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Abstract. SIMON is a family of lightweight block ciphers which are designed by the U.S Na-
tional Security Agency in 2013. In this paper, we improve the previous differential attacks on
SIMON family of block ciphers by considering some bit-difference equations. Combining with some
new observations on key guess policies of SIMON family, we mount differential attacks on 21-
round SIMON32/64, 22-round SIMON48/72, 22-round SIMON48/96, 28-round SIMON64/96 and
SIMON64/128 with time complexity about 246, 263, 271, 260 and 260 encryptions respectively. As
far as we know, these results are the best attacks on reduced-round SIMON versions.
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1 Introduction

Today, lightweight block ciphers for resource-constrained applications such as RFID tags and
sensor networks have received much attention. During the last decade, many lightweight ci-
phers have been proposed, such as PRESENT[9], LED[12], PRINCE[10], KANTAN[11] and
CLEFIA[18] etc.

In 2013, NSA published the specifications of lightweight block cipher families SIMON and
SPECK. Compared to the other existing lightweight block ciphers, these two families have the
competitive performance for both hardware and software implementations which can be used to
the extremely resource-constrained devices.

Differential cryptanalysis[6] firstly introduced by Biham et al is a popular attack on block
ciphers. Over the years, differential cryptanalysis has been developed numerous variants that
were used to analyze many primitives of block ciphers. Higher order differential cryptanalysis was
introduced by Lai in 1994. In the same year, Knudsen introduced truncated differentials[16] to
analyze the block cipher DES. In 1998, Knudsen[15] and Biham et al.[4] independently proposed
the idea of impossible-differential attacks, which allow the adversary to filter out wrong keys
by distinguishing the impossible differential characteristics. To construct a long distinguisher by
connecting two short differential characteristic, Wagner proposed the boomerang attack in 1999
[19], which was extended by Kelsey et al. as amplified boomerang attack[13], and independently
introduced by Biham et al. as rectangle attack[5]. Lately, Blondeau et al. introduced multiple
differential cryptanalysis with multiple input differences and multiple output differences to attack
reduced PRESENT [8].

Related Works In this paper, we only focus on the differential attacks on SIMON family.
SIMON family has 10 versions depending on the state size (block size) 2n and key length lk,
named as SIMON2n/lk. There is only an instance for 32-bit state size, i.e. SIMON32/64, two
instances for 48-, 64-, 96-bit state sizes, and 3 instances for 128-bit state size. After its announce-
ment, SIMON family attracts a lot attention of cryptanlists soon. Alkhzaimi and Lauridsen[2]
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gave the differential attacks on five reduced versions of SIMON with 16, 18, 24, 29, and 40 rounds
corresponding to five state sizes respectively. They also showed the impossible-differential at-
tacks on 14, 15, 16, 19, and 22 rounds of the corresponding versions. Biryukov and Velichkov
[7] found the differential characteristics up to 13, 15 and 21 rounds of SIMON which can be
used to attack the corresponding reduced versions of 32-, 48- and 64-bit state sizes. As a result,
19-round SIMON32/64, 20-round SIMON48/72, 20-round SIMON48/96, 26-round SIMON64/96
and 26-round SIMON64/128 can be attacked with about 232, 252, 275, 289 and 2121 encryptions,
respectively. In addition, Farzaneh Abed and Eik List[1] presented differential attacks up to 18,
19, 26, 35 and 46 rounds for SIMON with 5 versions, respectively.

Our Contribution In this paper, we investigate some important bitwise behavior of the
existing differentials of SIMON versions, and obtain many bit conditions available to enlarge the
differentials path with 3 or 4 rounds on the top. Especially, some bit conditions are dependent
on secret key bits, which motivate us to explore new key bits guess strategies. Based on these bit
conditions and key bits guess policies, we fulfill the differential attack on the reduced SIMON
with 32, 48, and 64 state size versions. Our attacks work on these reduced versions with 1 to
2 more rounds than the previous attacks. Because the main part of our attack reveals how to
control bit equations relating to key bits, we call our attack as bit differential attack. As a result,
we present several differential attacks on 20-round SIMON32/64, 21-round SIMON32/64, 21-
round SIMON48, 22-round SIMON48/72, 22-round SIMON48/96 and 28-round SIMON64 with
the time complexity of 231, 246, 250, 263, 271 and 260 encryptions, respectively. Our results are
summarized and compared to the previous results in Table 1.

The rest of this paper is organized as follows. We list some notations, give a brief description
of block cipher SIMON and show some observations available in the differential attack in section
2. Section 3 presents the differential attacks on 20 and 21-round SIMON32. The differential
cryptanalysis of 21 and 22-round SIMON48 are described in section 4. We introduced the dif-
ferential attack on 28-round SIMON64 in section 5. Finally, we conclude this paper in section
6.

Table 1. Summary of Attacks on SIMON

Cipher Key Size Total Rounds Attacked Rounds Time Data Reference

18 246 231.2 [1]
SIMON32 64 32 19 232 231 [7]

20 231 231 Section 3
21 246 231 Section 3

19 252 246 [1]
SIMON48 72 36 20 252 246 [7]

21 250 245 Section 4
22 263 245 Section 4

19 276 246 [1]
SIMON48 96 36 20 275 246 [7]

21 250 245 Section 4
22 271 245 Section 4

26 294 263 [1]
SIMON64 96 42 26 289 263 [7]

28 260 259 Section 5

26 2126 263 [1]
SIMON64 128 44 26 2121 263 [7]

28 260 259 Section 5
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2 Brief Description of SIMON

2.1 Notations

The following notations are used in this paper:
Xr the input of r-th round
Lr−1 the left half of the r-th round input
Rr−1 the right half of the r-th round input
Kr the subkey used in the r-th round
X[i] the i-th bit of X, the index of bits is from left to right
X ≪ r the left rotation of the bits of X by r positions
X ≫ r the right rotation of the bits of X by r positions
⊕ bitwise exclusive OR (XOR)
∩ bitwise AND
∆X the XOR difference of X and X ′

+ addition
% modular operation

2.2 Brief Description of Block Cipher SIMON

The SIMON block cipher is a Feistel structure with an 2n-bit state, where n is required to be
16, 24, 32, 48, or 64. SIMON2n with an mn-bit key is referred to as SIMON2n/mn, where
m = 2, 3, 4. There are 10 suggested versions with different numbers of rounds nr. The round
numbers of 6 versions of SIMON are listed in the third column of Table 1. All versions of SIMON
use the similar round function.

Round Functions For high performance on both hardware and software platforms, SIMON
utilizes an extremely simple round function which is iterated over many rounds. The function
F (x) = (x ≪ 1) ∩ (x ≪ 8) ⊕ (x ≪ 2) is non-linear transformation from {0, 1}n to {0, 1}n,
which is built by 3 bitwise operations ⊕, ∩ and ≪. Let the plaintext be P = (L0, R0), and the
i-th round function is described in the following.

Li = Ri−1 ⊕ F (Li−1)⊕Ki−1,

Ri = Li−1,

where i = 1, ..., nr. The ciphertext C is selected as (Rnr , Lnr).

In this paper, for convenience to describe our bit differential attack, we give a bitwise round
function description. Let Li = {Xi[n], Xi[n−1], . . . , Xi[2n−1]},Ri = {Xi[0], Xi[1], . . . , Xi[n−1]},
and then the i-th round function is denoted as:

Xi[j + n] = Xi−1[(j + 1)%n+ n] ∩Xi−1[(j + 8)%n+ n])

⊕Xi−1[(j + 2)%n+ n]⊕Xi−1[j]⊕Ki−1[j],

Xi[j] = Xi−1[j + n],

where j = 0, 1, . . . , n − 1, and Xi[n] is the most significant bit of Li, Xi[2n − 1] is the least
significant bit of Li, Xi[0] is the most significant bit of Ri, and Xi[n− 1] is the least significant
bit of Ri.

Key Schedules The key schedules generate a sequence of nr round subkeys {K0, ...,Knr−1}
from master key {k0, k1, ..., km−1}. For different key length mn, the the key schedules are given
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as follows. when i = 1, . . . ,m− 1, Ki = ki; and when i = m,m+ 1, . . . , nr,

if m = 2, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕Ki−m+1 ⊕ (Ki−m+1 ≫ 4),

if m = 3, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕Ki−m+2 ⊕ (Ki−m+2 ≫ 4),

if m = 4, Ki = c⊕ (zj)i−m ⊕Ki−m ⊕ (Ki−m+1 ⊕ (Ki−m+1 ≫ 1)

⊕(Ki−m+3 ≫ 3)⊕ (Ki−m+3 ≫ 4).

Here c = 2n− 4, zj is the version-dependent choice of constant sequence. For more details, refer
to [3]. In fact, the key schedule is linear, the master key can be deduced any mn independent
bits of subkeys.

2.3 Some Observations

Observation 1 (from [14]) Let ∆x = x⊕ x′, ∆y = y ⊕ y′, and then

(x ∩ y)⊕ (x′ ∩ y) = ∆x ∩ y,
(x ∩ y)⊕ (x ∩ y′) = x ∩∆y,
(x ∩ y)⊕ (x′ ∩ y′) = (x ∩∆y)⊕ (∆x ∩ y)⊕ (∆x ∩∆y).

Observation 2 Given two inputs Xi−1 and X ′i−1 of i-th round, where ∆Xi−1 = Xi−1 ⊕X ′i−1.
Then the output difference ∆Xi is computed without the round subkey of Ki. ∆Xi+1[j+n](j < n)
is computed by one of 4 cases in the following.

1. (∆Xi[(j + 1)%n + n], ∆Xi[(j + 8)%n + n]) = (0, 0), ∆Xi+1[j + n](j < n) can be computed
without any key bit guess.

2. (∆Xi[(j + 1)%n + n], ∆Xi[(j + 8)%n + n]) = (0, 1), ∆Xi+1[j + n](j < n) can be computed
by guessing Ki−1[(j + 1)%n].

3. (∆Xi[(j + 1)%n + n], ∆Xi[(j + 8)%n + n]) = (1, 0), ∆Xi+1[j + n](j < n) can be computed
by guessing Ki−1[(j + 8)%n].

4. (∆Xi[(j + 1)%n + n], ∆Xi[(j + 8)%n + n]) = (1, 1), ∆Xi+1[j + n](j < n) can be computed
by guessing Ki−1[(j + 8)%n]⊕Ki−1[(j + 1)%n].

Since the subkey Ki is linear with the output of Xi, it is obviously ∆Xi is independent with
Ki.

By partial encryption and Observation 1, we know the following equations hold.

∆Xi+1[j + n] = (∆Xi[(j + 1)%n+ n] ∩Xi[(j + 8)%n+ n])
⊕(Xi[(j + 1)%n+ n] ∩∆Xi[(j + 8)%n+ n])
⊕(∆Xi[(j + 1)%n+ n] ∩∆Xi[(j + 8)%n+ n])
⊕∆Xi[(j + 2)%n+ n]⊕∆Xi[j],

Xi[(j + 1)%n+ n] = (Xi−1[(j + 2)%n+ n] ∩Xi−1[(j + 9)%n+ n])
⊕Xi−1[(j + 3)%n+ n]⊕Xi−1[(j + 1)%n]⊕Ki−1[(j + 1)%n],

Xi[(j + 8)%n+ n] = (Xi−1[(j + 9)%n+ n] ∩Xi−1[(j + 16)%n+ n])
⊕Xi−1[(j + 10)%n+ n]⊕Xi−1[(j + 8)%n]⊕Ki−1[(j + 8)%n].

