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Abstract. We initiate the study of principled, automated, methods for
analyzing hardness assumptions in generic group models, following the
approach of symbolic cryptography. We start by defining a broad class of
generic and symbolic group models for different settings—symmetric or
asymmetric (leveled) k-linear groups—and by proving “computational
soundness” theorems for the symbolic models. Based on this result, we
formulate a very general master theorem that formally relates the hard-
ness of a (possibly interactive) assumption in these models to solving
problems in polynomial algebra. Then, we systematically analyze these
problems. We identify different classes of assumptions and obtain de-
cidability and undecidability results. Then, we develop and implement
automated procedures for verifying the conditions of master theorems,
and thus the validity of hardness assumptions in generic group models.
The concrete outcome of this work is an automated tool which takes as
input the statement of an assumption, and outputs either a proof of its
generic hardness or shows an algebraic attack against the assumption.

1 Introduction

Sophisticated abstractions have often been instrumental in recent breakthroughs
in the design of cryptographic schemes. Bilinear maps are perhaps the most strik-
ing instance of such an abstraction; over the last fifteen years, they have been
used for building advanced and previously unknown cryptographic schemes. Now
it is believed that multilinear maps will lead to similar breakthroughs. Com-
pared to the “classical” algebraic settings based on the purported hardness of
the Factoring/RSA or Discrete-log/Diffie-Hellman problems, bilinear and mul-
tilinear maps indeed provide richer and more versatile algebraic structures that
are particularly suitable for new constructions. At the same time, one unsettling
consequence of using such sophisticated abstractions is a significant growth in
the number of hardness assumptions used in security proofs. Moreover, these
assumptions are not as well studied as their classical and standard counterparts.
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While it is widely acknowledged that this situation is far from ideal, relying on
non-standard assumptions is sometimes the only known way to construct some
new (or some efficient) cryptographic scheme, and hence it cannot be completely
disregarded. A common view to resolving this dilemma is to develop princi-
pled, rigorous approaches for analyzing and comparing non-standard hardness
assumptions.

This question has been previously considered in the literature, in which we
identify at least two approaches. One approach is to devise assumptions that
are general enough to be reused and allow for simple security proofs, and at the
same time are shown to hold under more classical assumptions (e.g., [14,31]).
A second approach is to develop idealized models, such as the Generic Group
[30,32,27] and the Generic Bilinear Group [9] models, and to provide (in the
form of so-called master theorems) necessary and sufficient conditions for the
security of an assumption in these models. Proving the hardness of an assump-
tion in these models is essentially a way to rule out the possibility of algebraic
attacks against the underlying algorithmic problem, and it can be considered
the minimal level of guarantee we need to gain confidence in an assumption.
Two prominent examples along this direction are the “Uber assumption” (aka
“Master theorem”) of Boneh, Boyen and Goh [9,13] and the Matrix Decisional
Diffie-Hellman assumption family recently proposed by Escala et al. [16].

However, although these results are quite general, they can be quite difficult
to apply. Indeed, in order to argue the hardness of an assumption using the
Uber assumption in [9,13] (resp. the Matrix-DDH assumption in [16]) one has
to show the independence (resp. irreducibility) of certain polynomials contained
in the statement of the assumption. A similar problem arises in the context of
interactive assumptions such as [26,2], in which the hardness crucially relies on
the restrictions posed on the queries performed by the adversary. In summary,
applying these general results to verify the validity of a given assumption is far
from being a trivial task, and may be error-prone, as witnessed by unfortunate
failures [34,22].

In this paper, we initiate the study of principled, automated methods for an-
alyzing hardness assumptions in generic group models. Our main contribution
is essentially threefold. First, we reformulate master theorems in the style of the
celebrated “computational soundness” theorem of Abadi and Rogaway [1], and
formally show that the problem of analyzing assumptions in the generic group
reduces to solving problems in polynomial algebra. Second, we systematically
analyze these problems: while we show that the most general problem is un-
decidable, we distill a set of properties (capturing most interesting cases) for
which the problem is decidable. Finally, by applying tools from linear algebra,
we develop and implement automated procedures for verifying the conditions of
master theorems, and thus the validity of hardness assumptions in generic group
models. The concrete outcome of this work is an automated tool4 which takes
as input an assumption and outputs either a proof of its generic hardness (along
with concrete bounds) or shows an algebraic attack against the assumption.

4 The tool is available at http://www.easycrypt.info/GGA

http://www.easycrypt.info/GGA
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1.1 An Overview of Our Contribution

The key contribution of our work is the development of automated decision
procedures for testing the validity of hardness assumptions in generic group
models. Towards this goal, we first settle a rigorous framework for carrying out
this analysis. Basically, this framework consists of formalizing a class of generic
group models and then stating a general master theorem. Finally, our decision
procedures will be aimed at verifying the side conditions of our master theorem.

Generic Group Models. We formalize a broad class of generic group models
capturing many interesting cases used in cryptography: symmetric and asym-
metric k-linear groups, with both leveled and non-leveled maps, and with the
possibility of modeling efficiently computable isomorphisms between the groups.
For any experiment stated in these generic models, we generalize the commonly-
used step of applying the Schwartz-Zippel Lemma, and obtain a generic transfor-
mation (cf. Theorem 1) for switching from the generic group model experiment,
in which variables are uniformly sampled in the underlying field, to a completely
deterministic experiment that works in a corresponding symbolic group model.

