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<Abstract> 

Secret sharing (SS) is one of the most important cryptographic primitives used for 

data outsourcing. The (t, n) SS was introduced by Shamir and Blakley separately in 1979. 

The secret sharing policy of the (t, n) threshold SS is far too simple for many applications 

because it assumes that every shareholder has equal privilege to the secret or every share-

holder is equally trusted.  Ito et al. introduced the concept of a general secret sharing 

scheme (GSS).  In a GSS, a secret is divided among a set of shareholders in such a way that 

any “qualified” subset of shareholders can access the secret, but any “unqualified” subset 

of shareholders cannot access the secret.  The secret access structure of GSS is far more 
flexible than threshold SS.  In this paper, we propose an optimized implementation of GSS. 

Our proposed scheme first uses Boolean logic to derive two important subsets, one is called 

Min  which is the minimal positive access subset and the other is called Max  which is the 

maximal negative access subset, of a given general secret sharing structure.  Then, condi-

tions of parameters of a GSS are established based on these two important subsets.  Fur-

thermore, integer linear/non-linear programming is used to optimize the size of shares of a 

GSS.  The complexity of linear/non-linear programming is ),n(O  where n  is the number of 

shares generated by the dealer.  This proposed design can be applied to implement GSS 

based on any classical SS. We use two GSSs, one is based on Shamir’s weighted SS (WSS) 

using linear polynomial and the other is based on Asmuth-Bloom's SS using Chinese Re-

mainder Theorem (CRT), to demonstrate our design. In comparing with existing GSSs, our 

proposed scheme is more efficient and can be applied to all classical SSs. 
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1. Introduction 

 The ),( nt  SS was introduced by Shamir [1] and Blakley [2] independently in 1979. In a ),( nt  SS, a 

dealer divides a secret s into n shares and s is shared among a set of n shareholders, },,...,,{ 21 nUUUU   in 

such a way that any t or more than t shareholders can reconstruct the secret s; while fewer than t sharehold-

ers cannot reconstruct the secret s. In Shamir's ),( nt  SS, a dealer generates n shares based on a linear poly-

nomial having degree 1t . Secret reconstruction is based on Lagrange interpolating formula using any t or 

more than r private shares. Shamir's ),( nt  SS is unconditionally secure. There are other types of SSs.  For 

example, Blakely’s scheme [2] is based on Geometry, Mignotte’s scheme [3] and Asmuth-Bloom's scheme 

[4] are based on Chinese remainder theorem (CRT), and McEliece et al. scheme  [5] is based on Reed-

Solomon codes. 

The weighted ),( nt  secret sharing scheme (WSS) was originally proposed by Shamir [1].  In a WSS, 

each share of a shareholder has a positive weight.  The secret can be recovered if the overall weight of 

shares is equal to or larger than the threshold; but the secret cannot be recovered if the overall weight of 

shares is smaller than the threshold value.  In fact, Shamir’s  ),( nt  SS is a special type of WSSs in which 

the weight of all shares is the same.  One simple way to implement a WSS using Shamir’s  ),( nt  SS is to 

assign multiple shares to each shareholder according to his/her weight.  There are some papers to discuss 

properties and characteristics of a WSS.  For example, Morillo et al. [6] discussed the property of infor-

mation rate of a WSS.  Beimel et al. [7] characterized all weighted threshold access structures that are ideal.  

They showed that a weighted threshold access structure is ideal if and only if it is a hierarchical threshold 

access structure, or a tripartite access structure, or a composition of two ideal weighted threshold access 

structures that are defined on smaller sets of users.   

 The secret sharing policy of the (t, n) threshold SS is far too simple for many applications because 

it assumes that every shareholder has equal privilege to the secret. Complicated sharing policies, in which 

shareholders have different privileges, can also be realized by other general SSs [8, 9].  Ito et al. [8] have 

introduced the concept of general secret sharing (GSS).  In a GSS, a secret is divided among a set of 

shareholders, ,U  in such a way that any “qualified” subset of U can access the secret, but any “unquali-

fied” subset of U cannot access the secret.  Benaloh et al. [9] have shown that there is a correspondence 

between the set of general secret sharing functions and the set of monotone functions.  Saito et al. [8] have 

introduced the cumulative array technique and used it to construct a GSS based on monotone access struc-

tures.  In their scheme, multiple shares are needed for each shareholder. Benaloh et al. [9] have represent-

ed the access instances using formulae. According to monotone access instances of a secret, a set of for-

mulae on a set of variables is used to share the secret.  Their scheme shares the same problem as scheme 
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proposed by Saito et al.  That is, multiple shares are needed for each shareholder. Harn et al. [10] have 

proposed an l-span generalized SS in which the shares can be repeatedly used for r times to reconstruct r 

different secrets. However, the security of their scheme is based on RSA assumption.  The cumulative map 

is a simple realization of the multiple assignment map based on a ),( nt  SS [11, 12, 13] which utilized a 

