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Abstract. In this paper we propose a framework for constructing public key encryption against related
key attacks from hash proof systems in the standard model. Compared with the construction of Wee
(PKC2012), our framework avoids the use of one-time signatures. We show that the schemes presented
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proposed framework based on the QR and DCR assumptions for affine key related functions.

Key words: related key attack, 4-wise independent hash, subset membership problem, hash proof
system

1 Introduction

Related key attack (RKA)[9, 7] means that the attacker can modify keys stored in the memory and
observe the outcome of the cryptographic primitive under the modified keys. It demonstrates a
realistic attack that given physical access to a hardware device, an adversary can use fault injection
techniques to tamper with and induce modifications to the internal state of the device [9, 7]. RKA
security has been studied for a long time in block ciphers [6, 21] and attracts interests in other areas
in recent years, like identity based encryptions (IBE), public key encryptions (PKE), signatures,
etc. [2, 5].

Specifically, PKE schemes against chosen ciphertext RKA (CC-RKA) is formulated by Bellare
et al. [2]. In a CC-RKA game for PKE, the adversary can make decryption queries with a function
and a ciphertext. On receiving the query, the challenger first applies the function to the secret key
and gets a modified key, then it uses the modified key to decrypt the ciphertext and return the
message to the adversary.

Bellare and Cash [1] built RKA secure pseudorandom functions (PRF) from key homomorphic
PRF and finger-printing under the DDH and DLIN assumptions. Bellare et al. [5] built RKA secure
IBE from IBE that was key homomorphic and supported collision resistant identity renaming.
Bellare et al. [2] showed that CC-RKA secure PKE could be achieved from RKA secure PRF and
RKA secure IBE separately. Wee [25] proposed a framework for constructing CC-RKA secure PKE
from adaptive trapdoor relations that were key homomorphic and finger-printing. These works
have some design ideas in common: the key homomorphism property assures RKA queries can be
answered as long as queries involving with the normal key can be answered; the finger-printing
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property, similar to collision resistant identity renaming in IBE, assures that a ciphertext is valid
for a unique secret key (identity).

However, Wee [25] gave an RKA attack on the DDH based scheme given by Cramer and Shoup
[10], and pointed out that the the Cramer-Shoup CCA secure constructions [12, 11] could not
achieve finger-printing, since the smoothness requirement in hash proof systems (HPSs) essentially
stipulates that the secret key has some residual entropy given only its evaluation on a NO instance
of the underlying subset membership problem, thus they achieved the CC-RKA security through
“all-but-one” proof technique. Subsequently, Jia et al. [18] presented CC-RKA secure PKE schemes
based on the DDH and HR assumptions, which seemed consistent with the paradigm of the HPS.

HPS, which is constructed from languages related to hard subset membership problems, is
introduced by Cramer and Shoup [11] as an important primitive to build paradigm for CCA secure
PKE schemes. After being proposed, several efforts have been made to improve the efficiency of
the paradigm for CCA security, such as [20, 22, 16]. Researchers also proved the CCA security of
a scheme by showing the scheme can fit into the corresponding paradigm [17]. Security proof for
schemes through HPSs and “all-but-one” techniques are very different, thus we are interested in
studying the CC-RKA security for schemes based on HPSs.

1.1 Our Contributions.

We give a generic PKE construction from the projective HPS, and prove that the construction
is CC-RKA secure in the standard model when the HPS satisfies the key homomorphism and
computational finger-printing properties. We show that schemes in [18] fit into this paradigm, and
give other efficient instantiations based on the QR and DCR assumptions.

Technical Overview. Generally, in the CC-RKA security proof, the simulator should handle two
more problems compared with the CCA security proof: firstly, how to answer decryption queries
under the related functions of the secret key without revealing extra information about the secret
key? secondly, how to prohibit the adversary from promoting a query out of the challenge ciphertext
and the key related function?

In the HPS, decryption queries are easy to answer since the simulator holds the secret key. To
make the adversary gain no more information about the secret key from the decryption answers
than what it can get from the public key (except for a negligible probability), we require the HPS
to satisfy the key homomorphism property analogous to that in previous works [5, 25]. Here key
homomorphism means that there exists an efficient algorithm to compute the hash value of the
input X under the modified key through the hash value of another input X ′ under the original
secret key, where X ′ can be publicly computed. It assures that except for negligible probability,
decryption answers are completely determined by the public key.

To prohibit the adversary from promoting a query out of the challenge ciphertext and key
related functions, we consider the following two points: firstly, we hope that there is a unique secret
key involving with a given ciphertext. However, as stated by Wee [25], it is impossible to fulfill the
“finger-printing” property for the Cramer-Shoup framework, so we require a weaker notion called
the computational finger-printing (CFP) property, which allows the existence of multi secret keys
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that correspond to the same hash value for a random input, but no efficient algorithm can find
two of them. Secondly, we hope that no adversary can get the same hash value by modifying the
input and the secret key simultaneously. Although no existing HPSs can achieve this property,
we note that when Kiltz et al. [20] realized the CCA secure paradigm from the HPS, they used
an interesting primitive called 4-wise independent hash to extract randomness. For a randomly
given 4-wise independent hash function H and two random variables X, X̃ with negligible collision
probability, the output H(X̃) is close to uniformly random even H(X) is fixed, as long as the
min-entropy of X and X̃ are large enough. We prevent the malleability by extending the domain
of 4-wise independent hash in [20], so that the output is randomly distributed when the input is
changed.

