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Abstract. This work deals with DPA-resistant logic styles, i.e., cell-
level countermeasures against power analysis attacks that are known as
a serious threat to cryptographic devices. Early propagation and imbal-
anced routings are amongst the well-known issues of such countermea-
sures, that – if not considered during the design process – can cause
the underlying cryptographic device to be vulnerable to certain attacks.
Although most of the DPA-resistant logic styles target an ASIC design
process, there are a few attempts to apply them in an FPGA platform.
This is due to the missing freedom in FPGA design tools required to
deal with the aforementioned problems. Our contribution in this work is
to provide solutions for both early propagation and imbalanced routings
considering a modern Xilinx FPGA as the target platform. Foremost,
based on the WDDL concept we design a new FPGA-based logic style
without early propagation in both precharge and evaluation phases. Ad-
ditionally, with respect to the limited routing resources within an FPGA
we develop a customized router to find the best appropriate dual-rail
routes for a given dual-rail circuit. Based on practical experiments on a
Virtex-5 FPGA our evaluations verify the efficiency of each of our pro-
posed approaches. They significantly improve the resistance of the design
compared to cases not benefiting from our schemes.

1 Introduction

Counteracting state-of-the-art power analysis attacks (so called DPA [13]) is a
must for cryptographic devices which may fall into the hands of malicious users,
who can control over the device in a hostile environment. Up to now several DPA
countermeasures at different levels of abstraction have been proposed. Many try
to provide resistance by manipulating the underlying cryptographic algorithm
in order to randomize its intermediate values, i.e., masking at the algorithmic
level, e.g., [24, 25]. Some introduce noise, e.g., [7, 17] or randomize either the
program flow or the order of the operations, i.e., shuffling, e.g., [10, 17]. A couple
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of other schemes try to solve the problem from scratch, i.e., avoiding the de-
pendency of the power consumption of the circuit to the processed data. These
countermeasures at the cell level, called DPA-resistant logic styles, aim at equal-
izing the power consumption of a cryptographic device regardless of any input,
intermediate, or output value.

After a proper evaluation [30] it was discovered that most of the proposed
logic styles, such as WDDL [32] and MDPL [27], suffer from the early propagation
effect. This phenomena, also called data-dependent time-of-evaluation, refers to
the cases where a gate fires (evaluates) its output at different time instances
depending on the value of its input. It becomes more problematic when several
of such gates are cascaded to realize a combinatorial circuit. So, it causes the
power consumption pattern of the circuit to have a clear dependency to its input
value.

Moreover, most of the known logic styles face a common difficulty, i.e., routing
imbalances. Equal power consumption, which is expected to be achieved by Dual-
Rail Precharge (DRP) logic, needs a proper balance between the capacitances
of each dual-rail signal. Otherwise, transitions of TRUE and FALSE lines of a
dual-rail signal require different amounts of energy, which can be explored by a
DPA attack. Therefore, some place-and-route methods such as [6, 33] have been
proposed to diminish the load imbalances of complementary signals in an ASIC
design process. Although iMDPL [26], which solves the early propagation effect
of MDPL, was designed to relax the necessity of balanced routings, still has
exploitable leakages due to imbalanced routing of the dual-rail mask signal [20].

State-of-the-Art Even though most of the proposed logic styles target an ASIC
platform, at the early stage of their development some have been evaluated using
FPGAs. Since the FPGA design tools miss the flexibility required for balanced
routing, most of the efforts in this direction led to duplication schemes. They
follow the idea of dual-rail concept without precharging the signals. This indeed
leads to making a dual copy of a fully placed-and-routed circuit which – in
theory – should consume the complement amount of energy that the original
counterpart does. However, the problem arising by this scheme is due to non-
dual glitches happening in original and dual part of the circuit, that causes the
design to be vulnerable to the state-of-the-art attacks.