GSS based on a WSS.  However, the GSSs constructed by the cumulative map are inefficient.  Iwamoto et 

al. [14] proposed an optimal multiple assignments based on integer programming to optimize the size of 

shares.  The complexity of solving an integer programming problem is related to the cardinality of the 

constraint variables set.  However, the number of variables in the integer programming is ),(O n2 where n  

is the number of shares generated by the dealer. Li et al. [15] proposed a method to reduce the number of 

constraint variables in the integer programming problem.  Srinathan et al. [16] have considered the prob-

lem of non-perfect secret sharing (NSS) over general secret sharing policy and defined generalized mono-

tone span programs (MSP) to facilitate the design of NSS schemes. However, their approach captures and 

addresses only NSS schemes that are linear.  In 2007, Xu et al. [17] have studied new operations on secret 

sharing policy to construct large MSPs from small MSPs and proposed new design of GSS.  Recently, 

Guo et al. [18] have proposed a scheme based on the key-lock-pair mechanism.  The share of each share-

holder is a pair of column vectors corresponding to the key-lock-pair. However, the number of elements of 

column vectors is determined by the number of terms in the secret access structure.  Iftene [19] has pro-

posed a GSS using CRT for special types of general access structures such as the compartmented and the 

weighted threshold SSs.  

In this paper, we propose an optimized implementation of GSS.  Our proposed scheme first uses 

Boolean logic to derive two important sets, one is called Min  which is the minimal positive access subset 

and the other is called Max  which is the maximal negative access subset, of a given general secret sharing 

structure.  Then, conditions of parameters of a GSS are established based on these two important subsets.  

Furthermore, integer linear/non-linear programming is used to optimize the size of shares of a GSS.  The 

complexity of linear/non-linear programming is ),n(O  where n  is the number of shares generated by the 

dealer.  This proposed design can be applied to implement GSS based on any classical SS. We use two 

GSSs, one is based on Shamir’s weighted SS (WSS) using linear polynomial and the other is based on 

Asmuth-Bloom's SS using Chinese Remainder Theorem (CRT), to demonstrate our design.  In comparing 

with existing GSSs, our proposed scheme is more efficient and can be applied to all classical SSs.  Here, 

we summarize the contributions of our paper. 

•     We propose an optimized design to implement a GSS based on any classical SS. 

•     For any given general secret sharing policy, Boolean logic is used to derive Min  and ,Max    then 

parameters of a GSS are determined based on Min  and .Max  



 

•      Integer linear/non-linear programming can be used to minimize the size of shares. The com-

plexity in the integer/non-linear programming is ).n(O  

•     Two GSSs, one is polynomial-based Shamir’s WSS and the other is CRT-based Asmuth-Bloom's 

SS, are used to demonstrate our design.  

•     Our design can be generalized to implement a GSS based on any classical SS. 

The rest of this proposal is organized as follows. In the next section, we introduce some preliminar-

ies including CRT, Mignotte's and Asmuth-Bloom SSs based on CRT.  In Section 3, we introduce our de-

sign to implement a GSS. In Section 4, we demonstrate the optimized implementation of a GSS based on 

Shamir’s WSS using linear polynomial. In Section 5, we demonstrate the optimized implementation of a 

GSS based on Asmuth-Bloom's SS using CRT.  Conclusion is given in Section 6. 

2.  Preliminaries 

In this section, we introduce some preliminaries including CRT, Mignotte's and Asmuth-Bloom 

schemes based on CRT.   

2.1  Chinese Remainder Theorem (CRT) [20] 

Given following system of equations as  
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if all moduli are pairwise coprime (i.e., ,1),gcd( ji pp  for every ).ji        

CRT has been used in RSA decryption to speed-up the decryption process.  With the knowledge of 

prime decomposition of RSA composite integer and using CRT, the complexity of RSA decryption is re-

duced by a factor of  .
4

1
  CRT can also be used in the SS.  Each of the shares is represented in a congru-

ence, and the solution of the system of congruences using CRT is the secret to be recovered.  SS based on 

CRT uses, along with CRT, a special sequence of integers that guarantee the impossibility of recovering 

the secret from a set of shares with less than a certain cardinality. In the next subsections, we will review 

two most well-known SSs based on CRT. 

http://en.wikipedia.org/wiki/Secret_Sharing_using_the_Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Cardinality
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2.2  Review of Mignotte’s ),( nt  SS [3] 

Share generation:  A sequence consists of pairwise coprime positive integers, ,...21 nppp   with 

,...... 212 tntn ppppp   where ip  is the public information associated with each shareholder, .iU   For 

this given sequence, the dealer chooses the secret s  as an integer in the set 
tntn pppppZ  ...,... 212

 (i.e., 

tntn pppppZ  ...,... 212
 is referred to the range ))....,...( 2132 tntntn pppppp    We call the 

range, ,...,... 212 tntn pppppZ 
 secure secret range, in which the secret should be selected by the dealer in order 

to enforce the secret sharing policy.  

        Share for the shareholder, ,iU  is generated as .,...,2,1,mod nipss ii   is  is sent to shareholder, ,iU  

secretly. 