Comparison with Previous Works. Following the original theory given by Bellare and Kohoo [3],
modification on the secret key is parameterized by the class of Φ functions. Let S be the secret key

space, if S is closed under one operation “+”, Φlin is used to denote the class of linear functions; if

S is closed under two operations “+” and “×”, Φaffine is used to denote the class of affine functions;

Φpoly(d) is used to denote the class of polynomial functions bounded by degree d similarly. The

PRF given by Bellare and Cash [1] achieves RKA security for Φ = Φlin under the DDH and
DLIN assumptions. The IBE scheme given by Bellare, Paterson and Thomson [5] achieves RKA

security for Φ = Φpoly(d) under the non-standard q-EBDDH assumption and Φ = Φaffine under

the BDDH assumption.So one can get Φ-CC-RKA secure PKE for Φ = Φlin under the DDH
and DLIN assumptions by combining [2] and [1]; also one can get Φ-CC-RKA secure PKE for

Φ = Φpoly(d) under the non-standard q-EBDDH assumption and Φ = Φaffine under the BDDH
assumption by combining [2] and [5]. In Wee’s instantiation of PKE schemes [25], they achieved
Φ-CC-RKA secure for Φ being linear-shift under the factoring, BDDH and LWE assumptions. Our
instantiations can achieve Φ-CC-RKA secure for Φ being affine functions under the DDH, HR, QR
and DCR assumptions.

Note that compared with previous works, our construction removes the use of one-time signa-
tures and has efficiency close to that of the CCA secure PKE construction in [20].

Related Works. Tamper resilience is also considered along with the leakage resilience security and
there are schemes satisfying the corresponding security definitions [19, 13]. However, the scheme
in [19] achieved the security via key update and could only encrypt one bit. In [13] Damg̊ard et
al. defined a security model that bounded the number of times that the adversary could make
tampering queries.

Organization. The rest of our paper is organized as follows: in section 2 we give definitions and
preliminaries; in section 3 we give our generic construction and security proof; in section 4 we show
instantiations based on the DDH, QR and DCR assumptions; section 5 is the conclusion.
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2 Definitions and Preliminaries

2.1 Notations

We use PPT as the abbreviation of probabilistic polynomial time. Let l(X) denote the length
of X. Let s ←R S denote choosing a random element s from S if S is a set, and assigning to
s the output of S on uniformly chosen randomness if S is a PPT algorithm. Let X and Y be
probability spaces on a finite set S, the statistical distance SD(X,Y ) between X and Y is defined
as SD(X,Y ) := 1

2Σα∈S |PrX [α] − PrY [α]|, The min-entropy of a random variable X is defined as
H∞(X) = − log2(maxx∈D Pr[X = x]), wherein D is the domain of X. A function f(n) is said
negligible if for any polynomial p(·) > 0, there exists an N such that for all n > N, f(n) < 1

p(n) . A

function g(n) is said overwhelming if 1− g(n) is negligible.

2.2 Security Definitions

Public Key Encryption. A public key encryption scheme consists of three polynomial time
algorithms: (Keygen,Enc,Dec). The key generation algorithm takes as input the public parameters
and outputs a pair of keys (pk, sk),Keygen(pp) →R (pk, sk); the encryption algorithm takes as
input a message m, a public key pk and outputs a ciphertext C, Enc(pk,m)→R C; the decryption
algorithm Dec takes as input the ciphertext C and a secret key sk and outputs a message m or
⊥, Dec(sk, C) = m or ⊥. For correctness it is required that Dec(sk,Enc(pk,m)) = m.

Φ-CC-RKA Security. Here we give the security definition of Φ-CC-RKA. Let PKE= (Keygen,Enc,
Dec) be a public key encryption scheme, the advantage of an adversary A in breaking the Φ-CC-
RKA security of PKE is defined as:

AdvΦ-CC-RKA
A,PKE =

∣∣∣∣Pr

[
b = b′ :

(pk, sk)←R Keygen(pp); (m0,m1)← AO(sk,·,·)(pk);

b←R {0, 1};C∗ ←R Enc(pk,mb); b
′ ← AO(sk,·,·)(C∗, pk)

]
− 1

2

∣∣∣∣ .
When the adversary issues queries (φ,C), where φ ∈ Φ, the oracle O(sk, ·, ·) responds with

Dec(φ(sk), C). And after seeing the challenge ciphertext, the adversary is not allowed to make
queries with (φ(sk), C) = (sk, C∗).

Definition 1 (Φ-CC-RKA Security). A PKE scheme is Φ-CC-RKA secure if for any PPT
adversary A, AdvΦ-CC-RKA

A,PKE
is negligible in λ.