A General Master Theorem. We give a general version of the Master the-
orem in [9] which can be stated in any of the generic group models mentioned
above. As in [9], we formulate an assumption as a list L of polynomials in
Fp[X1, . . . , Xn] where X1, . . . , Xn is a set of random variables. In particular, a
decisional (aka left-or-right) assumption is defined by two lists of polynomials L
and L′ (one for the “left” and one for the “right” distribution), and the assump-
tion is said to hold if the adversary cannot distinguish whether it receives poly-
nomials from L or L′. Very informally, our Master theorem states that viewing L
and L′ as the generating sets of two vector spaces5, then the linear dependencies
within L and within L′ are the same. Previous master theorems [9,16] consid-
ered only decisional assumptions with the real-or-random formulation in which
the adversary is given a list of polynomials L and either a “challenge” polyno-
mial f or a fresh random variable Z. Beyond obtaining a theorem that works in
(leveled) k-linear groups, our general formulation allows us to capture virtually
all decisional assumptions, based on k-linear groups (for any k ≥ 1), that are
used in cryptography. To mention some examples, assumptions captured by our
theorem include the Matrix-DDH assumption [16], the k-BDH assumption [4],
and recently proposed assumptions such as (n, k)-MMDHE [21].

Automated Methods. Once we have settled the above framework, our goal is
to develop a collection of automated methods to verify the side condition of the
Master theorem for any given assumption stated in the framework. While the
statement of the above side condition already suggests how to use linear algebra
to make these checks, a crucial challenge is that in many important cases (e.g.,
`-BDHI, k-Lin, etc.) the size of the lists L and L′ is a variable parameter. That

5 We are oversimplifying. More precisely, one has to consider lists C and C′ containing
all polynomials computable by doing multiplications over L and L′ respectively, and
then look at linear dependencies in C and C′.
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Assumption Type Algorithm Examples

Non-parametric D, C
DBDH [11], 2-lin, 3-lin,
Freeman assm. 3&4 [17]

Parametric (real-or-random, monomials inputs)
Fixed #vars, Par. linear degree and Par. arity U, I (`, k)-MMDHE [21]
Fixed #vars, Par. linear degree, Fixed arity D, C `-DHI [8], `-DHE [12]
Parametric #vars, Par. arity, Fixed degree I (k)-BDH [4], k-Lin in k-linear groups

Interactive bounded I,C
LRSW [26], CDDH 1&2 [2],
M-LRSW [6], IBSAS-CDH [7]

Interactive unbounded I
LRSW [26], Strong-LRSW [3],
s-LRSW [19]

Fig. 1. Summary of our automated analysis methods. U=undecidable problem, D=decision proce-
dure, I = incomplete procedure, C=find counterexample for invalid assumptions.

is, to check that the side condition holds, one would have to do computations
on a vector space of variable dimension: a challenging problem for automation.

We study this problem for three main categories of hardness assumptions:
(1) non-parametric, (2) parametric, and (3) interactive. Non-parametric assump-
tions are non-interactive assumptions in which the number of inputs is fixed, no
input is quantified over a variable and the number of levels is fixed (examples
include DDH, DBDH [11], as well as assumptions in k-linear groups for fixed k,
e.g., 3-Lin in 3-linear groups). Conversely, an assumption is parametric if one
or more of the above restrictions do not hold. Finally, interactive assumptions
are those ones where the adversary is granted access to additional oracles (in
addition to the oracles for the algebraic operations). By carefully analyzing each
of these categories, we obtain the following results summarized in Fig. 1.

For non-parametric assumptions, we show how to reduce the check on the
side condition to computing the kernels of certain matrices (of fixed dimension)
that are derived from the lists of polynomials in the assumption’s definition.
Using computer algebra tools (SAGE [33]), we implement a decision procedure
that shows a concrete hardness bound in the corresponding generic group model
in the positive case, and an algebraic attack if the assumption does not hold.

Our methods for non-parametric assumptions offer a complete decision pro-
cedure to verify arbitrary instances of parametric assumptions where all the
parameters have been fixed. This might be sufficient to test quickly a new as-
sumption (and find attacks if any), but it is often desirable to obtain stronger
guarantees that hold for all parameters. We show that, contrary to the non-
parametric case, the side condition becomes undecidable in general. However, we
identify classes of assumptions for which we develop automated methods. Inter-
estingly, these classes still contain most cryptographic assumptions. Considering
the class of real-or-random assumptions, we develop two different methods. The
first method focuses on the case in which the number of random variables is fixed,
and the input elements are monomials. Our method shows how to reduce the
check of the side condition to an integer programming problem. Interestingly, we
can show the following: if the degree of the monomials is not a linear polynomial,
or the arity of the map is variable, then the problem is undecidable; otherwise (if
the monomials have linear degree and the arity of the map is fixed) the problem
is decidable. We implemented the translation procedure to integer programming
problems and use SMT solvers to check satisfiability. For the decidable fragment
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of assumptions mentioned above, we obtain a complete decision procedure that
also shows an attack if the assumption is invalid. For the undecidable fragment,
our procedure successfully analyzes all significant examples from the literature.

Our second method focuses on the case where the number of random variables
is parametric. As in the previous case, our method provides a way to reduce
the side condition to a system of equations. However, the same idea as before
does not work since a parametric number of variables would lead to an infinite
number of equations. Therefore, we focus on a restricted, but significant, class
of assumptions (one restriction is that inputs are expressed as monomials). Our
method is incomplete but successfully analyzes all relevant examples in this class.