{Remark 1}   The numbers in the secure secret range, ,...,... 212 tntn pppppZ 
 are integers upper bounded by 

,...21 tppp   which is the smallest product of any t  moduli, and lower bounded by ,...32 ntntn ppp    

which is the largest product of any 1t  moduli.  The secret, ,s  selected in this range can ensure that (a) 

the secret can be recovered with any t  or more than t  shares (i.e., the product of their moduli must be ei-

ther equal to or larger than the upper bound, ),...21 tppp   and (b) the secret cannot be obtained with 

fewer than t  shares (i.e., the product of their moduli must be either equal to or smaller than the lower 

bound, )....2 ntn pp     Thus, the secret  of a ),( nt threshold SS should  be selected from the secure secret 

range. In a GSS, it has a general secret sharing policy.  The secure secret range should be determined ac-

cording to the secret sharing policy such that the policy can be enforced.  The secure secret range speci-

fied in a ),( nt threshold SS is no longer valid for a GSS having different secret sharing policy. 

Secret reconstruction:    Given t distinct shares, for example, },,...,,{
21 tiii sss  the secret s  can be recon-

structed by solving the following system of equations as  
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Using the standard CRT, a unique solution x is given as ,mod
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          We want to point out that Mignotte’s ),( nt threshold SS is not a perfect SS since any share substan-

tially decreases the entropy of the secret.   

2.3  Review of Asmuth-Bloom ),( nt  SS [4]   

Share generation:  In Asmuth-Bloom ),( nt  SS, the dealer selects 0p  and a sequence of pairwise coprime 

positive integers, ,...21 nppp   such that   ,p...ppp...pp tntn   2120  and 

,,...,2,1,1),gcd( 0 nipp i   where ip  is the public information associated with each shareholder, .iU   For 

this given sequence, the dealer chooses the secret s  as an integer in the set .
0pZ   The dealer selects an in-

teger, ,  such that ....,....0 2132 tntntn ppppppZps  
  We want to point out that the value, ,0ps   needs to 

be in the secure secret range, ;...,.... 2132 tntntn ppppppZ  
 otherwise, the value, ,0ps   can be obtained with 

fewer than t  shares.  However, in the original paper [4], it specifies that the value, ,0ps   is in the set, 

....21 tpppZ    This range is different from the secure secret range.  In other words, if 0ps   is selected to be 

smaller than the lower bound of the secure secret range (i.e., but it is still in the range, ),...21 tpppZ   then the 

value, ,0ps   can be obtained with fewer than t  shares.   It is obvious that this situation violates one of 

the security requirements of the ),( nt  SS. 

          Share for the shareholder, ,iU  is generated as ,mod0 ii ppss   and is  is sent to shareholder, ,iU  

secretly, for .,...,2,1 ni   

Secret reconstruction:  Given a subset of t distinct shares, for example, },,...,,{
21 tiii sss  the secret s  can be 

reconstructed by solving the following system of equations as  

.pmodsx
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Using standard CRT, a unique solution x is given as ,mod
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 Then, the secret s  can be recovered by computing 

.mod 0pxs   

           Asmuth and Bloom showed that the entropy of the secret decreases “not too much” when 1t  
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shares are known. Interest readers can refer to the original paper [4] for detailed discussion.  Asmuth-

Bloom’s SS can be generalized to take more than t shares in the secret reconstruction. For example, when 

there are j (i.e., njt  ) shareholders with their shares, },,...,,{ 21 jsss  participated in the secret reconstruc-

tion, the secret, ,s  can be reconstructed using standard CRT to find a unique solution x for the system of j 

equations.  

3.  Proposed Scheme 

 In the following, we give a definition of GSS. 

Definition 1.  General secret sharing (GSS).  A secret, ,s  is shared according to a given secret sharing 

policy by a group of n  shareholders }.,...,,{ 21 nUUUU   A GSS is a method of breaking the secret, ,s  into n  

shares,  ,,...,, 21 nsss  with is  secretly distributed to  iU  such that  

(1) if UA  is a qualified subset of shareholders, called positive access instance, according to the secret 

sharing policy, then the secret, ,s  can be reconstructed from shares, . Aus ii }{    

(2) if UA  is not a qualified subset of shareholders, called negative access instance, according to the se-

cret sharing policy, then the secret, ,s  cannot be reconstructed from shares, . Aus ii }{    

 The set F of all positive access instances is called positive access structure of the secret sharing 

policy and the set N of all negative access instances is called negative access structure of the secret shar-

ing policy. Suppose the positive access structure of a given sharing policy is F. The corresponding nega-

tive access structure is N  with UFN 2 and ,FN     where U2  is the power set of the shareholder set 

},U,...,U,U{U n21  the symbol “ ” is logic AND, and the symbol ""  is logic OR. 

 The positive access structure of a GSS has the monotone increasing property. That is, if ,FB and 

,UCB  then .FC  Similarly, the negative access structure which is the logically complement of the 

positive access structure of a GSS has the monotone decreasing property.  That is, if ,NB and 

,UBC  then .NC    

Definition 2.  Minimal positive access subset and maximal negative access subset.  A secret is shared by 

a set of shareholders according to a given secret sharing policy, where F is the positive access structure 

and  N is the negative access structure, such that  

(1) the subset, ,FMin is the minimal positive access subset if for every MinC   but ;F}CUU{C ii   

and 

(2) the subset, ,NMax is the maximal negative access subset if for every MaxC   but 

.N}CUUU{C ii    

 Both Min  and Max  can be used to characterize the secret sharing policy completely.  For a GSS, if 



 

the secret can be recovered by shareholders specified in Min , the secret can be recovered by any positive 

access instance.  Similarly, if the secret cannot be recovered by shareholders specified in Miax , the secret 

cannot be recovered by any negative access instance.  One contribution of our proposed scheme is to de-

termine both Min  and Max  of a general secret sharing policy using Boolean algebra.  