Here our security definition follows the definition given by Bellare et al. [2].

Symmetric Encryption. A symmetric encryption scheme consists of two polynomial time al-
gorithms: (E ,D). Let KSE be the secret key space. The encryption algorithm E takes as input a
message m and a secret key K and outputs a ciphertext χ, E(K,m) = χ; the decryption algorithm
D takes as input the ciphertext χ and a secret key K and outputs a message m or ⊥,D(K,χ) = m or
⊥. Here both algorithms are deterministic. For correctness it is required that D(K, E(K,m)) = m.
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Ciphertext Indistinguishability. Let SE = (E ,D) be a symmetric encryption scheme, the advantage
of an adversary A in breaking the ciphertext indistinguishability (IND-OT) of SE is defined as:

AdvIND-OT
A,SE =

∣∣∣∣Pr

[
b = b′ :

K∗ ←R KSE ; (m0,m1)← A; b←R {0, 1};
χ∗ ← E(K∗,mb); b

′ ← A(χ∗)

]
− 1

2

∣∣∣∣ .
We say that SE is one-time secure in the sense of indistinguishability (IND-OT) if for every PPT
A, AdvIND-OT

A,SE is negligible.

Ciphertext Integrity. Informally, ciphertext integrity requires that it is difficult to create a valid
ciphertext corresponding to a uniformly chosen secret key for any PPT adversary A, even A is
given an encryption of a chosen message with the same key before. Let SE = (E ,D) be a symmetric
encryption scheme, the advantage of an adversary A in breaking the ciphertext integrity (INT-OT)
of SE is defined as:

AdvINT-OT
A,SE = Pr

[
χ 6= χ∗ ∧ D(K∗, χ) 6= ⊥ :

K∗ ←R KSE ;m← A;
χ∗ ← E(K∗,m);χ← A(χ∗)

]
.

We say that SE is one-time secure in the sense of integrity (INT-OT) if for every PPT A, AdvINT-OT
A,SE

is negligible.

Authenticated Encryption. A symmetric encryption scheme SE is secure in the sense of one-time au-
thenticated encryption (AE-OT) iff it is IND-OT and INT-OT secure. An AE-OT secure symmetric
encryption can be easily constructed using a one-time symmetric encryption and an existentially
unforgeable MAC [12, 4].

2.3 Hash Proof Systems

Recall the concept of hash proof system (HPS) introduced by Cramer and Shoup [11]. Let X ,Y,SK,
PK be sets and L ⊂ X be a language, in which an instance L ∈ L can be efficiently sampled with
a witness r ∈ R. Let Λ be a family of hash functions indexed by sk ∈ SK mapping from X to Y.
Let µ be a PPT function mapping from SK to PK. A hash proof system H = (Λ,SK,X ,L,R,
Y,PK, µ) is projective if for all sk ∈ SK, the action of Λsk on L is determined by µ(sk). That is,
there are two PPT algorithms (Priv, Pub) to compute Λsk(L) for L ∈ L with witness r :

Λsk(L) = Priv(sk, L) = Pub(µ(sk), L, r).

For X ∈ X\L, it is required that there is still enough min-entropy for Λsk(X) given µ(sk) and
X.

Definition 2 (κ-entropic [20]). The projective HPS is κ-entropic if for all X ∈ X\L,
H∞(Λsk(X)|X,µ(sk)) ≥ κ.

We assume that there are efficient algorithms to sample sk ∈ SK and X ∈ X uniformly at
random.
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Definition 3 (Subset Membership (SM) Problem). SM problem in the HPS H is to distin-
guish a randomly chosen Z0 ∈ L from a randomly chosen Z1 ∈ X\L. Concretely, the advantage of
an adversary A in breaking SM is defined as:

AdvSM
A = |Pr[A(X ,L, Z1)]− Pr[A(X ,L, Z0)]| .

We say that the SM problem is hard if for every PPT A, AdvSM
A is negligible.

HPS with Trapdoor. Following [22, 20], we also require that the SM problem can be efficiently solved
with a master trapdoor, which will be used not in the actual scheme but in the security proof. In
fact, all known hash proof systems have such a trapdoor.

2.4 4-wise Independent Hash Functions

Here we review the primitive called 4-wise independent hash family [20] that can be used as a
randomness extractor. A simple construction of 4-wise independent hash family is shown in [20].

Definition 4 (4-wise Independent Hash Family [20]). Let HS be a family of hash functions
H : X → Y. We say that HS is 4-wise independent if for any distinct x1, x2, x3, x4 ∈ X , the output
H(x1), ...,H(x4) are uniformly and independently random, where H ←R HS.

The next two lemmata state that for a 4-wise independent hash function H and two random
variables X, X̃ with Pr[X = X̃] = δ negligible that even related, the random variable (H,H(X))
and (H,H(X),H(X̃)) are close to uniformly random as long as the min-entropy of X and X̃ are
large enough.

Lemma 1 (Leftover Hash Lemma [15]). Let X ∈ X be a random variable where H∞(X) ≥ κ.
Let HS be a family of pairwise independent hash functions with domain X and range {0, 1}l. Then
for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X)), (H, Ul)) ≤ 2(l−κ)/2.