(1)

It is obviously that Observation 2 is obtained by equation (1). When (∆Xi[(j + 1)%n +
n], ∆Xi[(j + 8)%n + n]) = (0, 0), no key bit guessed is necessary to compute ∆Xi+1. However,
there is only one equivalent key bit needed to guess when (∆Xi[(j + 1)%n + n], ∆Xi[(j +
8)%n+n]) 6= (0, 0). This phenomenon is useful to reduce the time complexity of our differential
cryptanalysis.
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3 Differential Attack on SIMON32

In this section, we describe a bit differential attack on round-reduced SIMON32/64. We utilize
a 13-round differential path in [7] to attack 20-round SIMON32 by adding 3 rounds on the top
and 4 rounds at the bottom, and attack 21-rounds of SIMON32 by adding 4 rounds on the top
and 4 rounds at the bottom. For simplicity, let C = {Lnr , Rnr} replace C = {Rnr , Lnr} in the
remaining of this paper.

3.1 Conditions in the Differential Cryptanalysis of 20-round SIMON32

For this attack, we consider the following 13-round differential whose probability is 2−28.11.

D1 : (2000, 8000)→ (2000, 0000)

After prefixing 3 rounds on the top, it is easy to prove that the input difference is

∆P1 : (∗∗00, 00∗∗, 00∗0, 1∗∗0, ∗0∗0, ∗∗∗0, ∗∗1∗, ∗∗∗∗)

After appending 4 rounds at the bottom, the output difference of 20-round SIMON is

∆C1 : (∗0∗0, ∗∗∗∗, ∗∗1∗, ∗∗∗∗, ∗∗00, 00∗∗, ∗0∗0, 1∗∗∗)

For the differential D1, decrypting the first 3 rounds and encrypting the last 4 rounds, we obtain
41 conditions which are independent of the secret key in Table 2, and 23 conditions relating to
the secret key in Table 3. These 32 conditions in plaintexts and the first three round are sufficient
and necessary to ensure the output difference of the third round to be (2000, 8000). It is easy to
guarantee the conditions hold in Table 2 by choosing the plaintexts. However, for the conditions
in Table 3, we guess some subkey bits to make them hold, the numbers of corresponding key
values is listed in the 6th column of Table 3, depending on the conditions for key guess seen the
5th column of Table 3. The core of our attack is how to ensure all the conditions in Table 3 hold
by guessing some secret key bits as few as possible.

We give following two examples to explain the computations of the last column of Table 3.

1. ∆X2[16] = 1. By partial encryption, we know

∆X2[16] = X1[17] ∩∆X1[24]⊕∆X1[18]⊕∆X1[0]

X1[17] = (X0[18] ∩X0[25])⊕X0[19]⊕X0[1]⊕K0[1]

If ∆X1[24] = 0, ∆X2[16] = 1 holds with probability 1/2, K0[1] can take 2 values. Otherwise,
K0[1] has one value to make ∆X2[16] = 1 hold. Therefore, there are one value for K0[1] on
average.

2. ∆X2[23] = 0. By partial encryption, the following equations are deduced.

∆X2[23] = X1[24] ∩∆X1[31]⊕X1[31] ∩∆X1[24]⊕∆X1[25]⊕∆X1[7],

X1[24] = (X0[25] ∩X0[16])⊕X0[26]⊕X0[8]⊕K0[8],

X1[31] = (X0[16] ∩X0[23])⊕X0[17]⊕X0[15]⊕K0[15].

There are 4 cases depending on the values of (∆X1[24], ∆X1[31]).
– (0,0): ∆X2[23] = 0 holds with probability 1/2, (K0[8],K0[15]) can take 4 values.
– (0,1): K0[1] has one values to make ∆X2[16] = 1 hold, K0[15] can take 2 values.
– (1,0): K0[15] has one values to make ∆X2[16] = 1 hold, K0[1] can take 2 values.
– (1,1): K0[15]⊕K0[1] has one values to make ∆X2[16] = 1 hold, (K0[1], K0[15]) can take

2 values.
Hence, there are about two values for (K0[1], K0[15]) to make ∆X2[23] = 0 hold.
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3.2 Key-Recovey Attack on 20-round SIMON32

In this subsection, we describe a key recovery attack on 20-round SIMON32/64. Since there are
many conditions in the plaintext and the output of the 1st round, which are independent of secret
key, we make use of these conditions to construct structures, and reduce the time complexity for
collecting plaintext pairs. In the process of key recovery attack, we use Observation 2 to reduce
the key bits guessed.

Data Collection In order to reduce the time complexity for data collection, we propose the
following method to reduce time complexity of collecting the pairs.

1. There are 13 necessary conditions on plaintexts, 10 necessary conditions on the first three
rounds. We divided the plaintexts into 223 structures, which has 232−23 = 29 plaintexts
(equivalent to traverse 9 positions). By Observation 2, K0[j] is independent with ∆X1[j],
which do not impact the structure. By round function definition, we built the following 10
equations

X1[j] = X0[(j + 1− n)%n+ n] ∩X0[(j + 8)%n+ n]⊕X0[(j + 2)%n+ n]⊕X0[j − n],

where j = 16, 18, 20, 21, 22, 25, 27, 28, 29, 30. Because there are 13 conditions on plaintexts,
we fixed 13 bit X0[i] as constants, where i = 1, 3, 7, 10, 18, 19, 20, 21, 24, 25, 27, 28, 31, and
obtained each structure by traversing left 19 bits of plaintexts and solving the above equations
system.

2. For structures A and A′ with 4 different bits (X0[10], X0[28], X1[18], X1[30]), find the
corresponding ciphertexts, and inset a table indexed by X20[t], where ∆X20[t] = 0. There
are about 29×2−8 = 210 pairs remaining for each structure.

3. We build 222 structures, and filter out the remaining pairs according to the conditions in
Table 2, there are 222−1+10−10 = 221 pairs left. Store the pairs in table T1.

In the data collection phase, choosing 222+9 = 231 plaintexts, we get 222−1+18−9 = 230 pairs
satisfying the input difference of the differential. Hence, there are about 230−28.11 = 3.7 right
pairs.

Key Guessing There are 36 bits of subkey or equivalent subkey required to guess for differential
D1. By key schedules, we know that these 36 bits are linearly independent. To detect the correct
key, we maintain a set of counters of size 236, named as S1, initialized with 0. Then for the pairs
in T1, guess subkey in the following procedure.

1. Guess some subkey bits of the 2nd round listed in Table 3 to compute ∆X2[17, 22, 26, 29,
16, 30, 23] one by one, and eliminate the pairs which do not satisfy the conditions. There are
about 221−7 = 214 remaining pairs.

2. Guess some subkey bits of the 18th round listed in Table 3 to obtain ∆X18[6, 15, 0, 13, 14, 7,
8] one by one, and keep the pairs which fulfill the conditions. There are 214−7 = 27 pairs left
on average.

3. Guess K1[7] to calculate ∆X3[31], and discard the pairs, if ∆X3[31] 6= 0. Then guess K1[9],
K0[10] to deduce ∆X3[24], and keep the pairs when ∆X3[24] = 0. There are about 27−2 = 25

remaining pairs on average.

4. Guess some subkey bits the 17th round listed in the 4th column of Table 3 to compute
∆X17[2, 8, 0, 9, 15] one by one, and eliminate the pairs which are not content with the con-
ditions. There are about 25−5 = 1 pairs left.

5. For the 16th round, compute ∆X18[3] and ∆X19[5]. There are 4 types of subkey which should
be guessed to compute ∆X16[10] by the values of (∆X18[3], ∆X19[5]).

– (0,0): Guessing K17[11]⊕K18[13] is enough.
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– (0,1): We need to guess K17[11]⊕K18[13]⊕K19[14].

– (1,0): Since ∆X18[3] = 1, the value of X18[12] is necessary to compute. Then compute
∆X19[4]. When ∆X19[4] = 0, we need to guess K18[12]; otherwise, guess K18[12]⊕K19[13].

– (1,1): The values of X18[12], X19[14] are needed. When ∆X19[4] = 0, we need to guess
K18[12] ⊕ K17[11] ⊕ K18[13] ⊕ K19[14]; otherwise, guess K18[12] ⊕ K19[13] ⊕ K17[11] ⊕
K18[13]⊕K19[14].

Keep the pairs if ∆X16[10] = 0. Then guess K19[3] to get X19[3]. If X19[3] = 0, guess
K17[9]⊕K18[11]; otherwise, guess K17[9]⊕K18[11]⊕K19[12]. Then calculate ∆X16[1] = 0.
Discard the pairs when ∆X16[1] = 1. There are about 2−2 pairs left.

6. Increase the counters corresponding to the guessed subkeys by the number of the remaining
pairs.

7. We compute the master key by the key schedule with the known 36-bit subkey. Then ex-
haustive the remaining bits of master key.

Complexity Cryptanalysis For data collection, we need 231 encryptions for chosen plaintexts,
the time complexity is dominated by Step 2, which is about 221×210 = 231 one round encryption
to save the pairs which fulfill the conditions.

In the key guessing procedure, the complexity is dominated by Step 6. Since there are about
212 36-bit subkeys for a pair which conform the input difference of the differential D1, it is about
221×213 = 234 increment. Therefore the time complexity is about 231 encryptions, and the data
complexity about 231 chosen plaintexts.

It is expected to have 3.7 pairs left for the right key. However, the counter is about 221 ×
213/236 = 2−2 for a wrong key. The signal-to-noise ratio is Sn = 2−28.11

2−32 = 14.83.

According to [17], the success probability is

Ps =

∫ ∞
−
√
µS/N−Φ−1(1−2−a)√

S/N+1

Φ(x)dx = 0.576, (2)

where a = 36 is the number of subkey bits guessed, µ is the number of right pairs and µ = 3.7.

3.3 Conditions in the Differential Cryptanalysis of 21-round SIMON32

For this attack, we consider the above 13-round differential again.

After prefixing 4 rounds on the top, it is easy to prove that the input difference is

∆P1 : (∗0∗0, ∗∗∗0, ∗∗1∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗)

After appending 4 rounds at the bottom, the output difference of 21-round SIMON is

∆C1 : (∗0∗0, ∗∗∗∗, ∗∗1∗, ∗∗∗∗, ∗∗00, 00∗∗, ∗0∗0, 1∗∗∗)

For the differential D1, decrypting the first 4 rounds and encrypting the last 4 rounds, we deduce
31 conditions independent of the secret key in Table 4, and 33 conditions relating to the secret
key in Table 5. There are 28 conditions in the plaintexts and the rounds 1-4, which are sufficient
and necessary to ensure the output difference of the third round to be (2000, 8000). We make the
31 conditions independent of the secret key hold by choosing the plaintexts, and give a method
to ensure all the conditions in Table 5 hold by guessing some secret key bits as few as possible.

