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Abstract

In a homomorphic signature scheme, a user Alice signs some large data x using her secret signing
key and stores the signed data on a server. The server can then run some computation y = g(x)
on the signed data and homomorphically produce a short signature σg,y. Anybody can verify the
signature using Alice’s public verification key and become convinced that y is the correct output of
the computation g over Alice’s data, without needing to have the underlying data itself.

In this work, we construct the first leveled fully homomorphic signature schemes that can evaluate
arbitrary circuits over signed data, where only the maximal depth d of the circuit needs to be fixed a
priori. The size of the evaluated signature grows polynomially in d, but is otherwise independent of
the circuit size or the data size. Our solutions are based on the hardness of the small integer solution
(SIS) problem, which is in turn implied by the worst-case hardness of problems in standard lattices.
We get a scheme in the standard model, albeit with large public parameters whose size must exceed
the total size of all signed data. In the random-oracle model, we get a scheme with short public
parameters. These results offer a significant improvement in capabilities and assumptions over the
best prior homomorphic signature scheme due to Boneh and Freeman (Eurocrypt ’11).

As a building block of independent interest, we introduce a new notion called homomorphic trapdoor
functions (HTDF). We show to how construct homomorphic signatures using HTDFs as a black box.
We construct HTDFs based on the SIS problem by relying on a recent technique developed by Boneh
et al. (Eurocrypt ’14) in the context of attribute based encryption.

1 Introduction

Motivated by the prevalence of cloud computing, there has been much interest in cryptographic schemes
that allow a user Alice to securely outsource her data to an untrusted remote server (e.g., the cloud), while
also allowing the server to perform useful computations over this data. The ground-breaking development
of fully homomorphic encryption (FHE) by Gentry [Gen09] allows Alice to maintain the privacy of her
data by encrypting it, while allowing the server to homomorphically perform arbitrary computations over
the ciphertexts. In this work, we are interested in the dual question of authenticity.

Homomorphic Signatures. A homomorphic signature scheme allows Alice to store signed data x on
a remote server. The server can then perform computations y = g(x) over this data and homomorphically
compute a signature σg,y, which certifies that y is the correct output of the computation g. The signature
σg,y should be short, with length independent of the size of the data x. Alice can verify the tuple
(g, y, σg,y) using her public verification key and become convinced that y is indeed the correct output of the
computation g over her signed data x, without needing to download the entire data back from the server.
In particular, this allows Alice to verify computations over her outsourced data with low communication
complexity and with minimal interaction consisting of a single message from the server to Alice. Moreover,
the non-interactive nature of homomorphic signatures and the fact that they provide public verifiability
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makes them useful in settings beyond outsourcing. For example, results of computations over signed data
can be posted publicly on a third-party website and verified by any visitor to the website without having
to interact with the original owner of the data or the party that performed the computation.

1.1 Related Work

Linearly Homomorphic Schemes. Many prior works consider the question of homomorphic message
authentication codes (MACs with private verification) and signatures (public verification) for restricted
homomorphisms, and almost exclusively for linear functions: [ABC+07, SW08, DVW09, AKK09, AB09,
BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12, Fre12]. Such MACs/signautres have interesting
applications to network coding and proofs of retrievability.

Homomorphic Signatures Beyond Linear. Boneh and Freeman [BF11a] were the first to consider
homomorphic signatures beyond linear functions, and propose a general definition of such signatures.
They present a scheme that can evaluate arbitrary polynomials over signed data, where the maximal
degree k of the polynomial is fixed a priori and the size of the evaluated signature grows (polynomially)
in k. If we want to translate this to the setting of circuits, then a circuit of depth d can be represented
by a polynomial of degree as high as k = 2d, and therefore the signature size can grow exponentially in
the depth of the circuit. The construction is based on the hardness of the Small Integer Solution (SIS)
problem in ideal lattices and has a proof of security in the random-oracle model. Boneh and Freeman
pose the challenge of constructing signatures with greater levels of homomorphism, and ideally a fully
homomorphic scheme that can evaluate arbitrary circuits.

Homomorphic MACs Beyond Linear. There has also been progress in constructing homomorphic
message authentication (MACs) (private verification) for larger classes of homomorphisms. The work
of Gennaro and Wichs [GW13] defines and achieves fully homomorphic MACs using fully homomorphic
encryption. However, the security of the scheme only holds in a setting without verification queries
and can completely break down if the attacker has access to a verification oracle allowing him to test
whether authentication tags are valid. More recent works [CF13, BFR13, CFGN14] show how to get
homomorphic MACs that remain secure in the presence of verification queries, but only for restricted
homomorphisms. Currently, the best such schemes allow for the evaluation of polynomials of degree k,
where the computational effort grows polynomially with k (but the size of the evaluated signature stays
fixed). In particular, homomorphic evaluation is only efficient if k = poly(λ) is polynomial in the security
parameter λ. Translated to the context of circuits, this allows for the efficient homomorphic evaluation
of circuits whose depth d = O(log λ) is logarithmic in the security parameter.1

Other Types of Homomorphic Authentication. We also mention works on specific types of homo-
morphic properties such as redactable signatures (see e.g., [JMSW02, ABC+12]) where, given a signature
on a long message x, it should be possible to derive a signature on a subset/substring x′ of x. The work
of [ABC+12] proposes a very general notion of P -homomorphic signature schemes for various predicates
P , but efficient constructions are only given for a few specific instances.

Homomorphic Signatures via SNARKs. One powerful method which can be used to construct fully
homomorphic signatures is via CS-Proofs [Mic94] or, more generally, succinct non-interactive arguments
of knowledge for NP (SNARKs) [BCCT12, BCCT13, BCI+13, GGPR13, PHGR13, BSCG+13]. This
primitive allows us to non-interactively create a short “argument” π for any NP statement so that π

1The work of Catalano et al. [CFGN14] also proposes a framework of how to get fully homomorphic MACs with
verification queries by relying on multilinear maps with very strict efficiency requirements. Unfortunately, we currently do
not have any candidates for such maps.
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proves “knowledge” of the corresponding witness. The length of π is bounded by some fixed polynomial
in the security parameter and is independent of the statement/witness size. The complexity of verifying
π only depends on the size of the statement (but not the witness). Using SNARKs, we can authenticate
the output y = g(x) of any computation g over any signed data x (under any standard signature scheme)
by creating a short argument πg,y that proves the knowledge of “data x along with valid signature of x,
such that g(x) = y”.

One advantage of the SNARK-based scheme is that a signature can be verified very efficiently, inde-
pendently of the complexity of the computation g being verified (as long as g has a short Turing-Machine
description). This is not the case for the other homomorphic MAC/Signature schemes from the litera-
ture or for the results of this work. Unfortunately, constructing SNARKs, even without a “knowledge”
requirement, is known to require the use of non-standard assumptions [GW11]. The additional require-
ment of (non black-box) knowledge extraction makes SNARKs even more problematic and is unlikely
to be possible in its full generality [BCPR14]. Known SNARK constructions are either based on the
random-oracle heuristic and the use of heavy PCP machinery, or on various “knowledge of exponent”
assumptions and light-weight PCP variants.

Other Related Work. Several other works consider the related problem of delegating computation to
a remote server while maintaining the ability to efficiently verify the result [GKR08, GGP10, CKV10,
AIK10, BGV11, CKLR11, PST13, KRR14]. In this scenario, the server needs to convince the user that
g(x) = y, where the user knows the function g, the input x and the output y, but does not want to do
the work of computing g(x). In contrast, in our scenario the verifier only knows g, y (and a verification
key) but does not know the previously authenticated data x, which may be huge. The latter scenario
was considered by Chung et al. [CKLR11] in the context of memory delegation, where the client can also
update the data on the server. However, all these solutions require some interaction between the client
and server, and therefore do not yield homomorphic signatures.

1.2 Our Results

In this work, we construct the first leveled fully homomorphic signature schemes that can evaluate arbi-
trary circuits over signed data, where only the maximal depth d of the circuit needs to be fixed a priori.
The size of the evaluated signature grows polynomially in d, but is otherwise independent of the circuit
size. Our solutions are based on the hardness of the small integer solution (SIS) problem, which is in
turn implied by the worst-case hardness of standard lattice problems [Ajt96].

We get a “bounded data” scheme in the standard model, where the total amount of data that can be
signed needs to be bounded during setup and the size of the public parameters grows depending on this
bound. In the random-oracle model, we get rid of this caveat and get a “multi data” scheme with short
public parameters where the user can sign many different data-sets of arbitrary sizes. One can think of
our results as extending those of Boneh and Freeman [BF11a] in two main dimensions:

• Level of Homomorphism: Most importantly, our scheme provides a significantly higher level of
homomorphism. In the scheme of Boneh and Freeman, the signature size is (polynomially) related
to the degree k of the polynomial being evaluated, whereas in our scheme it is (polynomially)
related to the depth d of the evaluated circuit. In general, a circuit of depth d can translate into a
polynomial of degree as high as k = 2d, and therefore this is an exponential improvement.