Lemma 2 (A Generalization of the Leftover Hash Lemma [20]). Let (X, X̃) ∈ X × X be
two random variables having joint distribution where H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] = δ.
Let HS be a family of 4-wise independent hash functions with domain X and range {0, 1}l. Then
for H ←R HS and U2l ←R {0, 1}2l,

SD((H,H(X),H(X̃)), (H, U2l)) ≤
√

1 + δ · 2l−κ/2 + δ.

The following lemma from [18] that will be used in our security proof states that for a 4-wise
independent hash function H and two random variables X, X̃ with Pr[X = X̃] = δ negligible that
even related, the output H(X̃) is close to uniformly random even H(X) is fixed as long as the
min-entropy of X and X̃ are large enough.
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Lemma 3. [18] Let δ ≤ 1
2 , l ≤ 6, (X, X̃) ∈ X×X be two random variables having joint distribution

where Pr[X = X̃] = δ and H∞(X) ≥ κ,H∞(X̃) ≥ κ. Let HS be a family of 4-wise independent
hash functions with domain X and range {0, 1}l. Then for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X),H(X̃)), (H,H(X), Ul)) ≤ 2l−
κ−1
2 + δ.

3 RKA Secure PKE from Hash Proof Systems

3.1 Computational Finger-Printing and Φ-key Homomorphism

In this section we begin by introducing two additional properties for the HPS to build RKA secure
PKE. Generally speaking, computational finger-printing means that for any PPT adversary, for a
randomly given X, it cannot compute two different secret keys that can get the same hash value
of X. Φ-key homomorphism means that there exists an efficient algorithm T to compute the value
Λφ(sk)(X) on input Λsk(X

′) and X, where X ′ can be computed publicly, here we use the word
“homomorphism” to indicate that the evaluation on φ(sk) can be transformed to the evaluation on
sk.

Computational Finger-Printing (CFP). For a uniformly chosen X ∈ X\L, the CFP problem is to
compute sk1 6= sk2, s.t. Λsk1(X) = Λsk2(X). The advantage of A in solving the CFP problem is
formally defined as

AdvCFP
A = Pr[Λsk1(X) = Λsk2(X), sk1 6= sk2|X ←R X\L; (sk1, sk2)← A(X)].

Definition 5 (CFP). We say that the CFP holds for an HPS if for all PPT algorithm A, AdvCFP
A

is negligible in λ.

We stipulate that “+” and “×” are two operations defined on the secret key space SK and SK
is closed under “+” and “×” to define the affine functions on SK.

Definition 6 (Φ-key Homomorphism). We say an HPS is Φ-key homomorphic if there are PPT
algorithms T1, T2 such that with overwhelming probability over pp, for all φ ∈ Φ, and all sk,X ∈ X :

Λφ(sk)(X) = T2(pp, φ, Λsk(X
′), X), where X ′ = T1(pp, pk, φ,X).

3.2 The General Construction

In this part we give a general PKE construction from hash proof systems. The structure of our
construction inherits that in [20]. By extending the domain of the 4-wise independent hash function
to X × Y, we can prove the Φ-CC-RKA security of the construction.

Let H = (Λ,SK,X ,L,R,Y,PK, µ) be a projective hash proof system with κ-entropic. Let SE
be an AE-OT secure symmetric encryption scheme with secret key space {0, 1}l. Let HS be a
family of 4-wise independent hash functions with domain X ×Y and image {0, 1}l and H is chosen
uniformly random from HS. Public parameters are set as pp = (H,H).
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Keygen(pp) : The key generation algorithm chooses random secret key sk ←R SK and computes
the public key as pk = µ(sk).

Enc(pk,m) : The encryption algorithm samples random L ∈ L with witness r, the ciphertext
C = (C0, C1) is computed as:

C0 = L, Y = Pub(pk, L, r),K = H(C0, Y ), C1 = E(K,m).

Dec(sk, C) : The decryption algorithm computes the message as:

Y = Priv(sk, C0),K = H(C0, Y ),m = D(K,C1).

Correctness can be easily verified from the correctness of the symmetric encryption scheme and
the projective property of the HPS. In terms of concrete security, it requires the entropy κ to be
sufficiently large to assure the security of SE.

Remark. Compared with the paradigm in [20], we extend the domain of the 4-wise independent
hash function to X ×Y, so that related key attacks such that (C0 6= C∗0 , Λφ(sk)(C0) = Λsk(C

∗
0 )) can

be prevented.

3.3 Security Proof

Theorem 1. If H is a projective HPS with the corresponding SM problem hard and satisfies the
CFP and Φ-key homomorphism properties, SE is an AE-OT secure symmetric encryption scheme
with secret key space {0, 1}l, HS is a family of 4-wise independent hash functions with domain
X × Y and image {0, 1}l, then our PKE scheme is Φ-CC-RKA secure. In particular, for every
CC-RKA adversary A against security of the above scheme, there exist adversaries B, C,D,F with

AdvΦ-CC-RKA
A,PKE ≤ AdvSM

B + (q + 1)2l−(κ−1)/2 + q(AdvCFP
C +AdvINT-OT

D,SE ) +AdvIND-OT
F ,SE

where κ = H∞(Y ).