7



3.4 Key-Recovey Attack on 21-round SIMON32

In this subsection, we describe a key recovery attack on 21-round SIMON32. We make use of these
conditions independent of secret key to construct the structure, and reduce the time complexity
for collecting plaintext pairs. In the process of key recovery attack, we use Observation 2 to
reduce the key bits guessed.
Data Collection In order to reduce the time complexity for data collection, We use the above
method in Section 3.2 to collect pairs..

1. There are 4 necessary conditions on plaintexts, 9 necessary conditions on the first three
rounds. We divided the plaintexts into 213 structures, which has 232−13 = 219 plaintexts
(equivalent to traverse 19 positions). By Observation 2, K0[j] is independent with ∆X1[j],
which do not impact the structure. By round function definition, we built the following 9
equations

X1[j] = X0[(j + 1− n)%n+ n] ∩X0[(j + 8)%n+ n]⊕X0[(j + 2)%n+ n]⊕X0[j +−n],

where j = 18, 19, 20, 21, 24, 25, 27, 28, 31. Because there are 4 conditions on plaintexts, we
fixed 4 bit X0[i] as constants, where i=17, 19, 23, 26, and obtained each structure by travers-
ing left 28 bits of plaintexts and solving the above equations system.

2. For structures A and A′ with 2 different bits (X0[26], X1[28]), find the corresponding cipher-
texts, and inset a table indexed by X21[t], where ∆X21[t] = 0. There are about 219×2−8 = 230

pairs remaining for each structure.
3. We build 212 structure, and filter out the remaining pairs according the conditions, there are

212−1+30−10 = 231 pairs left. Store the pairs in table T1.

In the data collection phase, choosing 212+19 = 231 plaintexts, we get 212+19+18−19 = 230 pairs
satisfying the input difference of the differential. Hence, there are about 230−28.11 = 3.7 right
pairs.
Key Guessing There are 52-bit of subkey or equivalent subkey required to guess for differential
D1. By key schedules, we know that these 52 bits are linearly dependent. Further, we can verify
that K20[13] can be computed from the first-three subkeys included in Table 5. So, to detect
the correct key, we maintain a set of counters of size 251, initialized with 0. Then for the pairs
in T1, subkey guessing phase is similar to the attack on 20-round SIMON32.
Complexity Cryptanalysis For data collection, we need 231 encryptions for chosen plaintexts,
the time complexity is dominated by Step 2, which is about 211×230 = 241 one round encryption
to save the pairs which fulfill the conditions.

In the key guessing procedure, Since there are about 219 51-bit subkeys for a pair which
conform the input difference of the differential D1, it is about 231 × 219 = 250 increments.
Therefore the time complexity is about 246 encryptions, and the data complexity about 231

chosen plaintexts.
It is expected to have 3.7 pairs left for the right key. However, the counter is about 231 ×

219/251 = 2−1 for a wrong key. The signal-to-noise ratio is Sn = 2−28.11

2−32 = 14.83.
The success probability is increased to 0.4367 computed by equation (2), where a = 51,

µ = 3.7.
Therefore, the differential attacks on 21-round SIMON32/64 needs 246 encryptions with 231

chosen plaintexts, and the success probability is 0.4367.

4 Differential Attack on SIMON48

In this section, we describe a differential attack on round-reduced SIMON48. We utilize a 15-
round differential[7] to attack 21 rounds of SIMON48 by adding 3 rounds on the top and 3 rounds
at the bottom, and attack 22-round of SIMON48 by adding one more round at the bottom.
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4.1 Conditions in the Differential Cryptanalysis of 21-round SIMON48

The following 15-round differential with probability 2−42.11 is applied in our differential crypt-
analysis.

D1 : (200020, 800800)→ (080888, 000200)

After prefixing 3 rounds on the top, it is easy to prove that the difference of the input of
21-round SIMON48 for the differential path is

∆P1 : (∗∗∗0, ∗0∗∗, 00∗∗, ∗∗∗0, 1∗∗∗, 1000, ∗∗∗∗, ∗∗∗0, ∗∗∗∗, ∗∗0∗, ∗∗∗∗, ∗0∗∗)

The output difference of 21-round SIMON48 is given in the following by appending 3 rounds
at the bottom of our differential.

∆C1 : (∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗0∗, ∗∗∗∗, ∗0∗∗, ∗∗∗∗, ∗0∗∗, 1∗∗∗, ∗∗∗0, 0∗∗∗, ∗000)

For the differential D1, decrypting the first 3 rounds and encrypting the last 3 rounds, we
deduce 56 conditions independent of the secret key in Table 6, and 40 conditions relating to the
secret key in Table 7. There are 48 conditions in the plaintexts and the rounds 1-3, which are
sufficient and necessary to ensure the output difference of the third round to be (200020, 800800).
We make the conditions in Table 6 hold by choosing the plaintexts, and give a method to ensure
all the conditions in Table 7 hold by guessing some secret key bits as few as possible.

4.2 Key-Recovey Attack on 21-round SIMON48

In this subsection, we describe a key recovery attack on 21-round SIMON48. We make use of these
conditions independent of secret key to construct structures, and reduce the time complexity for
collecting plaintext pairs. In the process of key recovery attack, we use Observation 2 to reduce
the key bits guessed.
Data Collection We also apply the above method in Section 3.2 to collect pairs.

1. There are 13 necessary conditions on plaintexts, and 18 necessary conditions in the first
three rounds independent with secret key, i.e. ∆X1[i] = 0(i =24, 25, 26, 28, 29, 30, 33, 34,
35, 37, 40, 41, 42, 46, 47), ∆X2[j] = 0(j = 25, 34, 41) in Table 6. Hence, let K0 and K1 be
fixed constants. For each fixed 13-bit X0[7, 14, 21, 27, 29, 32, 33, 39, 40, 44, 45, 46, 47],
traverse the left bits of X0 to compute X1[i] = 0(i =24, 25, 26, 28, 29, 30, 33, 34, 35, 37, 40,
41, 42, 46, 47), X2[j] = 0(j = 25, 34, 41), and divide the plaintexts into 218 sets indexed the
corresponding X1[i] and X2[j]. Each set is a structure with 248−13−18 = 217 plaintexts.

2. For structure A and A′ with different 40th and 44th bit of plaintexts, query the correspond-
ing ciphertexts, and inset a table indexed by X20[t], where ∆X20[t] = 0. There are about
217×2−7 = 227 pairs between A and A′ remaining.

3. We built 228 structure, and filter out the obtained pairs according to the conditions in Table
6, there are 228−1+27−18 = 236 pairs left. Store the pairs in table T1.

In the data collection phase, we get 228−1+34−17 = 244 pairs which satisfying the input
difference of D1. Hence, there are about 3.7 right pairs.
Key Guessing There are 55-bit of subkey or equivalent subkey required to guess for differential
D1. By key schedules, we know that these 55 bits are linearly independent. To detect the correct
key, we maintain a set of counters of size 255, initialized with 0. Then for the pairs in T1, guess
subkey in the following procedure.

1. Guess some subkey bits of the 2nd round listed in Table 7 to compute ∆X2[24, 26, 28, 36, 38,
42, 31, 35, 43, 37, 30] one by one, and eliminate the pairs which do not satisfy the conditions.
There are about 236−11 = 225 remaining pairs.
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2. Guess some subkey bits of the 19th round listed in Table 7 to obtain ∆X19[0, 17, 4, 14, 12,
20, 1, 2, 3, 7, 9, 10, 11, 18, 19] one by one, and keep the pairs which fulfill the conditions.
There are 225−15 = 210 pairs left on average.

3. Guess some subkey bits of the 3rd round listed in Table 7 to compute ∆X3[27, 44, 32, 36,
39, 43] one by one, and remain the pairs which are in accordance with the conditions. There
are about 210−6 = 24 remaining pairs.

4. Guess some subkey bits the 18th round listed in the 4th column of Table 7 to compute
∆X17[2, 8, 0, 9, 15] one by one, and eliminate the pairs which are not content with the con-
ditions. There are about 24−8 = 2−4 pairs left.

5. Increase the counters corresponding to the guessed subkeys by the number of the remaining
pairs.

6. We compute the master key by the key schedule with the known 55-bit subkey. Then ex-
haustive the remaining bits of master key.

Complexity Cryptanalysis For data collection, we need about 245 encryptions for the chosen
plaintexts, and about 254 one round computations to decide the conditions equivalent to 250

encryptions. The data complexity is about 245 chosen plaintexts.
In the key guessing procedure, the complexity is dominated by Step 6. Since there are about

215 55-bit subkeys for a pair which fulfill the input difference of the differential D1, it is about
236 × 215 = 251 increments equivalent to 247 encryptions.

It is expected to have 3.7 pairs left for the right key. However, the counter is about 236 ×
215/255 = 2−4 for a wrong key. The signal-to-noise ratio is Sn = 2−42.11

2−48 = 25.89.
The success probability is increased to 0.79 computed by equation (2), where a = 55, µ = 3.7.
Therefore, the differential attacks on SIMON48 needs 250 encryptions with 245 chosen plain-

texts, and the success probability is 0.79.

4.3 Conditions in the Differential Cryptanalysis of 22-round SIMON48

For this attack, we consider the above 15-round differential for SIMON48 again.
After prefixing 3 rounds on the top, it is easy to prove that the difference of the input of

21-round SIMON48 for our differential path is

∆P1 : (∗∗∗0, ∗0∗∗, 00∗∗, ∗∗∗0, 1∗∗∗, 1000, ∗∗∗∗, ∗∗∗0, ∗∗∗∗, ∗∗0∗, ∗∗∗∗, ∗0∗∗)

The the output difference of 22-round SIMON48 is given in the following by appending 4
rounds at the bottom of our differential.

∆C1 : (∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗, ∗∗0∗, ∗∗∗∗, ∗0∗∗)

For the differential D1, decrypting the first 3 rounds and encrypting the last 4 rounds, we
deduce 41 conditions independent of the secret key in Table 8, and 55 conditions relating to the
secret key in Table 9. There are 48 conditions in the plaintexts and the rounds 1-3, which are
sufficient and necessary to ensure the output difference of the third round to be (200020, 800800).
We make the conditions independent of the secret key hold by choosing the plaintexts, and give
a method to ensure all the conditions in Table 9 hold by guessing some secret key bits as few as
possible.

4.4 Key-Recovey Attack on 22-round SIMON48

In this subsection, we describe a key recovery attack on 22-round SIMON48. We make use of these
conditions independent of secret key to construct the structure, and reduce the time complexity
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for collecting plaintext pairs. In the process of key recovery attack, we use Observation 2 to
reduce the key bits guessed. The bit differential cryptanalysis includes data collection and key
guess two phases, which are demonstrated in the following.

Data Collection We also apply the above method in Section 3.2 to collect pairs.

1. This phase is the same as data collection phase of 21-round SIMON48, Each set is a structure
with 248−13−18 = 217 plaintexts.

2. For structure A and A′ with different 40th and 44th bit of plaintexts, query the correspond-
ing ciphertexts, and inset a table indexed by X20[t], where ∆X20[t] = 0. There are about
217×2−2 = 232 pairs between A and A′ remaining.

3. We built 228 structure, and filter out the obtained pairs according to the conditions inde-
pendent of secret key, there are 228−1+32−8 = 251 pairs left. Store the pairs in table T1.