Finally, we study interactive assumptions such as LRSW [26]. To analyze
interactive assumptions, we first formulate an interactive version of our master
theorem. Interestingly, once applying our general “computational soundness”
theorem and switching to the symbolic model, our interactive master theorem
essentially becomes a variant of the non-interactive master theorem for para-
metric computational assumptions. This allow us to apply similar techniques as
for parametric assumptions. More specifically, we use SMT solvers and Gröbner
bases computations as an incomplete method to show the validity of such as-
sumptions and find attacks. For instance, our tool automatically proves the va-
lidity of LRSW [26] and exhibits attacks for m-LRSW [6] and CDDH [2].

Extensions and Additional Material. We extend our results to composite-
order groups. Precisely, we formulate the generic group model and our master
theorem in a general way that captures also composite-order groups, and we
show how to extend our decision procedures for non-parametric assumptions to
this setting. Another extension of our results is handling assumptions in which
the adversary receives rational values in the exponent. These extensions, full
detailed proofs and some running examples appear only in the full version.

Limitations. While our master theorem is very general, our automated methods
require to specify the assumptions in a concrete language, essentially to describe
the distribution of the polynomials defining the assumption. Such language can-
not support the expression of very abstract properties, and thus rules out a
few examples. For instance, the definition of the Decision Multilinear No-Exact-
Cover Assumption [18] is parametrized by an instance (with no solution) of the
Exact-Cover NP-complete problem. Although fixing a specific Exact-Cover in-
stance yields lists of polynomials which can be analyzed using our methods, a
definition for any instance is too general. For a similar reason, our tool can-
not handle the Matrix-DDH assumption in its full generality, unless one fixes a
specific distribution for the matrix (e.g., k-Lin).

Discussion. Although well-studied standard assumptions should always be pre-
ferred when designing cryptographic schemes, the use of non-standard ones is not
likely to stop. In this sense, we believe the study and development of rigorous
methods for analyzing cryptographic assumptions is relevant, and that auto-
mated analysis tools can support cryptographers in multiple directions. Mainly,
they provide a rigorous, fast way to test the validity of candidate assumptions in
generic models by delegating this task to a machine. This is especially relevant
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in the recent setting of leveled multilinear maps, that have a rich algebraic struc-
ture and for which even simple assumptions may become difficult to analyze. We
believe that the importance of such tools is motivated by the fact that proofs
validating the hardness of an assumption in the generic group model fall exactly
in the so-called “mundane part”6 of cryptographic proofs mentioned by Halevi
[20], and constitute a perfect candidate of a proof to be delegated to a machine.

Our work shows the feasibility and relevance of developing automated meth-
ods to analyze assumptions in generic group models. It can also be seen as
the first step towards analyzing cryptographic protocols directly in the generic
model; we expect that such analyses would allow to discover subtle flaws in
protocols and supplant existing methods based on symbolic cryptography.

1.2 Related Work

The problem of analyzing and comparing hardness assumptions has been ear-
lier considered in the literature, e.g., [29]. In particular, we identify two main
approaches in previous work. The first approach aims to define generalized as-
sumptions that reduce to standard ones. Examples of works in this direction
include: the Square Diffie-Hellman assumption, shown to be equivalent to CDH
by Maurer and Wolf [28]; the (P,Q)-Decisional Diffie-Hellman assumption of
Bresson et al. [14] which is shown to reduce to DDH; and the decisional sub-
space problems of Okamoto-Takashima [31] that are reduced to DLin.

The other approach aims at directly analyzing assumptions by means of
idealized models, such as the generic group model. This model was introduced by
Nechaev [30] and further refined and generalized by Shoup [32], and Maurer [27].
Our work follows closely Maurer’s model, in which the main difference compared
to previous proposals is to model the adversary’s access to group elements via
handles instead of random bitstrings as in [30,32]. These two models have been
proven equivalent in [24]. Worth mentioning in this context is the semi-generic
group model of Jager and Rupp [23]. This is a weaker version of the bilinear
generic group model, and its basic idea is to model the base groups of pairings
as generic groups, whereas the target group is given in the standard model.

Two works that address the problem of devising general assumptions in the
generic group are the Master theorem of Boneh, Boyen and Goh [9] (generalized
by Boyen [13]), and the Matrix DDH assumption of Escala et al. [16]. Roughly
speaking, the former provides a framework for arguing about the validity of sev-
eral pairing-based assumptions in the generic group model, and it captures a
significant fraction of assumptions in the literature. The latter is an assump-
tion that subsumes classical problems like DDH or DLin and also introduces
assumptions, such as k-Casc, that are proven hard in the generic k-linear group

6 In [20], Halevi informally divides proofs in two categories (quoting): “Most (or all)
cryptographic proofs have a creative part (e.g., describing the simulator or the reduc-
tion) and a mundane part (e.g., checking that the reduction actually goes through).
It often happens that the mundane parts are much harder to write and verify, and it
is with these parts that we can hope to have automated help.”
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model. Also worth mentioning is the work of Freeman [17] which extends the
BBG Master theorem to challenges in the source group and uses the computer
algebra system Magma to verify the side conditions required to prove two of
the assumptions. Our work is also close to the line of work on automation of
cryptographic proofs in both the computational and symbolic models, see [5] for
an overview.