 Let us assume that there are four shareholders, }.D,C,B,A{U   If the positive access structure is 

)},DCBA()DBA()DCB()DB{(F    then }.DB{Min   The 4  positive access instanc-

es in Min  can be represented using the Karnaugh map by marking cells with “1s”. The Boolean function, 

,DB)DCBA()D'CBA()DCB'A()D'CB'A(f    corresponds to these “1s” in the 

Karnaugh map. 

AB\CD 00 01 11 10 

00     

01  1 1  

11  1 1  

10     

 

Similarly, If the negative access structure is )},DB()D()B(){(N    then }.DB{Miax   The 4  

negative access instances in Max  can be represented using the Karnaugh map by marking cells with “0s”. 

The Boolean function, ,'C'A)D'CB'A()'D'CB'A()D'C'B'A()'D'C'B'A('f    corre-

sponds to these “0s” in the Karnaugh map. 

AB\CD 00 01 11 10 

00 0 0   

01 0 0   

11     

10     

 

 In the following discussion, we consider a general positive access structure, 

)}.CBA()DCBA()DBA()BA()DCB{(F  The Karnaugh map corresponding to 

this positive access structure and negative access structure is given below. 
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AB\CD 00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11 1 1 1 1 

10 0 0 0 0 

 

The Boolean functions, 

)),'DCBA()DCBA()D'CBA()'D'CBA()DCB'A(f   and 

)),'DC'BA()DC'BA()D'C'BA()'D'C'BA()'DCB'A(

)D'CB'A()'D'CB'A()'DC'B'A()DC'B'A()D'C'B'A()'D'C'B'A{('f








 rep-

resent the positive access structure and negative access structure separately, where 'A  is the logically 

complement of the Boolean variable, .A   Boolean algebra can be used to simplify Boolean functions to 

obtain )DCB()BA(f   and ).'C'A()'D'A()'B('f    Thus, we obtain 

)}DCB()BA{(Min   and )}.DB()CB()DCA{(Max    

In our proposed scheme, we first determine both Min  and Max  of a secret sharing policy and then es-

tablish conditions of parameters of a GSS based on both Min  and Max . 

3.1  Deriving Min and Max from a general secret sharing policy 

We use examples to demonstrate our scheme. 

Example 1. Assume that there are four shareholders, },,,,{ DCBAU   and the secret sharing policy can be 

expressed by the following positive access structure, 

)}.DCBA()DCA()DCB()DBA()CBA{(F    The Boolean functions, 

)DCBA()DCA()DBA()DBA()CBA(f  and 

),'D'C()'D'B()'C'B()'D'A()'C'A()'B'A('f  correspond to the positive ac-

cess structure and negative access structure, respectively.   The Karnaugh map corresponding to this posi-

tive access structure and negative access structure is given below. 

  

AB\CD 00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11 0 1 1 1 

10 0 0 1 0 

 



 

Karnaugh map simplification is used to derive )}DCA()DCB()DBA()CBA{(Min    

and )}.BA()CA()DA()CB()DB()DC{(Max     

 In this example assume that each shareholder has the same weight. 

Since )},DCA()DCB()DBA()CBA{(Min   it specifies that any 3  or more than 3  

shareholders can recover the secret.  Furthermore, since  

{Max  )},BA()CA()DA()CB()DB()DC(   it specifies that any 2  or fewer than 2  

shareholders cannot recover the secret.  In other words, the secret sharing policy of this example is a ),( 43  

SS.  This example demonstrates that our proposed scheme can be used to derive both Min  and Max  of a 

threshold secret sharing scheme.   

Example 2. Assume that there are four shareholders, },,,,{ DCBAU   and the secret sharing policy can be 

expressed by the following positive access structure, 

)}.DCBA()DCA()DCB()CB()CBA()BA{(F    The Boolean functions,, 

)DCBA()DCA()DCB()CB()CBA()BA(f   and 

),'C'A()'B'A()'D'B()'C'B('f   correspond to the positive access structure and negative 

access structure, respectively.   The Karnaugh map corresponding to this positive access structure and 

negative access structure is given below. 

 

AB\CD 00 01 11 10 

00 0 0 0 0 

01 0 0 1 1 

11 1 1 1 1 

10 0 0 1 0 

 

Karnaugh map simplification is used to derive )}DCA()CB()BA{(Min  and 

)}.DC()DB()DA()CA{(tMax    In Sections 4 and 5, Min  and Max  of this example will be 

used to determine optimal size of shares of a GSS. 