In the data collection phase, we get 228−1+34−17 = 244 pairs which satisfying the input difference
of D1. Hence, there are about 3.7 right pairs.

Key Guessing There are 79-bit of subkey or equivalent subkey required to guess for differential
D1.

According to the key schedule of SIMON48/72 version, we know that these 79 bits are linearly
dependent, further we can verify that K20[23]⊕K19[21], K0[0, 3, 11, 14, 17], K1[13, 23], K19[13,
23] can be computed from other 69 bit subkeys. To detect the correct key, we maintain a set of
counters of size 269, initialized with 0. Then for the pairs in T1, guess subkey phase is the same
as attack on 21-round SIMON48, but above 10 bit subkeys be guessed in the end, thus we can
reduce time complexity of compution.

According to the key schedules of SIMON48/96 version, we know that these 79 bits are
linearly independent. To detect the correct key, we maintain a set of counters of size 279, initial-
ized with 0. Then for the pairs in T1, subkey guessing phase is the same as attack on 21-round
SIMON48.

Complexity Cryptanalysis For data collection, we need about 245 encryptions for the chosen
plaintexts, and about 259 one round computations to decide the conditions equivalent to 255

encryptions. The data complexity is about 245 chosen plaintexts.

In the key guessing procedure, for SIMON48/72 version, since there are about 216 69-bit
subkeys for a pair which fulfill the input difference of the differential D1, it is about 251×216 = 267

increments equivalent to 263 encryptions.

There is expected to have 3.7 pairs left for the right key. However, the counter is about
251 × 216/269 = 22 for a wrong key. The signal-to-noise ratio is Sn = 2−42.11

2−48 = 25.89.

The success probability is increased to 0.755 computed by equation (2), where a = 69,
µ = 3.7.

Therefore, the differential attacks on 22-round SIMON48/72 needs 269 encryptions with 245

chosen plaintexts, and the success probability is 0.755.

For SIMON48/96 version, Since there are about 224 79-bit subkeys for a pair which fulfill
the input difference of the differential D1, it is about 251 × 224 = 275 increments equivalent to
271 encryptions.

It is expected to have 3.7 pairs left for the right key. However, the counter is about 251 ×
224/279 = 2−4 for a wrong key. The signal-to-noise ratio is Sn = 2−42.11

2−48 = 25.89.

The success probability is increased to 0.726 computed by equation (2), where a = 79,
µ = 3.7.

Therefore, the differential attacks on 22-round SIMON48/96 needs 271 encryptions with 245

chosen plaintexts, and the success probability is 0.726.
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5 Differential attack on SIMON64

In this section we describe a differential attack on round-reduced SIMON64 with key size 96
and 128. In this attack, we use a 21-round differential path in[7]. We mount a 28-round attack
on SIMON64 by adding 4 rounds on the top and 3 rounds at the bottom.

5.1 Conditions in the Differential Cryptanalysis of SIMON64

The following 21-round differential with probability 2−60.53 is applied in our differential crypt-
analysis.

D1 : (04000000, 11000000)→ (00080888, 00000200)

After prefixing 4 rounds on the top, it is easy to prove that the input differences of 28-round
SIMON64 is

∆P1 : (∗0∗∗, ∗0∗0, 000∗, 000∗, 0∗∗0, 0∗∗∗, ∗∗0∗, ∗∗∗∗, ∗∗∗∗, ∗∗0∗, 0∗∗0, 0∗∗∗, ∗∗0∗, ∗∗∗∗, ∗∗∗∗, ∗∗∗∗)

The output difference of 28-round SIMON64 is given in the following by appending 3 rounds
at the bottom.

∆C1 : (∗0∗∗, ∗0∗0, 000∗, 000∗, 0∗∗0, 0∗∗∗, ∗∗0∗, ∗∗∗∗, ∗∗00, ∗∗01, 0000, 0000, 000∗, 000∗, 0∗∗0, 0∗∗0)

For the differential D1, decrypting the first 4 rounds and encrypting last 3 rounds, we deduce
91 conditions independent of the secret key in Table 10, and 31 conditions relating to the secret
key in Table 11. There are 58 conditions in the plaintexts and the rounds 1-4, which are sufficient
and necessary to ensure the output difference of the 4th round to be (04000000, 11000000). We
make the conditions in Table 10 hold by choosing the plaintexts, and give a method to ensure
all the conditions in Table 11 hold by guessing some secret key bits as few as possible.

5.2 Key-Recovey Attack on SIMON64

In this subsection, we describe a key recovery attack on 28-round SIMON64. We make use
of these conditions independent of secret key to construct the structure, and reduce the time
complexity for collecting plaintext-ciphertext pairs. In the process of key recovery attack, we use
Observation 2 to reduce the key bits guessed. The bit differential cryptanalysis includes data
collection and key guess two phases, which are demonstrated in the following.

Data Collection We apply the above method in Section 3.2 to collect pairs.

1. There are 18 necessary conditions on plaintexts, and 21 necessary conditions in the first three
rounds independent of secret key seen in Table 10. Hence let K0 and K1 and K2 be fixed
constants. For a fixed 18-bit value X0[1, 6, 8, 11, 12, 18, 33, 37, 39, 40, 41, 42, 44, 45, 46, 48,
51, 52, 58], traverse the left 46 bits of X0 to compute X1[i](i =34, 35, 39, 41, 42, 45, 46, 47,
48, 49, 52, 53, 54, 56, 59, 60, 63), X2[55], X2[62], X3[32], X3[57], and divide the plaintexts
into 218 sets indexed the corresponding X1[i] and X2[55], X2[62], X3[32], X3[57]. Each set is
a structure with 246−21 = 225 plaintexts.

2. For structures A and A′ with different bit, i.e. (X0[11], X0[42], X0[52], X1[39], X1[63]), find
the corresponding ciphertexts, and inset a table indexed by X28[t], where ∆X28[t] = 0. There
are about 225×2−34 = 216 pairs between A and A′ remaining.

3. We built 234 structures, and filter out the obtained pairs according to the conditions in Table
6, there are 234−1+16−18 = 231 pairs left. Store the pairs in table T1.
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In the data collection phase, we choose 234+25 = 259 plaintexts, and get 234−1+50−19 = 264

pairs which satisfying the input difference of D1. Hence, there are about 11.08 right pairs.

Key Guessing There are 74-bit of subkey or equivalent subkey required to guess for differential
D1. By key schedules, we know that these 74 bits are linearly independent. To detect the correct
key, we maintain a set of counters of size 274, named as S1, initialized with 0. Then for the pairs
in T1, guess subkey in the following procedure.

1. Guess some subkey bits of the 2nd round listed in Table 11 to compute ∆X2[32, 35, 36, 43,
47, 49, 53, 50, 54, 56, 57, 61, 60] one by one, and eliminate the pairs which do not satisfy
the conditions. There are about 231−7 = 224 remaining pairs.

2. Guess some subkey bits of the 26th round listed in Table 11 to obtain ∆X26[4, 29, 1, 5, 19,
23, 26, 30] one by one, and keep the pairs which fulfill the conditions. There are 224−8 = 216

pairs left on average.

3. Guess some subkey bits of the 3rd round listed in Table 11 to compute ∆X3[33, 36, 37, 51,
55, 58, 61, 62] one by one, and remain the pairs which are in accordance with the conditions.
There are about 216−8 = 28 remaining pairs.

4. Guess some subkey bits of the 25th round listed in the 4th column of Table 3 to compute
∆X25[2, 6, 27, 31] one by one, and eliminate the pairs which are not content with the condi-
tions. There are about 28−4 = 24 pairs left.

5. Guess some subkey bits of the 4nd round listed in Table 11 to compute ∆X4[34, 38, 59, 63]
one by one, and eliminate the pairs which do not satisfy the conditions. There are about
24−4 = 1 remaining pairs.

6. Increase the counters corresponding to the guessed subkeys by the number of the remaining
pairs.

7. We compute the master key by the key schedule with the known 74-bit subkey. Then ex-
haustive the remaining bits of master key.

Complexity Cryptanalysis For data collection, we need about 259 encryptions for the chosen
plaintexts, and about 249 one round computations to decide the conditions. The data complexity
about 259 chosen plaintexts.

In the key guessing procedure, the complexity is dominated by Step 7. Since there are about
233 74-bit subkeys for a pair which fulfill the input difference of the differential D1, it is about
231 × 233 = 264 increments equivalent to 260 encryptions. For SIMON64/128, the exhaustive
searching cost 2128−74 = 254 encryptions.

It is expected to have 11.08 pairs left for the right key. However, the counter is about
231 × 233/274 = 2−10 for a wrong key. The signal-to-noise ratio is Sn = 2−60.53

2−64 = 11.08. The
success probability is increased to 0.628 computed by equation (2), where a = 74, µ = 11.08.

Therefore, the differential attacks on SIMON64 needs 261 encryptions with 259 chosen plain-
texts, and the success probability is 0.628.

6 Conclusion

In this paper, we present improved differential attacks on SIMON32, SIMON48 and SIMON64
with one or two rounds more than previous attacks. The core of our method is the bit differential
cryptanalysis. we present the round function with bitwise expression, and give some bit-difference
equations corresponding to subkey or equivalent subkey bit. Based on this, an optimal key guess
policy is proposed, which reduces the time complexity of the differential cryptanalysis. Besides, a
new method constructing structure for plaintexts is given to decrease the complexity of collecting
pairs. Our technique is not only available to differential attacks, but also is helpful to impossible
differential attacks, boomerang attacks etc.
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Table 2: Conditions of Differential Path of 20-round SIMON32 are Independent of Subkeys

Rounds Number of
Conditions

Difference Conditions of i-th Round

input 13 ∆X0[1] = 0, ∆X0[3] = 0, ∆X0[7] = 0, ∆X0[10] = 1, ∆X0[18] = 0, ∆X0[19] = 0,
∆X0[20] = 0, ∆X0[21] = 0, ∆X0[24] = 0, ∆X0[25] = 0, ∆X0[27] = 0, ∆X0[28] = 1,
∆X0[31] = 0

1 10

∆X1[16] = 0,∆X1[16] = X0[24] ∩∆X0[17] +∆X0[18] +∆X0[0],
∆X1[18] = 1,∆X1[18] = X0[19] ∩∆X0[26] +∆X0[20] +∆X0[2],
∆X1[20] = 0,∆X1[20] = X0[21] +∆X0[22] +∆X0[4],
∆X1[21] = 0,∆X1[21] = X0[22] ∩∆X0[29] +X0[29] ∩∆X0[22] +∆X0[23] +∆X0[5],
∆X1[22] = 0,∆X1[22] = X0[23] ∩∆X0[30] +X0[30] ∩∆X0[23] +∆X0[24] +∆X0[6],
∆X1[25] = 0,∆X1[25] = X0[26] ∩∆X0[17] +X0[17] ∩∆X0[26] +∆X0[27] +∆X0[9],
∆X1[27] = 0,∆X1[27] = X0[19] +∆X0[29] +∆X0[11],
∆X1[28] = 0,∆X1[28] = X0[20] ∩∆X0[29] +∆X0[30] +∆X0[12],
∆X1[29] = 0,∆X1[29] = X0[21] ∩∆X0[30] +∆X0[31] +∆X0[13],
∆X1[30] = 1,∆X1[30] = X0[31] ∩∆X0[22] +∆X0[16] +∆X0[14]
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19 8