In this direction we can refer to [11], where – in addition to the dual of
the circuit – precharge registers are inserted to the design. As the authors also
showed, their design can be broken because of glitches. In another work [8] a
specific configuration for FPGA Look-Up-Tables (LUT) is used to make the
delay of the gates constant. Two global signals connected to all LUTs are also
used to handle the precharge and evaluation of the gates. After developing the
circuit by this configuration, the dual part of the circuit is inserted to the design.
Unfortunately their design still has glitches when the combinatorial circuit has
two or more logic depth.

As another example we should refer to DWDDL [36] which applies the du-
plication on a circuit realized by a kind of WDDL. There exists other works



which make use of the duplication on the circuits built by FPGA Block RAMs
(BRAM). For example, the authors of [34] introduced a precharge signal for each
BRAM address in order to provide precharge and evaluation phases in this con-
text. By certain inappropriate assumptions, e.g., ignoring the leakage associated
to glitches occurring at the LUTs’ output as long as they do not leave the slice,
they developed a design methodology.

In the work of [28] the authors tried to realize WDDL on an Altera Stratix-II
FPGA. They used DES as the target algorithm and have examined two different
place-and-route (PAR) strategies as 1) the TRUE and FALSE signals of each gate
are placed and routed as close as possible, and 2) all TRUE signals are placed close
together (the same for all FALSE signals). The drawbacks of their work are 1) no
attempt to avoid early propagation, and 2) no control over the delay between
the rails of dual-rail signals.

In another work [15] a triple-rail logic has been designed for a Xilinx Spartan-
3 FPGA. In order to avoid early propagation in both precharge and evaluation
phases they utilized a generalized form of Muller C-element (the main element
of asynchronous logic designs [22]). Although the goal of preventing early prop-
agation is fulfilled, the number of toggles happening at internal signals is not
balanced, i.e., they are different depending on the gate inputs’ value. It is be-
cause 6 LUTs are used to build a triple-rail gate, and the toggles of output of
these 6 LUTs are not balanced for all input cases. Therefore, it most likely leads
to different power consumption patterns detectable by a DPA attack.

Other works e.g., BCDL [23] employed a global precharge signal, which must
be connected to all gates. The gates do not evaluate their output till the global
precharge goes e.g., LOW thereby preventing early propagation in both phases.
But at the start of the precharge phase all gates simultaneously precharge their
output leading to a much higher power consumption peak compared to the eval-
uation phase. Based on an Altera Stratix-II FPGA each BCDL gate is realized
by two 5-input LUTs, but they have not taken care about the routing of dual-rail
signals.

In a follow-up work [3] the global precharge of BCDL is removed and following
the WDDL concept each gate is actualized by two 4-input LUTs. The style, which
is called DPL noEE, prevents the early propagation in the evaluation phase, but
nothing is considered to deal with the start of the precharge phase. Similar to
the case of BCDL, a Stratix-II FPGA has been used for practical evaluation of
an AES encryption module under DPL noEE scheme. According to the claims
of the authors, the leakage could be reduced to half while no restrictions have
been put into the placement and routing processes.

Our Contribution In this work we first re-iterate the definition of early propa-
gation and address the cases in the literature where this concept in the precharge
phase has been mixed with the concept of data-dependent time-of-precharge. As
an example we focus on DPL noEE [3] and demonstrate that preventing early
propagation in the evaluation phase might be not enough to reduce the associ-
ated leakage.



In the second part of this article we aim at designing a variant of WDDL
for FPGA platforms without early propagation in both phases. With the help
of the asynchronous design concept we achieve an architecture which follows the
WDDL definitions, but its time-of-evaluation as well as its time-of-precharge is
independent of the processed values. More importantly it propagates the evalu-
ation wave (resp. the precharge wave) only when all inputs are evaluated (resp.
precharged).

However, the imbalanced routings caused by uncontrolled FPGA design tools
(placer and router) makes the power consumption of the circuit to be still re-
lated to its input value. Therefore, the next contribution of this article deals
with balanced dual-rail routing in FPGAs. By means of a sophisticated routing
algorithm as well as information we extract about the route delays, we are able
to route the dual-rail signals with minimum imbalances. As a target design and
platform we selected an AES S-box to be realized on a Xilinx Virtex-5 FPGA.
Our experimental results show that both (more) balanced routings and avoiding
early propagation significantly reduce the amount of leakage extractable by a
power analysis attack.

