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Abstract

Certificateless public key cryptography eliminates inherent key escrow problem in identity-based cryptography, and
does not yet requires certificates as in the traditional public key infrastructure. However, most of certificateless sig-
nature schemes without random oracles have been demonstrated to be insecure. In this paper, we propose a new
certificateless signature scheme and prove that our new scheme is existentially unforgeable against adaptively chosen
message attack in the standard model. Performance analysis shows that our new scheme has shorter system parame-
ters, shorter length of signature, and higher computational efficiency than the previous schemes in the standard model.
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1. Introduction

Digital signature plays a crucial role to provide integrity, authentication and non-repudiation of data. In traditional
public key signature algorithms the public key of the user (signer or verifier) is essentially a random bit ring, it needs
a certificate issued by a certification authority (CA) to achieve authentication of the user’s public key. To conquer
the problem of costly certificate management, Shamir [8] proposed the notion of identity - based cryptography, in
which, the user’s public key is derived directly from its name, email-address or other identity information, the user’s
private key is generated by a trusted third party called Key Generation Center (KGC). Such cryptosystem eliminates
the need for public key certificate. But, it suffers from the key escrow problem, i.e., the KGC knows the user’s private
key. A malicious KGC can decrypt any ciphertext and forge the signature of any user. To overcome the drawback of
key escrow in IBC, Al-Riyami and Paterson [1] introduced certificateless public cryptography (CL-PKC) in 2003. In
CL-PKC, the user’s private key is a combination partial private key computed by KGC and some user-chosen secret
value, the user’s public key is computed from the KGC’s public parameters and the secret value of the user. Hence,
CL-PKC avoids usage of certificates and resolves the key escrow problem.

Since Al-Riyami and Paterson’s certificateless signature scheme [1], many CLS schemes such as [5–7, 10, 11, 13–
15] have been proposed. However, most of these certificateless signature schemes are provably secure in the random
oracle model [3], which can only be considered as a heuristic argument [4]. It has been shown in [2] that the security
of schemes may not preserve when the random oracle is instantiated with a particular hash function such as SHA-1.
The fist certificateless signature scheme in the standard model is proposed by Liu et al.[7] in 2007. Unfortunately,
in 2008, Xiong et al. [10] showed that Liu et ai.’s scheme [7] is insecure against a “malicious-but-passive” KGC
attack and proposed an improved scheme. In 2009, Yuan [13] presented another provably secure CLS scheme against
“malicious-but-passive” KGC attack in the standard model. However, Xia et al. [9] showed that both Xiong et al.’s
improved scheme [10] and Yuan et al.’s scheme [13] are vulnerable to key replacement attack. Recently, Yu et al.
[12] proposed a certificateless signature scheme which is an improved version of the existing certificateless signature
schemes [7, 10, 13]. In this paper, we propose a new certificateless signature scheme and prove that our new scheme is
existentially unforgeable against adaptively chosen message attack in the standard model. Compared with the existing
schemes [10, 12, 13] in the standard model, our scheme offers shorter system parameters, shorter length of signature,
and higher computational efficiency.
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The rest of paper is organized as follows. In Section 2, some preliminaries are introduced. In Section 3, we
construct a new certificateless signature scheme in the standard model. In Section 4, we give the security proof and
the performance analysis of our signature scheme. Finally, a concluding remark is given in Section 5.

2. Preliminaries

2.1. Security model

Generally, two types of attackers should be considered in a certificateless cryptosystem. The Type I attacker
AI models an “outsider” adversary, who can compromise user’s secret value or replace user’s public key, but neither
compromise master secret key nor get access to partial private key. We call this attack launched by the type I adversary
as the key replacement attack. The Type II attacker AII models a malicious KGC who knows the master secret key,
and can derive partial private key, but cannot compromise user’s secret value nor replace any public key.