∆X19[4] = 0, ∆X19[4] = X20[5] +∆X20[6] +∆X0[4],
∆X19[5] = 0, ∆X19[5] = X20[6]∩∆X20[13] +X20[13]∩∆X20[6] +∆X20[7] +∆X0[5],
∆X19[6] = 0, ∆X19[6] = X20[7]∩∆X20[14] +X20[14]∩∆X20[7] +∆X20[8] +∆X0[6],
∆X19[7] = 0, ∆X19[7] = 0 = X20[8] ∩ ∆X20[15] + X20[15] ∩ ∆X20[8] + ∆X20[9] +
∆X0[7],
∆X19[11] = 0, ∆X19[11] = 0 = X20[3] +∆X20[13] +∆X0[11],
∆X19[12] = 0, ∆X19[12] = 0 = X20[4] ∩∆X20[13] +∆X20[14] +∆X0[12],
∆X19[13] = 0, ∆X19[13] = 0 = X20[5] ∩∆X20[14] +∆X20[15] +∆X0[13],
∆X19[14] = 1, ∆X19[14] = X20[15]∩∆X20[6]+X20[6]∩∆X20[15]+∆X20[0]+∆X0[14]

20 10 ∆X20[2] = 0, ∆X20[3] = 0, ∆X20[4] = 0, ∆X20[5] = 0, ∆X20[9] = 0, ∆X20[11] = 0,
∆X20[12] = 1, ∆X20[17] = 0, ∆X20[19] = 0, ∆X20[26] = 1

Table 3: Conditions of Differential Path of 20-round SIMON32 Relating to the Secret Key

Rounds Number of
Conditions

Difference
Conditions of
i-th Round

Possible Guessed Subkeys Conditions for Key Guess Number of
Key Values

2 7

∆X2[17] = 0 K0[9] 1
∆X2[22] = 0 K0[7] 1
∆X2[26] = 0 K0[11] 1
∆X2[29] = 0 K0[5] 1
∆X2[16] = 1 ∆X1[24] = 0

1
K0[1] ∆X1[24] = 1

∆X2[30] = 0 ∆X1[31] = 0
1

K0[6] ∆X1[31] = 1
∆X2[23] = 0 ∆X1[24] = 0 and ∆X1[31] = 0

2
K0[8] ∆X1[24] = 0 and ∆X1[31] = 1
K0[15] ∆X1[24] = 1 and ∆X1[31] = 0
K0[8]⊕K0[15] ∆X1[24] = 1 and ∆X1[31] = 1

3 2
∆X3[31] = 0 K1[7] 1
∆X3[24] = 0 K1[9] X1[17] = 0

2
K1[9]⊕K0[10] X1[17] = 1

16 2

∆X16[10] = 0 K17[11]⊕K18[13] ∆X18[3] = 0 and ∆X19[5] = 0

8

K19[14]⊕K17[11]⊕K18[13] ∆X18[3] = 0 and ∆X19[5] = 1
K18[12]⊕K17[11]⊕K18[13] ∆X18[3] = 1 and ∆X19[5] = 0

and ∆X19[4] = 0
K18[12]⊕K19[13]⊕K17[11]⊕K18[13] ∆X18[3] = 1 and ∆X19[5] = 0

and ∆X19[4] = 1
K18[12]⊕K19[14]⊕K17[11]⊕K18[13] ∆X18[3] = 1 and ∆X19[5] = 1

and ∆X19[4] = 0
K18[12] ⊕ K19[13] ⊕ K19[14] ⊕
K17[11]⊕K18[13]

∆X18[3] = 1 and ∆X19[5] = 1
and ∆X19[4] = 1

∆X16[1] = 0 K19[3], K17[9]⊕K18[11] X19[3] = 0
2

K19[3], K17[9]⊕K18[11]⊕K19[12] X19[3] = 1

17 5

∆X17[2] = 1 K19[11] ∆X18[10] = 0
4K19[11], K18[3] ∆X18[10] = 1 and ∆X19[11] = 0

K19[11], K18[3]⊕K19[4] ∆X18[10] = 1 and ∆X19[11] = 1
∆X17[8] = 0 K18[9] X19[1] = 0

2
K18[9]⊕K19[10] X19[1] = 1

∆X17[0] = 0 K19[2] ∆X18[1] = 0
2

K19[2], K18[8] ∆X18[1] = 1
∆X17[9] = 0 ∆X18[1] = 0 and ∆X18[10] = 0

2
K18[1]⊕K19[3] ∆X18[1] = 0 and ∆X18[10] = 1
K19[12]⊕K18[10] ∆X18[1] = 1 and ∆X18[10] = 0
K18[1]⊕K19[3]⊕K19[12]⊕K18[10] ∆X18[1] = 1 and ∆X18[10] = 1

∆X17[15] = 0 K18[7] 1

18 7

∆X18[6] = 0 K19[7] 1

15



∆X18[15] = 0 K19[7] 1/2
∆X18[0] = 1 ∆X19[8] = 0

1
K19[1] ∆X19[8] = 1

∆X18[13] = 0 K19[5] 1
∆X18[14] = 0 ∆X19[15] = 0

1
K19[6] ∆X19[15] = 1

∆X18[7] = 0 ∆X19[15] = 0 and ∆X19[8] = 0

2
K19[8] ∆X19[15] = 1 and ∆X19[8] = 0
K19[15] ∆X19[15] = 0 and ∆X19[8] = 1
K19[8]⊕K19[15] ∆X19[15] = 1 and ∆X19[8] = 1

∆X18[8] = 0 ∆X19[0] = 0 and ∆X19[9] = 0

2
K19[9] ∆X19[0] = 1 and ∆X19[9] = 0
K19[0] ∆X19[0] = 0 and ∆X19[9] = 1
K19[0]⊕K19[9] ∆X19[0] = 1 and ∆X19[0] = 1

Table 4: Conditions of Differential Path of 21-round SIMON32 are Independent of Subkeys

Rounds Number of
Conditions

Difference Conditions of i-th Round

input 4 ∆X0[17] = 0, ∆X0[19] = 0, ∆X0[23] = 0, ∆X0[26] = 1

1 9 ∆X1[18] = 0, ∆X1[19] = 0, ∆X1[20] = 0, ∆X1[21] = 0, ∆X1[24] = 0, ∆X1[25] = 0,
∆X1[27] = 0, ∆X1[28] = 1, ∆X1[31] = 0

20 8 ∆X20[4] = 0, ∆X20[5] = 0, ∆X20[6] = 0, ∆X20[7] = 0, ∆X20[11] = 0, ∆X20[12] = 0,
∆X20[13] = 0, ∆X20[14] = 1

21 10 ∆X21[2] = 0, ∆X21[3] = 0, ∆X21[4] = 0, ∆X21[5] = 0, ∆X21[9] = 0, ∆X21[11] = 0,
∆X21[12] = 1, ∆X21[17] = 0, ∆X21[19] = 0, ∆X21[26] = 1

Table 5: Conditions of Differential Path of 21-round SIMON32 Relating to the Secret Key

Rounds Number of
Conditions

Difference
Conditions of
i-th Round

Possible Guessed Subkeys Conditions for Key Guess Number of
Key Values

2 10

∆X2[16] = 0 ∆X1[17] = 0
1

K0[8] ∆X1[17] = 1
∆X2[18] = 0 ∆X1[26] = 0

1
K0[3] ∆X1[26] = 1

∆X2[22] = 0 ∆X1[23] = 0 and ∆X1[30] = 0

2
K0[7] ∆X1[23] = 0 and ∆X1[30] = 1
K0[14] ∆X1[23] = 1 and ∆X1[30] = 0
K0[7]⊕K0[14] ∆X1[23] = 1 and ∆X1[30] = 1

∆X2[21] = 0 ∆X1[22] = 0 and ∆X1[29] = 0

2
K0[6] ∆X1[22] = 0 and ∆X1[29] = 1
K0[13] ∆X1[22] = 1 and ∆X1[29] = 0
K0[6]⊕K0[13] ∆X1[22] = 1 and ∆X1[29] = 1

∆X2[27] = 0 K0[3] 1/2
∆X2[20] = 0 K0[5] 1
∆X2[29] = 0 ∆X1[30] = 0

1/2
K0[5] ∆X1[30] = 1

∆X2[30] = 0 ∆X1[22] = 0
1

K0[15] ∆X1[22] = 1
∆X2[28] = 0 ∆X1[29] = 0

1
K0[4] ∆X1[29] = 1

∆X2[25] = 0 ∆X1[26] = 0 and ∆X1[17] = 0

2
K0[10] ∆X1[26] = 0 and ∆X1[17] = 1

16



K0[1] ∆X1[26] = 1 and ∆X1[17] = 0
K0[10]⊕K0[1] ∆X1[26] = 1 and ∆X1[17] = 1

3 7

∆X3[17] = 0 K0[11]⊕K1[9] 1
∆X3[23] = 0 K0[9],K0[0] ∆X2[24] = 0 and ∆X2[31] = 0

8
K0[9],K0[0],K1[8] ∆X2[24] = 0 and ∆X2[31] = 1
K0[9],K0[0],K1[15] ∆X2[24] = 1 and ∆X2[31] = 0
K0[9], K0[0],K1[8]⊕K1[15] ∆X2[24] = 1 and ∆X2[31] = 1

∆X3[22] = 0 K1[7] 1
∆X3[29] = 0 K1[5] 1
∆X3[30] = 0 ∆X2[31] = 0

1
K1[6] ∆X2[31] = 1

∆X3[26] = 1 K1[11] X1[19] = 0
2

K1[11]⊕K0[12] X1[19] = 1
∆X3[16] = 0 ∆X2[24] = 0

2
K1[1] ∆X2[24] = 1 and X1[25] = 0
K1[1]⊕K0[2] ∆X2[24] = 1 and X1[25] = 1

4 2
∆X4[31] = 0 K2[7] 1
∆X4[24] = 0 K2[9] X2[17] = 0

4
K2[9]⊕K1[10] X2[17] = 1 and X1[18] = 0
K2[9]⊕K1[10]⊕K0[11] X2[17] = 1 and X1[18] = 1

17 2

∆X18[15] = 0 K19[7] 1
∆X17[10] = 0 K18[11]⊕K19[13] ∆X19[3] = 0 and ∆X20[5] = 0

8

K20[14]⊕K18[11]⊕K19[13] ∆X19[3] = 0 and ∆X20[5] = 1
K19[12]⊕K18[11]⊕K19[13] ∆X19[3] = 1 and ∆X20[5] = 0

and ∆X19[4] = 0
K19[12] ⊕ K20[13] ⊕ K18[11] ⊕
K19[13]

∆X19[3] = 1 and ∆X20[5] = 0
and ∆X20[4] = 1

K19[12] ⊕ K20[14] ⊕ K18[11] ⊕
K19[13]

∆X19[3] = 1 and ∆X20[5] = 1
and ∆X20[4] = 0

K19[12] ⊕ K20[13] ⊕ K20[14] ⊕
K18[11]⊕K19[13]