First let us recall a lemma that will be used in our proof.

Lemma 4. [12] Let S1, S2, S0 be events defined on some probability space satisfying that event
S1 ∧ ¬S0 occurs iff S2 ∧ ¬S0 occurs, then

|Pr[S1]− Pr[S2]| ≤ Pr[S0].

Proof (of Theorem 1). Suppose that the public key is pk and the secret key is sk. The challenge
ciphertext is denoted by C∗ = (C∗0 , C

∗
1 ). We also denote by r∗, Y ∗,K∗ the values corresponding

with r, Y,K related to C∗. We say a ciphertext C is invalid if C0 /∈ L. The master trapdoor mt is
used to solve the SM problem.

To prove the security of our scheme, we define a sequence of games that any PPT adversary can
not tell the difference between two adjacent games. Let q denote the number of decryption queries
that the adversary makes during the whole game.
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Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertext is generated using the secret key.

That is
Y ∗ = Priv(sk, C∗0 ).

Game2: the same as Game1 except that the challenge ciphertext is invalid. That is, C∗0 is chosen
uniformly from X\L.

Game3: the same as Game2 except that the decryption oracle rejects all queries (φ,C) that satisfy
T1(pp, pk, φ, C0) /∈ L. This can be achieved with the help of the master trapdoor mt.

Game4: the same as Game3, except that SE encrypts mb using a random key K+ instead of K∗.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, ..., 4.

It is clear to see Adv0A = Adv1A from the projective property of HPS.

Lemma 5. Suppose that there exists a PPT adversary A such that Adv1A − Adv2A = ε, then there
exists a PPT adversary B with advantage ε in solving the SM problem.

Proof. B receives
D = (X ,L, Z)

and its task is to decide whether Z ∈ L. B picks a random sk ∈ SK, computes pk = µ(sk) and
sends pk to A.

Whenever A submits (φ,C), B simply runs the decryption oracle with the secret key φ(sk).

When A submits (m0,m1),B randomly chooses b←R {0, 1}, it sets C∗0 = Z, Y ∗ = Priv(sk, Z),
K∗ = H(C∗0 , Y

∗), C∗1 = E(K∗,mb) and responds with C∗ = (C∗0 , C
∗
1 ).

When A outputs b′, B outputs 1 if b′ = b and 0 otherwise.

Note that when Z ∈ L, then the above game perfectly simulates Game1; when Z ∈ X\L, the
above game perfectly simulates Game2. ut

Lemma 6. Suppose that there exists a PPT adversary A in Game2 and Game3 such that it can
submit a query (C, φ) satisfying C0 = C∗0 , φ(sk) 6= sk, Y = Y ∗ with probability δ, then there exists
a PPT adversary B with advantage δ in breaking the CFP property.

Proof. B receives X and its task is to compute sk1 6= sk2 such that Λsk1(X) = Λsk2(X). B chooses
random sk ∈ SK and computes pk = µ(sk). Then B sends pk to A.

Whenever A submits (φ,C),B simply runs the decryption oracle with the secret key φ(sk).

When A submits (m0,m1),B randomly chooses b←R {0, 1}, it sets C∗0 = X,Y ∗ = Priv(sk,X),
K∗ = H(C∗0 , Y

∗), C∗1 = E(K∗,mb) and responds with C∗ = (C∗0 , C
∗
1 ).

Whenever A submits (φ,C) satisfying C0 = C∗0 , φ(sk) 6= sk, Y = Y ∗, which means Λsk(X) =
Λφ(sk)(X). Thus B can solve the CFP problem with output (sk, φ(sk)). ut
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Lemma 7. Assume that the symmetric encryption scheme is AE-OT secure, HS is a family of
4-wise independent hash functions, the CFP assumption holds, then

|Adv2A −Adv3A| ≤ q(2l−(κ−1)/2 +AdvCFP
C +AdvINT-OT

D,SE ).

Proof. Let E be the event that a query (C, φ) is rejected in Game3 but not rejected in Game2.
Then we have |Adv2A −Adv3A| ≤ Pr[E]. Let Γ ∗ be the random variable (C∗0 , Y

∗), Γ be the random
variable (C0, Y ).

Case 1: C0 = C∗0 .