A certificateless signature scheme is existentially unforgeable against chosen message attack if no adversariesAI

andAII have a non-negligible advantage in the following game played between a challenger and an adversary.
Game1. We illustrate the first game played between a challenger and a Type I adversaryAI as below.
Initialization. Challenger runs algorithm Setup to generate the master key msk and the master public key mpk. Chal-
lenger then gives mpk toAI and keeps msk secret.
Phase 1. In this phase,AI adaptively performs a polynomially bounded number of oracle queries as below:
Public-Key-Broadcast-Oracle. When AI requests the public key for any identity ID, challenger computes the cor-
responding public key pkID and returns pkID toAI .
Partial-Private-Key-Oracle. WhenAI requests ID’s partial private key, challenger computes the corresponding par-
tial private key pskID for this identity and returns pskID toAI .
Public-Key-Replacement-Oracle. When AI supplies an identity ID and a new valid public key value pk′ID, chal-
lenger replaces the current public key with pk′ID.
Private-Key-Extract-Oracle. WhenAI requests the private key of an identity ID whose public key was not replaced,
challenger computes the private key skID for this identity and returns skID toAI .
Sign-Oracle. When AI supplies an identity ID, and a message m, challenger C responds with a valid signature δ.
It is possible for the challenger not to be aware of the signer’s secret value when the associated public key has been
replaced. In this case, we requireAI to provide the signer’s secret value.
Output. Eventually, AI outputs (ID∗,m∗, δ∗), where ID∗ is the identity of a target user, m∗ is a message, and δ∗ is a
signature for m∗. AI wins the game if
(1) ID∗ has not been submitted to Partial-Private-Key-Oracle.
(2) (ID∗,m∗) has not been submitted to the Sign-Oracle.
(3) 1← Verify(params, ID∗, PKID∗ ,m∗, δ∗).

Game II. We illustrate the second game played between a challenger and a Type II adversaryAII as below.
Initialization. Challenger runs algorithm Setup to generate the master secret key msk and the master public key mpk.
Challenger then gives mpk and msk to adversaryAII .
Phase 1. In this phase,AII adaptively issues a polynomially bounded number of queries as in game I. The difference
in this phase is that AII cannot replace any public key andAII can compute the partial private key of any identity by
itself.
Output. Eventually, AII outputs (ID∗,m∗, δ∗), where ID∗ is the identity of a target user, m∗ is a message, and δ∗ is a
signature for m∗. AII wins the game if
(1) ID∗ has not been submitted to Private-Key-Extract-Oracle.
(2) (ID∗,m∗) has not been submitted to the Sign-Oracle.
(3) 1← Verify(params, ID∗, PKID∗ ,m∗, δ∗).

2.2. Complexity assumptions

2.2.1. Non-pairing-based generalised bilinear DH (NGBDH) assumption
Given a group G of prime order p with a generator g and elements ga, gb ∈ G where a, b are selected randomly

from Z∗p, the NGBDH problem in G is to output the pair (gabc, gc). An algorithm B has at least ε advantage in solving
the NGBDH problem if Pr[B(g, ga, gb) = (gabc, gc)] ≥ ε.
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The (ε, t)-NGBDH assumption is said to hold if no algorithm running in time at most t can solve the NGBDH
problem in G with an advantage at least ε.

2.2.2. Many-DH assumption
Given a group G of prime order p with generator g and elements (ga, gb, gc, gab, gac, gbc) ∈ G where a, b, c are

selected randomly from Z∗p, the Many-DH problem is to output gabc. An algorithm B has at least an ε advantage in
solving the Many-DH problem if Pr[B(g, ga, gb, gc, gab, gac, gbc) = gabc] ≥ ε.

The (ε, t)-Many-DH assumption is said to hold if no algorithm running in time at most t can solve the Many-DH
problem in G with an advantage at least ε.