1.3 Preliminaries

In our work, we denote by λ the security parameter. We use Gi to denote additive
cyclic groups of prime order and Pi to denote a generator of Gi. For any element
Q = xPi, we denote with x = dlog(Q) its discrete logarithm. We use a or v
to denote vectors, a‖b for the concatenation of two vectors, and a · b to denote
their inner product. We denote the power set of S with P(S), the i-th element
of a list with L[i], the range {n, . . . , n+ l} with [n, n+ l], and [1, n] with [n].

A symmetric k-linear group is a pair of groups G1 and G2 together with
an admissible k-linear map e : Gk1 → G2. An asymmetric k-linear group is a
sequence of groups G1, . . . ,Gk,Gk+1 together with an admissible k-linear map
e : G1 × · · · × Gk → Gk+1. For a k-linear map e : G1 × · · · × Gk → Gk+1, we
call Gk+1 the target group and other groups Gi source groups. We can further
assume existence of isomorphisms Gi → Gj between source groups.

A symmetric leveled k-linear group is a sequence of groups G1, . . . ,Gk to-
gether with bilinear maps e : Gi ×Gj → Gi+j for i, j ∈ [1, k] and i+ j ≤ k. We
say that Gn is the group at level n and call Gk the target group. An asymmetric
leveled k-linear group is a collection of groups {GS} for S ∈ P([k]) together with
bilinear maps eS,T : GS ×GT → GS∪T for all S ∩ T = ∅.

2 Generic Group Models and Symbolic Group Models

In this section, we define a class of generic group models that captures the
previously described group settings. Afterwards, we define a symbolic group
model where instead of computing with (randomly sampled) group elements,
the challenger computes with (fixed) polynomials. We prove that this model is
equivalent to the generic group model up to some usually small error.

Generic Group Models. A generic group model for a concrete group setting
captures all operations that an adversary with black-box access can perform.

Definition 1. A group setting is a tuple GS = (p,G, Φ, E) where G = {Gi}i∈I
is a set of cyclic groups of prime order p indexed by a totally ordered set I, Φ is
a set of isomorphisms φ : Gi → Gj, and E is a set of maps, where for each e ∈ E,
there is a k s.t. e : Gi1 × . . .×Gik → Gik+1

is an admissible k-linear map.
The generic model for a group setting (p,G, Φ, E) and a distribution D on in-

dexed sets {Li}i∈I of lists of elements of Gi is defined as follows. The challenger
maintains lists L = {Li}i∈I where each list Li contains elements from Gi. The
lists are initialized by sampling from D and the adversary can apply the group
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operations, isomorphisms, and k-linear maps to list elements by providing the
indices of elements as handles. For an operation o : Gi1 × . . .×Gik → Gik+1

, the
corresponding oracle takes handles h1, . . . , hk, computes a = o(a1, . . . , ak) for
aj = Lij [hj ], appends a to Lik+1

and returns a’s handle h = |Lik+1
|. Note that

handles are not unique, but the challenger provides an equality oracle to check
if two handles refer to the same group element. A formal definition of the game
appears in the full version.

Remark 1. As mentioned in Section 1.2, our generic group model closely follows
Maurer’s model [27]. We provide the adversary with access to the internal state
variables of the challenger via handles, and we assume that the equality queries
are “free”, in the sense that they do not count when measuring the computational
complexity of the adversary.

Example 1. To model a asymmetric leveled k-linear map, we use the index set
I = P([k]), Φ = ∅, and E = {eT,R : GT ×GR → GT∪R | T,R ∈ I ∧ T ∩R = ∅}.

Definition 2. For a list of lists L = L1, . . . , Lk of polynomials over Fp[X1, .., Xn],
we define the distribution DL by the following procedure. Uniformly sample a
point x ∈ Fnp and return the list of lists L′ = L′1, . . . , L

′
k where L′i = [f1(x)Pi, . . . ,

f|Li|(x)Pi] for fj = Li[j]. A distribution D is polynomially induced if D = DL
for some L.

Most hardness assumptions in generic group models belong to the following
classes of decisional, computational, or generalized extraction problems stated
with respect to a group setting GS:

– Decisional problem for DL and DL′ :
Return b ∈ {0, 1} to distinguish the corresponding generic group models.

– Computational problem for DL, polynomial f , and group index i:
Return handle to f(x)Pi, where x is the random point sampled by DL.

– Generalized extraction problem for DL, n,m, i1, . . . , im, H:
Return a ∈ Fnp and handles h1, . . . , hm such that the random point x sampled
by DL satisfies H(x,a, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) = 0.

The above classification generalizes the one proposed by Maurer [27]. Precisely,
in addition to decisional and computational assumptions, Maurer considered
“straight” extraction problems (such as discrete logarithm) in which the adver-
sary has to extract the random value x of a handle. Our class of generalized
extraction problems captures extraction problems like discrete logarithm, but
also captures problems like the Strong Diffie-Hellman Problem [8].7 Moreover,
note that our class of generalized extraction problems contains the class of com-
putational problems.