3.2.  Establishing conditions of parameters  

 The outline of our proposed design is to use both Min  and Max  of a given secret sharing policy to 

determine the parameters of a GSS. Since in a secret sharing policy, Min  includes all minimal positive ac-

cess instances and Max  includes all negative access instances, parameters satisfying Min  ensure all posi-

tive access instances in F to recover the secret and parameters satisfying Max  ensure all negative access 

instances in N not to recover the secret.  In other words, our proposed scheme greatly simplifies the im-
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plementation of a GSS by only considering parameters satisfying both Min  and .Max    The secret of a gen-

eral secret sharing policy needs to be recovered by the shareholders specified in Min  and not to be recov-

ered by shareholders specified in .Max  Conditions of parameters of a GSS satisfying both Min  and Max  

are established and solved which can enforce the secret sharing policy.  In the following, we use examples 

to demonstrate our scheme. 

3.2.1 Implementing a GSS based on Shamir’s WSS 

Example 3.  We want to implement the secret sharing policy in Example 1 based on Shamir’s WSS. 

We first give the following definition of a weighted ),( nt  SS. 

Definition 3. Weighted ),( nt  secret sharing scheme (WSS).  A secret, ,s  is shared by a group of n  share-

holders },...,,{ 21 nUUUU   having a threshold .t   A WSS is a method of breaking the secret, ,s  into n  shares,  

,,...,, 21 nsss  with is  secretly distributed to  iU  such that  

(1) if UA  is a qualified subset of shareholders, having the overall weight of shares equal to or larger 

than the threshold ,t  then the secret, ,s  can be reconstructed from shares.  

(2) if UA  is not a qualified subset of shareholders, having the overall weight of shares smaller than the 

threshold ,t , then the secret, ,s  cannot be reconstructed from shares.  

Shamir’s  ),( nt  SS is a special type of WSSs in which the weight of all shares is the same.  One simple 

way to implement a WSS using Shamir’s  ),( nt  SS is to assign multiple shares to each shareholder ac-

cording to his/her weight. 

    In Shamir’s WSS, there are different weights of shares.  The secret can be recovered if the overall 

weight of shares is equal to or more than the threshold and the secret cannot be recovered if the overall 

weight of shares is less than the threshold.  Therefore, following parameters of Shamir’s WSS need to be 

determined in order to implement a general secret sharing policy, (a) the threshold of the secret of a WSS, 

and (b) the weights of shareholders.   

 Each item in Max/Min is a positive/negative access instance which may involve multiple share-

holders.   For example, if BA UU   is a positive access instance in ,Min  it means that AU  and BU  together 

can recover the secret.  To satisfy this requirement, the additive sum of weights of their shares, ,BA ww   

needs to be larger than or equal to the threshold, ,t  of the secret. When both AU  and BU  present their 

shares, the additive sum of weights of their shares, ,BA ww   is larger than or equal to the threshold of the 

secret so the secret can be recovered from their shares.  On the other hand, if DC UU   is a negative access 

instance in ,Max  it means that CU  and DU  together cannot recover the secret.  To satisfy this requirement, 

the additive sum of weights of their shares, ,DC ww   needs to be smaller than the threshold of the secret. 

When both CU  and DU present their shares, their additive sum,  ,DC ww   is smaller than the threshold so 



 

the secret cannot be recovered from their shares.  If we use }Minmin{  to represent the minimal additive 

sum of weights in Min  and }Maxmax{  to represent the maximal additive sum of weights in ,Max  the 

threshold, ,t  of the secret should be selected from }Min{ mint}Max{ max   in order to satisfy both security 

requirements.  Parameters of a GSS need to be determined to satisfy this inequality relation in order to en-

force the secret sharing policy exactly. 

 If we assume that the weight of all shares is .1  Then, from Example 1, 

)}DCA()DCB()DBA()CBA{(Min   and 

)}.BA()CA()DA()CB()DB()DC{(Max    We can obtain  3}Minmin{  and 

.}Maxmax{ 2   Then, from the condition, },Min{ mint}Max{ max  we have .t 3   In fact, this is a ),( 43  SS 

in which the threshold is 3  and any 3  or more than 3  shares can recover the secret; but fewer than 3  

shares cannot recover the secret.  In this example, we demonstrate that both Min  and Max  can be used to 

determine the parameters (i.e., the threshold) of a secret sharing policy (i.e., a threshold SS).  In Section 4, 

we will demonstrate our scheme for a general secret sharing policy.   

3.2.2 Implementating a GSS based on Asmuth-Bloom SS 

In CRT-based Asmuth-Bloom SS, each shareholder has different modulus.  The secret can be re-

covered if the product of moduli of shareholders is larger than the lower bound of the secure secret range 

and the secret cannot be recovered if the product of moduli of shareholders is smaller than secure secret 

range.  Therefore, following parameters of a GSS need to be determined, (a) the secure secret range, and 

(b) the moduli of shareholders.   

 Each item in Max/Min is a positive/negative access instance which may involve multiple share-

holders.   For example, if BA UU   is a positive access instance in ,Min  it means that AU  and BU  together 

can recover the secret.  To satisfy this requirement, the shifted value, ,0ps   needs to be smaller than their 

moduli product, .BA pp   When both AU  and BU  present their shares, their moduli product, ,BA pp  is larger 

than the shifted value so the shifted value can be recovered from their shares.  On the other hand, if 

DC UU   is a negative access instance in ,Max   it means that CU  and CU  together cannot recover the secret.  