• Assumptions & Simplicity : The scheme of Boneh and Freeman makes use of ideal lattices, whereas
our scheme is based on standard lattice problems. Beyond improving on assumptions, avoiding
ideal lattices also makes our scheme conceptually simpler.

Composition. Our schemes also allow composition of several different computations over signed data.
One evaluator can compute some functions y1 = h1(x), . . . , y` = h`(x) over signed data x and publish the
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homomorphically computed signatures σh1,y1 , . . . , σh`,y` . A second evaluator can then come and perform
an additional computation y∗ = g(y1, . . . , y`) on the output of the previous computation and combine
the signatures σh1,y1 , . . . , σh`,y` into σg◦h̄,y∗ which certifies y∗ as the output of the composed computation

(g ◦ h̄)(x)
def
= g(h1(x), . . . , h`(x)). The second evaluator does not need to know the original data x or the

original signatures. This can continue as long as the total computation is of bounded depth d.

Context Hiding. Our schemes can also be made context hiding so that a signature σg,y does not reveal
any additional information about the underlying data x beyond the output y = g(x). We show how to
achieve this statistically without relying on any additional assumptions.

1.3 Our Techniques

Our constructions are modular and, as a building block of potentially independent interest, we present a
new primitive called a homomorphic trapdoor function (HTDF). We now give a high-level overview of our
techniques. We start with the notion of HTDFs, then show how to construct homomorphic signatures
from HTDFs, and finally show how to construct HTDFs from the SIS problem.

Homomorphic Trapdoor Functions (HTDF). An HTDF consists of a function fpk,x(·) defined via
a public key pk and an index x ∈ {0, 1}. We can generate pk together with a trapdoor sk that allows us
to invert the function fpk,x for any index x.2 Given some values

u1, x1, v1 = fpk,x1(u1), . . . , uN , xN , vN = fpk,xN (uN )

and a circuit g : {0, 1}N → {0, 1}, we can homomorphically (and deterministically) compute an input
u∗ (from xi and ui) and an output v∗ (only from vi) such that:

u∗ := Evalin(g, (x1, u1) . . . , (xN , uN )) , v∗ := Evalout(g, v1, . . . , vN ) ⇒ fpk,g(x1,...,xN )(u
∗) = v∗.

For security, we simply require that the HTDF is claw-free: given pk, it should be hard to come up with
inputs u0, u1 such that fpk,0(u0) = fpk,1(u1).3,4

Signatures from HTDFs in Standard Model. In the standard model, we construct a “bounded
data” signature scheme where the setup procedure knows some bound N on the size of the data-set
that will be signed and the size of the public parameters can depend on N . The public parameters
prms = (v1, . . . , vN ) consist of N random outputs of the HTDF. Each user chooses a pubic/secret key
pair (pk, sk) for an HTDF, which also serves as the key pair for the signature scheme. To sign some data
(x1, . . . , xN ) the user simply finds inputs ui such that fpk,xi(ui) = vi by using sk to invert vi. We think
of each ui as a signature that ties xi to its position i.

Given the values x1, . . . , xN , the signatures u1, . . . , uN , and a function g : {0, 1}N → {0, 1}, anybody
can homomorphically compute a signature u∗g,y := Evalin(g, (x1, u1), . . . , (xN , uN )) which certifies y =
g(x1, . . . , xN ) as the output of the computation g. To verify the tuple (g, y, u∗g,y), the verifier computes

v∗ := Evalout(g, v1, . . . , vN ) and checks fpk,y(u
∗
g,y)

?
= v∗. Notice that verification only depends on the

public parameters but not on the data x.

2The function fpk,x may not be one-to-one, in which case we require that the inverting procedure comes up with a
pre-image from the correct distribution.

3Our full definition/construction, allows x to come from a larger domain than just a single bit and considers arithmetic
rather than just boolean circuits.

4One can also think of this primitive as a trapdoor homomorphic commitment. The values vi are commitments to the bits
xi with opening ui. One can homomorphically evaluate a function g over the commitments/openings to derive a commitment
v∗ to the bit g(x1, . . . , xN ) with opening u∗. The trapdoor allows us to open any commitment v to any bit x.
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The scheme satisfies selective security, where we assume that data-set x1, . . . , xN is chosen by the
attacker before seeing the public parameters. In the reduction, instead of choosing vi randomly, we
choose a random input ui and set vi := fpk,xi(ui). This makes it easy for the reduction to generate
signatures ui for the message bits xi without knowing sk. Assume that the attacker produces a forgery
(g, y′, u′) such that y′ 6= {y := g(x1, . . . , xN )} but fpk,y′(u

′) = {v∗ := Evalout(g, v1, . . . , vN )}. Then the
reduction can compute u = Evalin(g, (x1, u1), . . . , (xN , uN )) so that fpk,y(u) = v∗ = fpk,y′(u

′). Therefore,
the reduction produces values (u, u′) which break the claw-free security of the HTDF.

Signatures from HTDFs in the RO Model. In the random-oracle model, we can get rid of the
large public parameters and also achieve full rather than selective security. Moreover, following Boneh
and Freeman [BF11a], we also allow the user to sign multiple different data-sets under different labels τ
(e.g., τ can correspond to a “file name”), where verifier must simply know the label of the data-set on
which the computation was supposed to be performed. Intuitively, instead of publishing the values vi in
the public parameters as in the previous scheme, we can derive them via hashing. Concretely, to sign
some data-set of size N and with a label τ , we compute the values { vi := H(τ, r, i)}i∈[N ], where r is
some randomness generated by the signing procedure and included as part of the signature, and H is
a random oracle. With this scheme, there is no a priori bound on the number of data-sets that can be
signed or their sizes.

Constructing HTDFs. We construct HTDFs based on the SIS problem. The SIS problem states that,
for a random matrix A ∈ Zn×mq it should be hard to come up with a “short” non-zero vector u ∈ Zmq ,
such that A ·u = 0. However, there is a way to generate A along with a trapdoor td that makes this easy
and, more generally, for any matrix V ∈ Zn×mq , the trapdoor can be used to sample a “short” matrix
U ∈ Zm×mq such that AU = V. There is also a public matrix G ∈ Zn×mq with some special structure
(not random) for which everyone has the above capability without needing a trapdoor.

Our HTDF consists of pk = A and sk = td as described above. We define fpk,x(U)
def
= AU − x ·G,

but restrict the domain to “short” matrices U. Assume one can find a claw consisting of “short” matrices
U0,U1 such that fpk,0(U0) = fpk,1(U1). Then we can solve A(U1 −U0) = G. Since we can also sample
a “short” r such that G · r = 0 we get a “short” solution u := (U1 −U0) · r such that A · u = 0, which
breaks the SIS problem.5 Next, we show how to perform homomorphic operations on this HTDF.

Homomorphic Operations. Let U1,U2 ∈ Zm×mq be “short” matrices and

V1 = fpk,x1(U1) = AU1 − x1 ·G , V2 = fpk,x2(U2) = AU2 − x2 ·G

Addition. Firstly, it is very easy to perform homomorphic addition (over Zq). We can simply set:
V∗ = V1 + V2 and U∗ = U1 + U2 and get:

fpk,x1+x2(U∗) = AU∗ − (x1 + x2)G = (AU1 − x1 ·G) + (AU1 − x1 ·G) = V∗

Multiplication. Homomorphic multiplication (over Zq) is slightly more complex and relies on a technique
that was recently used by Boneh et al. [BGG+14] to get key-homomorphic encryption and attribute-
based encryption (ABE). First we (deterministically) find a short matrix R such that GR = −V1 using
the special structure of G. Then we set V∗ := V2R and U∗ := x2U1 + U2R. This gives:

fpk,x1·x2(U∗) = AU∗ − (x1 · x2)G = A(x2U1 + U2R)− (x1 · x2)G

= x2(AU1 − x1G) + AU2R = x2V1 + (V2 + x2G)R = x2V1 + V2R− x2V1

= V2R = V∗.

5This conveys the main intuition, but we must also argue that u 6= 0. See the full proof for details.
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We define the noise level of a matrix U to be the maximal size (in absolute value) of any entry in
the matrix. The noise level grows as we perform homomorphic operations. Intuitively, if the inputs to
the operation have noise-level β then homomorphic addition just doubles the noise level to 2β, while
multiplication of “small” values x1, x2 ∈ {0, 1} multiplies the noise level of by some fixed multiplier γ to
γβ. Therefore, when evaluating a boolean circuit of depth d, the noise level grows as γd. 6 Since the
modulus must satisfy q � γd for security, the level of homomorphism d is fixed ahead of time, during the
setup of the scheme. The overall efficiency degrades polynomially with d.