From Generic to Symbolic Group Models. The symbolic group model for
a group setting (p,G, Φ, E) and a distribution DL provides the same adversary

7 Set n = 1, m = 0, H(X, a1) = X − a1 for DLOG and n = m = 1,H(X, a1, Y ) =
(X − a1)Y − 1 for SDH.
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interface as the corresponding generic group model. The difference is that, in-
ternally, the challenger now stores lists of polynomials in Fp[X1, . . . , Xn] where
X1, . . . , Xn are the variables occurring in L. The oracles perform addition, nega-
tion, and equality checks in the polynomial ring. To define the polynomial oper-
ations corresponding to applications of isomorphisms and n-linear maps, observe
that for all isomorphisms φ there is an a ∈ F×p such that φ(gi) = gaj . We therefore
define the oracle isomφ(h) such that it computes a · Li[h]. Similarly, we define
the oracle mape(h1, . . . , hk) such that it computes a · (Li1 [h1] · · ·Lik [hk]). We
also define a symbolic version S(E) of a generic winning condition E. For de-
cisional problems and computational problems, the symbolic event is equal to
the generic event, i.e., S(E) = E. For generalized extraction problems, the event
E is translated to checking whether H(X1, . . . , Xn,a, Li1 [h1], . . . , Lim [hm]) = 0
holds in the polynomial ring. We denote the symbolic group model for a group
setting GS and a distribution DL with SymDL

GS and the corresponding generic

group model with GenDL

GS .

Theorem 1. Let (p,G, Φ, E) denote a group setting, DL a distribution, A an
adversary performing at most q queries, and E the winning event of a decisional,
computational, or generalized extraction assumption. If d is an upper bound on
the degrees of the polynomials occurring in the internal state of SymDL

GS (A) and
S(E), s is the sum of the sizes of the lists in L, and the event S(E) contains at
most e equality tests, then

|Pr[ GenDL

GS (A) : E ]− Pr[ SymDL

GS (A) : S(E) ]| ≤ (s+ q)2 ∗ d/2p+ ed/p

where the probability is taken over the coins of GenDL

GS and A.

By applying this theorem, we can therefore analyze the hardness of assump-
tions in the simpler symbolic model. We note that existing master theorems
usually include a similar step in their proofs. Here we explicitly prove the equiv-
alence of the Gen and Sym experiments. This stronger result is required for our
decidability results.

3 Master Theorem for Non-Interactive Assumptions

In this section we state our master theorem for decisional, non-interactive prob-
lems. In Section 5, we give a master theorem for interactive assumptions which
cover generalized extraction problems (and computational ones per Section 2).

To state our theorem, we first define the completion C(L) of a list L with
respect to the group setting (p,G, Φ, E). This notion will be instrumental to
define the side condition of our master theorem. Intuitively speaking, given a
list L, its completion C(L) is the list of all polynomials that can be computed
by the adversary by applying isomorphisms and maps to polynomials in L.

We compute the completion C(L) of L in two steps. In the first step, we com-
pute the recipe lists {Ri}i∈I using the algorithm given in Figure 2. The elements
of the recipe lists are monomials over the variables Wi,j for (i, j) ∈ I × [|Li|].
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foreach i ∈ I : S′
i = ∅ ; Si = {Wi,1, . . . ,Wi,|Li|}

while S 6= S′ :

S′ := S
foreach e : Gj1 × . . .×Gjn → Gjn+1 ∈ E :

Sjn+1 := Sjn+1 ∪ {f1 · · · fn | fi ∈ Sji , i ∈ [n]}
foreach φ : Gi → Gj ∈ Φ : Sj := Sj ∪ Si

foreach i ∈ I : Ri := setToList(Si)

Fig. 2. Computation of lists of recipes Ri for input lists Li.

The monomials characterize which products of elements in L the adversary can
compute by applying isomorpisms and maps. The result of the first step is in-
dependent of the elements in the lists L and only depends on the lengths of the
lists. In the second step, we compute the actual polynomials from the recipes as

C(L)i = [m1(L), . . . ,m|Ri|(L)] for [m1, . . . ,m|Ri|] = Ri

where every mi is a monomial over the variables Wi,j and mi(L) denotes the
result of evaluating the monomial mi for the values Li[ji].

To ensure that the computation of the recipes terminates, we restrict our-
selves to group settings without cycles. We also assume that the group setting
contains a target group. Formally, for a group setting (p,G, Φ, E), we define the
weighted directed graph G = (V,E) with V = G and E defined as follows. For
each isomorphism Gi → Gj ∈ Φ, there is an edge from Gi to Gj of weight 0.
Similarly, given any Gi1 × · · · × Gin → Gin+1

∈ E , there are edges from Gij to
Gin+1

of weight 1 for j ∈ [n]. We assume that the graph G contains no loops
of positive weight. Furthermore, we assume there is a unique Gt ∈ V called the
target group, such that from any Gi ∈ V there is a path to Gt and Gt does not
have any outgoing edges.

Theorem 2. Let GS = (p, {Gi}i∈I , Φ, E) denote a group setting, and DL,DL′

be polynomially-induced distributions such that |Li| = |L′i| for all i ∈ I. Let t
denote the index of the target group, s =

∑
i∈I |Li|, r = |C(L)t|, and let d denote

an upper bound for the total degrees of the polynomials in the completions of the
lists. If

{a ∈ Frp | a · C(L)t = 0} = {a ∈ Frp | a · C(L
′)t = 0},

then

|Pr[ GenGSDL
(A) = 1 ]− Pr[ GenGSDL′ (A) = 1 ]| ≤ (s+ q)2 ∗ d/p

for all adversaries A that perform at most q operations.

Note that deciding the side condition is sufficient for deciding the hardness
of the corresponding decisional problem for a fixed group setting and fixed dis-
tributions. Either the side condition is satisfied or there exists an a ∈ Frp that is
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included in one of the sets, but not in the other one. In the first case, the distin-
guishing advantage is upper-bounded by the ε given above. In the second case,
we can construct an adversary that distinguishes the two symbolic models with
probability 1, which implies that it distinguishes the corresponding generic mod-
els with probability 1 − ε. Note that for real-or-random assumptions where the
adversary is given L̂ and must distinguish f from a fresh variable Z in the target
group Gt, our side condition simplifies to

∑r
j=1 ajC(L̂)t[j] 6= f for all a ∈ Frp.