To satisfy this requirement, the shifted value needs to be larger than their moduli product, .DC pp  When 

both CU  and DU present their shares, their moduli product DC pp  is smaller than the shifted value so the 

shifter value cannot be recovered from their shares.  If we use }Minmin{  to represent the minimal moduli 

product in Min  and }Maxmax{  to represent the maximal moduli product in ,Max  the shifted value should 

be selected from })Minmin{ps}Maxmax{  0  in order to satisfy both security requirements.  Parameters 

of a GSS need to be determined to satisfy this inequality relation in order to enforce the secret sharing pol-

icy exactly.  We use the following example to demonstrate our scheme. 
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Example 4.  We want to implement the secret sharing policy in Example 1 based on Asmuth-Bloom SS. 

From Example 1, we have )}DCA()DCB()DBA()CBA{(Min   and 

)}.BA()CA()DA()CB()DB()DC{(Max    Recall that the secret sharing policy speci-

fied in this example is a ),( 43  SS.  Any 3 or more than 3 shareholders can recover the secret, but fewer 

than 3 shareholders cannot recover the secret s.   The moduli products in Min  of Asmuth-Bloom ),( 43  SS 

can be represented as }}p,p,p,p{p,p,pp.pp{ DCBArrrrrr tiitii


 2121
 and the moduli products in Max  can be 

represented as }}.p,p,p,p{p,ppp{ DCBArrrr iiii


 11
 To satisfy the secret sharing policy, the secure secret 

range can be specified as }.Minmin{ps}Maxmax{  0  However, if all moduli satisfy 

DCBA pppp  such that ,pppppp CBADC 0 then we have CBA ppp}Minmin{   and 

.pp}Maxmax{ DC   Thus, we have ,ppppspp CBADC  0  which is the secure secret range as we de-

scribed in Section 2.3. 

 In this example, we demonstrate that both Min  and Max  can be used to determine the parameters 

(i.e., the secure secret range) of a secret sharing policy (i.e., a threshold SS).  In Section 5, we will 

demonstrate our scheme for a general secret sharing policy.   

4.  Optimized Implementation of GSS Based on Shamir’s WSS 

  In this section, we show how to use linear integer programming to optimize the size of shares of a 

GSS.   

4.1  Proposed Scheme 

We use following example to demonstrate our scheme.  

Example 5. We want to implement the secret sharing policy in Example 2 based on Shamir’s WSS. 

From Example 2, we have )}DCA()CB()BA{(Min    and 

)}.DC()DB()DA()CA{(Max   Assume that the weights of shares of shareholders, A, B, C 

and D are ,,,, DCBA wwww respectively.  If we use }Minmin{  to represent the minimal additive sum of 

weights in Min  and }Maxmax{  to represent the maximal additive sum of weights in ,Max  the threshold, ,t  

of the secret should be selected from }.Min{ mint}Max{ max   In other words, the upper bound of the 

threshold is }www,ww,wwmin{ DCACBBA  and the lower bound of the threshold is 

}.ww,ww,ww,wwmax{ DCDBDACA   Since the additive sum of weights of shareholders of each item 

in Min  should be larger than the additive sum of weights of shareholders of each item in ,Max  we can estab-

lish following inequality conditions. 

From BA ww  > .ww,ww,ww}ww,ww,ww,ww{ DADBCBDCDBDACA   

From CB ww  > .ww,ww,wwww,ww}ww,ww,ww,ww{ DBDCDACBABDCDBDACA   



 

From  DCA www .www}ww,ww,ww,ww{ BCADCDBDACA                                     

In summary, we have .www,wwwwwwwwww BCADACB,DAB,DCB   

Linear integer programming can be used to determine these weights.  It is well known that solving linear integer 

problems belong to the class of NP-hard optimization problems [21].  The complexity of solving an inte-

ger programming problem is related to the cardinality of the constraint variables set.  The number of vari-

ables in the integer programming proposed by Iwamoto et al. [14] is ),(O n2 where n  is the number of 

shares generated by the dealer; but, in our proposed scheme, the number of variables is ),n(O   In most 

GSSs, since the number of shareholders is limited to be a small integer (say 10), this can greatly simplify 

the processing time to determine the variables.   

The objective function, ,O  in a linear programming can be set up as, }),,...,,min({max{ 21 nwwwO   

to minimize the largest weight among all weights of shareholders, or ),wmin(O i

n

i






1

 to minimize the 

sum of all weights of shareholders. In this given example, if we set ),wwwwmin(O DCBA   we can ob-

tain 1243  DCBA w,w,w,w   and .6t   A Shamir’s WSS can be used to implement this GSS by setting 

the threshold of the secret to be 6 and assigning ,1,2,4,3  DCBA wwww  to shareholders, A, B, C and D, 

respectively.  The dealer follows Shamir’s )10,6(  SS to select a polynomial having degree 5 and generates 

3  shares for A, 4  shares for B, 2  shares for C and 1  share for D. Secret can be recovered when there are 

6  or more than 6  shares available.  The secret reconstruction follows classical Shamir’s ),( nt  SS. We il-

lustrate our proposed scheme in Figure 1.   