2 WDDL and Early Propagation

Wave Dynamic Differential Logic (WDDL) was developed to avoid the necessity
of a full-custom design tool. Similar to other precharge logic styles every gate
operates in two phases, i.e., precharge and evaluation, which are controlled by
the clock signal. However, as shown by Fig. 1(a) the signals are converted to
dual-rail precharge form prior to the WDDL circuit, and the clock signal is not
routed to the WDDL logic cells. Figure 1(a) shows the concept and the design
of a WDDL AND/NAND gate. These gates can straightforwardly be actualized
by FPGA LUTs, but the concept which is followed by DPL noEE [3] is shown
in Fig. 1(b). The idea is to prevent the evaluation as long as the inputs are not
complete3.

In order to deal with early propagation issue we first assume that though
the delay of different dual rails are not the same, the delay of TRUE and FALSE

signals of each dual rail are the same. In other words,

Delay(At) = Delay(Af) > Delay(Bt) = Delay(Bf).

Figure 2 depicts the timing diagram of three different cases of the inputs for
both WDDL and DPL noEE AND/NAND gates. By comparing cases 1 and 3
(∆te1 vs. ∆te3) we can conclude that the start of the evaluation phase of the
WDDL gate depends on its input values. This issue, which is addressed in [30],
is known as data-dependent time-of-evaluation. Examining cases 1 and 2 (∆tp1
vs. ∆tp2) also shows the dependency of the start of the precharge phase to the
gate input, which is referred as data-dependent time-of-precharge.

3 Note that here we showed a simplified view of DPL noEE, the authors of [3] consid-
ered both ‘0’ and ‘1’ as the precharge value of the gates in their design.
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Fig. 2. Timing diagram of three input cases, WDDL and DPL noEE AND/NAND
gates

The situation for DPL noEE is different as its time-of-evaluation is data in-
dependent. It also instantly goes to the precharge phase once one of its inputs
goes to precharge. Although its time-of-precharge does not depend on its input
value, it fits to the definition of early propagation in precharge phase. We should
refer to [26], where it is stated as “According to our analysis, DRSL does not
completely avoid an early propagation effect in the precharge phase”. From this
perspective DPL noEE and DRSL [5] have the same specification. Both have
data-independent time-of-evaluation and time-of-precharge, and both do not
avoid early propagation in the precharge phase. On the contrary, the precharge
phase of each iMDPL [26] gate starts when all its inputs are in precharge. Here
the question is how critical it is to not avoid early propagation in precharge
phase while it is data independent?

To answer this question we should highlight two points:

– In this setting – considering a combinatorial circuit, e.g., an AES S-box,
made by several gates – the propagation of the precharge wave is faster than
that of the evaluation wave. This results in a difference between the power
consumption patterns of the evaluation and precharge phases as the dynamic
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Fig. 3. AWDDL AND/NAND gate4

power consumption peak in the precharge phase is expected to be higher.
The same is observed when a global precharge signal is used as in SABL [31].

– All the statements given above about the data independence of time-of-
evaluation as well as of time-of-precharge are valid as long as the first as-
sumption Delay(At) = Delay(Af) (resp. Delay(Bt) = Delay(Bf)) holds. If
the routings are imbalanced and this assumption is not valid, both time-of-
evaluation and time-of-precharge would be data dependent.

Therefore, in this setting we expect that the leakage in the precharge phase is
more easily detectable compared to that in the evaluation phase since slight rout-
ing imbalances still would exist in practice. We deal with this issue in Section 4
when we demonstrate the corresponding practical results.