This is similar to the independence condition in the BBG master theorem [10].

4 Automated Analysis of Non-Interactive Assumptions

In this section, we present methods to automatically verify or falsify the hardness
of decisional assumptions. As mentioned earlier, our master theorem is stated
with respect to a fixed group setting and fixed distributions. To consider multiple
group settings or distributions at once, we define a decisional assumption A as a
possibly infinite set of triples (GS,DL,DL′). A is generically hard if the disting-
uishing probability is upper-bounded by ε in Theorem 2 for all triples in A.

We distinguish between non-parametric assumptions and parametric assump-
tions. An assumption is non-parametric if only the concrete groups, isomor-
phisms, and n-linear maps vary, but the structure of the group setting and the
lists L and L′ defining the distributions remain fixed. This captures assumptions
such as “3-lin is hard in all groups with a symmetric 3-linear map”. Conversely,
an assumption is parametric if one or more of these restrictions do not hold.

4.1 Non-Parametric Assumptions

We perform the following computations over Z to decide the hardness of a de-
cisional assumption defined by lists L and L′ for all group settings GS with a
given index set and types of isomorphisms and n-linear maps.

1. Initialize the set T of distinguishing tests and the set E of exceptional primes to ∅.
2. Compute the completions C(L) and C(L′) and set Lt := C(L)t, L′

t := C(L′)t

3. Compute a generating set K of the Z-module {a ∈ Z|Lt| | a · Lt = 0} as follows:

(a) Represent all polynomials g ∈ Lt as vectors v1, . . . ,vn and denote by M the
matrix, where row i is vi with respect to the basis monomials(Lt).

(b) Compute the Hermite Normal Form N of M and read off a generating set K
of the left kernel from N and the transformation matrix. Set E := E∪F where
F is the set of factors of pivots of N .

Perform the same steps for L′
t to obtain M ′ and K′.

4. Check for every k ∈ K if kM ′ = 0. If kM ′ = c 6= 0, then set T := T ∪ k and
E := E ∪ F where F denotes the set of common factors of c. Perform the same
steps for K′ and M .

5. Compute distinguishing probability ε from degrees in Lt and L
′
t.

6. If T is empty, return that distinguishing probability is upper-bounded by ε except
(possibly) for primes in E. If T is nonempty, return that using the tests in T , an
adversary can distinguish with probability 1− ε except (possibly) for primes in E.
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Note that performing division-free computations over Z allows us to track the
set of exceptional primes, which we return. We have implemented this algorithm
in a tool that takes a group setting and two sequences of group elements as input
and decides if the corresponding decisional assumption is hard returning ε, E,
and the distinguishing tests T (if nonempty).

4.2 Parametric Assumptions

For parametric decisional assumptions, we restrict ourselves to the real-or-random
case. The approach can also be adapted to handle computational assumptions.
We distinguish parametricity in two dimensions. First, an assumption may be
parameterized by range limits l1, . . . , lm (ranging over N) that determine the size
of the adversary input. We use range expressions ∀r ∈ [α, β]. hr, where α and β
are polynomials over range limits, to express such assumptions. The polynomi-
als hr can use the range index r in the exponent or as the index of an indexed
variable Xr. We will denote range expressions with capital letters R. Second,
the group setting of an assumption may be parameterized by an arity k that
captures the maximum number of multiplications that can be performed.

Parametricity in the input size allows us to analyze assumptions such as
“l-DHE is hard for all l”. Parametricity in the arity allows us to analyze as-
sumptions such “2-BDH is hard for all k-linear groups”. Combining both types
of parametricity allows us to analyze assumptions such as “k-lin is hard in k-
linear groups” or “(l, k)-MMDHE is hard for all l and k ≥ 3”. In the following,
we will present two methods that deal with both parametricity in the input
size and parametricity in the arity. The first method assumes a fixed number of
random variables. The second method allows for indexed random variables, but
assumes that the degree of adversary input and challenge is fixed.

Fixed Number of Variables. We assume a real-or-random decisional assump-
tion in a (leveled) k-linear group where the challenge polynomial g is in the target
group, and the adversary input is expressed using range expressions R1, . . . , Rn
on the levels λ1, . . . , λn. Here λi is either of the form c or of the form k − c for
a constant c ∈ N. Furthermore, we assume that the assumption uses random
variables X and range limits l. To simplify the presentation, we will use the
notation Xf = Xf1

1 · · ·Xfm
m . Then the ranges are of the form

Ri = ∀ri,1 ∈ [αi,1, βi,1], . . . , ri,ti ∈ [αi,ti , βi,ti ].X
fi

where every αi,j and βi,j is a polynomial over l and every f ∈ f i is a poly-
nomial over k, l, and ri,1, . . . , ri,ti . The challenge polynomial is of the form
g =

∑w
i=1 ciX

ui . Using the independence condition derived from Theorem 2, it
follows that real distribution and the random distribution are indistinguishable
iff there is a monomial Xui that is not an element of the completion of the Ri.

