was shown in [54] that
maxb = (dc−1+α) lnb, where dc is the largest solution
to f (x) = 1+ x(lnc− lnx+ 1)− c = 0, and α is a pa-
rameter for adjusting the conservativeness of the approx-
imation, and should be set to be slightly larger than 1. In
this case the expected and maximum number of elements
mapped to a bin are of the same order O(lnb)≈O(lnm).
This is preferable for our purposes, since even though
privacy requires that we set each bin to be as large as the
most populated bin, this size is of the same order as the
expected size of a bin when no privacy is needed.

Balanced Allocations The balanced allocations hash-
ing scheme [2] uses two uniformly random hash func-
tions h1,h2 : {0,1}σ 7→ [1,m]. An element e is mapped
by checking which of the two bins Bh1(e) and Bh2(e) is
less occupied, and mapping the element to that bin. A
lookup for an element q is then performed by checking
both bins, Bh1(q) and Bh2(q), and comparing the elements
in these bins to q. The advantage of this scheme, shown
in [2], is that when hashing m elements into b = m bins,
maxb is only ln lnm

ln2 (1+ o(1)), i.e., exponentially smaller
than in simple hashing.

Cuckoo Hashing Similar to balanced allocations hash-
ing, Cuckoo hashing [51] uses two hash functions h1,h2 :
{0,1}σ 7→ [1,b] to map m elements to b = 2(1 + ε)m
bins. The scheme avoids collisions by relocating el-
ements when a collision is found using the following
procedure: An element e is inserted into a bin Bh1(e).
Any prior contents o of Bh1(e) are evicted to a new bin
Bhi(o), using hi to determine the new bin location, where
hi(o) 6= h1(e) for i ∈ {1,2}. The procedure is repeated
until no more evictions are necessary, or until a thresh-
old number of relocations been performed. In the latter
case, the last element is put in a special stash s. It was

shown that for a stash of size s≤ lnm, insertion of m el-
ements fails with probability m−s [36]. A lookup in this
scheme is very efficient as it only compares e to the two
items in Bh1(e) and Bh2(e) and to the s items in the stash.
In exchange for the improved lookup overhead, the size
of the hash table is increased to about 2m bins.

6.2 Evaluation of Hashing-Based PSI
We evaluate the asymptotic overhead of applying the OT-
based PSI protocol that was introduced in §5.3 while us-
ing any of the hashing scheme that we described. Also
note that P1 can save communication since instead of
sending all masks for each bin (including masks for both
dummy and real values), it can send only the masks of
its real values (in permuted order, so that P2 does not
know which value was in each bin). P2 can then simply
check every mask received from P1 against every com-
puted mask. However, in this case the bit-length ` of the
masks has to be increased to `′ = λ + log2 n1 + log2 n2,
since P2 has to perform a total of n1n2 comparisons and
the overall error probability must be at most 2−λ . In the
following, we address the mask length for checking one
item against a set of n1 items as `1 = λ + log2 n1 and
the mask length for checking a set of n2 items against n1
items as `2 = λ + log2 n1 + log2 n2.

PSI based on simple hashing A protocol based on
simple hashing allocates the n inputs of P2 to b bins,
such that n=O(b lnb) and b is approximately O(n/ lnn).
Each bin is padded with dummy items to contain the
maximum number of items that is expected in a bin,
which is O(lnb) = O(lnn). For each bin, the parties
need to compute the intersection between sets of O(lnn)
items. Each item can be represented using O(ln lnn)
bits.7 The protocol requires O(lnn ln lnn) random OTs
for each bin. The total number of OTs is therefore
O(n ln lnn). The length of the values transferred in the
OTs (the masks) is `2 lnn bits.

PSI based on balanced allocations A major problem
occurs when using balanced allocations hashing for PSI:
every item can be mapped to one of two bins, and there-
fore it is unclear with which of P1’s bin should P2 com-
pare its own input elements e. Furthermore, the protocol
must hide from each party the choice of bins made by the
other party to store e, since that choice depends on other
input elements and might reveal information about them.
The solution to this is to use balanced allocations by P2
alone, whereas P1 maps each of its input elements to two
bins using simple hashing with both hash functions h1

7This holds since the items in a bin can be hashed to a shorter rep-
resentation, as long as no collisions occurs. The length of the hashed
value should be about λ + log((lnn)2) = O(ln lnn).
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and h2. When using b = n bins, P2 has O(ln lnn) items
in each bin, whereas P1 has O(lnn/ ln lnn) items in every
bin (actually, it has twice as many items as with simple
hashing, since it maps each item twice). The items can
be represented using strings of O(ln lnn) bits. The pro-
tocol continues as before. P2 learns the output, but since
P1 does not use balanced allocations, P1 does not learn
P2’s choices in that hashing scheme. The number of OTs
is linear in the number of items stored by P2 multiplied
by the representation length, e.g., O(n ·(ln lnn)2) OTs on
`2 lnn/ ln lnn bit strings. This overhead is larger than that
of the simple hashing-based scheme.