2 Preliminaries

Basic Notation. For an integer N , we let [N ]
def
= {1, . . . , N}. For a distribution X we use the notation

x ← X to denote the process of sampling a random value according to the distribution. For a set X
we use the notation x

$← X to denote the process of choosing x uniformly at random from X . For a
distribution or a randomized algorithm X, we will say “for any x ∈ X” as shorthand to mean “for any x
in the support of X”. Throughout, we let λ denote the security parameter. We say that a function f(λ)
is negligible, denoted f(λ) = negl(λ), if f(λ) = O(λ−c) for ever constant c > 0. We say that a function
f(λ) is polynomial, denoted f(λ) = poly(λ) if f(λ) = O(λc) for some constant c > 0.

Entropy and Statistical Distance. For random variables X,Y with support X ,Y respectively, we

define the statistical distance SD(X,Y )
def
= 1

2

∑
u∈X∪Y |Pr[X = u]− Pr[Y = u]|. We say that two en-

sembles of random variables X = {Xλ}, Y = {Yλ} are statistically close, denoted by X
stat
≈ Y , if

SD(Xλ, Yλ) = negl(λ). The min-entropy of a random variable X, denoted as H∞(X), is defined as

H∞(X)
def
= − log(maxx Pr[X = x]). The (average-)conditional min-entropy of a random variable X con-

ditioned on a correlated variable Y , denoted as H∞(X|Y ), is defined as

H∞(X|Y )
def
= − log

(
E

y←Y

[
max
x

Pr[X = x|Y = y]
])

.

The optimal probability of an unbounded adversary guessing X given the correlated value Y is 2−H∞(X|Y ).

Lemma 2.1 ([DORS08]). Let X,Y be arbitrarily random variables where the support of Y lies in Y.
Then H∞(X|Y ) ≥ H∞(X)− log(|Y|).

2.1 Background on Lattices and the SIS Problem

We review some of the needed results and notation for the SIS problem and lattice-based cryptography.
We abstract out many low-level details which are not absolutely crucial for this paper.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. We represent
elements of Zq as integers in the range (−q/2, q/2] and define the absolute value |x| of x ∈ Zq by taking
its representative in this range. For a vector u ∈ Znq we write ||u||∞ ≤ β if each entry ui in u satisfies
|ui| ≤ β. Similarly, for a matrix U ∈ Zn×mq we write ||U||∞ ≤ β if each entry ui,j in U satisfies |ui,j | ≤ β.

The SIS Problem. Let n,m, q, β be integer parameters. In the SIS(n,m, q, β) problem, the attacker
is given a uniformly random matrix A ∈ Zn×mq and her goal is to find a vector u ∈ Zmq with u 6= 0 and

6This is a crucial difference between our scheme and that of Boneh and Freeman [BF11a], where multiplication raises the

noise level from β to β2. In that scheme, a circuit of depth d could raise the noise level as high as β2d .
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||u||∞ ≤ β such that A ·u = 0.7 For parameters n = n(λ),m = m(λ), q = q(λ), β = β(λ) defined in terms
of the security parameter λ, the SIS(n,m, q, β) hardness assumption states any PPT attacker A we have

Pr
[

A · u = 0 ∧ ||u||∞ ≤ β(λ) ∧ u 6= 0 : A
$← Zm(λ)×n(λ)

q(λ) ,u← A(1λ,A)
]
≤ negl(λ).

The SIS problem is known to be as hard as certain worst-case problems (e.g., SIVP) in standard lattices
[Ajt96, Mic04, MR07, MP13]. It is is also implied by the hardness of learning with errors (LWE). See
cited works for exact details of parameters. In this work, we will need to rely on the SIS assumption with
super-polynomial β. In particular, we will assume that for any β = 2poly(λ) there are some n = poly(λ),
q = 2poly(λ) (clearly, q > β) such that for all m = poly(λ) the SIS(n,m, q, β) hardness assumption holds.
The above parameters translate to assuming hardness of worst-case lattice problems with sub-exponential
approximation factors, which is widely believed to hold.

Lattice Trapdoors. Although solving the SIS problem for a random matrix A is believed to be hard,
there is a way to sample a random matrix A with a trapdoor that makes this problem easy. Moreover,
there are some fixed (non-random) matrices G for which SIS is easy to solve. We review the known
results about such trapdoor in the following lemma (ignoring all details of implementation which aren’t
strictly necessary for us), following a similar presentation in [BGG+14].

Lemma 2.2 ([Ajt99, GPV08, AP09, MP12]). There exist efficient algorithms TrapGen, SamPre, Sam
such that the following holds. Given integers n ≥ 1, q ≥ 2 there exists some m∗ = m∗(n, q) = O(n log q),
βsam = βsam(n, q) = O(n

√
log q) such that for all m ≥ m∗ and all k (polynomial in n) we have:

1. U← Sam(1m, 1k, q) samples a matrix U ∈ Zm×kq which satisfies ||U||∞ ≤ βsam (with probability 1).

2. We have the statistical indistinguishability requirements:

A
stat
≈ A′ and (A, td,U,V)

stat
≈ (A, td,U′,V′)

where (A, td)← TrapGen(1n, 1m, q), A′
$← Zn×mq and U← Sam(1m, 1k, q), V := A ·U, V′

$← Zn×kq ,
U′ ← SamPre(A,V′, td). The statistical distance is negligible in n. Moreover, we guarantee that
any U′ ∈ SamPre(A,V′, td) always satisfies AU′ = V′ and ||U′||∞ ≤ βsam.

3. Given n,m, q and k as above, there is an efficiently and deterministically computable matrix G ∈
Zn×mq and a deterministic algorithm R = InvPub(G,V) which takes the input V ∈ Zn×kq and outputs

R ∈ {0, 1}m×k such that G ·R = V.

3 Homomorphic Trapdoor Functions

A homomorphic trapdoor function allows us to take values {ui, xi, vi = fpk,xi(ui)}i∈[N ] and create an
input u∗ (depending on ui, xi) and an output v∗ (depending only on vi) such that fpk,g(x1,...,xN )(u

∗) = v∗.
We now give a formal definition.

3.1 Definition

A homomorphic trapdoor function (HTDF) consists of the following five polynomial-time algorithms
(KeyGen, f, Inv, Evalin, Evalout) with syntax:

7Often, the SIS problem is stated with `2 norm rather than `∞ norm. It’s clear that the two versions are equivalent up
to some small losses of parameters. Therefore, we choose to rely on the `∞ norm for simplicity.
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• (pk, sk)← KeyGen(1λ) : a key generation procedure.
The security parameter λ defines the index space X , the input space U , and the output space V and
some efficiently samplable input distribution DU over U . We require that membership in the sets
U ,V,X can be efficiently tested and that one can efficiently sample uniformly at random from V.

• fpk,x : U → V : a deterministic function indexed by x ∈ X and pk.

• Invsk,x : V → U : a probabilistic inverter indexed by x ∈ X and sk.

• u∗ = Evalinpk(g, (x1, u1), . . . , (x`, u`)), v
∗ = Evaloutpk (g, v1, . . . , v`) are deterministic input/output ho-

momorphic evaluation algorithms. The algorithms take as input some function g : X ` → X and
values xi ∈ X , ui ∈ U , vi ∈ V. The outputs are u∗ ∈ U and v∗ ∈ V.8

Note that we do not require fpk,x(·) to be an injective function. Indeed, it will not be in our construction.

Correctness of Homomorphic Evaluation. Let (pk, sk) ∈ KeyGen(1λ),9 x1, . . . , x` ∈ X , g : X ` →
X and y := g(x1, . . . , x`). Let u1, . . . , u` ∈ U and set vi := fpk,xi(ui) for i ∈ [`]. We require:

u∗ := Evalinpk(g, (x1, u1), . . . , (x`, u`)) , v∗ := Evaloutpk (g, v1, . . . , v`) ⇒ u∗ ∈ U , fpk,y(u
∗) = v∗.

Relaxation: In a leveled fully homomorphic scheme, each input ui ∈ U will have some associated “noise-
level” βi ∈ R. The initial samples from the input-distribution DU have some “small” noise-level βinit.
The noise-level β∗ of the homomorphically computed input u∗ depends on the noise-levels βi of the inputs
ui, the function g and the indices xi. If the noise level β∗ of u∗ exceeds some threshold β∗ > βmax, then
the above correctness need not hold. This will limit the type of functions that can be evaluated. A
function g is admissible on the values x1, . . . , x` if, whenever the inputs ui have noise-levels βi ≤ βinit,
then u∗ := Evalinpk(g, (x1, u1), . . . , (x`, u`)) will have noise-level β∗ ≤ βmax.

Distributional Equivalence of Inversion. We require the following statistical indistinguishability:

(pk, sk, x, u, v)
stat
≈ (pk, sk, x, u′, v′)

where (pk, sk) ← KeyGen(1λ), x ∈ X can be an arbitrary random variable that depends on (pk, sk),

u← DU , v := fpk,x(u), v′
$← V, u′ ← Invsk,x(v′).