To check this condition, we proceed in two steps. In the first step, we compute
a single range expression R that denotes the completion of the Ri in the target
group. In the second step, we check for each Xui whether Xui ∈ R, by encoding
the required equalities of the exponent-polynomials into a set of diophantine
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(in)equalities. We then show that satisfiability checking for such constraints is
undecidable in general. Nevertheless, we identify two decidable fragments and
demonstrate that SMT solvers can handle most instances derived from practical
cryptographic assumptions, even those that are not in the decidable fragments.

If R1, . . . , Rn denote the sets S1, . . . , Sn, then the completion R of R1, . . . , Rn
in the target group must denote the set⋃

δ∈Nn s.t.
∑n

i=1 δi·λi=k

Sδ11 · · ·Sδnn

where SS′ = {ss′ | s ∈ S∧s′ ∈ S′} and Sδ = {
∏δ
i=1 si|s1 ∈ S∧ . . .∧sδ ∈ S}. We

therefore define multiplication of range expressions with distinct range indices as

(∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt].X
f )(∀r′1 ∈ [α′1, β

′
1], . . . , r′s ∈ [α′t′ , β

′
t′ ].X

f ′
)

= ∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt], r
′
1 ∈ [α′1, β

′
1], . . . , r′s ∈ [α′t′ , β

′
t′ ].X

f+f ′
.

To define the δ-fold product of a range expression, we restrict ourselves to
exponent-polynomials that can be expressed as f̂+f̃ such that f̂ =

∑t
j=1 rj φj(l, k)

for polynomials φj in Z[l, k] and such that f̃ is a polynomial in Z[l, k]. The δ-fold
product is then defined as

(∀r1 ∈ [α1, β1], . . . , rm ∈ [αt, βt].X
f̂+f̃ )δ

= ∀r1 ∈ [δα1, δβ1], . . . , rm ∈ [δαt, δβt].X
f̂+δf̃ .

Given range expressions R1, . . . , Rn, we can now compute R by introducing fresh
variables δ1, . . . , δn, computing the range expressions Rδii , and then computing
the product of these range expressions.

The remaining task is now to check if

Xu ∈ (∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt].X
f ) = R

where u ∈ Z[l, k]m, αi, βi ∈ Z[δ, l], f ∈ Z[l, k, r1, . . . , rt]
m, and

∑n
i=1 δi · λi = k.

To achieve this, we compute the following set of integer constraints that is sat-
isfiable iff Xu ∈ R: 

0 ≤ δi for i ∈ [1, n]
αi ≤ ri ≤ βi for i ∈ [1, t]
ui = fi, for i ∈ [1,m]∑n
i=1 δiλi = k

If we allow for both types of parametricity, it is possible to reduce Hilbert’s
10th problem to the generic hardness of cryptographic assumptions expressed as
previously described. This yields the following theorem.

Theorem 3. Deciding hardness of parametric assumptions with a fixed number
of variables in the generic group model is undecidable, even if all exponent-
polynomials are linear in range limits, range indices, and the arity.
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However, for a restricted class of assumptions, the problem is decidable.

Theorem 4. For all parametric assumptions with a fixed number of variables
such that all exponent-polynomials fi,j and range bounds αi,j and βi,j in the
input are linear, and either (1) the arity k is fixed or (2) the assumption does
not contain range limits li and the input exponent-polynomials do not use k,
deciding hardness in the generic group model is decidable.

Proof (Sketch). In both cases, we transform the constraint system into a sys-
tem of linear constraints. Note that the first type of constraint is already linear.
In the first case, the arity k is fixed and we can eliminate the variables δi by
performing a case distinction since there are only finitely many possible values.
Then, the constraints of the first and fourth type are constant and the con-
straints of the second and third type are linear. If there are no range limits,
then the range bounds are constants and we can eliminate the range indices
by expanding all range expressions into finite sets of monomials. Then the con-
straints of the second type are constant and we can linearize the constraints of
the last type since λi is either a constant c or of the form k − c. For constraints
of the third type, every ui is a linear polynomial in Z[k] and every fi is a linear
polynomial in Z[δ, k].

We have implemented this method in our tool and use Z3 [15] to check the
constraints. Our experiments confirm that Z3 can prove most assumptions taken
from the literature, even those outside the decidable fragment.

Indexed Random Variables. For the case of indexed random variables, we
have developed an (incomplete) constraint solving procedure that deals with as-
sumptions parametric in the arity k and a range limit l. Let M denote monomials
built from indexed variables and M ′ denote monomials built from non-indexed
variables. Our procedure supports all assumptions where the challenge is of the
form

∑
i∈[0,l]MM ′ and the input consist of ranges ∀i ∈ [0, l].MM ′ and non-

indexed monomials M ′.

5 Interactive Assumptions

In this section, we present our methods for the analysis of interactive assumptions
such as LRSW [26]. To simplify the presentation, we focus on assumptions where
exactly one additional oracle O is provided to the adversary and the problem
is a generalized extraction problem. In the remainder, we fix a group setting
GS = (p, {G}i∈I , Φ, E) and a distribution DL. We use X to denote the variables
occurring in L and x to denote the point sampled by DL.