PSI based on Cuckoo hashing Designing PSI based
on Cuckoo hashing encounters the same privacy problem
as when using balanced allocations hashing, and there-
fore the same solution is used. P2 uses Cuckoo hashing
whereas P1 maps each of its elements using simple hash-
ing with each of the two hash functions. P2 maps a sin-
gle item to each of the 2n bins, whereas P1’s bins contain
O(lnn) items. In addition, P2 has a stash of s ≤ lnn el-
ements. Each of these elements must be compared with
each of P1’s n elements. An item in a bin can again be
represented using O(ln lnn) bits, whereas an item in the
stash can be represented using O(lnn) bits. Furthermore,
when checking items in the stash, we check one item
against n1, allowing us to reduce the bit-size of the masks
in the OTs to `1 instead of `2. The protocol therefore per-
forms O(n ln lnn) OTs on inputs of length O(`2 ln lnn)
bits (for the items in the bins), and in addition O((lnn)2)
OTs of inputs of length O(`1 lnn) bits (for the items in
the stash, which are each compared to all items of P1’s
input). Overall, the protocol has the same asymptotic
overhead as the protocol that uses simple hashing.

6.3 Maximum Bin Size and Overhead
When using hashing schemes for private set intersection,
the number of bins b and the corresponding maximum
bin size maxb must be set to values that balance efficiency
and security. If maxb is chosen too small, the probability
of a party failing to perform the mapping, denoted Pfail,
increases. As a result, the output might be inaccurate
(since not all items can be mapped to bins), or one of the
parties needs to request a new hash function (a request
that leaks information about the input set of that party).
On the other hand, the number of performed comparisons
increases with b and maxb. An asymptotic analysis of the
maximum bin size was presented in [22, 24], but leaves
the exact choice of b and maxb and the resulting Pfail to
further work. In the following, we analyze the complex-
ity of the hashing schemes when used in combination
with our set inclusion protocol, described in §5. To com-
pare the performance of the hashing schemes on a unified

Parameter Total # OTs Comm. [bits] Comm. [MB]
P1 to P2 total, n = 218

No hashing nt n2`1 622,720 / 622,624
Simple Hashing 3.7nt n`2 476 / 121
Balanced Alloc. 2.9nt(ln lnn) 2n`2 942 / 239
Cuckoo Hashing (2(1+ ε)n+ s)t sn`1 +2n`2 319 / 89

Table 4: Number of OTs and communication for the
different hashing-based protocols. The total communi-
cation given in the last column is calculated for `1 =
λ + log2 n, `2 = λ +2log2 n, κ = 128, λ = 40, ε = 0.2,
s = 4. The first value in this column is for t = σ = 32(2

1

)
-OTs per element and the second value is for t = 32/8(N

1

)
-OTs, N = 28. It is composed of the total number of

OTs in the 2nd column times the communication per OT
plus the communication from P1 to P2 in the 3rd column.

base, we depict in Tab. 4 the overall communication, di-
vided into the number of OTs (where we run t OTs per
element) and the number of bits sent from P1 to P2.

In §E we detail the analysis of setting the optimal pa-
rameters for usage of the different hashing schemes in
our PSI protocol, and of the resulting number of OTs
and communication overhead. The results are depicted
in Tab. 4 and show that Cuckoo hashing has the lowest
communication. In addition, this scheme has a stronger
guarantee on the upper bound of Pfail, since we achieve
rehash probability of n−s. We therefore use this scheme
in our implementation and experiments.

A note on approximations When using a hashing
scheme with fixed bin sizes it is possible that the number
of items mapped to a certain bin, say by P1, is larger than
the capacity of the bin. (This event happens with prob-
ability Pfail.) In such a case it is possible for P1 to ask
to use a new hash function. This request reveals some
information about P1’s input. Another option is for P1
to ignore the missed item, and therefore essentially com-
pute an approximation to the intersection. This choice,
too, might reveal information about P1’s input, albeit in
a more subtle way through multiple invocations of the
functionality. Similarly, in the Bloom filter-based proto-
col, the occurrence of a false positive might leak infor-
mation. The best solution to this issue is to make sure
that the probability of these events happening is negligi-
ble, so that it is almost certain that these events will not
occur in practice. This is the approach that we take in
our comparisons. (Another approach would be to allow
the computation of an approximation of the original in-
tersection function, while analyzing the privacy leakage
effects of this computation, and deciding whether to tol-
erate them. The result might be a more liberal choice of
parameters which will result in a more efficient imple-
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mentation of the original protocol.)

7 Experimental Evaluation

In the following we experimentally evaluate the PSI pro-
tocols described before. We describe our benchmarking
environment in §7.1 and then detail the comparison be-
tween the protocols in §7.2. Tab. 5 compares the single-
threaded runtimes of all protocols over Gigabit LAN,
Tab. 6 compares the communication complexities, and
Tab. 7 compares the single-threaded runtimes on differ-
ent networks. In the tables we highlight the protocol with
lowest runtime and communication for each type.

7.1 Benchmarking Environment
We ran our experiments on two Intel Core2Quad desk-
top PCs (without AES-NI extension) with 4 GB RAM,
connected via Gigabit LAN. In each experiment, P1 and
P2 held the same number of input elements n and were
not allowed to perform any pre-computation. We set
n as in [19], i.e., n ∈ {210,212,214,216,218}, but omit-
ted n = 220, since many implementations exceeded the
available main memory. We use σ = 32 as the bit
length of the elements.8 We use a statistical security
parameter λ = 40 and a symmetric security parameter
κ ∈ {80,128} (other security parameters are chosen ac-
cording to Tab. 2). For our set-inclusion protocol we set
η = 8, i.e., use 1-out-of-28 OT extensions (cf. §C.3).