3. New certificateless signature scheme

Our certificateless signature scheme consists of the following five algorithms:
Setup: Let (G,GT ) be bilinear groups where |G| = |GT | = p for a large prime p. g is a generator of G. Randomly select
α ∈ Zp, g2 ∈ G and compute g1 = gα. e : G ×G → GT denotes an admissible pairing. Select u′, v′, v ∈ G and vector
u = (ui) of length n , where all the entries are random elements of G. H0 : {0, 1}∗ → {0, 1}n and H : {0, 1}∗ ×G2 → Zp

are two collision-resistant hash functions. The public parameters are {G,GT , e, g, g1, g2, u′, v′, v,u,H0,H} and the
master secret key is gα2 .
PartialPrivateKeyGen. Let ID be a bit string of length n and ID [i] be the i-th bit. Define U ⊂ {1, . . . , n} to be the
set of indices i such that ID [i] = 1. The KGC picks a random value r ∈ Z∗p and computes partial private key

pskID = (psk1, psk2) =
(
gβ1 · Fu (ID)r , gr

)
where Fu (ID) = u′

∏
i∈U

ui.

UserkeyGen. Pick a secret value xID ∈ Z∗p and compute public key pkID = (XID, δID) where XID = hxID and δID is the
Schnorr one-time signature using xID as the signing key and (h, XID = hxID ) as the verification. The message can be
any arbitrary string which can be included in mpk. Then user picks r′ randomly from Z∗p and computes skID as

(sk1, sk2) =
(
pskxID

1 · Fu (ID)r′ , pskxID
2 · gr′

)
=
(
gβxID

1 · Fu (ID)rxID+r′ , grxID+r′
)
.

Sign To sign a message m ∈ {0, 1}∗ , a signer with identity ID, picks a random k ∈ Zp and computes h = H(m, ID, sk2, gk).
The signer computes δ = (δ1, δ2, δ3) as follows.

δ1 = sk1 · (v′ · vh)k, δ2 = sk2, δ3 = gk.

Verify: Given a signature δ = (δ1, δ2, δ3) for an identity ID, public key pkID = (XID, δID) on a message m , a verifier
checks the validity of the signature as follows.
1. Check whether the public key XID is the correctly formed.If not, output ⊥ and abort the algorithm. Otherwise,
compute h = H(m, ID, δ2, δ3).
2. Verify e(δ1, g) = XID · e(δ2, Fu (ID)) · e(δ3, v′ · vh) holds with equality. Accept the signature and output true if the
above verify equation holds, otherwise, output false and reject the signature.

4. Analysis of the proposed scheme

In this section, we give the security proof and the performance analysis of our certificateless signature scheme.
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4.1. Security proof

We now prove that the above signature scheme is existentially unforgeable against adaptively chosen message
attack in the standard model.
Theorem 1. Our scheme is (ϵ, t, qk, qr, qpp, qp, qs) secure during Game 1, assuming the (ϵ′, t′)-NGBDH intractability
assumption holds, where ϵ′ = ϵ

2(qpp+qp)(n+1) and t′ = t + O((qpp + qp)n + qs)tm + (qpp + qp + qk + qs)te), where qk,
qpp, qp and qs respectively denote the number of queries made to the Public-Key-Broadcast-Oracle, the Partial-
Private-Key- Oracle, the Private-Key-Extract-Oracle and the Sign-Oracle, tm and te respectively denote the time
for a multiplication and an exponentiation in G.
Proof. Assume there exists a type I adversary AI against our scheme. We construct a PPT simulator B that makes
use of AI to solve the NGBDH problem with probability at least ϵ′ and in time at most t′. B is given a a group G of
prime order p with a generator g and elements ga, gb ∈ G where a, b are selected randomly from Z∗p, and B replies the
queries ofAI as follows.
Setup. B sets an integer l = 2(qpp + qp) and uniformly picks an integer k, such that 0 < k < n. B then chooses a value
x′, and a random n-vector x = (x1, . . . , xn) where x′, xi ∈ Zl. B also picks a random value y′, and a random n-vector
y = (y1, . . . , yn), where y′, yi ∈ Zp and t, a, b, c ∈ Z∗p. Assume p be sufficiently bigger than (n + 1)l for any p, n and l
and ID be a bit string of length n and ID [i] be the i-th bit. Define U ⊂ {1, . . . , n} to be the set of indices i such that
ID [i] = 1. B chooses a collision-resistant hash function H : {0, 1}∗ ×G2 → Zp. For ease of analysis, we define two

functions F(ID), J(ID). F(ID) = −lk + x′ +
n∑
i

xiti, J(ID) = y′ +
n∑
i

yiti. Then B assigns the public parameters as

follows
g1 = gα, g2 = gβ, u′ = gx′−lk

2 gy′ , ui = gxi
2 gyi , v′ = gt

2 · gb, v = gc. At this moment, u′
∏
i∈U

ui = gF(ID)
1 gJ(ID). B sends

all the public parameters toAI .
Phase 1. AI can carry out the following queries.