2.1 Avoiding Early Propagation in both Phases

Our goal here is to develop a design similar to DPL noEE but without early
propagation in the precharge phase. So, we consider an asynchronous design
for each WDDL gate. Following standard asynchronous design schemes one can
make the flow table for the desired gate behavior, and realize it using e.g., S-R
approach, where S-R latches are utilized. Figure 3 shows an exemplary design of
our desired WDDL AND gate, which we call Asynchronous WDDL (AWDDL).
Note that this design is only suitable for the FPGA platforms to realize the
gate outputs by LUTs. It cannot be considered as an ASIC solution due to the
unbalanced number of toggles happening on the internal signals. Since we use
a modern Xilinx FPGA as the target platform, every gate is realized by two
hard-coded LUT6 instances, i.e., to provide Zt and Zf . Furthermore, every LUT
output should be routed to its input, i.e., an external loop around every LUT

4 The mapping of the input and output signals to the LUT6 instances is of highly
importance. Having the Xilinx Libraries Guide for HDL Designs [35] in mind, input
I5 of the LUT6 2 should be connected to ‘1’ thereby utilizing only O6 as the gate
output. The LUT must be configured in a way that O5 always provides ‘0’.



is essential. Since the 6-input LUTs are the currently biggest LUT available in
FPGA architectures, unfortunately our proposed scheme cannot be extended
to consider one more dual-rail mask input signal to realize a kind of iMDPL
cell [26].

With respect to the asynchronous design concept and the S-R latches our
design of AWDDL guarantees no early propagation in both precharge and eval-
uation phases. Due to the lack of space we omit presenting the figures for other
AWDDL gates. However, the formulas for the set and reset signals (S,R) of the
conceptual S-R latch of 2-input gates are listed below. Similar to WDDL, the in-
verted gate is realized by swapping the dual-rail output signals. Below, + stands
for the logical OR operation.

all gates : Rt = Rf = At + Af + Bt + Bf

AND :

{
St = At Bt

Sf = Af Bf + Af Bt + At Bf

OR :

{
St = At Bt + At Bf + Af Bt

Sf = Af Bf

XOR :

{
St = At Bf + Af Bt

Sf = At Bt + Af Bf

We should emphasize that we are aware of the problem of single-rail WDDL
register cells mentioned in [19]. Our contribution focuses on the combinatorial
part of the logic style, and as stated in [19], the master-slave register cells must
be used to prevent the leakage of the registers.

3 Dual-Rail Routing

The problem of dual-rail routing is a challenge to perfectly balance the capac-
itance of both rails of a signal. Otherwise, transitions on these signals need a
different amount of energy, which may make it possible to distinguish on which
rail the transition happens. On the other hand, the capacitive imbalance causes
the delay of the rails to be different. Then, the arrival time of a dual-rail input
signal of a gate depends on its value. Since a gate without early propagation
in both phases, e.g., our AWDDL, fires (resp. precharge) the output when all
input signals arrived (resp. precharged), the time of evaluation (resp. precharge)
of the gate will still depend on its inputs’ value. This propagates through the
whole combinatorial circuit, and makes the power consumption patterns different
depending on the circuit input value.

Before we focus on our dual-rail routing approach, we should emphasize that,
as stated in [32], a WDDL circuit – without an inversion – can be implemented
using a divided approach, where first a network of TRUE signals, i.e., Zt output
of all gates, are placed and routed. Then, the dual of the same network with the
same routing is copied to make the FALSE signals. However, this approach is not
applicable in case of our proposed AWDDL since each TRUE and FALSE part of
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every gate requires to have both TRUE and FALSE rails of all input signals. For
the same reason we cannot make use of the approach presented in [9] because
their scheme is also based on complete separation of TRUE and FALSE networks.
Therefore, we need to develop a mechanism capable of routing dual-rail signals
as balanced as possible. While it is unlikely to achieve a perfectly balanced
routing due to the given structure of the FPGA, it is likely to reduce the leakage
compared to the default routing of the FPGA standard tools. We tried to achieve
this by developing a customized router which is presented hereafter.