∆X19[3] = 1 and ∆X20[5] = 1
and ∆X20[4] = 1

∆X17[1] = 0 K20[3], K18[9]⊕K19[11] X20[3] = 0
4

K20[3],K18[9]⊕K19[11]⊕K20[12] X20[3] = 1

18 5

∆X18[2] = 1 K20[11] ∆X19[10] = 0
4K20[11], K19[3] ∆X19[10] = 1 and ∆X20[11] = 0

K20[11], K19[3]⊕K20[4] ∆X19[10] = 1 and ∆X20[11] = 1
∆X18[8] = 0 K19[9] X20[1] = 0

2
K19[9]⊕K20[10] X20[1] = 1

∆X18[0] = 0 K20[2] ∆X19[1] = 0
2

K20[2], K19[8] ∆X19[1] = 1
∆X18[9] = 0 ∆X18[1] = 0 and ∆X19[10] = 0

2
K19[1]⊕K20[3] ∆X19[1] = 0 and ∆X19[10] = 1
K20[12]⊕K19[10] ∆X19[1] = 1 and ∆X19[10] = 0
K19[1] ⊕ K20[3] ⊕ K20[12] ⊕
K19[10]

∆X19[1] = 1 and ∆X19[10] = 1

19 7

∆X19[6] = 0 K20[7] 1
∆X19[15] = 0 K20[7] 1/2
∆X19[0] = 1 ∆X20[8] = 0

1
K20[1] ∆X20[8] = 1

∆X19[13] = 0 K20[5] 1
∆X19[14] = 0 ∆X20[15] = 0

1
K20[6] ∆X20[15] = 1

∆X19[7] = 0 ∆X20[15] = 0 and ∆X20[8] = 0

2
K20[8] ∆X20[15] = 1 and ∆X20[8] = 0
K20[15] ∆X20[15] = 0 and ∆X20[8] = 1
K20[8]⊕K20[15] ∆X20[15] = 1 and ∆X20[8] = 1

∆X19[8] = 0 ∆X20[0] = 0 and ∆X20[9] = 0

2
K20[9] ∆X20[0] = 1 and ∆X20[9] = 0
K20[0] ∆X20[0] = 0 and ∆X20[9] = 1
K20[0]⊕K20[9] ∆X20[0] = 1 and ∆X20[0] = 1

17



Table 6: Conditions of Differential Path of 21-round SIMON48 are Independent of Subkeys

Rounds Number of
Conditions

Difference Conditions of i-th Round

input 13 ∆X0[7] = 0, ∆X0[14] = 0, ∆X0[21] = 0, ∆X0[27] = 0, ∆X0[29] = 0, ∆X0[32] = 0,
∆X0[33] = 0, ∆X0[39] = 0, ∆X0[40] = 1, ∆X0[44] = 1, ∆X0[45] = 0 ∆X0[46] = 0,
∆X0[47] = 0

1 15

∆X1[24] = 0,∆X1[24] = X0[25] ∩∆X0[32]⊕∆X0[25] ∩X0[32]⊕∆X0[26]⊕∆X0[0]
∆X1[25] = 0,∆X1[25] = X0[26] ∩∆X0[33]⊕∆X0[26] ∩X0[33]⊕∆X0[27]⊕∆X0[1]
∆X1[26] = 0,∆X1[26] = X0[27] ∩∆X0[34]⊕∆X0[27] ∩X0[34]⊕∆X0[28]⊕∆X0[2]
∆X1[28] = 0,∆X1[28] = X0[29] ∩∆X0[36]⊕∆X0[29] ∩X0[36]⊕∆X0[30]⊕∆X0[4]
∆X1[29] = 0,∆X1[29] = X0[30] ∩∆X0[37]⊕∆X0[30] ∩X0[37]
∆X1[30] = 0,∆X1[30] = ∆X0[32]⊕∆X0[6]
∆X1[33] = 0,∆X1[33] = X0[34] ∩∆X0[41]⊕∆X0[34] ∩X0[41]⊕∆X0[35]
∆X1[34] = 0,∆X1[34] = X0[35]∩∆X0[42]⊕∆X0[35]∩X0[42]⊕∆X0[36]⊕∆X0[10]
∆X1[35] = 0,∆X1[35] = X0[36]∩∆X0[43]⊕∆X0[36]∩X0[43]⊕∆X0[37]⊕∆X0[11]
∆X1[37] = 0,∆X1[37] = ∆X0[39]⊕∆X0[13]
∆X1[40] = 0,∆X1[40] = X0[41] ∩∆X0[24]
∆X1[41] = 0,∆X1[41] = X0[42]∩∆X0[25]⊕∆X0[42]∩X0[25]⊕∆X0[43]⊕∆X0[17]
∆X1[42] = 0,∆X1[42] = X0[43]∩∆X0[26]⊕∆X0[43]∩X0[26]⊕∆X0[44]⊕∆X0[18]
∆X1[46] = 0,∆X1[46] = X0[47] ∩∆X0[30]⊕∆X0[47] ∩X0[30]⊕∆X0[24]
∆X1[47] = 0,∆X1[47] = ∆X0[24] ∩X0[31]⊕∆X0[25]

2 3
∆X2[25] = 0,∆X2[25] = ∆X1[27]⊕∆X0[25]
∆X2[34] = 0,∆X2[34] = ∆X1[36]⊕∆X0[34]
∆X2[41] = 0,∆X2[41] = ∆X1[43]⊕∆X0[41]

18 2
∆X19[6] = 0,∆X19[6] = ∆X20[8]⊕∆X21[6]
∆X19[13] = 0,∆X19[13] = ∆X20[15]⊕∆X21[13]

19 14

∆X19[0] = 0, ∆X19[0] = ∆X19[1] ∩X19[8]⊕∆X19[2]⊕∆X0[24]
∆X19[1] = 0, ∆X19[1] = X19[2] ∩∆X19[9]⊕∆X19[2] ∩X19[9]⊕∆X19[3]⊕∆X0[25]
∆X19[2] = 1, ∆X19[2] = X19[3]∩∆X19[10]⊕∆X19[3]∩X19[10]⊕∆X19[4]⊕∆X0[26]
∆X19[5] = 0, ∆X19[5] = X19[6]∩∆X19[13]⊕∆X19[6]∩X19[13]⊕∆X19[7]⊕∆X0[29]
∆X19[6] = 0, ∆X19[6] = X19[7]∩∆X19[14]⊕∆X19[7]∩X19[14]⊕∆X19[8]⊕∆X0[30]
∆X19[7] = 0, ∆X19[7] = ∆X19[8] ∩X19[15]⊕∆X19[9]⊕∆X0[31]
∆X19[9] = 0, ∆X19[9] = X19[10] ∩ ∆X19[17] ⊕ ∆X19[10] ∩ X19[17] ⊕ ∆X19[11] ⊕
∆X0[33]
∆X19[10] = 1, ∆X19[10] = X19[11] ∩∆X19[18] ⊕∆X19[11] ∩ X19[18] ⊕∆X19[12] ⊕
∆X0[34]
∆X19[13] = 0,∆X19[13] = ∆X19[14] ∩X19[21]⊕∆X19[15]⊕∆X0[37]
∆X19[16] = 0, ∆X19[16] = X19[17] ∩∆X19[24] ⊕∆X19[17] ∩ X19[24] ⊕∆X19[18] ⊕
∆X0[40]
∆X19[17] = 0, ∆X19[17] = X19[18] ∩∆X19[25] ⊕∆X19[18] ∩ X19[25] ⊕∆X19[19] ⊕
∆X0[41]
∆X19[18] = 1, ∆X19[18] = X19[19] ∩∆X19[26] ⊕∆X19[19] ∩ X19[26] ⊕∆X19[20] ⊕
∆X0[42]
∆X19[22] = 0, ∆X19[22] = X19[23] ∩∆X19[30]⊕∆X19[24]⊕∆X0[46]
∆X19[23] = 0,∆X19[23] = X19[24] ∩ ∆X19[31] ⊕ ∆X19[24] ∩ X19[31] ⊕ ∆X19[25] ⊕
∆X0[47]

20 9 ∆X20[5] = 0, ∆X20[8] = 1, ∆X20[15] = 0, ∆X20[16] = 0, ∆X20[21] = 0, ∆X20[22] =
0, ∆X20[23] = 1, ∆X20[38] = 0, ∆X20[45] = 0

Table 7: Conditions of Differential Path of 21-round SIMON48 Relating to the Secret Key

Rounds Number of
Conditions

Difference
Conditions of
i-th Round

Possible Guessed Subkeys Conditions for Key Guess Number of
Key Values
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2 11

∆X2[24] = 1 ∆X1[32] = 0
1

K0[1] ∆X1[32] = 1
∆X2[26] = 0 ∆X1[27] = 0

1
K0[10] ∆X1[27] = 1

∆X2[28] = 0 ∆X1[36] = 0
1

K0[5] ∆X1[36] = 1
∆X2[36] = 0 ∆X1[44] = 0

1
K0[13] ∆X1[44] = 1

∆X2[38] = 0 ∆X1[39] = 0
1

K0[22] ∆X1[39] = 1
∆X2[42] = 0 ∆X1[43] = 0

1
K0[2] ∆X1[43] = 1

∆X2[30] = 0 K0[7] 1
∆X2[31] = 0 ∆X1[32]=0 and ∆X1[39]=0

2
K0[8] ∆X1[32]=0 and ∆X1[39]=1
K0[15] ∆X1[32]=1 and ∆X1[39]=0
K0[8]⊕K0[15] ∆X1[32]=1 and ∆X1[39]=1

∆X2[35] = 0 ∆X1[36]=0 and ∆X1[43]=0

2
K0[19] ∆X1[36]=1 and ∆X1[43]=0
K0[12] ∆X1[36]=0 and ∆X1[43]=1
K0[12]⊕K0[19] ∆X1[36]=1 and ∆X1[43]=1

∆X2[37] = 0 K0[21] 1
∆X2[43] = 0 ∆X1[44]=0 and ∆X1[27]=0

2
K0[3] ∆X1[44]=1 and ∆X1[27]=0
K0[20] ∆X1[44]=0 and ∆X1[27]=1
K0[3]⊕K0[20] ∆X1[44]=1 and ∆X1[27]=1

3 6

∆X3[27] = 0 K1[11] 1
∆X3[44] = 0 K1[21]⊕K0[23] 1
∆X3[32] = 0 K1[9] X1[34] = 0

2
K1[9]⊕K0[17] X1[34] = 1

∆X3[36] = 0 K1[13] X1[45] = 0
2

K1[13]⊕K0[14] X1[45] = 1
∆X3[39] = 0 K1[23] X1[31] = 0

2
K1[23]⊕K0[0] X1[31] = 1

∆X3[43] = 0 K0[4], K1[3] X1[28] = 0
4

K0[4], K1[3]⊕K0[11] X1[28] = 1

18 8

∆X18[3] = 0 K19[11] 1
∆X18[8] = 0 K19[9] 1
∆X18[11] = 0 K19[19] 1
∆X18[12] = 0 K19[13] X20[21] = 0

2
K19[13]⊕K20[14] X20[21] = 1

∆X18[4] = 0 K19[5] X20[13] = 0
2

K19[5]⊕K20[6] X20[13] = 1
∆X18[19] = 0 K19[3] 1
∆X18[20] = 0 K19[21]⊕K20[23] 1
∆X18[15] = 0 K20[0],K19[23] X20[0] = 0

4
K20[0],K19[23]⊕K20[7] X20[0] = 1

19 15

∆X19[0] = 0 ∆X20[8]=0
1

K20[1] ∆X20[8]=1
∆X19[17] = 0 K20[1] 1/2
∆X19[4] = 1 ∆X20[12]=0

1
K20[5] ∆X20[12]=1

∆X19[14] = 0 ∆X20[15] = 0
1

K20[22] ∆X20[15] = 1
∆X19[12] = 1 ∆X20[20]=0

1
K20[13] ∆X20[20]=1

∆X19[20] = 1 ∆X20[4]=0
1

K20[21] ∆X20[4]=1
∆X19[1] = 0 K20[9] 1
∆X19[2] = 0 ∆X20[3]=0 and ∆X20[10]=0

2

19



K20[3] ∆X20[3]=0 and ∆X20[10]=1
K20[10] ∆X20[3]=1 and ∆X20[10]=0
K20[3]⊕K20[10] ∆X20[3]=1 and ∆X20[10]=1