In our tables, the asymptotic performance is given for
the party with the majority of the workload, and are
divided to public-key operations (asym) and symmetric
cryptographic operations (sym).

Implementations The implementation of the blind-
RSA-based [16] and garbled Bloom-Filter [19] proto-
cols were taken from the authors, but we used a hash-
table to compute the last step in the blind-RSA proto-
col that finds the intersection (the original implemen-
tation used pairwise comparisons with quadratic run-
time overhead). We implemented a state-of-the-art Yao’s
garbled circuits protocol (using garbled-row-reduction,
point-and-permute, free-XOR, and pipelining, cf [31])
by building on the C++ implementation of [13] and using
the fixed-key garbling scheme of [8]9. For Yao’s garbled
circuits protocol, we evaluated a size-optimized version
of the sort-compare-shuffle circuit (comparison circuits
of size and depth σ ) while for GMW we evaluated a
depth-optimized version (comparison circuits of size 3σ

and depth log2 σ ) for σ -bit input values [55].

8For protocols whose complexity depends on σ , elements from a
large domain can be hashed to short representations as described in §A.

9The security of the fixed-key garbling scheme is somewhat contro-
versial but we included it for performance reasons.

We implemented FFC (finite field cryptography) and
IFC (integer factorization cryptography) using the GMP
library (v. 5.1.2), ECC using the Miracl library (v. 5.6.1),
symmetric cryptographic primitives using OpenSSL (v.
1.0.1e), and used the OT extension implementation of [1]
which requires about 3 symmetric cryptographic opera-
tions per OT for the asymptotic performance analysis.

We argue that we provide a fair comparison, since all
protocols are implemented in the same programming lan-
guage (C/C++), run on the same hardware, and use the
same underlying libraries for cryptographic operations.

For each protocol we measured the time from starting
the program until the client outputs the intersecting ele-
ments. All runtimes are averaged over 10 executions.

7.2 Performance Comparison
We divide the performance comparison into three cate-
gories, depending on whether the protocol is based on
public-key operations, circuits, or OT. Afterwards, we
provide experiments for different networks and give a
comparison between the best protocols in each category.

Public-Key-Based PSI For the public-key-based PSI
protocols, we observe that the DH-based protocol of [32]
outperforms the RSA-based protocol of [16] when using
finite field cryptography (FFC). Similarly to [1], we also
obtain the somewhat surprising result that for 80-bit se-
curity elliptic curve cryptography (ECC) using the Mir-
acl library is slower than FFC using the GMP library. For
larger security parameters, however, ECC becomes more
efficient and outperforms FFC by a factor of 3 for 128-bit
security for the DH-based protocol. (The reason for this
phenomenon might be better implementation optimiza-
tions in the GMP library.) The advantage of the ECC-
based protocol is its communication complexity, which is
lowest among all PSI protocols, cf. Tab. 6. We note that
a major advantage of these protocols is their simplicity,
which makes them comparably easy to implement.

Circuit-Based PSI Here we tested Yao- and GMW-
based implementations, as well as an implementation of
our optimized vector multiplication-triple-based GMW
protocol (§3.2). Following is a summary of the results:

• Both the computation complexity and the communi-
cation complexity of the circuit-based PSI protocols
are the highest among all protocols that we tested.

• The basic GMW protocol has the highest overall
runtime and communication complexity.

• Our vector multiplication triple optimization re-
duces the runtime and communication of GMW
by approximately 40%. For security parameter
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Type Symm. Security Parameter κ 80-bit 128-bit Asymptotic
Set Size n 210 212 214 216 218 210 212 214 216 218

Public-Key
DH-based FFC [32] 0.4 1.6 6.2 24.7 98.8 4.8 19.1 76.5 306.0 1,224.1 2n asym
DH-based ECC [32] 0.7 2.8 11.0 44.1 177.5 1.6 6.5 26.1 104.2 416.2 2n asym
RSA-based [16] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1,982.1 2n asym

Circuit [30]
Yao [8, 31] 1.2 5.7 27.7 128.2 - 1.6 6.3 28.4 129.1 - 12nσ log2 n sym
GMW [1] 1.9 8.6 35.2 161.9 806.5 2.6 12.8 58.9 276.4 1,304.2 30nσ log2 n sym
Vector-MT GMW §3.2 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4 18nσ log2 n sym

OT
Garbled Bloom Filter [19] 0.3 0.9 3.9 16.1 71.9 0.6 2.0 8.5 37.1 154.4 4.32nκ sym
Random Garbled Bloom Filter §4.3 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6 3.6nκ sym
Set Inclusion §5 + Hashing §6 0.13 0.2 0.8 3.3 13.5 0.26 0.3 0.9 3.7 13.8 0.75nσ sym

Table 5: Runtimes in seconds for PSI protocols with one thread over Gigabit LAN (σ = 32: bit size of set elements,
asym: public-key operations, sym: symmetric cryptographic operations).