3.1 Customized Router

As stated before, our target is a Xilinx Virtex-5 FPGA; therefore, we could
make use of the RapidSmith library [14]. In order to route balanced dual-rails
we implemented a customized local router. It utilizes the Xilinx Design Language
(XDL) and is based on a custom workflow as depicted in Fig. 4. Up to the end of
mapping, the design is processed by the default Xilinx ISE tools. Note that for
the case of Virtex-5 map performs the placement as well. The only modifications
we made up to this step are i) to put all elements requiring balanced routing
into a closed group which is area constrained, ii) to keep the input PIN positions
of the LUTs realizing the AWDDL gates locked, and iii) to put LUTs of each
AWDDL gate into the same slice using the LUTs (A, B) or (C, D) for (Zt,Zf)
respectively.

After mapping, the intermediate file is processed by our customized router.
The first step is to extract all dual-rail connections (source, destination) from
the given data structure. This is done by using a simple naming scheme to detect
corresponding nets within the XDL file. The next step is to find a set of possible
routings for each of the dual-rail connections. To do so, for each possible output
of a LUT (e.g., A and AMUX), all possible exit nodes of the adjacent switch
box are used once to find a possible route. This idea is illustrated in Fig. 5. The
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routing itself for each of these candidates uses a maze router with a priority
queuing, favoring those nodes with the least Manhattan distance. This process
is executed for both connections of a dual-rail to finally make a set of possible
routings for each of the dual-rail connections.

Since extracting the capacitance of each route is not feasible, we had to
consider other metrics to give priorities to the different routings. They include:

– the signal delays, extracted using the command line tool fpga edline (due
to the phenomena expressed above),

– the number of switch boxes the signal passes (due to their significant role in
amount of dynamic energy consumption),

– the number of Programmable Interconnect Points (PIP), i.e., internal con-
nections of the switch boxes, and

– the type of the wire, e.g., long, pent, and double.

For each of the routing possibilities, the above mentioned properties are ex-
tracted. Properties not dependent on the delay are easily extracted by their XDL
representation. The delay of each single route must be extracted using a script
file (.scr) that controls fpga edline. An example for a script is given below:



open design ncdFileName.ncf pcfFileName.pcf

setattr main edit-mode Read-Only

setattr main auto_load_delays true

select netName

delay

exit

exit5

The result of running this script is a log file (.log) that contains the delay
information of every route within that net. It is therefore required to parse the
log files and extract the only valid delay for the route made (see Fig. 4). Note
that for each single route the corresponding NCD file must be generated. Then,
the above script and process should be run to extract the associated delay.

Here we make the restrictions. Based on the extracted information (as ex-
plained above) we restrict the dual-rail routes based on a threshold for delay of
each route, for the difference between delay of the rails, for the number of switch
boxes each route passes, for the number of PIPs, and etc. As the last step, as
given below, the output is converted into a Boolean satisfiability (SAT) prob-
lem to select a conflict-free routing. If the problem is satisfiable, the conflict-free
setting is put together and written to a new XDL file. All the previously routed
nets are then locked, while the remaining unrouted nets are auto-routed using
fpga edline.

3.2 Representing Routing as SAT

Let n denote the number of dual-rail connections that the router should make.
We first make a collection S = {S1, S2, . . . , Sn}, where Si∈{1,...,n} represents a
set of possible routing candidates {si1, si2, . . . , sini

} for the dual-rail connection i.
Accordingly we define Boolean variables xij indicating whether the dual-route

sij is selected. Clearly, one must select exactly one candidate sij from each set

Si to achieve a complete routing. This requirement can be encoded using the
following formula [12]:

AtLeastOne(Si) =

n∨
j=1

xij ,

AtMostOne(Si) =

n−1∧
j=1

n∧
k=j+1

(¬xij ∨ ¬xik),

ExactlyOne(Si) = AtLeastOne(Si) ∧ AtMostOne(Si).

Therefore, ExactlyOne(Si) = TRUE for ∀ i ∈ {1, . . . , n} are added as clauses to
the SAT.