Public-Key-Broadcast-Oracle. Upon receiving a query for a public key of an identity ID, if (ID, pkID) exists in
PublicKeyList, B returns pkID as the answer. Otherwise, B picks a secret value xID ∈ Z∗p and computes public key
pkID = (XID, δID) where XID = hxID and δID is the Schnorr one-time signature using xID as the signing key. B adds
(ID, xID) to SecretValueList and adds (ID, pkID) to PublicKeyList, then returns the public key pkID as the answer.
Partial-Private-Key-Extract-Oracle. Upon receiving a query for a partial private key of an identity ID,B first search
PartialPrivateKeyList for a tuple (ID, pskID). If it exists, return (ID, pskID) as the answer. Otherwise, B can construct
a partial private key by assuming F(ID) , 0 mod p. B randomly chooses r ∈ Zp and computes a partial private key

pskID = (pskID,1, pskID,2)

= (g−J(ID)/F(ID)
2 (u′

∏
i∈U

ui)r, g−1/F(ID)
2 gr)

pskID is a valid partial private key for the identity ID shown as follows.

pskID,1 = g−J(ID)/F(ID)
2 (u′

∏
i∈U

ui)r = gb
1(gF(ID)

1 gJ(ID))−b/F(ID)(gF(ID)
1 gJ(ID))r

= gb
1(gF(ID)

1 gJ(ID))r−b/F(ID) = gb
1(u′
∏
i∈U

ui)r′ ,

pskID,2 = g−1/F(ID)
2 gr = gr−b/F(ID) = gr′

where r′ = r − b/F(ID). From −p < F(ID) < p, we conclude that F(ID) = 0 mod p implies F(ID) = 0 mod l, so
F(ID) , 0 mod l suffices to have F(ID) , 0 mod p. B adds (ID, pskID) to its PartialPrivateKeyList and returns the
partial private key pskID as the query output. If, on the other hand, F(ID) = 0 mod p, B abort.
Private-Key-Extract-Oracle. Upon receiving a query for a private key of an identity ID, if the PrivateKeyList con-
tains (ID, skID), B returns skID. Otherwise, B can construct a private key by assuming F(ID) , 0 mod p. B searches
SecretValueList to find out xID. If it does not exist, B runs the algorithm UserKeyGen to generate secret-public key
pair (xID, pkID), and adds (ID, xID) to SecretValueList and adds (ID, pkID) to PublicKeyList, then B chooses r ∈ Zp
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randomly and computes

skID,1 = (gxID
2 )−J(ID)/F(ID)(u′

∏
i∈U

ui)r

= gbxID
1 (gF(ID)

1 gJ(ID))−axID/F(ID)(gF(ID)
2 gJ(ID))r

= gbxID
1 (gF(ID)

1 gJ(ID))r−bxID/F(ID)

= gbxID
1 (u′

∏
i∈U

ui)t,

skID,2 = (gxID
2 )−1/F(ID)gr = gr−bxID/F(ID) = gt

where t = r − bxID/F(ID). B adds (ID, skID) to PrivateKeyList and returns the private key skID. If, on the other hand,
F(ID) = 0 mod p, B aborts.
Public-Key-Replacement-Oracle. When the adversary requests to replace the current public key pkID of an identity
ID with a new and valid public key pk′ID chosen by him, B finds out pkID in its PublicKeyList, and replace it with the
new public key pk′ID. If pkID does not exist, B directly sets pkID = pk′ID, while the adversary delivers x′ID to B. Then
B adds (ID, xID) to SecretValueList and adds (ID, pkID) to PublicKeyList.
Sign-Oracle: Receiving a signature query for an identity ID and a message m,

1. If F(ID) , 0, B first runs Private-Key-Extract-Oracle to generate a private key skID, then performs the Sign
algorithm to create a signature on m for the identity ID.