Type Symm. Security Parameter κ 80-bit 128-bit Asymptotic
Set Size n 210 212 214 216 218 210 212 214 216 218

Public-Key
DH-based FFC [32] 0.4 1.5 6.0 24.0 96.0 1.1 4.5 18.0 72.0 288.0 3nρ

DH-based ECC [32] 0.1 0.2 1.0 3.8 15.0 0.1 0.4 1.5 6.0 24.0 3nϕ

RSA-based [16] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0 2nρ +2nκ

Circuit [30]
Yao [8, 31] 28.1 135.0 630.0 2,880.0 12,960.0 45.0 216.0 1,008.0 4,608.0 20,736.0 9nκσ log2 n

GMW [1] 31.3 150.0 700.0 3,200.0 14,400.0 50.0 240.0 1,120.0 5,120.0 23,040.0 10nκσ log2 n

Vector-MT GMW §3.2 18.8 90.0 420.0 1,920.0 8,640.0 30.0 144.0 672.0 3,072.0 13,824.0 6nκσ log2 n

OT
Garbled Bloom Filter [19] 3.4 13.5 54.0 216.0 864.0 7.6 30.2 121.0 483.8 1,935.4 2.88nκ(κ +λ )

Random GBF §4.3 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7 1.44nκ2 +n(λ +2log2 n)

Set Inclusion §5 + Hashing §6 0.2 0.8 3.3 13.4 54.3 0.3 1.2 4.8 19.4 78.3 0.5nκσ +6n(λ +2log2 n)

Table 6: Communication complexity in MB for PSI protocols. (σ = 32: bit size of set elements, security parameters
κ,λ ,ρ,ϕ as defined in §2.1). Numbers are computed from the asymptotic complexity given in the last column.

κ = 80, this implementation is slightly faster than
Yao’s protocol, but it is slightly slower for κ =
128. Communication-wise, the vector multiplica-
tion triple GMW is more efficient than Yao’s proto-
col.

• The runtime of Yao’s protocol hardly increases with
the security parameter, since we use AES-128 for
both versions. Note, however, that our implemen-
tation of Yao’s protocol exceeded the main memory
when processing 218 elements.

• Our Yao implementation does not use the AES-NI
hardware support. Using AES-NI is likely to im-
prove the runtime of the Yao implementation.

We give a more detailed performance comparison for
GMW and Yao’s protocol in Appendix §D.2.

OT-Based PSI The random garbled Bloom filter pro-
tocol of §4.3 improves the original garbled Bloom filter
protocol of [19] by more than a factor of two in runtime
and by factor of 2-3 in communication.

We also implemented our protocol of §5, where we
used Cuckoo hashing with parameters ε = 0.2 and s = 4,
cf. §6. This protocol had the best runtime, and was about
5 times faster than the random garbled Bloom filter pro-
tocol for κ = 128. In terms of communication, our set

inclusion protocol uses less than 20% of the communi-
cation of the random garbled Bloom filter protocol for
κ = 80 and less than 10% communication for κ = 128.

The main difference between the set inclusion protocol
and the random garbled Bloom filter protocol is the de-
pendency of the performance on the symmetric security
parameter κ . In the random garbled Bloom filter proto-
col, the number of OTs is independent of the bit-length σ

but scales linearly with κ . On the other hand, the number
of OTs for the set inclusion protocol is independent of κ

but linear in σ . As a result, the runtime of the Bloom
filter protocol (but not of the set inclusion protocol) is
greatly affected when κ is increased.

Experiments for Different Networks For each pro-
tocol type (public-key-based, circuit-based, and OT-
based), we benchmark the best performing PSI protocol
in different network scenarios: Gigabit LAN, 802.11g
WiFi, intra-country WAN, inter-country WAN, and mo-
bile Internet (HSDPA) and depict our results in Tab. 7.
We characterize each network scenario by its bandwidth
and latency. By latency we mean one-way latency, i.e.,
the time from source to sink, and we used the same band-
width for up- and downlink. We simulated these network
types using the Linux command tc and ran the protocols
on n = 216 elements for κ = 128 and with one thread.

The only protocol that is nearly unaffected by the
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Type Network Gigabit LAN 802.11g WiFi Intra-country WAN Inter-country WAN HSDPA
(Bandwidth (Mbit/s) / Latency (ms)) (1,000 / 0.2) (54 / 0.2) (25 / 10) (10 / 50) (3.6 / 500)

Public-Key DH-based ECC [32] 104.2 104.8 107.6 111.8 115.9

Circuit [30] Yao [8, 31] 129.1 779.5 1,735.5 4,631.8 11,658.6
Vector-MT GMW §3.2 168.9 (11.3) 370.5 (18.1) 770.4 (27.5) 1,936.5 (67.2) 5,310.9 (170.2)

OT Random Garbled Bloom Filter §4.3 16.6 37.2 70.8 164.9 445.0
Set Inclusion §5 + Hashing §6 3.7 5.0 8.8 22.8 77.5

Table 7: Runtimes in seconds for PSI protocols with one thread in different network scenarios for n = 216, σ = 32,
and κ = 128; online time for Vector-MT GMW in ().

change in network environment and for which the net-
work has not become the bottleneck is the DH-based
ECC protocol. In this protocol computation is the bottle-
neck which can be improved by using multiple threads.