HTDF Security. We now define the security of HTDFs. Perhaps the most natural security requirement
would be one-wayness, meaning that for a random v ← V and any x ∈ X it should be hard to find a
pre-image u ∈ U such that fpk,x(u) = v. Instead, we will require a stronger property which is similar
to claw-freeness. In particular, it should be difficult to find u, u′ ∈ U and x 6= x′ ∈ X such that
fpk,x(u) = fpk,x′(u

′). Formally, we require that for any PPT attacker A we have:

Pr

[
fpk,x(u) = fpk,x′(u

′)
u, u′ ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(u, u′, x, x′)← A(1λ, pk)

]
≤ negl(λ).

3.2 Construction: Basic Algorithms and Security

We begin by describing the basic HTDF algorithms for key-generation, computing the function fpk,x, and
inverting it using sk. We prove the security of the scheme. Then, in Section 3.3 we show how to perform
homomorphic operations.

8More precisely, g is a function description in some specified format. In our case, this will always be either a boolean or
an arithmetic circuit. For simplicity we often say “function g” but refer to a specific representation of the function.

9Recall, we use this as shorthand for “(pk, sk) in the support of KeyGen(1λ)”.
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Parameters. Our scheme will be defined by a flexible parameter d = d(λ) = poly(λ) which roughly
determines the level of homomorphism. We choose parameters:

n , m , q , βSIS , βmax , βinit

depending on λ and d. We do so by setting βmax := 2ω(log λ)d, βSIS := 2ω(log λ)βmax. Then choose an
integer n = poly(λ) and a prime q = 2poly(λ) > βSIS as small as possible so that the SIS(n,m, q, βSIS)
assumption holds for all m = poly(λ). Finally, let m∗ = m∗(n, q) := O(n log q), βsam := O(n

√
log q) be

the parameters required by the trapdoor algorithms as in Lemma 2.2, and set m = max{m∗, n log q +
ω(log λ)} = poly(λ) and βinit := βsam = poly(λ). Note that n,m, log q all depend (polynomially) on λ, d.

Syntax. Let the algorithms TrapGen, SamPre, Sam, and the matrix G be as defined in Lemma 2.2.

• Define X = Zq and V = Zn×mq . Let U = {U ∈ Zm×mq : ||U||∞ ≤ βmax}. We define the distribution
U← DU to sample U← Sam(1m, 1m, q) as in Lemma 2.2, so that ||U||∞ ≤ βinit.

• (pk, sk)← KeyGen(1λ) : Select (A, td)← TrapGen(1n, 1m, q). Set pk := A ∈ Zn×mq and sk = td.

• Define fpk,x(U)
def
= A ·U−x ·G. Note that, although the function f is well-defined on all of Zm×mq ,

we restrict the legal domain of f to the subset U ⊆ Zm×mq .

• Define U← Invsk,x(V) to output U← SamPre(A,V + x ·G, td).

We define the noise-level β of a value U ∈ U as β = ||U||∞. We note that all efficiency aspects of the
scheme (run-time of procedures, sizes of keys/inputs/outputs, etc.) depend polynomially on λ and on
the flexible parameter d.

Distributional Equivalence of Inversion. Let (pk = A, sk = td) ← KeyGen(1λ), and let x ∈ X be
an arbitrary random variable that depends on (pk, sk). Let U ← DU , V = AU − x · G = fpk,x(U),

V′
$← V, U′ ← {Invsk,x(V′) = SamPre(A,V′ + x ·G, td)}. Then we need to show:

(pk = A, sk = td, x,U,V = AU− xG)
stat
≈ (pk = A, sk = td, x,U′,V′) (1)

Lemma 2.2, part (2) tells us that:

(A, td,U,AU)
stat
≈ (A, td,U′,V′ + x ·G) (2)

by noticing that (V′ + x ·G) is just uniformly random. Equation (1) follows from (2) by applying the
same function to both sides: append a sample x from the correct correlated distribution given (A, td)
and subtract x ·G from the last component.

HTDF Security. We now prove the security of our HTDF construction under the SIS assumption.

Theorem 3.1. Assuming the SIS(n,m, q, βSIS)-assumption holds for the described parameter choices,
the given scheme satisfies HTDF security.

Proof. Assume that A is some PPT attacker that wins the HTDF security game for the above scheme
with non-negligible probability. Let us modify the HTDF game so that, instead of choosing (A, td) ←
TrapGen(1n, 1m, q) and setting pk := A and sk = td, we just choose A

$← Zn×mq uniformly at random.
Notice that sk = td is never used anywhere in the original HTDF game. Therefore, this modification is
statistically indistinguishable by the security of TrapGen (see Lemma 2.2, part (2)). In particular, the
probability of A winning the modified game remains non-negligible.
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We now show that an attacker who wins the modified HTDF game can be used to solve the SIS
problem. The reduction uses the challenge matrix A of the SIS problem as the public key pk = A and
runs the attacker A. Assume the attacker A wins the modified HTDF game with the values U,U′ ∈ U
and x 6= x′ ∈ X such that fpk,x(U) = fpk,x′(U

′). Let U∗ := U′ −U and x∗ = (x− x′). Then:

fpk,x(U) = AU− xG = AU′ − x′G = fpk,x′(U
′) ⇒ AU∗ = x∗G (3)

Moreover, since U,U′ ∈ U , we have ||U||∞, ||U′||∞ ≤ βmax and therefore ||U∗||∞ ≤ 2βmax. Moreover,
since x 6= x′, we have x∗ 6= 0.

We now show that knowledge of a “small” U∗ and some x∗ 6= 0 satisfying the right hand side of

equation (3) can be used to find a solution to the SIS problem. Sample r
$← {0, 1}m, set z := Ar and

compute r′ = InvPub(G, z/x∗) so that r′ ∈ {0, 1}m and x∗Gr′ = z. Then

A(U∗r′ − r) = (AU∗)r′ −Ar = x∗Gr′ −Ar = z− z = 0.

Therefore, letting u := U∗r′− r, we have Au = 0 and ||u||∞ ≤ (2m+ 1)βmax ≤ βSIS . It remains to show
that u 6= 0, or equivalently, that r 6= U∗r′. We use an entropy argument to show that this holds with
overwhelming probability over the random choice of r, even if we fix some worst-case choice of A,U∗, x∗.

Notice that r
$← {0, 1}m is chosen uniformly at random, but r′ depends on z = Ar. Nevertheless z is too

small to reveal much information about r and therefore cannot be used to predict r. In particular

H∞(r | r′) ≥ H∞(r | Ar) ≥ m− n log q = ω(log λ)

where the first inequality follows since r′ is chosen deterministically based on z = Ar, and the second
inequality follows from Lemma 2.1. Therefore, Pr[r = U∗ ·r′] ≤ 2m−n log q ≤ negl(λ). So, with overwhelm-
ing probability, whenever A wins the modified HTDF game, the reduction finds a valid solution to the
SIS(n,m, q, βSIS)-problem. This concludes the proof.

3.3 Construction: Homomorphic Evaluation and Noise Growth

We now define the algorithms Evalin, Evalout with the syntax

U∗ := Evalinpk(g, (x1,U1), . . . , (x`,U`)) , V∗ := Evaloutpk (g,V1, . . . ,V`).

Our approach closely follows the techniques introduced by Boneh et al. [BGG+14]. As a basic building
block, we consider homomorphic evaluation for certain base functions g which we think of as basic gates
in an arithmetic circuit: addition, multiplication, addition-with-constant and multiplication-by-constant.
These functions are complete and can be composed to evaluate an arbitrary aithmetic circuit. Let the
matrices Ui have noise-levels bounded by βi.

• Let g(x1, x2) = x1 + x2 be an addition gate. The algorithms Evalin,Evalout respectively compute:

U∗ := U1 + U2 , V∗ := V1 + V2.

The matrix U∗ has noise level β∗ ≤ β1 + β2. We remark that, in this case, the algorithm Evalin

ignores the values x1, x2.

• Let g(x1, x2) = x1 · x2 be a multiplication gate. Let R = InvPub(G,−V1) so that R ∈ {0, 1}m×m
and GR = −V1. The algorithms Evalin,Evalout respectively compute:

U∗ := x2 ·U1 + U2R , V∗ := V2 ·R.

The matrix U∗ has noise level β∗ ≤ |x2|β1 + mβ2. Note that the noise growth is asymmetric and
the order of x1, x2 matters. To keep the noise level low, we require that |x2| is small.
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• Let g(x) = x + a be addition-with-constant gate, for the constant a ∈ Zq. The algorithms
Evalin,Evalout respectively compute:

U∗ := U1 , V∗ := V1 − a ·G.

It’s easy to see that the noise-level β∗ = β1 stays the same.

• Let g(x) = a·x be a multiplication-by-constant gate for the constant a ∈ Zq. We give two alternative
methods that homomorphically compute g with different noise growth. In the first method, the
algorithms Evalin,Evalout respectively compute:

U∗ := a ·U1 , V∗ := a ·V1.

The noise level is β∗ = |a|β1, and therefore this method requires that a is small. In the second
method, let R = InvPub(G, a · G) so that R ∈ {0, 1}m×m and GR = a · G. The algorithms
Evalin,Evalout respectively compute:

U∗ := U ·R , V∗ := V ·R.