Another issue is related to the loop which must be made at every LUT.
As stated in Section 2.1, the output of the LUT must be presented as one of

5 Using the exit command twice is required to properly exit the command-driven mode
in addition to gracefully terminate the tool.



its inputs to realize the internal S-R latch. For simplicity and consistency we
tried to make the same loop at every LUT which is used as AWDDL gate. To
achieve this we define collection S? = {S?1, S?2, . . . , S?l}, where l denotes the
number of possible dual-rail loop routings, and S?i∈{1,...,l} a set of the same
dual-rail loop routing for all AWDDL gates of the design, i.e., {s?i1 , . . . , s?im},
where m stands for the number of AWDDL gates in the design. Therefore, only
one of these sets amongst collection S? must be selected. Accordingly we define
Boolean variables x?ij due to the selection of the routing s?ij . Moreover, a set of
l commander-variables C = {c1, . . . , cl} are defined indicating the selection of
S?1, . . . , S?l.

In order to consider the commander-variables into the SAT, one needs to
include ExactlyOne(C) = TRUE to make sure that only one loop set is selected.
Moreover, the following formula must be also considered to prevent a selection
of a mixture of different loop sets:

AllFalse(S?i) = ci ∨
m∧
j=1

¬x?ij AllTrue(S?i) = ¬ci ∨
m∧
j=1

x?ij .

Therefore, AllFalse(S?i) = TRUE and AllTrue(S?i) = TRUE for ∀ i ∈ {1, . . . , l} are
added to the SAT.

We should emphasize that two slices are connected to the same switch box,
and we use either (A, B) or (C, D) LUTs to realize each AWDDL gate. Since the
loop routing possibilities of these cases are different, we have to consider four dif-
ferent S? collections (and four different commander-variable set C respectively)
to cover all these cases.

However, the above illustrated expressions do not reflect possible routing
conflicts yet. The conflicts must also be encoded by doing a pairwise comparison
of all possible routing candidates, and the corresponding clauses must be added
to the SAT. Suppose that xij and xi

′

j′ are corresponding Boolean variables of two

conflicting routings sij and si
′ 6=i
j′ . So, ¬xij ∨ ¬xi′j′ = TRUE must be added to the

SAT. This should be done for all possible pairwise conflicting routings (extracted
by means of RapidSmith) including those which can be between collections S
and S?. This encoding can be realized in O(n2). It should be noted that if the
SAT solver fails to find a conflict-free solution, the restrictions – explained at
the end of Section 3.1 – to make collections S and S? should be relaxed and the
process should be repeated.

The runtime of the whole process is determined by the slow file conversion
(Xilinx ISE tools) from NCD to XDL and vice-versa. This step needs to be ex-
ecuted for each delay extraction and though being massively parallelized using
16 cores (siblings), still takes around 6 hours for a design including m = 122
AWDDL gates and 8 additional LUTs for the single-to-dual rail conversion,
where n = 606 dual-rail connections should be made. In contrast, SAT encod-
ing typically requires about 20 minutes and solving less than a minute using
CryptoMiniSat 2.9.4 [1].
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4 Practical Investigations

In order to examine the effectiveness of our proposed schemes we made an exem-
plary design which in addition to surrounding and control logics consists in an
AES S-box. We have taken the area-optimized S-box by Canright [4], and man-
ually instantiated all the logic by 2-input AWDDL gates (in sum 122). A block
diagram of the design is shown by Fig. 6(a). The Virtex-5 FPGA (XC5VLX50)
of the side-channel evaluation platform SASEBO-GII [2], on which our target de-
sign is embedded, receives an input byte from the PC (via a controlling FPGA)
and stores it into the input register by controlling eni signal. At a certain clock
cycle, the control logic disables prch signal, and the “to WDDL” conversion unit
(the same scheme shown in the left part of Fig. 1(a)) propagates the dual-rail
input to the AWDDL AES S-box thereby initializing the evaluation phase. In
the next half of the clock cycle the control logic enables prch signal and the
precharge phase is started. In a common WDDL circuit eno should be active at
the start of the precharge phase in order to store the output of the combinato-
rial circuit (here the AES S-box). However, since we aim at evaluating only the
leakage associated to the combinatorial circuit, we must exclude the leakage of
the output register (see [19]). Therefore, the control logic does not enable eno
signal and the register does not store the S-box output6. During these two (eval-
uation and precharge) phases the power consumption of the Virtex-5 FPGA is
measured using a LeCroy WaveRunner HRO 66Zi oscilloscope at the sampling
rate of 1GS/s while the design runs at a clock frequency of 3 MHz.