– φ(sk) = sk. According to the κ-entropic property, given pk and a random C∗0 ∈ X\L,
H∞(Λsk(C

∗
0 )) = H∞(Y ∗) ≥ κ, thus H∞(Γ ∗) ≥ κ, then we can get that SD((H, pk,H(Γ ∗)),

(H, pk, Ul)) ≤ 2(l−κ)/2 from the leftover hash lemma. And according to the INT-OT property
of the SE scheme, for a uniformly chosen K̄ ∈ Ul, given a valid symmetric ciphertext C∗1 ,
the probability that an adversary can generate a C1 6= C∗1 s.t. D(K̄, C1) 6= ⊥ is bounded by
AdvINT-OT

D,SE , so in this case the adversary can produce a ciphertext s.t. D(K∗, C1) 6= ⊥ with

probability at most AdvINT-OT
D,SE + 2(l−κ)/2 < AdvINT-OT

D,SE + 2l−(κ−1)/2.
– φ(sk) 6= sk and C ′0 = T1(pp, pk, φ, C0) /∈ L. From Lemma 6 it can be seen that Pr[Y =
Y ∗] = δ, hence Pr[Γ = Γ ∗] = δ, where δ is negligible under the CFP assumption. We have
H∞(Y ∗) ≥ κ, similarly, since C ′0 /∈ L, according to the κ-entropic property, H∞(Λsk(C

′
0)) ≥

κ, and Y is determined by C0 and Λsk(C
′
0), hence H∞(Y ) ≥ κ and H∞(Γ ) ≥ κ. From

Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2 + δ.

And according to the INT-OT property of the SE scheme, for a uniformly chosen K̄ ∈ Ul,
given a valid symmetric ciphertext C∗1 , the probability that an adversary can generate a C1 6=
C∗1 s.t. D(K̄, C1) 6= ⊥ is bounded by AdvINT-OT

D,SE , so in this case the adversary can produce a

ciphertext s.t. D(K,C1) 6= ⊥ with probability at most AdvINT-OT
D,SE +AdvCFP

C + 2l−(κ−1)/2.

Case 2: C0 6= C∗0 , and C ′0 = T1(pp, pk, φ, C0) /∈ L. Since C0 6= C∗0 , Γ 6= Γ ∗. And as discussed above
we have H∞(Y ∗) ≥ κ. Since C ′0 /∈ L, according to the κ-entropic property, H∞(Λsk(C

′
0)) ≥ κ,

and Y is determined by C0 and Λsk(C
′
0), hence H∞(Y ) ≥ κ and H∞(Γ ) ≥ κ. From Lemma 3

we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2.

According to the INT-OT property of the SE scheme, for a uniformly chosen K̄ ∈ Ul, given a
valid symmetric ciphertext C∗1 , the probability that an adversary can generate a C1 6= C∗1 s.t.
D(K̄, C1) 6= ⊥ is bounded by AdvINT-OT

D,SE , so in this case the adversary can produce a ciphertext

s.t. D(K,C1) 6= ⊥ with probability at most AdvINT-OT
D,SE + 2l−(κ−1)/2.

From the above analysis, we can see that

|Adv2A −Adv3A| ≤ q(2l−(κ−1)/2 +AdvCFP
C +AdvINT-OT

D,SE ).

ut
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Lemma 8. Assume that HS is a family of 4-wise independent hash functions, then |Adv3A −
Adv4A| ≤ 2(l−k)/2.

Proof. Since in bothGame3 andGame4, all decryption queries are rejected except those (φ, (C0, C1))
satisfying C ′0 ∈ L, and the value of Λφ(sk)(C0) = T2(pp, φ, Λsk(C

′
0), C0) is completely determined by

pk, φ and C0, so Λφ(sk)(C0) leaks no more information about sk than pk. As a result, conditioned
on the decryption answers, it still holds that H∞(Y ∗) ≥ κ and H∞(Γ ∗) ≥ κ. Then from the leftover
hash lemma, SD((H, pk,H(Γ ∗)), (H, pk, Ul)) ≤ 2(l−κ)/2, so |Adv3A −Adv4A| ≤ 2(l−k)/2. ut

Lemma 9. Suppose that there exists a PPT adversary A such that Adv4A = ε, then there exists a
PPT adversary B with the same advantage in breaking the IND-OT security of the SE scheme.

Proof. B chooses random sk ∈ SK, computes pk = µ(sk) and sends pk to A.

Whenever A submits (φ,C),B simply runs the decryption oracle with the secret key φ(sk).

When A submits (m0,m1),B sends (m0,m1) to its challenger and receives C∗1 . Then B chooses
random C∗0 ∈ X\L and responds with C∗ = (C∗0 , C

∗
1 ).

When A outputs b′, B outputs b′. ut

4 Instantiations

In the following we give three instantiations from the DDH, QR and HR assumptions, wherein the
one based on the DDH assumption is the same as that in [18], so our construction can be seen as a
generalization and high level understanding of schemes in [18]. And the schemes based on the QR
and DCR assumptions can be seen as applications of our general approach.

4.1 Instantiation from DDH

Decisional Diffie-Hellman Assumption (DDH). Let G denote a group generation algorithm, which
takes in a security parameter λ and outputs a prime p and a group description G of order p.

Run G(1λ) to get (p,G), and randomly choose g1, g2 ∈ G, r 6= w ∈ Zp. Set Z0 = (gr1, g
r
2), Z1 =

(gr1, g
w
2 ). The advantage of A is defined as

AdvDDHA =
∣∣∣Pr[A(g1, g2, Z1) = 1]− Pr[A(g1, g2, Z0) = 1]

∣∣∣.
Definition 7 (DDH). We say that G satisfies the DDH assumption if for any PPT algorithm
A, AdvDDHA is negligible in λ.