The noise level is β∗ ≤ m · β1, and is therefore independent of the size of a.

It is a simple exercise to check that, whenever the inputs Ui,Vi satisfy Vi = fpk,xi(Ui) then the above
homomorphic evaluation procedures ensure that fpk,g(x1,...,x`)(U

∗) = V∗. The above gate operations can
be composed to compute any function g expressed as an arithmetic circuit. Therefore, the only limitation
is the growth of the noise-level. In particular, if the noise-level of U∗ is β∗ ≥ βmax then U∗ 6∈ U is not a
valid input.

Noise Growth and Bounded-Depth Circuits. The noise growth of the above homomorphic oper-
ations is fairly complex to describe in its full generality since it depends on the (size of) the inputs xi,
the order in which operations are performed etc. However, we can give bounds on the noise growth for
the case of boolean circuits composed of NAND gates, and certain restricted arithmetic circuits.

Let g be a boolean circuit of depth d composed of NAND gates over inputs xi ∈ {0, 1}. For x1, x2 ∈
{0, 1} we can define an arithmetic-gate NAND(x1, x2)

def
= 1− x1 · x2. If U1, U2 have noise-levels ≤ β, then

U∗ := Evalinpk(NAND, (x1,U1), (x2,U2)) will have a noise-level β∗ ≤ (m + 1)β. Therefore if we compute

U∗ := Evalinpk(g, (x1,U1), . . . , (x`,U`)) and the inputs Ui have noise-levels βinit, then the noise-level of

U∗ will be β∗ ≤ βinit · (m+ 1)d ≤ 2O(log λ)·d ≤ βmax. This show that, with the parameters we chose, any
depth-d boolean circuit g is admissible over any choice of boolean indices xi ∈ {0, 1}.

More generally, let g be an arithmetic circuit of depth d consisting of fan-in-t addition gates, fan-in-
2 multiplication gates, addition-with-constant, and multiplication-by-constant gates. Moreover, assume
that for each fan-in-2 multiplication gate we are guaranteed that at least one input xb is of size |xb| ≤ p,
where p = poly(λ), t = poly(λ) are some fixed polynomials in the security parameter. Evaluating each such
gate increases the noise level by a multiplicative factor of at most max{t, (p+m)} = poly(λ). Therefore,
if inputs Ui to g have noise-levels βinit, then the noise-level of U∗ := Evalinpk(g, (x1,U1), . . . , (x`,U`))

is bounded by βinit · max{t, (p + m)}d ≤ 2O(log λ)·d ≤ βmax. This shows that any such computation is
admissible.

We mention that both of the above analyses are overly restrictive/pessimistic and we may be able to
compute some function with lower noise growth than suggested above.

4 Bounded-Data Homomorphic Signatures (Standard Model)

We now define and construct bounded-data homomorphic signatures. In such a scheme, the maximal
amount of data that any user can sign is fixed ahead of time and the size of the public key (in our
construction, it will only be the public parameters) can depend on this bound.

11



4.1 Definition

A bounded-data homomorphic signature scheme consists of poly-time algorithms (KeyGen,Sign,Verify,Eval)
with the following syntax.

• (pk, sk) ← KeyGen(1λ, 1N ): Gets the security parameter λ and a data-size bound N . Generates a
public/secret key pk, sk. The security parameter also defines the message space X .

• (σ1, . . . , σN )← Signsk(x1, . . . , xN ): Signs some data (x1, . . . , xN ) ∈ XN .

• σ∗ = Evalpk(g, ((x1, σ1), . . . , (x`, σ`))): Homomorphically computes a signature σ∗.

• Verifypk(g, y, σ): Verifies that y is indeed the output of g by checking the signature σ.

Signing Correctness. Let idi : XN → X be a canonical description of the function idi(x1, . . . , xN )
def
=

xi (i.e., a circuit consisting of a single wire taking the i’th input to the output.) We require that any
(pk, sk) ∈ KeyGen(1λ, 1N ), any (x1, . . . , xN ) ∈ XN and any (σ1, . . . , σN ) ∈ Signsk(x1, . . . , xN ) must satisfy
Verifypk(idi, xi, σi) = accept. In other words, σi certifies xi as the i’th data item.

Evaluation Correctness. We require that for any (pk, sk) ∈ KeyGen(1λ, 1N ), any (x1, . . . , xN ) ∈ XN
and any (σ1, . . . , σN ) ∈ Signsk(x1, . . . , xN ) and any g : XN → X , we have:

σ∗ := Evalpk(g, ((x1, σ1), . . . , (xN , σN )) ⇒ Verifypk(g, g(x1, . . . , xN ), σ∗) = accept. (4)

Moreover, we can compose the evaluation of several different functions. For any h1, . . . , h` with hi : XN →
X and any g : X ` → X define the composition (g ◦ h̄) : XN → X by (g ◦ h̄)(x̄) = g(h1(x̄), . . . , h`(x̄)).
We require that for any (x1, . . . , x`) ∈ X ` and any (σ1, . . . , σ`):

{ Verifypk(hi, xi, σi) = accept }i∈[`]

σ∗ := Evalpk(g, (x1, σ1), . . . , (x`, σ`))
⇒ Verifypk((g ◦ h̄), g(x1, . . . , x`), σ

∗) = accept. (5)

In other words, if the signatures σi certify xi as the output of hi, then σ∗ certifies g(x1, . . . , x`) as the

output of g ◦ h̄. Notice that (4) follows from (5) and the correctness of signing by setting hi
def
= idi.

Relaxing Correctness for Leveled Schemes. In a leveled fully homomorphic scheme, each signa-
ture σi will have some associated “noise-level” βi. The initial signatures produced by (σ1, . . . , σN ) ←
Signsk(x1, . . . , xN ) will have a “small” noise-level βinit. The noise-level β∗ of the homomorphically com-
puted signature σ∗ := Evalpk(g, ((x1, σ1), . . . , (x`, σ`))) depends on the noise-levels βi of the signatures
σi, the function g and the messages xi. If the noise level β∗ of σ∗ exceeds some threshold β∗ > βmax,
then the above correctness requirements need not hold. This will limit the type of functions that can
be evaluated. A function g is admissible on the values x1, . . . , x` if, whenever the signatures σi have
noise-levels βi ≤ βinit, then σ∗ will have noise-level β∗ ≤ βmax.

Bounded-Data Security. By default, we will consider selective security for bounded-data homomor-
phic signatures, where the attacker chooses the data x1, . . . , xN to be signed before seeing pk. This is a
natural security notion for the typical use-case where the user selects pk, sk and signs the data in one
step and therefore the data will not depend on pk. We define the security of homomorphic signatures via
the following game between an attacker A and a challenger:

• The attacker A(1λ) chooses data (x1, . . . , xN ) ∈ X ∗ and sends it to the challenger.

• The challenger chooses (pk, sk) ← KeyGen(1λ, 1N ), (σ1, . . . , σN ) ← Signsk(x1, . . . , xN ) and gives
pk, (σ1, . . . , σN ) to A.
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• The attacker A chooses a function g : XN → X and values y′, σ′. Let y := g(x1, . . . , xN ). The
attacker wins if all of the following hold: (1) g is admissible on the values x1, . . . , xN , (2) y′ 6= y,
and (3) Verifypk(g, y

′, σ′) = accept.

We require that for all PPT A, we have Pr[A wins ] ≤ negl(λ) in the above game.

Remark: Verification and Admissible Functions. We note that, under the above definition, the
security of Verifypk(g, y, σ) only holds when verifying a function g which is admissible on the signed values
x1, . . . , xN , but the verifier does not know these values. Therefore, we require some convention on the
types of values xi that the signer will sign and the type of functions g that the verifier is willing to verify
to ensure that the function is admissible on the signed values. For example, our eventual construction
ensures that if g is a boolean circuit of depth ≤ d then it is admissible on all boolean inputs with
xi ∈ {0, 1} ⊆ X . Therefore, by convention, we can restrict the signer to only sign values xi ∈ {0, 1} and
the verifier to only verify functions g that are boolean circuits of depth ≤ d. Other combinations (e.g.,
xi ∈ Zq and g is an affine function) are also possible and therefore we leave this decision to the users of
the scheme rather than its specification.

4.2 Construction

Let F = (KeyGenHTDF , f, Inv, Evalin, Evalout) be an HTDF with index-space X , input space U , output
space V and an input distributionDU . We construct a signature scheme S = (KeyGensig,Sign,Verify,Evalsig)
with message space X as follows.

• (pk, sk) ← KeyGensig(1λ, 1N ) : Choose v1, . . . , vN by sampling vi
$← V. Set prms = (v1, . . . , vN ).

Choose (pk′, sk′)← KeyGenHTDF (1λ) and set pk = (prms, pk′), sk = (prms, sk′).

• (σ1, . . . , σN )← Signsk(x1, . . . , xN ): Sample ui ← Invsk′,xi(vi) and set σi := ui for i ∈ [N ].

• σ∗ = Evalsigpk (g, (x1, σ1), . . . , (x`, σ`)) : This is the same as the Evalinpk′ procedure of the HTDF.