{Remark 2}   If contradict conditions, such as BA ww   and ,AB ww   derived from our scheme, there have 

no solutions for weights of shareholders.  However, this situation will never be occurred.  This is because 

the inequality conditions are derived from a given secret sharing policy. For a given positive access struc-

ture, we obtain both Min  and Max . These two subsets are logically complemented to each other.  These 

two subsets will never produce any contradict condition. In other words, if we derive BA ww  , this implies 

that A is a minimal positive access instance in Min  and B is a maximal negative access instance in .SetMax  

On the other hand, if we derive ,AB ww   this implies B is a minimal positive access instance in Min  and A 

is a maximal negative access instance in .Max  These two contradicted results cannot be occurred in a se-

cret access policy. 

4.2  Security Analysis 

  In our proposed GSS, the threshold, ,t  of the secret is determined from }.Minmin{t}Maxmax{,    

For any positive access instance in a minimal positive access subset, the additive sum of weights of this 
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access instance is larger than or equal to the threshold (i.e., }).Minmin{t    Thus, the secret can be recov-

ered from shares of any positive access instance in .F .  On the other hand, for any negative access in-

stance in a maximal negative access subset, the additive sum of weights of this negative access instance is 

smaller than the threshold (i.e., }).Maxmax{t    Thus, the secret cannot be recovered from shares of any 

negative access instance in .N   

5.  Optimized Implementation of GSS Based on Asmuth-Bloom SS 

5.1 Proposed Scheme 

In our proposed CRT-based GSS, the dealer follows the same procedure as Asmuth-Bloom ),( nt  

SS to select a secret, ,s  in the set .
0pZ  Then, the dealer selects an integer, ,  and linearly shifts the secret 

as ,0ps   into the secure secret range.  The share of shareholder, ,iU  is computed as .mod0 ipps    In the 

following, we first explain how to determine the secure secret range of the shifted value, ,0ps   such that 

it can enforce the secret sharing policy.  Then, we will explain how to determine moduli of shareholders. 

 Let us assume that there are n shareholders and each shareholder, ,iU  has a public modulus, .ip    

For a general secret access structure, following Section 3.1, we can derive Min  and .Max  Each item in 

Max/Min  is an access instance which involve multiple shareholders.   For example, if BA UU   is one min-

imal positive instance in ,Min  it means that AU  and BU  together can recover the secret.  To satisfy this re-

quirement, the shifted value, ,0ps   needs to be smaller than their moduli product, .BA pp   When both AU  

and BU  present their shares, their moduli product, ,BA pp  is larger than the shifted value so the shifted val-

ue can be recovered from their shares.  On the other hand, if DC UU   is one maximal negative access in-

stance in ,Max  it means that CU  and CU  together cannot recover the secret.  To satisfy this requirement, 

the shifted value needs to be larger than their moduli product, .DC pp  When both CU  and DU present their 

shares, their moduli product DC pp  is smaller than the shifted value so the shifter value cannot be recov-

ered from their shares.  If we use }Minmin{  to represent the minimal moduli product in Min  and }Maxmax{  

to represent the maximal module product in ,Max  the shifted value should be selected from the secure se-

cret range, as })Minmin{},Max(max{  })Minmin{ps}Maxmax{.,e.i(  0  in order to satisfy both security re-

quirements.   We use the following example to demonstrate our design. 

Example 6.  We want to implement the secret sharing policy in Example 2 based on Asmuth-Bloom ),( nt  

SS. 

From Example 2, we have )}DCA()CB()BA{(Min   and 

)}.DC()DB()DA()CA{(Max  Assume that the moduli of A, B, C and D are ,,,, DCBA pppp re-

spectively.  The upper bound of the secure secret range is }ppp,pp,ppmin{ DCACBBA and the lower bound of 



 

the secure secret range is }.pp,pp,pp,ppmax{ DCDBDACA   Since every moduli product in SetMin  should be 

larger than every moduli product in ,SetMax  we have following inequality conditions. 

From BA pp > .pp,pp,pp}pp,pp,pp,pp{ DADBCBDCDBDACA    

From CB pp > .pp,pp,PPPP,pp}pp,pp,pp,pp{ DBDCDACBABDCDBDACA    

From DCA ppp > .ppp,pp}pp,pp,pp,pp{ BCACBDCDBDACA    

In summary, we obtain the following inequality conditions, .,, BCADABDCB ppppppppp    

      We can use non-linear integer programming to determine these moduli.  The objective function, ,O  

can be set up to minimize the size of shares.  For example, if }),p,...,p,pmin({max{O n21  it minimizes the 

largest modulus in all moduli of shareholders, or ),pmin(O i

n

i






1

 it minimizes the sum of moduli of 

shareholders.  The product form of variables can be easily avoided and changes the problem into a linear 

integer optimization [22]. More research works are needed to solve our proposed non-linear integer pro-

gramming.  We illustrate our proposed scheme in Figure 2.     