For the other protocols we observe how the main bot-
tleneck transitions from computation to communication:

For Yao’s protocol this transition happens very early,
already when changing from Gigabit LAN to WiFi (fac-
tor 6 in runtime).10 Our vector-MT GMW protocol
and our random garbled Bloom filter protocol suffer
less drastically from the decreased bandwidth (factor 2.3
in runtime). However, from the WiFi connection on,
the performance of all three protocol decreases approxi-
mately linear in the bandwidth. Note that, although our
vector-MT GMW protocol has only 66% of the commu-
nication complexity of Yao’s protocol, it is more than two
times faster in slower networks. This can be explained by
the direction of the communication. In Yao’s protocol,
the large garbled circuit is sent in one direction, whereas
the communication in GMW can be evenly distributed in
both directions s.t. it uses both up- and downlink.

For our set inclusion protocol, the network satura-
tion happens when using intra-country WAN. From this
point on, the performance also decreases linearly with
the bandwidth. Still, this protocol is the fastest of all
protocols in all network settings.

Experiments with Multiple Threads Tab. 8 shows the
runtimes with four threads. Of special interest is the
last column, which shows the ratio between the runtimes
with four threads and a single thread for n= 218 elements
and security parameter κ = 128. The DH-based protocol,
which is very simple and easily parallelizable, achieves
almost the optimal speedup of 4x as computation is the
performance bottleneck. The GMW protocol achieves
only a speedup of about 2x, possibly due to the gate-by-
gate evaluation of the circuit resulting in multiple rounds
of communication as the bottleneck. The OT-based pro-
tocols achieve a very good speedup of about 3x.

10The performance advantage of using fixed-key AES garbling in-
stead of SHA-1/SHA-256 already diminished in the WiFi setting.

Comparison From the results we observe that OT-
based protocols have the lowest runtime on a fast net-
work. The public-key-based protocols require costly
public-key operations, which scale very poorly with in-
creasing security parameter, but need less communica-
tion than the OT- or circuit-based protocols. The circuit-
based protocols have a smaller runtime than the public-
key-based protocols using FFC or RSA for κ = 128, but
by far the highest communication complexity.

Our set inclusion protocol achieves both the most ef-
ficient runtime and a very low communication overhead.
Compared to the second fastest protocol, namely our op-
timized random garbled Bloom-filter protocol, the set in-
clusion protocol is at least 5 times faster and uses 10
times less communication (for 128 bit security). More-
over, this protocol has the second best communication
overhead, requiring only 3 times the communication of
the DH-ECC-based protocol of [32], but running faster
in all network environments that we tested.

We stress that the choice of the preferable PSI protocol
depends on the application scenario. For instance,

• If communication is the bottleneck and a great
amount of computational resource is available, then
the DH-based PSI protocol using ECC is the most
favorable. That protocol is also the simplest proto-
col to implement.

• The circuit-based protocols are unique in that they
are based on generic secure computation techniques
and can therefore be easily modified to compute
more complex variants of PSI.

• While our set inclusion protocol performs very effi-
ciently for σ = 32, it would require twice the run-
time for σ = 64, while the random garbled Bloom
filter protocol would have approximately the same
runtime (which would still be greater).
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A Hashing Inputs to a Smaller Domain

The performance of some PSI protocols depends on the
length of the representation of their inputs. This is par-
ticularly true for protocols that run an OT for each bit of
the input representation.

In some settings, inputs come from a small and
densely populated domain, such as national identity
numbers (e.g., social security numbers in the US, which
can be represented by 30 bits) or credit card numbers (54
bits). In our experiments in §7 we use 32-bit representa-
tions matching such a densely populated domain.

In other settings, the input representation is sparse, for
instance when a person is identified by an ascii string
containing his or her name, or when the number of in-
puts is very small, say 100, and therefore the original in-
put representation is obviously sparse. (This is especially
true in protocols where inputs are randomly mapped into
bins, and only a small number of inputs resides in each
bin, as in the PSI protocols we describe in §6.)

When the original input representation is sparse, we
can first use a hash function to map the identities of the
input items to identities from a smaller domain with a
shorter representation. We then run the original proto-
col on that representation, resulting in a more efficient
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execution. The size of the new domain should be large
enough so that no two different input items are mapped
to the same value. The theoretical analysis of this map-
ping, related to the birthday paradox, shows that when
n items are mapped to a domain of size D using a ran-
dom hash function, the probability of experiencing a col-
lision is p = 1−e−n·(n−1)/(2D), and can be approximated
as p ≈ n2/(2D) (see [44], p. 45). We ran extensive ex-
periments that empirically verified this analysis.

Let us denote the length of the representation of items
in D as d = logD. Then p≈ n2/(2 ·2d), and therefore

d = 2log(n)−1− log(p).

For example, for an input of n = 90 items and a collision
probability of 2−20, the representation can be d = 32 bits
long. If we need the collision probability to be 2−40 then
we should set d = 52. Similarly, for n = 106, and error
probability p = 2−20 the representation can be d = 59
bits long, and can fit in a single long word. For an error
probability of 2−40 we must use d = 79.

B Random Oracle Model

The security of cryptographic constructions can be
proven in the standard model, or in the “random oracle
model”, which is based on modeling a hash function as
a random function [9]. There are many criticisms about
the random oracle model, and in the theory of cryptog-
raphy proofs in this model are considered heuristic. Yet,
protocols in the random oracle are often more efficient
than protocols that are proved in the standard model.