• Verifypk(g, y, σ) : Compute v∗ := Evaloutpk′ (g, v1, . . . , vN ). If fpk′,y(σ) = v∗ accept, else reject.

Remarks. (I) We can think of prms = (v1, . . . , vN ) as public parameters that can be fixed for all users
of the scheme. Each user’s individual public/secret key then only consists of the small values pk′, sk′. (II)
Although we describe the signing procedure as signing the values x1, . . . , xN in one shot, it’s easy to see
that we can also sign the values xi completely independently (e.g., at different times) without needing to
keep any state beyond knowing the index i by setting σi ← Invsk′,xi(vi). (III) We note that if the function
g only “touches” a small subset of the inputs i ∈ [N ] then the verification procedure only needs to read
the corresponding values vi from the public parameters. The run-time of the verification procedure can
be sub-linear in N and only depends on the size of the circuit g (ignoring unused input wires).

Correctness and Security. It’s easy to see that correctness of signing and correctness of (leveled)
homomorphic evaluation for the signature scheme S follow from the correctness properties of the under-
lying (leveled) HTDF F . In a leveled scheme, the noise-level of signatures σi = ui is just defined as its
noise-level of the HTDF input ui. The initial noise-level βinit, the maximal noise level βmax, and the set
of admissible functions is the same in S and in F . We are left to prove security.

Theorem 4.1. Assuming F satisfies HTDF security, the signature scheme S satisfies bounded-data
security of homomorphic signatures.
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Proof. Assume that an adversary A has a non-negligible advantage in the bounded-data security game
with the scheme S. In the game, the attacker A selects some data x1, . . . , xN ∈ X and gets back prms =
(v1, . . . , vN ), pk′ and σ1, . . . , σN , where (pk′, sk′)← KeyGenHTDF (1λ), vi ← V and σi = ui ← Invsk′,xi(vi).
Let us modify the game by choosing ui ← DU and setting vi := fpk′,xi(ui). This change is statistically
indistinguishable by the “Distributional Equivalence of Inversion” property of the HTDF.10 Therefore A
wins the modified games with non-negligible probability.

We now give a polynomial-time reduction that takes any attacker A having a non-negligible advantage
in the above modified game, and use it to break HTDF security of F with the same advantage. The
reduction gets a challenge public key pk′ and chooses the values ui, vi as in the modified game (without
knowing sk′) and gives these values toA. Assume the attackerA wins the modified game by choosing some
admissible function g : XN → X on x1, . . . , xN and some values y′, σ′ = u′. Let y := g(x1, . . . , xN ), v∗ :=
Evaloutpk′ (g, v1, . . . , vN ), u := Evalinpk′(g, (x1, σ1), . . . , (xN , σN )). Then, since the signature σ′ verifies, we have
fpk′,y′(u

′) = v∗. On the other hand, since g is an admissible function, the correctness of homomorphic
evaluation ensures that fpk′,y(u) = v∗. Therefore, the values u, u′ ∈ U and y 6= y′ ∈ X satisfy fpk′,y(u) =
fpk′,y′(u

′), allowing the reduction to break HTDF security whenever A wins the modified game.

5 Multi-Data Homomorphic Signatures (Random Oracle Model)

We now define and construct multi-data homomorphic signatures. In such a scheme, the signer can sign
many different data-sets of arbitrary size. Each data-set is tied to some labels τi (e.g., the name of the
data-set) and the verifier is assumed to know the label of the data-set over which he wishes to verify
computation.

5.1 Definition

A multi-data homomorphic signature consists of the algorithms (KeyGen, Sign,Verify,Eval) with the fol-
lowing syntax.

• (pk, sk) ← KeyGen(1λ): produces a public verification key pk and a secret signing key sk. The
security parameter λ defines some message alphabet X .

• (στ , σ1, . . . , σN )← Signsk((x1, . . . , xN ), τ): Signs some data x̄ ∈ X ∗ under a label τ ∈ {0, 1}∗.

• σ∗ = Evalvk(g, (x1, σ1), . . . , (x`, σ`)): Homomorphically computes the signature σ∗.

• Verifypk(g, y, τ, (στ , σ
∗)): Verifies that y ∈ X is indeed the output of the function g over the data

signed with label τ .

Correctness. The correctness requirements are analogous to those of the bounded-data definition.
Correctness of Signing. We require that any (pk, sk) ∈ KeyGen(1λ), any (x1, . . . , xN ) ∈ XN , any τ ∈

{0, 1}∗ and any (στ , σ1, . . . , σN ) ∈ Signsk(x1, . . . , xN , τ) must satisfy Verifypk(idi, xi, τ, (στ , σi)) = accept.
In other words, (στ , σi) certifies xi as the i’th data item of the data with label τ .

Correctness of Evaluation. For any circuits h1, . . . , h` with hi : XN → X and any circuit g : X ` → X ,
any (x1, . . . , x`) ∈ X `, any τ ∈ {0, 1}∗ and any στ , (σ1, . . . , σ`):{
{Verifypk(hi, xi, τ, (στ , σi)) = accept}i∈[`]

σ∗ := Evalpk(g, (x1, σ1), . . . , (x`, σ`))

}
⇒ Verifypk((g ◦ h̄), g(x1, . . . , x`), τ, (στ , σ

∗)) = accept.

In other words, if the signatures (στ , σi) certify xi as the outputs of functions hi over the data labeled
with τ , then (στ , σ

∗) certifies g(x1, . . . , x`) as the output of g ◦ h̄ over the data labeled with τ .

10Technically, this requires N hybrid arguments where we switch how each ui, vi is sampled one-by-one. In each hybrid,
we rely on the fact that indistinguishability holds even given sk′ to sample the rest of the values uj , vj .
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Multi-Data Security. In the case of multi-data signatures, we will consider full adaptive security. We
define the security via the following game between an attacker A and a challenger:

• The challenger chooses (pk, sk)← KeyGen(1λ) and gives pk to the attacker A

• Signing Queries: The attacker A can ask an arbitrary number of signing queries. In each query
j, the attacker chooses a fresh tag τj ∈ {0, 1}∗ which was never queried previously and a message
(xj,1, . . . , xj,Nj ) ∈ X ∗. The challenger responds with

(στj , σj,1, . . . , σj,Nj )← Signsk((xj,1, . . . , xj,Nj ), τj).

• The attacker A chooses a circuit g : XN ′ → X values τ, y′, (σ′τ , σ
′). The attacker wins if

Verifypk(g, τ, y
′, (σ′τ , σ

′)) = accept and either:

– Type I forgery: τ 6= τj for any j, or τ = τj for some j but N ′ 6= Nj .
(i.e., No signing query with label τ was ever made or there is a mismatch between the size of
the data signed under label τ and the arity of the function g.)

– Type II forgery: τ = τj for some j with corresponding message xj,1, . . . , xj,N ′ such that (a) g
is admissible on xj,1, . . . , xj,N ′ , and (b) y′ 6= g(xj,1, . . . , xj,N ′).

We require that for all PPT A, we have Pr[A wins ] ≤ negl(λ) in the above game.

5.2 Construction

Let F = (KeyGenHTDF , f, Inv, Evalin, Evalout) be an HTDF with index-space X , input space U , output
space V and an input distribution DU . Let Snh = (KeyGennh,Signnh,Verifynh) be any standard (not
homomorphic) signature scheme. Let H : {0, 1}∗ → V be a hash function modeled as a random oracle.
We construct a multi-data homomorphic signature scheme S = (KeyGen,Sign,Verify,Eval) with message
space X as follows.

• (pk, sk) ← KeyGen(1λ) : Choose (pk1, sk1) ← KeyGenHTDF (1λ) and (pk2, sk2) ← KeyGennh(1λ)
set pk = (pk1, pk2), sk = (sk1, sk2).

• (στ , σ1, . . . , σN ) ← Signsk((x1, . . . , xN ), τ): Sample r
$← {0, 1}λ and ρ ← Signnhsk2((τ, r,N)). Set

στ = (r,N, ρ). For each i ∈ [N ], let vi := H(τ, r, i) and set σi ← Invsk1,xi(vi).

• σ∗ = Evalsigpk (g, (x1, σ1), . . . , (x`, σ`)) : This is the same as the Evalinpk1 procedure of the HTDF.

• Verifypk(g, y, τ, (στ , σ
∗)) : Parse στ = (r,N, ρ) and check Verifynhpk2((τ, r,N), ρ) = accept (reject

otherwise). For i ∈ [N ] compute vi := H(τ, r, i) and v∗ := Evaloutpk1(g, v1, . . . , vN ). If fpk2,y(σ) = v∗

accept, else reject.