Generalizing Gen and Sym. Our first step is generalizing the generic group
and symbolic group models to the interactive setting. Let q′, n,m, l denote posi-
tive integers, let i ∈ Il, and let F denote an l-dimensional vector of polynomials
in Fp[X, Y1, . . . , Ym, A1, . . . , An]. We say O is defined by (q′, n,m, l, i,F ) if O
answers at most q′ queries and answers queries for parameter a ∈ Fnp by sampling
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a point y ∈ Fmp and returning handles to the group elements Fj(x,y,a)Pij ∈ Gij
for j ∈ [l] where Pij is the generator of Gij . Similarly, the symbolic version of O
answers queries for a ∈ Fnp by choosing m fresh variables Y , adding the polyno-
mials Fj(X,Y ,a) to the lists Lij for j ∈ [l], and returning their handles. To for-
malize winning conditions of interactive assumptions, we extend the previously
given definition of generalized extraction problem with inequalities. Concretely,
the winning condition is formalized by polynomials H1, . . . ,Hd1 , G1, . . . , Gd2
that capture the required equalities and inequalities for the field elements b
and the handles h returned by the adversary. These polynomials are elements of
Fp[X, (Yi)i∈[q′], (Ai)i∈[q′],B,Z]. Intuitively, X and Yi model random variables
sampled initially and by O, Ai and B model parameters chosen by the adver-
sary, and Z models group elements referenced by the handles h. An adversary,
that queries the oracle with a1, . . . ,aq′ and returns b and h, wins if the following
conditions are satisfied for yj sampled in the j-th oracle call:

Hj(x,y1, . . . ,yq′ ,a1, . . . ,aq′ , b, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) = 0 , j ∈ [d1]

Gj(x,y1, . . . ,yq′ ,a1, . . . ,aq′ , b, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) 6= 0 , j ∈ [d2]

Since Theorem 1 captures generalized extraction problems (with inequalities)
in such an interactive setting, we can analyze such assumptions in the symbolic
group model. As mentioned earlier, the symbolic version of the winning event can
be obtained by plugging in the polynomials Lij [hj ] for the variables Zj instead
of using the discrete logarithm.

Interactive Master Theorem. To define the interactive master theorem, we
introduce the notion of parametric completion. The parametric completion of L
with respect to a group setting GS and an oracle O defined by (q′, n,m, l, i,F )
is a family Li of lists of polynomials in Fp[X,Y ,A]. Here, the variables Yu,v
range over u ∈ [m] and v ∈ [q′] and the variables Au,v range over u ∈ [n] and
v ∈ [q′]. They model the random values sampled by O and the parameters given
to O. The parametric completion first extends the lists Lij with

{Fj(X, Y1,v, . . . , Ym,v, A1,v, . . . , An,v) | v ∈ [q′]}

for j ∈ [l]. Then, it performs the previously defined completion with respect to
the isomorphisms and n-linear maps in GS. We denote the result with CO(L).

To state our interactive master theorem, we exploit that in the symbolic
model, we can translate a generalized extraction problem to an equivalent gen-
eralized extraction problem where the adversary returns only elements in Fp and
no handles. Let CO(L) = Li1 , . . . , Lil denote the lists in the completion. Then,
we can translate H(X, (Yi)i∈[q′], (Ai)i∈[q′],B, Z1, . . . , Zl) to

H ′(X,
−→
Y ,
−→
A,B,C1, . . . ,Cl) = H(X,

−→
Y ,
−→
A,V ,C1 · Li1 , . . . ,Cl · Lil).

The two problems are equivalent since the adversary can return a handle to a
polynomial f in Lij if and only if f is in the span of Lij .



16

Theorem 5. Let GS denote a group setting and let DL denote a polynomially-
induced distribution. Consider the (n̂, m̂, j,H,G)-extraction problem in the generic
and symbolic group models for GS, DL, and the oracle defined by (q′, n,m, l, i,F ).
Let H ′ and G′ denote the translations of H and G with respect to this model
that do not use handles. Then the problem is symbolically hard if there exist no
vectors a, b, and c in Fp such that(∧|H′|

j=1
H ′j(X,Y ,a, b, c) = 0

)
∧
(∧|G′|

j=1
G′j(X,Y ,a, b, c) 6= 0

)
.

In this case, the winning probability for the generic version is upper-bounded by
(s+ q + q′ l)2 ∗ d/2p+ ed/p where p is the group order, s is the sum of the sizes
of the lists in L, q the number of queries to the group-oracles, q′ the number
of queries to O, d an upper bound on the degrees (in X and Y ) stored by the
corresponding symbolic model and occuring in H ′ and G′, and e = |H ′|+ |G′|.

In the proof of this theorem, we use Theorem 1 to switch to the symbolic model.
In the symbolic model, the winning condition is equivalent to our side condition.

Automated Analysis. We have developed two methods for the automated
analysis of interactive assumptions. Our first method deals with the bounded
case, i.e., where the number of oracle queries q′ is fixed. Informally, we use
Gröbner basis techniques and SMT solvers to prove that there is (1) no solution
for all primes, (2) no solution for all primes except for some bad primes, (3) a
solution over the rationals which can be converted into an attack for almost all
primes, or (4) a solution over C. Even though we only encountered cases (1-3)
in practice, case (4) is the reason for the incompleteness of our algorithm since
the existence of a solution over C does not imply the existence of solutions over
Fp. In the unbounded case, we perform most steps symbolically to obtain results
that are valid for all possible values of q′. Concretely, we encode the hardness
of the assumption into a formula in the theory of non-linear arithmetic over C
with uninterpreted function symbols, which we use to encode parameters used in
queries and returned by the adversary. We use Z3 to prove the unsatisfiability of
these formulas exploiting the support for nonlinear arithmetic over the reals [25]
by encoding complex numbers as pairs of reals. In our experiments, Z3 can prove
the unsatisfiability of formulas obtained from most valid assumptions in seconds.
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