We recall the projective HPS constructed by Cramer and Shoup [11], of which the corresponding
subset membership problem is based on the DDH assumption. Run G(1λ) to get (p,G), and let
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g1, g2 be two independent generators. Here the master trapdoor is w := logg1g2 Define X = G2 and
L = {(gr1, gr2) : r ∈ Zp}. The value r is a witness of L ∈ L. Let SK = Z2

p,PK = G and Y = G. For

sk = (sk1, sk2) ∈ Z2
p, define µ(sk) = pk = gsk11 gsk22 . For X = (X1, X2) ∈ X , define

Λsk(X) = Xsk1
1 Xsk2

2 . (1)

Then given pk = µ(sk), L ∈ L and a witness r ∈ Zp, the public evaluation algorithm Pub(pk, L, r)
can compute Y = Λsk(L) as Y = pkr. Correctness can be easily verified by the definition of µ and
eq. (1).

As stated in [20], in the above HPS, H∞(Λsk(X)|pk,X) = log2(|G|) for X ∈ X\L.

It is easy to see that the CFP holds under the DDH assumption. For an adversary B which
receives D = (g1, g2, ĝ1, ĝ2) and its task is to decide whether D is a DDH tuple. B chooses random
r 6= w ∈ Zp, computes X1 = gr1, X2 = gw2 and sends X = (X1, X2) to A. If A can output sk 6= ŝk

and Λsk(X) = Λŝk(X), that is, gr1
sk1gw2

sk2 = gr1
ˆsk1gw2

ˆsk2 , then one can compute a σ such that
g2 = gσ1 , and hence decide whether D is a DDH tuple by checking whether the equation ĝ2 = ĝ1

σ

holds.

Here we define φa1,a2,b1,b2(sk1, sk2) = (a1sk1 + b1, a2sk2 + b2) and X ′ = T1(pp, pk, φ,X) =

(Xa1
1 , Xa2

2 ), T2(pp, φ, Λsk(X
′), X) = Λsk(X

′)Xb1
1 X

b2
2 = Xa1sk1+b1

1 Xa2sk2+b2
2 . The correctness can be

easily verified.

Keygen(pp) Enc(pk,m) Dec(sk, C)
pp = (H, p,G, g1, g2) r ←R Z∗p;C01 = gr1, C02 = gr2 Parse C as (C01, C02, C1)

sk1, sk2 ←R Zp K = H(C01, C02, pk
r) K = H(C01, C02, C

sk1
01 C

sk2
02 )

pk = gsk11 gsk22 C1 = E(K,m) Return {m,⊥} ← D(K,C1)
Return (sk, pk) Return C = (C01, C02, C1)

Fig.1. PKE scheme HE1 = (Keygen,Enc,Dec) [18].

Instantiations from the HR assumption [23, 18] can be got similarly.

4.2 Instantiation from QR

Quadratic Residuosity Assumption (QR). Let RSAgen denote an RSA generation algorithm, which
takes in a security parameter λ and outputs (P,Q,N, g) such that N = PQ,P = 2p+ 1, Q = 2q+ 1
for primes P,Q, p, q. Let JN denote the subgroup of elements in Z∗N with Jacobi symbol 1, and let
QRN denote the unique (cyclic) subgroup of Z∗N of order pq. Let g denote the generator of QRN .

Generally speaking, QR assumption means that it is difficult to distinguish a random element
in QRN from a random element in JN\QRN . To formulate this notion precisely, run RSAgen(1λ) to
get (P,Q,N, g), and randomly choose u0 ∈ QRN , u1 ∈ JN\QRN . Master trapdoor here is (P,Q).
The advantage of A is defined as

AdvQRA =
∣∣∣Pr[A(g, u1) = 1]− Pr[A(g, u0) = 1]

∣∣∣.
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Definition 8 (QR). We say that RSAgen satisfies the QR assumption if for any PPT algorithm

A, AdvQRA is negligible in λ.

We recall the projective HPS constructed by Cramer and Shoup [11, 20], of which the cor-
responding subset membership problem is based on the QR assumption. Run RSAgen(1λ) to
get (P,Q,N, g). Define X = JN and L = QRN = {gr : r ∈ Zpq}. The value r is a witness
of L ∈ L. Let SK = Zk[N/2],PK = QRkN and Y = JkN . For sk = (s1, ..., sk) ∈ Zk[N/2], define

µ(sk) = pk = (pk1, ..., pkk) = (gs1 , ..., gsk). For X ∈ X , define

Λsk(X) = (Xs1 , ..., Xsk). (2)

Then given pk = µ(sk), L ∈ L and a witness r ∈ Z[N/4], the public evaluation algorithm
Pub(pk, L, r) can compute Y = (Y1, ..., Yk) = (pkr1, ..., pk

r
k).

For X ∈ X\L, H∞((Xs1 , ..., Xsk)|pk,X) = k.