At the first step, we defined an area in the target FPGA for the placement
of AWDDL gates, and as stated before we constrained the placer to assign two
LUTs of the same slice to each AWDDL gate. At this stage we did not apply
our customized router and used the default ISE routing tools. For the sake of
similarity and fair comparison, we made also a WDDL and DPL noEE com-

6 In order to check the correct functionality of the circuit, eno signal becomes active
by the control logic in another clock cycle which is not covered by the measured
power traces.
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Fig. 7. Histogram of the delay difference of all dual-rail routes of AWDDL designs

patible version of the fully placed-and-routed AWDDL design. This has been
done by editing the XDL file (of the AWDDL design) and only modifying the
content of the LUTs7. So, the placement and routing of all these three designs
are the same allowing for a fair comparison. As the fourth design we used our
customized router in order to route the AWDDL design while its placement has
not been altered.

In sum we evaluated four design profiles as:

1. WDDL AES S-box routed by ISE,
2. DPL noEE AES S-box, the same placement and routing as profile 1,
3. AWDDL AES S-box, the same placement and routing as profile 1,
4. AWDDL AES S-box, the same placement as profile 1, but routed by our

customized router.

As listed in Section 3.1, we have considered many different criteria to make
routing collections S and S?. The best result is achieved by considering a delay
difference below 60 ps, the realization of identical feedback loops, and by consid-
ering minimum number of switch boxes and PIPs in each route. It should also
be mentioned that we used the same wire type for both rails of a signal and
prohibited to use long wires.

In order to compare the result of our routing with that of ISE, we provided
two histograms illustrating the difference between the delay of each dual-rail
signal in the AWDDL S-box circuit. Although it is not possible to find dual-rail
routes with zero delay difference for all 606 dual-rail connections, the histograms
shown in Fig. 7 indicate the effectiveness of our approach. Nevertheless, it is
worth to mention that the average and the worst delay difference in case of our
router are 11.7 ps and 58 ps respectively. These numbers are incomparable to
those obtained by the ISE router as 125 ps and 520 ps respectively.

To evaluate and fairly compare the side-channel leakage of our target designs
we applied the information theoretic (IT) analysis of [29] as it has been used for

7 Although it is possible to realize each WDDL as well as DPL noEE gate by a 5-to-2
LUT, we made the two 6-to-1 LUT version to keep it as similar as the AWDDL one
and to follow the same design architecture given in [3].



the same purpose e.g., in [16]. So, we collected 512, 000 traces for each target
design, i.e., 2000 traces for each S-box input value. By estimating the mean and
variance of the traces for each S-box input we obtained 256 Gaussian distribu-
tions at each sample point (256 mean traces of the WDDL design are shown by
Fig. 6(b) where evaluation and precharge phases are marked). It allows us to
estimate the probability distribution of the leakages essential in the IT analysis.
Here we should emphasize two points:

– There is no source of randomness in our exemplary designs, and electrical
noise – well modeled by Gaussian [17] – is the only noise source in our
measured traces. Therefore, ignoring the higher statistical moments in prob-
ability estimations – as in Gaussian – does not cause any information loss.

– The AES S-box circuit operates in precharge-evaluation mode, and in con-
trast to a CMOS combinatorial circuit its leakage does not depend on two
consecutive inputs (input transitions). Therefore, our selection of estimating
the probabilities based on the S-box input is a valid choice (the same is given
in [16]).