2. If F(ID) = 0, B first retrieves the secret value x s.t.pkID = e(g1, g2)x (or the adversary provides the secret
value x if the public key of ID has been replaced), then B picks three random values r0, r1, k ∈ Zp, and computes
h = H(m, ID, gr0 x · gr1 , gk · g(−x/t)

1 ) and generates a signature δ = (δ1, δ2, δ3) on m as follows
δ1 = (g−(b+ch/t)

1 )x · (u′∏i∈U ui)r1 · gr0·J(ID)·x · (v′ · vh)k, δ2 = gr0 x · gr1 , δ3 = gk · g−x/t
1 .

It is a valid signature,this is because

δ1 = (g−(b+ch/t)
1 )x · (u′

∏
i∈U

ui)r1 · gr0·J(ID)·x · (v′ · vh)k

= (gα2 · g−α2 · g
−(b+ch/t)
1 )x · (u′

∏
i∈U

ui)r1 · gr0·J(ID)·x · (v′ · vh)k

= (gα2 · (gt
2 · gb+ch)−(α/t))x · (u′

∏
i∈U

ui)r1 · (gJ(ID))r0·x · (v′ · vh)k

= (gα2 · (gt
2 · gb · (gc)h)−(α/t))x · (u′

∏
i∈U

ui)r1 · (gF(ID)
2 gJ(ID))r0·x · (v′ · vh)k

= (gα2 · (v′ · vh)−(α/t))x · (u′
∏
i∈U

ui)r1 · (u′
∏
i∈U

ui)r0·x · (v′ · vh)k

= (gα2 · (u′
∏
i∈U

ui)r0 )x · (u′
∏
i∈U

ui)r1 · (v′ · vh)k−(α·x/t)

furthermore,

e(δ1, g) = e((gα2 · (u′
∏
i∈U

ui)r0 )x · (u′
∏
i∈U

ui)r1 · (v′ · vh)k−(α·x/t), g)

= e(gα2 , g)xe(u′
∏
i∈U

ui, gr0 x+r1 )e((v′ · vh)k−(α·x/t), g)

= XID · e(δ2, Fu (ID)) · e(δ3, v′ · vh)

Output: Eventually, AI outputs a forgery signature δ∗ on message m∗ with respect to (ID∗, PKID∗ ). If F(ID∗) ,
0, B will abort. Otherwise, u′

∏
i∈U ui = gJ(ID∗), and B retrieves the secret value x∗ of ID∗ and computes h∗ =
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H(m∗, ID∗, δ∗2, δ
∗
3). Since δ∗ is a valid certificateless signature on message m∗ with respect to ID∗ and pkID∗ , we have

e(δ∗1, g) = XID∗ · e(δ∗2, ID∗) · e(δ∗3, v
h∗)

= e(gα, gβ)x∗ · e(δ∗2, g
J(ID∗)) · e(δ∗3, g

ch∗ )
= e(g, gαβx

∗
) · e((δ∗2)J(ID∗), g) · e((δ∗3)ch∗ , g)

Therefore B can output (δ∗1/(δ
∗
2)J(ID∗)(δ∗3)ch∗ , gx∗) as the solution to the instance of NGBDH problem.

Now we evaluate the success probability of solving the NGBDH problem. For the simulation to be perfect, we
require the following conditions satisfied:
(1) All partial private key extraction queries or all private key extraction queries on an identity ID have F(ID) ,
0 mod l.
(2) F(ID∗) = 0 mod p.
Let ID1, ID2, . . . , IDqI be the identities appearing in these queries not involving any of the challenge identities. Clear-
ly, qI ≤ qpp + qp. Define the events A∗ and Ai as:
A∗ : F(ID∗) = 0 mod p, Ai : F(IDi) , 0 mod l, i = 1, 2, . . . , qI .
Thus, the probability of B not aborting is:

Pr[¬abort] ≥ Pr[
qI∧

i=1

Ai

∧
A∗].