The CFP can be easily deduced from the QR assumption similarly as the analysis in [8, 14]. For
an adversary B which receives D = (g, u) and its task is to decide whether u ∈ QRN . B chooses
random r ∈ Z[N/4], computes X = −gr and sends X to A. If A can output sk 6= ŝk which satisfy

that Λsk(X) = Λŝk(X). Then there must exists si 6= ŝi such that (−gr)si = (−gr)ŝi for some
1 ≤ i ≤ k. Since with overwhelming probability gr is a generator of QRN , then with overwhelming
probability si = ŝi mod pq, so one can get the value of pq, hence factor N and decide whether
u ∈ QRN .

Here we define φa1,b1,...,ak,bk(sk) = (a1s1 + b1, ..., aksk + bk) and T1 be the identity function,

T2(pp, pk, φ, Y,X) = (Y a1
1 Xb1

1 , ..., Y
ak
k Xbk

k ). The correctness can be easily verified.

Keygen(pp) Enc(pk,m) Dec(sk, C)
pp = (H, P,Q,N, g) r ←R Z[N/4];C0 = gr Parse C as (C0, C1)

for i = 1 to 4l do K = H(C0, pk
r
1, ..., pk

r
4l) K = H(C0, C

s1
0 , ..., C

s4l
0 )

si ←R Z[N/2]; pki = gsi C1 = E(K,m)

pk = (pki), sk = (si) Return C = (C0, C1) Return {m,⊥} ← D(K,C1)
Return (sk, pk)

Fig.2. PKE scheme HE2 = (Keygen,Enc,Dec). (Here we require k = 4l)

4.3 Instantiation from DCR

Decisional Composite Residuosity Assumption (DCR).[24] Let RSAgen denote an RSA generation
algorithm, which takes in a security parameter λ and outputs (P,Q,N) such that N = PQ,P =
2p + 1, Q = 2q + 1 for primes P,Q, p, q. Generally speaking, DCR assumption means that it is
difficult to distinguish whether a randomly chosen element in Z∗N2 is an Nth power. To formulate
this notion precisely, run RSAgen(1λ) to get (P,Q,N). Master trapdoor is (P,Q). The advantage
of A is defined as

AdvDCRA =
∣∣∣Pr[A(N, rN mod N2) = 1]− Pr[A(N, r) = 1]

∣∣∣.
Here r is chosen randomly from Z∗N2 .
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Definition 9 (DCR). We say that RSAgen satisfies the DCR assumption if for all PPT algorithm
A, AdvDCRA is negligible in λ.

We recall the projective HPS constructed by Cramer and Shoup [11], of which the corresponding
subset membership problem is based on the DCR assumption. Run RSAgen(1λ) to get (P,Q,N).
Define X = GN ·GN ′ · I, where Gτ is a cyclic group of order τ,N ′ = pq, I is the subgroup of Z∗N2

generated by (−1 mod N2), L = GN ′ · I = {gr}, here r is the witness and g = −ζN can be seen as
a random generator of L, where ζ ←R Z∗N2 .

Let SK = Z[N2/2],PK = GN ′ · I and Y = GN · GN ′ · I. For sk = s ∈ Z[N2/2], define µ(sk) =
pk = gs. For X ∈ X , define

Λsk(X) = Xs. (3)

Then given pk = µ(sk), L ∈ L and a witness r ∈ Z[N/2], the public evaluation algorithm
Pub(pk, L, r) can compute Y = pkr.

For X ∈ X\L, H∞((Xs)|pk,X) = log2(N).

The CFP can be easily deduced from the DCR assumption similarly as the analysis in [8, 14].
For an adversary B which receives D = (N, u) and its task is to decide whether u is an Nth
power. B chooses random ζ ∈ Z∗N2 , α ∈ Z∗N , β ∈ Z[N/4], computes X = −(1 + N)αζNβ and sends

X to A. If A can output sk 6= ŝk which satisfy that Λsk(X) = Λŝk(X). Then there must be

(1 + N)αsk = (1 + N)αŝk and (−ζN )βsk = (−ζN )βŝk, then with overwhelming probability there is
sk = ŝk mod pq, thus B can factor N and solve the DCR problem.

Here we define φa,b(sk) = as + b and T1 be the identity function, T2(pp, pk, φ, Y,X) = Y aXb.
The correctness can be easily verified.

Keygen(pp) Enc(pk,m) Dec(sk, C)
pp = (H, P,Q,N, g) r ←R Z[N/2];C0 = gr Parse C as (C0, C1)

s←R Z[N2/2] K = H(C0, pk
r) K = H(C0, C

s
0)

pk = gs C1 = E(K,m)
Return (sk, pk) Return C = (C0, C1) Return {m,⊥} ← D(K,C1)

Fig.3. PKE scheme HE3 = (Keygen,Enc,Dec).

5 Conclusion

In this paper, we give a generic public key encryption construction secure against related key
attacks from the projective HPS in the standard model, show the DDH based scheme in [18] fits
our framework and give more instantiations based on other hard subset membership problems, like
the QR and DCR assumptions. We require the HPS be κ-entropic and use a 4-wise independent
hash function as a randomness extractor. Compared with previous works, our construction removed
the use of one-time signatures, thus is more efficient.
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