The efficiency gain in using the random oracle model
is particularly true with regards to protocols for private
set intersection. The only protocol that we describe that
is in the standard model is the protocol based on obliv-
ious polynomial evaluation, but that protocol is less ef-
ficient than the other protocols that we present. The
public-key-based protocols (based on Diffie-Hellman
and blind-RSA) use a hash function H() that must be
modeled as a random oracle, or modeled using an-
other non-standard assumption. The other protocols (the
generic protocol, as well as the protocol based on Bloom
filters and the new OT-based protocol) can be imple-
mented without a random oracle assumption, but in order
to speedup the computation of OT in these protocols we
must use random OT extension, whose efficient imple-
mentation relies on a function that must be modeled as a
random oracle.

C Oblivious Transfer Extension

In this section we summarize OT extension and review
the recent development in OT extension protocols. We
refer to a random oracle as RO.

C.1 1-out-of-2 OT Extension
An initial 1-out-of-2 OT extension protocol was sug-
gested in [7]. A more practical OT extension protocol
was designed in [33], extending OTκ

κ (κ OTs of κ bits)
to OTm

` (m OTs of ` bits) in the following way.
Assume that S and R wish to perform OTm

` , where
S holds (xi

0,x
i
1) ∈ {0,1}2`, for 1 ≤ i ≤ m, and R uses

b ∈ {0,1}m as choice vector. S and R first engage in a
OTκ

κ in reverse roles, where R acts as sender with seeds
(k j

0,k
j
1) ∈R {0,1}2κ and S acts as receiver with a choice

vector s ∈R {0,1}κ and obtains k j
s[ j], for 1 ≤ j ≤ κ .

R then chooses a random m× κ bit-matrix T , where
t j ∈ {0,1}m denotes the j-th column of T and com-
putes v j

0 = t j ⊕G(k j
0) and v j

1 = t j ⊕G(k j
1)⊕ b, where

G : {0,1}κ 7→ {0,1}m is a PRG, and sends (v j
0,v

j
1) to S.

S generates a m×κ bit-matrix Q as q j = v j
s[ j]⊕G(k j

s[ j]),
computes yi

0 = xi
0⊕H(qi) and yi

1 = xi
1⊕H(qi⊕s), where

qi denotes the i-th row of Q and H : {0,1}κ 7→ {0,1}`
is a CRF, and sends (yi

0,y
i
1) to R. Finally, R obtains

xi
b[i] = yi

b[i]⊕H(ti).
Overall, when using OT extension, the sender in OTm

`
has to evaluate 2m CRFs and m PRGs, and send 2m` bits,
while the receiver has to evaluate m CRFs and 2m PRGs,
and send 2mκ bits. (In addition, there is a preprocessing
cost of OTκ

κ , which is negligible compared to the main
protocol if κ � m.)

C.2 Random OT Extension
In [1, 38], a more efficient variant of the OT extension
protocol was outlined. It reduces the message that R has
to send by half from 2mκ to mκ bits. This is done by
having R generate the T matrix as t j = G(k j

0) and only
sending a single v j = t j⊕G(k j

1). S can then compute his
m×κ bit-matrix Q as q j = s jv j⊕G(k j

0). The rest of the
OT extension protocol remains unchanged. In addition,
several works [1, 49] use a special purpose OT function-
ality, called random OT, where (xi

0,x
i
1) are chosen uni-

formly and randomly during the OT and are output to S.
To obtain a random OT extension protocol, they propose
to leave out the last message, containing the (yi

0,y
i
1). In-

stead, S outputs (xi
0 = H(qi),xi

1 = H(qi⊕ c)) and R out-
puts xi

b[i] = H(ti). This random OT extension protocol
reduces the bits that S has to send from 2m` to 0 at the
expense of the stronger assumption that H is modeled as
a RO instead of a CRF.

Experiments in [1] demonstrate that the performance
bottleneck of random OT extension is essentially the
network bandwidth, even over a fast Gigabit Ethernet,
whereas the computation workload scales well with an
increasing number of threads. Using four threads, their
cache optimized implementation achieves a throughput
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of almost 4 million random OTs per second for 80-bit
security. In comparison, the public-key-based OT proto-
col of [47] implemented over a finite field achieves only
a throughput of 3,000 random OTs per second.

C.3 1-out-of-N OT Extension

In [38], an efficient 1-out-of-N OT extension protocol
was introduced which allows to transfer short messages
with sublinear communication in the security parame-
ter. The protocol builds on the original OT extension
protocol of [33] and encodes the choices of R using a
Walsh-Hadamard code CN

WH = c0, ...,cN−1, which en-
codes dlog2 Ne-bit words with N-bit codewords that have
at least N/2 Hamming distance from each other. More
detailed, in the i-th 1-out-of-N OT, S inputs xi

0, ...,x
i
N−1

and R inputs bi ∈ [0...N − 1]. The parties perform κ ′

base-OTs such that S holds s ∈R {0,1}κ ′ and k j
s[ j] and

R holds k j
0 and k j

1 (κ ′ is a security parameter, see below).
R then computes m×κ ′ matrices T and U as t j = G(k j

0)

and u j = G(k j
1) and transfers vi = ti⊕ui⊕ cb[i] (note that

we address v and t row-wise instead of column-wise as
in the original OT extension protocol). As in the original
protocol, S then generates a m×κ ′ bit-matrix Q as q j =
v j

s[ j]⊕G(k j
s[ j]) and transfers yi

w = xi
w⊕H(qi⊕(s∧cw)) to

R, where ∧ is the bitwise-AND and 0≤ w < N. Finally,
R obtains his output xi

b[i] = yi
b[i]⊕H(ti).