Remarks. Note that, just like in the bounded-data construction, the run-time of the verification pro-
cedure can be sub-linear in N and only depends on the size of the circuit g (ignoring unused input wires).
The above scheme can also easily allow homomorphic evaluation of functions that compute over multiple
different data-sets with several different labels τi (each input-wire of the function g is associated with
some label τi and some index j ∈ [Ni]). The verification procedure simply needs to know στi for each of
the the data-sets τi involved in the computation. For simplicity, we will not analyze this use-case further
and stick with the definition which only allows computations over a single data-set.
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Correctness and Security. It’s easy to see that correctness of signing and correctness of (leveled) ho-
momorphic evaluation for the signature scheme S follow from the correctness properties of the underlying
(leveled) HTDF F and the non-homomorphic signature scheme Snh. In a leveled scheme, the noise-level
of signatures σi = ui is just defined as its noise-level of the HTDF input ui. The initial noise-level βinit,
the maximal noise level βmax, and the set of admissible functions is the same in S and in F . We are left
to prove security.

Theorem 5.1. Assuming F satisfies HTDF security, Snh satisfies standard signature security, and H is
modeled as a random oracle, the above scheme S satisfies multi-data security of homomorphic signatures.

Proof. We prove the theorem via a sequence of games argument. Let A be a PPT attacker and, in each
game i, let Ei be the event that the attacker wins the corresponding game.

• Let Game 0 be the multi-data security game. We wish to show that Pr[E0] ≤ negl(λ).

• Let Game 1 be a modified version of Game 0 where, in each signing query, we check that the value
r ← {0, 1}λ is fresh, meaning that neither the attacker A nor the signature scheme has previously
made a random oracle call with this value r. If it is not fresh, then the game simply stops and the
attacker is defined to lose. Since the attacker and the signature scheme can make at most poly(λ)
random oracle calls, the probability of ever choosing a random r which is not fresh is negl(λ).
Therefore the games are statistically indistinguishable and Pr[E1] ≥ Pr[E0]− negl(λ).

• Let Game 2 be a modified version of Game 1 where, in each signing query, instead of the random
oracle choosing the values vi := H(τ, r, i) uniformly at random (recall, we are guaranteed that
r is fresh) and computing σi = ui ← Invsk1,xi(vi), we choose a random σi = ui ← DU and set
vi = fpk1,xi(ui), where xi is the i’th data symbol of the given signing query. We then program the
random oracle H(τ, r, i) := vi. This change is statistically indistinguishable by the “Distributional
Equivalence of Inversion” property of the HTDF. Therefore, Pr[E2] ≥ Pr[E1]− negl(λ) ≥ Pr[E0]−
negl(λ).

• To define Game 3, we first define the notion of a non-homomorphic forgery. This is a valid
forgery g, τ, y′, (σ′τ = (r′, N ′, ρ′), σ′) such that the tuple (τ, r′, N ′) does not match any prior signing
query: either the label τ was never used in any signing query, or the label τ = τj was used in a
signing query j but N ′ 6= Nj or r′ 6= rj , where Nj was the data-size in query j and rj was the
randomness chosen by the signer in response to query j. Note that non-homomorphic forgeries are
a super-set of type I forgeries by also including forgeries with the “wrong” r′. We define Game
3 be a modified version of Game 2, where the attacker automatically loses if he gives a non-
homomorphic forgery. We claim that the security of the standard signature scheme Snh ensures
that Pr[E3] ≥ Pr[E2]−negl(λ) ≥ Pr[E0]−negl(λ). (Assume otherwise. Then A has a non-negligible
probability of coming up with a valid non-homomorphic forgery in Game 2. In such a forgery, ρ′

is a valid signature of some message (τ, r′, N ′) under the scheme Snh but this message was never
signed under this scheme. Therefore, it is a forgery on Snh.)

Finally, if the attacker wins in Game 3 with some function g : XN → X and values τ, y′, (σ′τ =
(r,N, ρ′), σ′), then it must be a type II forgery, where τ = τj , r = rj and N = Nj match those of
some signing query j. We show a reduction that breaks HTDF security whenever this happens. Let
x1, . . . , xN be the data chosen by the attacker for signing query j, let ui and vi = fpk1,xi(ui) be the values
chosen by the challenger when preparing the response to the signing query. Let y := g(x1, . . . , xN ),
v∗ := Evaloutpk1(g, v1, . . . , vN ), u := Evalinpk1(g, (x1, u1), . . . , (xN , uN )). Then, since the signature u′ = σ′

verifies, we have fpk1,y′(u
′) = v∗. On the other hand, since g is an admissible function, the correctness

of homomorphic evaluation ensures that fpk1,y(u) = v∗. Therefore, the values u, u′ ∈ U and y 6= y′ ∈ X
satisfy fpk′,y(u) = fpk′,y′(u

′), and the reduction breaks HTDF security. This shows that Pr[E3] ≤ negl(λ).
Combining all of the above, we see that Pr[E0] ≤ Pr[E3] + negl(λ) ≤ negl(λ) which proves the

theorem.

16



6 Context-Hiding Security

In many applications, we may also want to guarantee that a signature which certifies y as the output
of some computation g over Alice’s data should not reveal anything about the underlying data beyond
the output of the computation. We will show how to achieve context-hiding by taking our original
schemes which produces some signature σ (that is not context hiding) and applying some procedure
σ̃ ← Hidepk,y(σ) which makes the signature context hiding. Once the hiding procedure is applied, the
signatures no longer support additional homomorphic operations on them. One additional advantage of
this procedure is that it also compresses the size of the signature from m2 log q bits to O(m log q) bits.

Context-Hiding Security for Signatures. We give a simulation-based notion of security, requiring
that a context-hiding signature σ̃ can be simulated given knowledge of only the computation g and the
output y, but without any other knowledge of Alice’s data. The simulation remains indistinguishable
even given the underlying data, the underlying signatures, and even the public/secret key of the scheme.
In other words, the derived signature does not reveal anything beyond the output of the computation
even to an attacker that may have some partial information on the underlying values.

Definition 6.1. A bounded-data homomorphic signature supports context hiding if there exist additional
PPT procedures σ̃ ← Hidepk,y(σ) and HVerifypk(g, y, σ) such that:

• Correctness: For any (pk, sk) ∈ KeyGen(1λ, 1N ) and any g, y, σ such that Verifypk(g, y, σ) = accept,
for any σ̃ ← Hidepk,y(σ) we have HVerifypk(g, y, σ̃) = accept.

• Unforgeability: Single-data signature security holds when we replace the Verify procedure by HVerify
in the security game.

• Context-Hiding Security: There is a simulator Sim such that, for any fixed (worst-case) choice of
(pk, sk) ∈ KeyGen(1λ, 1N ) and any g, y, σ such that Verifypk(g, y, σ) = accept we have:

Hidepk,y(σ) ≈ Sim(sk, g, y)

where the randomness is only over the random coins of the simulator and the Hide procedure.11

We say that such schemes are statistically context hiding if the above indistinguishability holds
statistically.

The case of multi-data signatures is defined analogously.

Definition 6.2. A multi-data homomorphic signature supports context hiding if there exist additional
PPT procedures σ̃ ← Hidepk,x(σ), HVerifypk(g, y, τ, (στ , σ)) such that:

• Correctness: For any (pk, sk) ∈ KeyGen(1λ) and any g, y, στ , σ such that Verifypk(g, y, τ, (στ , σ)) =
accept, for any σ̃ ∈ Hidepk,y(σ) we have HVerifypk(g, y, τ, (στ , σ̃)) = accept.

• Unforgeability: Multi-data signature security holds when we replace the Verify procedure by HVerify
in the security game.

• Context-Hiding Security: Firstly, we require that in the procedure (στ , σ1, . . . , σN ) ∈ Signsk(x1, . . . , xN , τ)
the value στ only depends on (sk,N, τ) but not on the values xi. Secondly, we require that there
is a simulator Sim such that, for any fixed (worst-case) choice of (pk, sk) ∈ KeyGen(1λ) and any
g, y, σ, στ such that Verifypk(g, y, τ, (στ , σ)) = accept we have:

Hidepk,y(σ) ≈ Sim(sk, g, y, τ, στ )

where the randomness is only over the random coins of the simulator and the Hide procedure. We say
that such schemes are statistically context hiding if the above indistinguishability holds statistically.

11Since pk, sk, g, y, σ are fixed, indistinguishability holds even if these values are known to the distinguisher.
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Context-Hiding Security for HTDF. We also define a context hiding HTDF as an augmentation
of standard HTDFs. We will build context-hiding signatures by relying on context-hiding HTDFs.

Definition 6.3. A context-hiding HTDF comes with two additional algorithms ũ ← Hidepk,x(u) and
VerifyHTDFpk (ũ, x, v) satisfying:

• Correctness: For any (pk, sk) ∈ KeyGen(1λ) any u ∈ U , any x ∈ X and any ũ ∈ Hidepk,x(u) we
have VerifyHTDFpk (ũ, x, fpk,x(u)) = accept.

• Claw-freeness on hidden inputs: For all PPT A:

Pr

[
VerifyHTDFpk (ũ′, x′, fpk,x(u)) = accept

u ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(u, ũ′, x, x′)← A(1λ, pk)

]
≤ negl(λ).