{Remark 3}  Following the same discussion in Remark 2, the contradict conditions, such as BA pp   and 

,AB pp   cannot be occurred in our scheme. 

5.2  Security  

  In our proposed GSS, the shifted value, ,0ps   is from the secure secret range 

}.Minmin{ps}Maxmax{.,e.i  0   For any positive access instance,  the moduli product of this access in-

stance is larger than the shifted value (i.e., }).Minmin{   Thus, the shifted value can be recovered from 

shares of this access instance.  On the other hand, for any negative access instance, the moduli product of 

this negative access instance is smaller than the shifted value (i.e., }).Maxmax{   Thus, the shifted value 

cannot be recovered from shares of this negative access instance.  

  Let us analyze the security of a different situation.  We assume that CBA UUU   is one positive 

access instance in the minimal positive access subset.  Shareholders, AU  and ,BU  with their shares togeth-

er can recover a value, )..0(" BA pps   The “real” shifted value, ,' 0pss   selected in the secure secret range, 

},Minmin{ps}Maxmax{  0  is different from ).0(" BA pps  since }.SetMaxmax{)pp.("s BA  0  Shareholders, 

AU  and ,BU  together cannot recover the “real” shifted value from ".s   However, there exists the following 

relation between 's  and ".s  That is, }).Minmin{},Max(max{'sp"'s  0  The number of possible values of    

which can shift "s  into the secure secret range, },Minmin{ps}Maxmax{  0  is .
pp

}Maxmax{}Minmin{

BA


   

However, there is only one   corresponding to the “real” shifted value. Since the modulus, ,0p satisfies 
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},Minmin{}Maxmax{p 0 we have 

.p
}Maxmax{

}tMaxmax{}Maxmax{p

}Maxmax{

}Maxmax{}Minmin{

pp

}Maxmax{}Minmin{

BA

10
0 








  Thus, the collection of 

possible values of   is no less than the collection of possible values of the secret .s  No useful information 

is leaked from the collection of shares in this case. 

6.  Conclusion 

  The secret sharing policy of the (t, n) threshold SS is far too simple for many applications because 

it assumes that every shareholder has equal privilege to the secret. A general design to implement a GSS 

based on any classical SS is proposed in this paper.  The dealer first determines Min  and Miax  from a se-

cret sharing policy and then use this information to obtains inequality conditions of parameters of a GSS. 

Integer optimization is used to minimize the size of shares. Two GSSs, one is based on WSS using linear 

polynomial and the other is based on Asmuth-Bloom ),( nt  SS using CRT, are included to demonstrate our 

design.   
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_____________________________________________________________________________________ 

Parameters generation:   

Inputs: .,,, function ObjectiveOpolicy sharing SecretFns   

1. For the given positive access structure, ,F derive the minimal positive access subset, ,Min and maximal 

negative access subset, .Max  

2. Establish inequality conditions of weights of shareholders based on relations of additive sums of 

weights in the subsets, ,Min and .Max  

3. Solve weights, ,iw for ,,...,,1,0 ni  using linear optimization with objective function, ,O  and subject to 

conditions obtained in Step 2, and }.min{}max{ MintMax    

Outpits: .,...,, 1 nwwt  

Share generation:   

Generate shares following Shamir’s ),( nt threshold SS.  The dealer selects a polynomial with degree 1t  

and generates shares for shareholders. Each shareholder has multiple shares according to his/her weight. 

Each share is sent to shareholder secretly.  

 

Secret reconstruction: 

   

Given any t or more than t distinct shares, the secret can be reconstructed following the classical Shamir’s 

secret reconstruction. 

______________________________________________________________________________________ 

Figure 1.  Proposed GSS based on WSS. 
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_____________________________________________________________________________________ 

Parameters generation:   

Inputs: .function ObjectiveO,policy sharing SecretF,n,p,s 0  

1. For the given positive access structure, ,F derive the minimal positive access subset, ,Min and maximal 

negative access subset, .Max  

2. Establish inequality conditions of moduli of shareholders based on relations of moduli products in the 

subsets, ,Min and .Max  

3. Solve moduli, ,ip for ,,...,,1,0 ni   with ,,1),gcd( jipp ji  using nonlinear optimization with objective 

function, ,O  and subject to conditions obtained in Step 2, 

},ppp,pp,ppmin{ps}pp,pp,pp,ppmax{ DCACBBADCDBDACA  0 },Minmin{}Maxmax{p 0  and 

 .00 sp   

4.  Solve the linearly shifted value, }).Minmin{},Max(max{ps's  0  

Outpits: .p,...,p,'s n1  

Share generation:   

Share for the shareholder, ,iU  is generated as .mod0 ii ppss   is  is sent to shareholder, ,iU  secretly.  

 

Secret reconstruction: 

   

Given any subset of distinct shareholders satisfying the positive access structure, the secret value, 

,' 0pss   can be reconstructed by using the standard CRT.  Then, the secret s  can be recovered by compu-

ting .mod' 0pss   

______________________________________________________________________________________ 

Figure 2.  Proposed GSS based on CRT. 