Two things are noteworthy in this 1-out-of-N OT ex-
tension protocol. Firstly, we can also use the random OT
extension functionality by having S set xi

w = H(qi⊕ (s∧
cw)) and R set xi

b[i] = H(ti). Secondly, in order to achieve
the same computational security level κ as in the orig-
inal 1-out-of-2 OT extension protocol of [33], the par-
ties have to increase the number of base-OTs to κ ′ ≈ 2κ

(cf. [38]). The reason for the increase in base-OTs is that
the Hamming distance between the codewords has to be
at least κ . Using the Walsh-Hadamard codes and N = 2η ,
this means that for η with 2η−1 < κ , we have to repeat
the codewords in order to achieve the required Hamming
distance. Additionally, to minimize the transmitted data
for our PSI protocol, we depict the communication com-
plexity for different η in Tab. 9. From this table we ob-
serve that the communication is minimal for η = 8 which
we choose for our experiments.

D Generic Secure Computation

In this section we reflect on the sort-compare-shuffle cir-
cuit for PSI (§D.1) and discuss the comparison between
Yao’s protocol and GMW (§D.2).

D.1 Sort-Compare-Shuffle Circuit for PSI
The straightforward way of using a circuit for PSI is
to compare each input item of P1 to each input of
P2. However, this approach results in a circuit of size
O(n2). A more efficient approach is the sort-compare-
shuffle (SCS) circuit described in [30] that has a size of
O(n logn). (We refer here to the SCS circuit that uses the
Waksman permutation for shuffling). The SCS circuit
computes the intersection between two sets by first sort-
ing both sets into a single sorted list, then comparing all
neighboring elements for equality, and finally shuffling
the intersecting elements in order to hide any informa-
tion that could be obtained from the resulting order.

Sort To sort both sets into a single sorted list, both par-
ties locally pre-sort their sets and merge them using a
bitonic merging circuit [5]. In contrast to a sorting net-
work, a bitonic merging circuit takes advantage of the
fact that the inputs are already sorted and allows the par-
ties to obtain a globally sorted list of 2n input elements
using n log2(2n) sorter circuits. A sorter circuit takes as
input two elements x and y, swapping them if x > y and
preserving the order if x≤ y. Each sort gate consists of a
comparison and a conditional swap sub-circuit.

Compare All elements in the sorted list are then com-
pared to their neighbors to determine if a duplicate ex-
ists. Since each party’s input consists of different values,
duplicates only occur for items in the intersection of the
two inputs. A duplicate item is passed on, whereas if no
duplicate is found then the item is replaced by a special
bottom symbol.

Shuffle Finally, all elements are shuffled using a Waks-
man permutation network [56]. An n input Waksman cir-
cuit consists of n log2(n)−n+1 conditional swap gates,
which either forward their two input elements or swap
their order depending on the required randomly chosen
output permutation.

Overall The overall size of the SCS circuit for inputs
words of length σ is σ(3n log2 n+4n)−n gates, which is
the sum of 2σn log2(2n) AND gates for the sort circuit,
σ(3n− 1)− n AND gates for the compare circuit, and
σ(n log2(n)− n+ 1) for the shuffle circuit, where n =
n1+n2

2 . It is important to note that approximately 2/3 of
the AND gates in the circuit are due to multiplexers. We
show in §3.2 how these gates can be optimized in GMW.

D.2 A comparison between GMW and Yao
The complexity of a secure computation using GMW is
measured by the circuit’s size, i.e., the number of AND
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η 1 2 3 4 5 6 7 8 9
Comm. 2.0nκσ 1.0nκσ 0.67nκσ 0.50nκσ 0.40nκσ 0.33nκσ 0.29nκσ 0.25nκσ 0.44nκσ

Table 9: Communication complexity of our PSI protocol for 1-out-of-2η OT to achieve at least κ-bit security.

gates, and its depth, i.e., the highest number of AND
gates on a path from any input to any output. Overall, the
GMW protocol requires less communication than Yao’s
protocol: 2κ bits per AND gate vs. 3κ bits in Yao’s pro-
tocol using garbled row reduction [52]. The computa-
tional workload in GMW is dominated by 3 evaluations
of a CRF and 3 evaluations of a PRG for each party per
AND gate. These OTs can be pre-computed in parallel
and independently of the function being evaluated. In
contrast, in Yao’s protocol, the party that generates the
garbled circuit performs four symmetric key operations
per AND gate while the evaluator performs one symmet-
ric key operation, cf. [8]. To pre-compute the garbled
circuit, the circuit garbler has to know the specific func-
tion and the size of the inputs in advance.

In the online phase of the GMW protocol, the parties
only evaluate one-time-pad operations and the main bot-
tleneck of the protocol is its round complexity, which is
linear in the depth of the circuit. In [55] it was shown that
using circuits with smaller depth and larger size can be
more efficient for GMW. In contrast, the round complex-
ity of Yao’s protocol is constant, but the party that evalu-
ates the garbled circuit has to do one symmetric crypto-
graphic operation per gate in the online phase.

Consequently, GMW is suited for use in the pre-
processing model or where the bandwidth is limited but
incurs a higher computational overhead than Yao’s gar-
bled circuits and suffers drastically from higher latency.