∆X19[3] = 0 ∆X20[4]=0 and ∆X20[11]=0
2

K20[4] ∆X20[4]=0 and ∆X20[11]=1
K20[11] ∆X20[4]=1 and ∆X20[11]=0
K20[4]⊕K20[11] ∆X20[4]=1 and ∆X20[11]=1

∆X19[7] = 0 ∆X20[8]=0 and ∆X20[15]=0
2

K20[8] ∆X20[8]=0 and ∆X20[15]=1
K20[15] ∆X20[8]=1 and ∆X20[15]=0
K20[8]⊕K20[15] ∆X20[8]=1 and ∆X20[15]=1

∆X19[9] = 0 K20[17] 1
∆X19[10] = 0 ∆X20[11]=0

1
K20[18] ∆X20[11]=1

∆X19[11] = 0 ∆X20[12]=0 and ∆X20[19]=0
2

K20[12] ∆X20[12]=0 and ∆X20[19]=1
K20[19] ∆X20[12]=1 and ∆X20[19]=0
K20[12]⊕K20[19] ∆X20[12]=1 and ∆X20[19]=1

∆X19[18] = 0 ∆X20[19]=0
1

K20[2] ∆X20[19]=1
∆X19[19] = 0 ∆X20[3]=0

1
K20[20] ∆X20[3]=1

Table 8: Conditions of Differential Path of 22-round SIMON48 are Independent of Subkeys

Rounds Number of
Conditions

Difference Conditions of i-th Round

input 13 ∆X0[7] = 0, ∆X0[14] = 0, ∆X0[21] = 0, ∆X0[27] = 0, ∆X0[29] = 0, ∆X0[32] = 0,
∆X0[33] = 0, ∆X0[39] = 0, ∆X0[40] = 1, ∆X0[44] = 1, ∆X0[45] = 0, ∆X0[46] = 0,
∆X0[47] = 0

1 15 ∆X1[24] = 0, ∆X1[25] = 0, ∆X1[26] = 0, ∆X1[28] = 0, ∆X1[29] = 0, ∆X1[30] = 0,
∆X1[33] = 0, ∆X1[34] = 0, ∆X1[35] = 0, ∆X1[37] = 0, ∆X1[40] = 0, ∆X1[41] = 0,
∆X1[42] = 0, ∆X1[46] = 0, ∆X1[47] = 0

2 3
∆X2[25] = 0,∆X2[25] = ∆X1[27]⊕∆X0[25]
∆X2[34] = 0,∆X2[34] = ∆X1[36]⊕∆X0[34]
∆X2[41] = 0,∆X2[41] = ∆X1[43]⊕∆X0[41]

19 1 ∆X19[13] = 0,∆X19[13] = ∆X21[17]⊕∆X22[15]⊕∆X21[13]

20 7 ∆X20[5] = 0, ∆X20[8] = 1, ∆X20[15] = 0, ∆X20[16] = 0, ∆X20[21] = 0, ∆X20[22] =
0, ∆X20[23] = 0

21 2 ∆X21[14] = 0, ∆X21[21] = 0

Table 9: Conditions of Differential Path of 22-round SIMON48 Relating to the Secret Key

Rounds Number of
Conditions

Difference
Conditions of
i-th Round

Possible Guessed Subkeys Conditions for Key Guess Number of
Key Values

2 11

∆X2[24] = 1 ∆X1[32] = 0
1

K0[1] ∆X1[32] = 1
∆X2[26] = 0 ∆X1[27] = 0

1
K0[10] ∆X1[27] = 1

∆X2[28] = 0 ∆X1[36] = 0
1

K0[5] ∆X1[36] = 1
∆X2[36] = 0 ∆X1[44] = 0

1
K0[13] ∆X1[44] = 1

∆X2[38] = 0 ∆X1[39] = 0
1

20



K0[22] ∆X1[39] = 1
∆X2[42] = 0 ∆X1[43] = 0

1
K0[2] ∆X1[43] = 1

∆X2[31] = 0 ∆X1[32]=0 and ∆X1[39]=0

2
K0[8] ∆X1[32]=0 and ∆X1[39]=1
K0[15] ∆X1[32]=1 and ∆X1[39]=0
K0[8]⊕K0[15] ∆X1[32]=1 and ∆X1[39]=1

∆X2[35] = 0 ∆X1[36]=0 and ∆X1[43]=0

2
K0[19] ∆X1[36]=1 and ∆X1[43]=0
K0[12] ∆X1[36]=0 and ∆X1[43]=1
K0[12]⊕K0[19] ∆X1[36]=1 and ∆X1[43]=1

∆X2[37] = 0 K0[21] 1
∆X2[30] = 0 K0[7] 1
∆X2[43] = 0 ∆X1[44]=0 and ∆X1[27]=0

2∗K0[3] ∆X1[44]=1 and ∆X1[27]=0
K0[20] ∆X1[44]=0 and ∆X1[27]=1
K0[3]⊕K0[20] ∆X1[44]=1 and ∆X1[27]=1

3 6

∆X3[27] = 0 K1[11] 1
∆X3[44] = 0 K1[21]⊕K0[23] 1
∆X3[32] = 0 K1[9] X1[34] = 0

2∗
K1[9]⊕K0[17] X1[34] = 1

∆X3[36] = 0 K1[13] X1[45] = 0
2∗

K1[13]⊕K0[14] X1[45] = 1
∆X3[39] = 0 K1[23] X1[31] = 0

2∗
K1[23]⊕K0[0] X1[31] = 1

∆X3[43] = 0 K0[4], K1[3] X1[28] = 0
4∗

K0[4], K1[3]⊕K0[11] X1[28] = 1

18 8

∆X18[3] = 0 K19[11] 1
∆X18[8] = 0 K19[9] 1
∆X18[11] = 0 K19[19] 1
∆X18[12] = 0 K19[13] X20[21] = 0

2∗
K19[13]⊕K20[14] X20[21] = 1

∆X18[4] = 0 K19[5] X20[13] = 0
2

K19[5]⊕K20[6] X20[13] = 1
∆X18[19] = 0 K19[3] 1
∆X18[20] = 0 K19[21]⊕K20[23] 1∗
∆X18[15] = 0 K20[0],K19[23] X20[0] = 0

4∗
K20[0],K19[23]⊕K20[7] X20[0] = 1

19 16

∆X19[6] = 0 K21[16] 1
∆X19[0] = 0 K20[1] 1
∆X19[17] = 0 K21[20] 1
∆X19[1] = 0 K20[9] 1
∆X19[2] = 0 K21[5], K21[4] ∆X20[3]=0 and ∆X20[10]=0

8
K21[5], K21[4], K20[3] ∆X20[3]=0 and ∆X20[10]=1
K21[5], K21[4], K20[10] ∆X20[3]=1 and ∆X20[10]=0
K21[5],K21[4],K20[3] ⊕
K20[10]

∆X20[3]=1 and ∆X20[10]=1

∆X19[3] = 0 K21[12] ∆X20[4]=0 and ∆X20[11]=0
4

K21[12],K20[4] ∆X20[4]=0 and ∆X20[11]=1
K21[12],K20[11] ∆X20[4]=1 and ∆X20[11]=0
K21[12],K20[4]⊕K20[11] ∆X20[4]=1 and ∆X20[11]=1

∆X19[4] = 1 ∆X20[12]=0
1

K20[5] ∆X20[12]=1
∆X19[7] = 0 ∆X20[8]=0 and ∆X20[15]=0

2
K20[8] ∆X20[8]=0 and ∆X20[15]=1
K20[15] ∆X20[8]=1 and ∆X20[15]=0
K20[8]⊕K20[15] ∆X20[8]=1 and ∆X20[15]=1

∆X19[9] = 0 K20[17] 1
∆X19[10] = 0 ∆X20[11]=0

1
K20[18] ∆X20[11]=1
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∆X19[11] = 0 ∆X20[12]=0 and ∆X20[19]=0
2

K20[12] ∆X20[12]=0 and ∆X20[19]=1
K20[19] ∆X20[12]=1 and ∆X20[19]=0
K20[12]⊕K20[19] ∆X20[12]=1 and ∆X20[19]=1

∆X19[12] = 1 ∆X20[20]=0
1

K20[13] ∆X20[20]=1
∆X19[14] = 0 ∆X20[15] = 0

1
K20[22] ∆X20[15] = 1

∆X19[18] = 0 ∆X20[19]=0 1
∆X19[19] = 0 K21[22] ∆X20[3]=0

2
K21[22]K20[20] ∆X20[3]=1

∆X19[20] = 1 ∆X20[4]=0
1

K20[21] ∆X20[4]=1

20
14

∆X20[0] = 0 ∆X21[1]=0 and ∆X21[8] = 0
2

K21[1] ∆X21[1]=0 and ∆X21[8] = 1
K21[8] ∆X21[1]=1 and ∆X21[8] = 0
K21[1]⊕K21[8] ∆X21[1]=1 and ∆X21[8] = 1

∆X20[1] = 0 ∆X21[2]=0 and ∆X21[9] = 0
2

K21[2] ∆X21[2]=0 and ∆X21[9] = 1
K21[9] ∆X21[2]=0 and ∆X21[9] = 0
K21[2]⊕K21[9] ∆X21[2]=1 and ∆X21[9] = 1

∆X20[2] = 0 ∆X21[3]=0 and ∆X21[10] = 0
2

K21[3] ∆X21[3]=0 and ∆X21[10] = 1
K21[10] ∆X21[3]=0 and ∆X21[10] = 0
K21[3]⊕K21[10] ∆X21[3]=0 and ∆X21[10] = 1

∆X20[5] = 0 ∆X21[6]=0 and ∆X21[13] = 0
2

K21[6] ∆X21[6]=0 and ∆X21[13] = 1
K21[13] ∆X21[6]=1 and ∆X21[13] = 0
K21[6]⊕K21[13] ∆X21[6]=1 and ∆X21[13] = 1

∆X20[6] = 0 ∆X21[7]=0 and ∆X21[14] = 0
2

K21[7] ∆X21[7]=0 and ∆X21[14] = 1
K21[14] ∆X21[7]=1 and ∆X21[14] = 0
K21[7]⊕K21[14] ∆X21[7]=1 and ∆X21[14] = 1