In other words, if an attacker know u such that fpk,x(u) = v then he cannot also produce ũ′ such
that VerifyHTDFpk (ũ′, x′, v) = accept when x′ 6= x.

• Context Hiding: There is a simulator Sim such that for all choices of (pk, sk) ∈ KeyGen(1λ), u ∈ U
and x ∈ X the following distributions are indistinguishable:

Hidepk,x(u) ≈ Sim(sk, x, fpk,x(u)).

We say that such schemes are statistically context hiding if the above indistinguishability holds
statistically.

From Context-Hiding HTDFs to Signatures. We can easily modify the signature schemes con-
structed in Section 4 (bounded-data) and Section 5 (multi-data) in the natural way to make them context
hiding by using a context-hiding HTDF. In particular, the procedure Hide of the signature scheme is de-
fined to be the same as that of the underlying HTDF. The procedure HVerifypk(g, y, σ̃) of the signature
scheme (resp. HVerifypk(g, y, τ, (στ , σ̃)) for a multi-data scheme) are defined the same ways as the orig-
inal Verify procedures of the signature, except that, instead of checking fpk,y(σ̃) = v∗ we now check
VerifyHTDFpk (σ̃, y, v∗) = accept. It is easy to check that this modification satisfies the given correctness
and security requirements as outlined below.

Unforgeability with the modified verification procedure HVerify follows from the “claw-freeness on
hidden inputs” property of the HTDF. This follows from the proofs of Theorem 4.1 and Theorem 5.1. In
both proofs, the reduction knows one value u ∈ U such that fpk,y(u) = v∗ and a signature forgery allows
it to come up with ũ such that VerifyHTDFpk (σ̃, y′, v∗) = accept for y′ 6= y.

Context-Hiding security of the signature scheme follows from that of the HTDF. We define the sig-
nature simulator Simsig(sk, g, y, [τ, στ ]) to compute the value v∗ = Evalinpk(g, v1, . . . , vN ) as is done by the

verification procedure of the signature schemes. It then output σ̃ ← SimHTDF (sk, y, v∗). The indistin-
guishability of the signature simulator follows form that of the HTDF simulator.

General Construction via NIZKs. Before we give our main construction of context-hiding HTDF
and therefore context-hiding signatures, we mention that it is possible to solve this problem generically
using non-interactive zero knowledge (ZK) proof of knowledge (PoK) NIZK-PoKs. In particular, we can
make any HTDF context-hiding by setting ũ ← Hidepk,x(u) to be a NIZK-PoK with the statement v
and witness u for the relation fpk,x(u) = v. The VerifyHTDF procedure would simply verify the proof
ũ. Claw-freeness follows from the PoK property and context-hiding follows from ZK.12 However, this
approach requires an additional assumption (existence of NIZK-PoK) which is not known to follow from
SIS. Therefore, we now proceed to construct context-hiding HTDFs directly.

12The syntactic definition would need to be modified slightly to include a common reference string (CRS).
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6.1 Construction of Context-Hiding HTDF

Lattice Preliminaries. Before giving our construction of context-hiding HTDFS, we start by recalling
some additional useful tools from lattice-based cryptography (abstracting as much as possible). Let
A,B ∈ Zn×mq and let H = [A | B] ∈ Zn×2m

q . We will rely on the existence of two algorithms SampleLeft
and SampleRight which both take z ∈ Znq and manage to output some “short” vector r ∈ Z2m

q such that
H · r = z. The algorithm SampleLeft does so by knowing some trapdoor td for the matrix A. The
algorithm SampleRight does so by knowing some “short” matrix U such that B = AU + yG for some
y 6= 0. Nevertheless, the outputs of SampleLeft and SampleRight are statistically indistinguishable. (See
[CHKP10, ABB10, MP12, BGG+14] for details on the following lemma; our exposition follows [BGG+14]
with additional abstraction.)

Lemma 6.4. Using the notation of Lemma 2.2, let n, q ≥ 2, m ≥ m∗(n, q) and β be parameters. Then
there exist polynomial time algorithms SampleLeft, SampleRight and some polynomial pextra(n,m, log q)
such that for β′ := β·pextra(n,m, log q) the following holds: For any choice of (A, td) ∈ TrapGen(1n, 1m, q),
any z ∈ Znq and any U ∈ Zm×mq with ||U||∞ ≤ β and any y ∈ Zq with y 6= 0 let H = [A | AU + yG],
where G is the matrix from part (3) of Lemma 2.2. Then:

• For any r0 ∈ SampleLeft(H, td, z), r1 ∈ SampleRight(H,U, z) and for each b ∈ {0, 1} we have
rb ∈ Z2m

q , ||rb||∞ ≤ β′ and H · rb = z.

• For r0 ← SampleLeft(H, td, z) and r1 ← SampleRight(H,U, z) we have r0 ≈ r1 are statistically
indistinguishable (the statistical distance is negligible in n).

HTDF with Context Hiding. We augment our construction of HTDFs from Section 3 to add context-
hiding security. For this application, we make the following augmentations.

• We restrict the index space X to just bits X = {0, 1} ⊆ Zq (rather than X = Zq as previously). We
also modify the parameters and set βSIS = 2ω(log λ)(βmax)2 to be larger than before (which impacts
how q, n are chosen to maintain security).

• We augment the public-key to pk = (A, z) by appending z ∈ Znq which is chosen by selecting a

random r
$← {0, 1}m and setting z = A · r (and discarding r).13 Let pextra(n,m, log q) = poly(λ) be

the polynomial form Lemma 6.4 and define β̃max = βmax · pextra(n,m, log q).

• ũ← Hidepk,x(U): Let V = fpk,x(U) = AU− xG. Set

H := [A | V + (1− x)G] = [A | AU + (1− 2x)G].

Note that (1 − 2x) ∈ {−1, 1} 6= 0. Output ũ ← SampleRight(H,U, z). Note that H · ũ = z and
||ũ||∞ ≤ β̃max.

• For context-hiding security, we define Sim(sk = td, x,V) which computes H := [A | V + (1− x)G]
and outputs ũ← SampleLeft(H, td, z).

• VerifyHTDFpk (ũ, x,V): Compute H := [A | V + (1 − x)G]. Check ||ũ||∞ ≤ β̃max and H · ũ = z. If
so accept, else reject.

It’s easy to check that correctness holds. Context hiding security follows directly from Lemma 6.4. We
are left to show claw-freeness on hidden inputs.

13We note that, using the leftover-hash-lemma, we can show that this is statistically close to choosing z
$← Znq at random.

However, we will not need to rely on this fact.
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Theorem 6.5. The above scheme satisfied claw-freeness on hidden inputs under the SIS(n,m, q, βSIS)
assumption.

Proof. The proof of security closely follows that of Theorem 3.1. Assume that A is a PPT attacker that
breaks this security property of the scheme. As a first step, we modify the game so that, instead of

sampling (A, td) ← TrapGen(1n, 1m, q) and setting pk := A and sk = td, we just choose A
$← Zn×mq

uniformly at random. This modification is statistically indistinguishable by the security of TrapGen (see
Lemma 2.2, part (2)). In particular, the probability of A winning the modified game remains non-
negligible.

We now show that an attacker who wins the above-modified game can be used to solve the SIS

problem. The reduction gets a challenge matrix A of the SIS problem and chooses r
$← {0, 1}m and sets

z = A · r. It gives the public key pk = (A, z) to the attacker A. The attacker wins if he comes up with
bits x 6= x′ ∈ {0, 1} and values U, ũ′ such that ||U||∞ ≤ βmax, ||ũ′||∞ ≤ β̃max, and H · ũ′ = z where H is
defined by setting V := fpk,x(U) = AU− xG and

H := [A | V + (1− x′)G] = [A | AU + (1− (x+ x′))G] = [A | AU]

where the last equality follows since x 6= x′ ⇒ (x+x′) = 1. Let’s write ũ′ = (r′1, r
′
2) where r′1, r

′
2 ∈ Zmq

are the first and last m components of ũ′ respectively. Then:

H · ũ′ = z ⇒ Ar1 + (AU)r2 = Ar ⇒ A(Ur2 + r1 − r) = 0

Furthermore

||(Ur2 + r1 − r)||∞ ≤ mβmaxβ̃max + β̃max + 1 ≤ poly(λ)(βmax)2 ≤ βSIS .

Therefore, it remains to show that (Ur2 + r1 − r) 6= 0. We use the same argument as in the proof of
Theorem 3.1: the randomness r is independent of U, r1, r2 when conditioned on z. Since z is short, r
still has m− n log q = ω(log λ) bits of conditional entropy left and therefore Pr[Ur2 + r1 = r] ≤ negl(λ).
This concludes the proof.

7 Conclusions

In this work, we construct the first leveled fully homomorphic signature schemes. It remains an open
problem to get rid of the leveled aspect and ideally come up with a signature scheme where there is
no a priori bound on the depth of the circuits that can be evaluated and the signature size stays fixed.
Another open problem is to design multi-data homomorphic signature schemes in the standard model.
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