For our experiments in §7, we used GMW to evaluate
a depth-optimized variant of the SCS circuit, where the
comparison gates have 3σ − log2(σ)−2 AND gates in-
stead of σ but have a depth of log2(σ) instead of σ for
σ -bit values. Consequently, the size of the SCS circuit
was increased from 3nσ log2(n) to 5nσ log2(n), but its
depth was decreased from σ log2(n) to log2(n) log2(σ).

Finally, note that we used fixed-key AES garbling [8]
in Yao’s protocol, which is somewhat controversial
among researchers. The fixed-key AES garbling scheme
encrypts a non-linear gate with input keys A and B and
output key O as O =AESC(K)⊕ K ⊕ T , where K =
2A⊕ 4B⊕ T , T is a tweak for the block-cipher and C
is a constant key. Yao’s protocol with the free-XOR opti-
mization of [39] requires a circular 2-correlation robust-
ness assumption [14], which is a variant of correlation
robustness [33]. However, correlation robustness is also
required in OT extension, where we instantiate the CRF
with SHA-1 for κ = 80 and SHA-256 for κ = 128 instead
of AES-128. Thus, an open question remains whether the
fixed-key garbling scheme is sufficient for correlation ro-

bustness and whether we can use the same construction
as CRF in OT extension.

E An Analysis of the Usage of the Different
Hashing Schemes

Simple Hashing As described in §6.1, a formula
in [54] shows that when throwing n = cb lnb balls into b
bins using simple hashing yields maxb = (dc−1+α) lnb
w.h.p. Here, dc solves f (x)= 1+x(lnc− lnx+1)−c= 0
and α > 1 is a parameter affecting Pfail. It is also shown
in [54] that Pfail decreases exponentially with α .

[54] do not provide an exact formula for the depen-
dency of Pfail on α . We ran experiments showing that
this error probability decreases sharply even for a small
value of α = 1+ ε , such as α = 1.1,1.2, . . .. An em-
pirical calculation of the exact probability is hard since
it needs to identify failure events that happen with very
small probabilities (e.g., 2−40). Therefore in the rest of
this analysis we set α = 2 as a safe bet, which yields
maxb = (dc+1) lnb. The number of OTs is b ·maxb ·σ =
b · (dc + 1) · lnb ·σ = dc+1

c · n ·σ . Our overall goal is to
find a c that provides reasonable Pfail and yields a low
number of OTs. Note that the number of OTs is in-
versely correlated with c , while Pfail is directly corre-
lated with c. We compute the overall number of OTs by
fixing c and solving dc for different values of c. Since re-
lated work only approximates Pfail, we empirically eval-
uate Pfail for each c by throwing n balls into n = c ·b lnb
bins for 105 repetitions and using n = 218. We then com-
pute maxb given dc, and set Pfail as the ratio between the
throws where the number of balls in a bin exceeded maxb
and the number of repetitions. The results are depicted
in Tab. 10. As we can observe, Pfail increases with c,
while the overhead decreases with c. The first value for
which we obtain Pfail = 0 is c = 1, which requires 3.7
OTs per bit and element. If a higher Pfail can be toler-
ated, then larger values of c can be tolerated. (This un-
certainty about the value of Pfail was one of the reasons
that led us not to use simple hashing in our experiments.)
Although the number of OTs when using simple hashing
is increased by a factor 3.7 compared to using no hash-
ing, the amount of communication that P2 sends back de-
creases from n2λ to nλ as no masks are sent for dummy
elements (cf. Tab. 4).

Balanced Allocations The maximum bin size when
throwing n elements into b = n bins was estimated in [2]
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c 0.25 0.5 1 2 4 8
dc 2.2 2.8 3.7 5.3 8.1 13.3
#OTs 8.8nt 5.6nt 3.7nt 2.7nt 2.0nt 1.7nt
Pfail 0 0 0 0.4% 2.1% 100%

Table 10: Number of OTs and empirical error probabili-
ties for different c using simple hashing (105 repetitions).

as maxb = ln lnb
ln2 (1 + o(1)). An empirical analysis of

maxb demonstrated that replacing o(1) with 1 results
in Pfail = 0 for all set sizes we use in our experiments.
We thereby obtain maxb = 2 ln lnb

ln2 ≈ 2.9ln lnb. Note that
since maxb depends on n, the number of OTs increases
super-linearly in n. Since two hash functions are used,
the number of elements that P1 has to map into bins dou-
bles compared to simple hashing. Thereby, the number
of bits that are sent back also doubles to 2nλ bits. We
depict the resulting overhead in Tab. 4.

Cuckoo Hashing To achieve a lower failure probabil-
ity Pfail in Cuckoo hashing, we choose the number of bins
b = 2(1+ ε)n and introduce a stash of size s ≤ lnn. We
thereby achieve an overhead of 2(1+ ε) OTs as well as
st additional OTs for the stash. Similar to balanced al-
locations, P1 has to send 2nλ as well as snλ bits for the
stash. For our experiments in §7 we use the parameters
suggested in [36], ε = 0.2 and s = 4, which were shown
experimentally to require no rehashing even for sets as
small as n = 1,000. Overall, we obtain a rehash prob-
ability of n−4 which decreases with the set size in our
experiments and is at most 2−40 for sets of size 210.
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