∆X20[7] = 0 K21[15] 1
∆X20[9] = 0 K21[17] 1
∆X20[10] = 0 ∆X21[11]=0 and ∆X21[18] = 0

2
K21[11] ∆X21[11]=0 and ∆X21[18] = 1
K21[18] ∆X21[11]=1 and ∆X21[18] = 0
K21[11]⊕K21[18] ∆X21[11]=1 and ∆X21[18] = 1

∆X20[13] = 0 K21[21] 1
∆X20[16] = 0 K21[0] 1
∆X20[17] = 0 K21[18],K21[1] 1/2
∆X20[18] = 0 K21[19] 1
∆X20[22] = 0 K21[23] 1
∆X20[23] = 0 K21[0],K21[7] 1/2

Table 10: Conditions of Differential Path of SIMON64 are Independent of Subkeys

Rounds Number of
Conditions

Difference Conditions of i-th Round

input 18 ∆X0[1] = 0, ∆X0[6] = 0, ∆X0[8] = 0, ∆X0[11] = 1, ∆X0[12] = 0, ∆X0[18] = 0,
∆X0[33] = 0, ∆X0[37] = 0, ∆X0[39] = 0, ∆X0[40] = 0, ∆X0[41] = 0, ∆X0[42] = 1,
∆X0[44] = 0, ∆X0[45] = 0, ∆X0[46] = 0, ∆X0[48] = 0, ∆X0[51] = 0, ∆X0[52] = 1,
∆X0[58] = 0

1 17 ∆X1[34] = 0 ∆X1[35] = 0, ∆X1[39] = 1, ∆X1[41] = 0, ∆X1[42] = 0, ∆X1[45] = 0,
∆X1[46] = 0, ∆X1[47] = 0, ∆X1[48] = 0, ∆X1[49] = 0, ∆X1[52] = 0, ∆X1[53] = 0,
∆X1[54] = 0, ∆X1[56] = 0, ∆X1[59] = 0, ∆X1[60] = 0, ∆X1[63] = 1
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2 2
∆X2[55] = 0, ∆X2[55] = ∆X1[57] +∆X0[55],
∆X2[62] = 0, ∆X2[62] = ∆X1[32] +∆X0[62]

3 2
∆X3[32] = 0, ∆X3[32] = ∆X1[36] +∆X1[32] +∆X0[34],
∆X3[57] = 0, ∆X3[57] = ∆X1[61] +∆X1[57] +∆X0[59]

26 2
∆X26[0] = 0, ∆X26[0] = ∆X27[2] +∆X28[0]],
∆X26[25] = 0, ∆X26[25] = ∆X27[27] +∆X28[25]

27 15 ∆X27[1] = 0, ∆X27[3] = 0, ∆X27[4] = 0, ∆X27[11] = 0, ∆X27[15] = 0, ∆X27[17] =
0, ∆X27[18] = 0, ∆X27[21] = 0, ∆X27[22] = 0, ∆X27[23] = 0, ∆X27[24] = 0,
∆X27[25] = 0, ∆X27[28] = 0, ∆X27[29] = 0, ∆X27[30] = 0

28 35 ∆X28[2] = 0, ∆X28[3] = 0, ∆X28[6] = 0, ∆X28[7] = 1, ∆X28[8] = 0, ∆X28[9] = 0,
∆X28[10] = 0, ∆X28[11] = 0, ∆X28[12] = 0, ∆X28[13] = 0, ∆X28[14] = 0,
∆X28[15] = 0, ∆X28[16] = 0, ∆X28[17] = 0, ∆X28[18] = 0, ∆X28[20] = 0,
∆X28[21] = 0, ∆X28[22] = 0, ∆X28[24] = 0, ∆X28[27] = 0, ∆X28[28] = 0,
∆X28[31] = 0, ∆X28[33] = 0, ∆X28[37] = 0, ∆X28[39] = 0, ∆X28[40] = 0,
∆X28[41] = 0, ∆X28[42] = 0, ∆X28[44] = 0, ∆X28[45] = 0, ∆X28[46] = 0,
∆X28[48] = 0, ∆X28[51] = 0, ∆X28[52] = 0, ∆X28[58] = 0

Table 11: Conditions of Differential Path of 28-round SIMON64 Relating to the Secret Key

Rounds Number of
Conditions

Difference
Conditions of
i-th Round

Possible Guessed Subkeys Conditions for Key Guess Number of
Key Values

2 7

∆X2[32] = 0 ∆X1[33] = 0
1

K0[8] ∆X1[33] = 1
∆X2[35] = 0 ∆X1[36] = 0

1
K0[11] ∆X1[36] = 1

∆X2[36] = 0 ∆X1[37] = 0
1

K0[12] ∆X1[37] = 1
∆X2[43] = 0 ∆X1[37] = 1

1/2
K0[12] ∆X1[37] = 0

∆X2[47] = 0 ∆X1[55] = 0
1

K0[16] ∆X1[55] = 1
∆X2[49] = 0 ∆X1[57] = 0

1
K0[18] ∆X1[57] = 1

∆X2[53] = 0 ∆X1[61] = 0
1

K0[22] ∆X1[61] = 1
∆X2[50] = 0 ∆X1[51] = 0 and ∆X1[58] = 0

2
K0[19] ∆X1[51] = 0 and ∆X1[58] = 1
K0[26] ∆X1[51] = 1 and ∆X1[58] = 0
K0[19]⊕K0[26] ∆X1[51] = 1 and ∆X1[58] = 1

∆X2[54] = 0 ∆X1[55] = 0 and ∆X1[62] = 0

2
K0[23] ∆X1[55] = 0 and ∆X1[62] = 1
K0[30] ∆X1[55] = 1 and ∆X1[62] = 0
K0[23]⊕K0[30] ∆X1[55] = 1 and ∆X1[62] = 1

∆X2[56] = 0 ∆X1[57] = 0 and ∆X1[32] = 0

2
K0[25] ∆X1[57] = 0 and ∆X1[32] = 1
K0[0] ∆X1[57] = 1 and ∆X1[32] = 0
K0[25]⊕K0[0] ∆X1[57] = 1 and ∆X1[32] = 1

∆X2[57] = 0 ∆X1[58] = 0
1

K0[1] ∆X1[58] = 1
∆X2[61] = 0 ∆X1[62] = 0

1
K0[5] ∆X1[62] = 1

∆X2[60] = 0 ∆X1[61] = 0 and ∆X1[36] = 0

2
K0[29] ∆X1[61] = 0 and ∆X1[36] = 1
K0[4] ∆X1[61] = 1 and ∆X1[36] = 0
K0[29]⊕K0[4] ∆X1[61] = 1 and ∆X1[36] = 1

3 8
∆X3[33] = 0 ∆X2[34] = 0

4
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K0[10],K1[9] ∆X2[34] = 1 and X1[42] = 0
K0[10], K1[9]⊕K0[17] ∆X2[34] = 1 and X1[42] = 1

∆X3[36] = 0 K0[13], K1[12] X1[45] = 0
4

K0[13], K1[12]⊕K0[20] X1[45] = 1
∆X3[37] = 0 K0[14] ∆X2[38] = 0

4K0[14], K0[15]⊕K1[13] ∆X2[38] = 1 and ∆X1[46] = 0
K0[14], K0[15]⊕K1[13]⊕K0[21] ∆X2[38] = 1 and ∆X1[46] = 1

∆X3[51] = 0 ∆X2[59] = 0
4K1[20] ∆X2[59] = 1 and X1[53] = 0

K1[20]⊕K0[28] ∆X2[59] = 1 and X1[53] = 1
∆X3[55] = 0 K0[7] ∆X2[63] = 0

2
K0[7],K1[24] ∆X2[63] = 1

∆X3[58] = 0 K0[3] ∆X2[59] = 0 and ∆X2[34] = 0
4

K0[3],K1[27] ∆X2[59] = 0 and ∆X2[34] = 1
K0[3],K1[2] ∆X2[59] = 1 and ∆X2[34] = 0
K0[3],K1[2]⊕K1[27] ∆X2[59] = 1 and ∆X2[34] = 1

∆X3[61] = 0 K0[6],K1[30] X1[38] = 0
2

K0[6],K1[30]⊕K1[31] X1[38] = 1
∆X3[62] = 0 ∆X2[63] = 0 and ∆X2[38] = 0

2
K1[31] ∆X2[63] = 0 and ∆X2[38] = 1
K1[6] ∆X2[63] = 1 and ∆X2[38] = 0
K1[31]⊕K1[6] ∆X2[63] = 0 and ∆X2[38] = 1

4 4
∆X4[34] = 0 K1[11],K1[12]⊕K2[10] X2[43] = 0

2
K1[11],K1[12]⊕K2[10]⊕K1[18] X2[43] = 1

∆X4[38] = 0 K1[15],K1[16]⊕K2[14] X2[47] = 0
2

K1[15],K1[16] ⊕ K2[14] ⊕
K1[22]⊕K0[24]

X2[47] = 1

∆X4[59] = 0 K1[29],K2[28] X2[61] = 0
2

K1[29],K1[4]⊕K2[28] X2[61] = 1
∆X4[63] = 0 K0[2], K0[9],K1[8],K2[0] X2[40] = 0

16
K0[2], K0[9],K1[8],K1[1]⊕K2[0] X2[40] = 1

25 4

∆X25[2] = 0 K27[11],K26[10] X27[11] = 0
4

K27[11],K26[10]⊕K27[18] X27[11] = 1
∆X25[6] = 0 K27[15],K27[16]⊕K26[14] X27[15] = 0

4K27[15],K27[16] ⊕ K26[14] ⊕
K27[22]

X27[15] = 1

∆X25[27] = 0 K27[29],K26[28] X27[29] = 0
4

K27[29],K27[4]⊕K26[28] X27[29] = 1
∆X25[31] = 0 K27[1],K26[0] X27[1] = 0

4
K27[1],K27[8]⊕K26[0] X27[1] = 1

26 8

∆X26[4] = 0 K27[12] 1
∆X26[29] = 0 K27[30] 1
∆X26[1] = 0 ∆X27[2] = 0

1
K27[9] ∆X27[2] = 1

∆X26[5] = 0 ∆X27[6] = 0
1

K27[13] ∆X27[6] = 1
∆X26[19] = 0 ∆X27[27] = 0

1
K27[20] ∆X27[27] = 1

∆X26[23] = 0 ∆X27[31] = 0
1

K27[24] ∆X27[31] = 1
∆X26[26] = 0 ∆X27[27] = 0 and ∆X27[2] = 0

2
K27[27] ∆X27[27] = 0 and ∆X27[2] = 1
K27[2] ∆X27[27] = 1 and ∆X27[2] = 0
K27[27]⊕K27[2] ∆X27[27] = 1 and ∆X27[2] = 1

∆X26[30] = 0 ∆X27[31] = 0 and ∆X27[6] = 0
2

K27[31] ∆X27[31] = 0 and ∆X27[6] = 1
K27[6] ∆X27[31] = 1 and ∆X27[6] = 0
K27[31]⊕K27[6] ∆X27[31] = 1 and ∆X27[6] = 1
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