Performing the IT analysis using the mean and variance traces of each of
our target designs led to the mutual information curves presented by Fig. 8. As
expected, the WDDL design – due to its data-dependent time-of-evaluation and
time-of-precharge – has the highest leakage. Interestingly the DPL noEE and
the AWDDL designs have relatively the same amount of leakage in evaluation
phase as they operate the same in this phase. However, DPL noEE has a higher
leakage in the precharge phase. It indeed confirms our claim in Section 2 that
due to the early propagation of DPL noEE in the precharge phase, in presence
of imbalanced routings its leakage should be more easily detectable compared to
that in the evaluation phase.

A comparison between the result of the AWDDL designs (routed by ISE vs.
routed by our customized router) clearly shows the effectiveness of our developed
router to reduce the information leakage. We should stress again that except the
LUTs’ configuration all details and specification of the first three designs are
the same, that allowed us to fairly compare these logic styles. The same holds
for the two AWDDL designs which only differ in the routing of the AES S-box
circuit.

Independent of the attack strategy, IT analysis captures the amount of in-
formation available to the worst-case adversary. In order to quantify the data
complexity (the number of required traces) of attacks on our target designs, we
performed first-order profiling moments-correlating DPA [21]. Indeed, for each
design profile we used a set of 100, 000 profiling traces to estimate first-order
moments, and made use of them as power models to perform a CPA attack on
another set of 100, 000 traces. The corresponding results are shown by Fig. 9.
Thanks to the metric feature of moments-correlating DPA, we can directly con-
clude the following ratios between the data complexity of the attack on different
profiles:

– DPL noEE versus WDDL:
(
0.111
0.067

)2
= 2.7,
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Fig. 8. Mutual information curves for all profiles

– AWDDL versus DPL noEE:
(
0.067
0.054

)2
= 1.5,

– AWDDL (custom routing) versus AWDDL:
(
0.054
0.038

)2
= 2.0.

As a side note, though the leakage extractable from our AWDDL design is
mitigated, it is not a perfect solution to prevent a key-recovery attack. There-
fore – as it is well known – DPA-resistant logic styles, e.g., AWDDL, should be
combined with other countermeasure such as algorithmic masking which usually
cannot prevent DPA attacks when implemented in hardware [18].

5 Conclusions

In this work we have shown how to design WDDL gates for FPGA platforms
with independent time-of-evaluation and time-of-precharge. This, achieved by
realizing a latch inside every LUT by means of a feedback loop, could guarantee
the disappearance of early propagation in both evaluation and precharge phases.
Our practical investigations confirm that by using our designed AWDDL style
the level of security improves when compared to classical WDDL or to its main
competitor DPL noEE of [3]. However, routing imbalances still impose a threat
to the security of dual-rail precharge logic. Therefore, as the second contribution
of this work we developed a customized tool to reduce this imbalance by selecting
the most similar routes for the signals of a dual-rail connection. This approach,
whose effectiveness has been demonstrated using our proposed logic style, could
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Fig. 9. Result of first-order profiling moments-correlating DPA on all profiles

also be applied to similar logic styles or other applications requiring balanced
routes, e.g., TRNGs and PUFs. It is noteworthy to mention that applying our
customized router does not cause any area overhead. In fact, it only changes the
way the routing resources (PIPs) are configured.

The only available source for delay of the signal routes is the ISE tool. There-
fore, the effectiveness of a customized router relies on the conformity of ISE
reports and the underlying FPGA chip. Due to the process variation as well as
publicly unknown architecture of the FPGAs these numbers might be different
from chip to chip or (even slightly) different to reality. Hence, as a future work,
we plan to develop a mechanism to practically examine the differential delay
as well as the power consumption of the dual-rail routings based on the target
FPGA chip, where the design is supposed to be realized.
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15. V. Lomné, P. Maurine, L. Torres, M. Robert, R. Soares, and N. Calazans. Evalu-
ation on FPGA of triple rail logic robustness against DPA and DEMA. In DATE
009, pages 634–639. IEEE, 2009.
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