From (n + 1)l < p, we conclude that if F(ID) = 0 mod p we have F(ID) = 0 mod l, and if F(ID) = 0 mod l there
will be unique choice of k with 0≤k≤n. So we have

Pr[A∗] = Pr[F(ID∗) = 0 mod p] = Pr[F(ID∗) = 0 mod p
∧

F(ID∗) = 0 mod l]

= Pr[F(ID∗) = 0 mod l]Pr[F(ID∗) = 0 mod p|F(ID∗) = 0 mod l]

=
1
l

1
n + 1

.

Since F(IDi1 ) = 0 mod l and F(IDi2 ) = 0 mod l (i1 , i2) are independent, and the events Ai and A∗ are also indepen-
dent, we have

Pr[
qI∧

i=1

Ai

∧
A∗] = Pr[A∗]Pr[

qI∧
i=1

Ai|A∗] = Pr[A∗](1 − Pr[
qI∨

i=1

¬Ai|A∗]

≥ Pr[A∗](1 −
qI∑

i=1

Pr[¬Ai|A∗)] =
1
l

1
n + 1

(1 − qI

l
).

We get

Pr[¬abort] ≥ Pr[
qI∧

i=1

Ai

∧
A∗]

≥ 1
2(qpp + qp)(n + 1)

If the simulation does not abort, adversary makes the correct guess with probability 1
2 + ϵ. Thus, the advantage of B

is at least ϵ
2(qpp+qp)(n+1) .

The time complexity of the challenger B is dominated by the exponentiations and multiplications performed in
queries. Both the partial private key extraction and private key extraction queries need to do O(n) multiplications
and O(1) exponentiations. The computational costs for the signing query are O(1) multiplications and O(1) expo-
nentiations. The public key query needs to carry out O(1) exponentiations. Therefore, the time complexity of B is
t + O((qpp + qp)n + qs)tm + (qpp + qp + qk + qs)te).
Theorem 2. The above scheme is (ϵ, t, qk, qp, qs) secure during Game 2, assuming the (ϵ′, t′)-Many-DH intractability
assumption holds, where ϵ′ = ϵ

2qp(n+1) and t′ = t + O(qpn + qs)tm + (qp + qk + qs)te), where qk, qp and qs respectively
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denote the number of queries made to the Public-Key-Broadcast-Oracle, the Private-Key-Extract-Oracle and the
Sign-Oracle, tm and te respectively denote the time for a multiplication and an exponentiation in G.
Proof:Assume that B receives a random instance of Many-DH problem. Given a group G, a generator g ∈ G, and
elements g, gβ, gγ, gαβ, gαγ, gβγ ∈ G, his goal is to output gαβγ. In order to use AII to solve the problem, B needs to
simulate a challenger and response all the queries forAII .

Setup. The Type II adversary B chooses gαβ as the master secret key, and other public parameters are identical to
those of Theorem 1. ThenAII sends all public parameters and the master secret key toAII .

Phase 1. AII can compute partial private key of any identity by itself and carry out the following queries.
Public-Key-Broadcast-Oracle. Upon receiving a query for a public key of an identity ID, if (ID, pkID) exists in
PublicKeyList, B returns pkID as the answer. Otherwise, B performs as follows.
(1) If ID , ID∗, B runs the algorithms UserkeyGen to generate public key pkID and private key skID. B adds
(ID, pkID) to PublicKeyList and adds (ID, skID) to PrivateKeyList, and returns the public key toAII .
(2) If ID � ID∗, B sets the public key pkID = (XID, δID) where XID = e(gα, gβγ), and δID can be simulated in the
signing oracle of the one-time signature.
Private-Key-Extract-Oracle. Upon receiving a query for a private key of an identity ID, if the PrivateKeyList
contains (ID, skID), B returns skID. Otherwise, B performs as follows.
(1) If ID , ID∗, B runs the algorithms UserkeyGen to adds (ID, pkID) to PublicKeyList and adds (ID, skID) to
PrivateKeyList, then B returns the private key skID.
(2) If ID � ID∗, B aborts.
Sign-Oracle: Receiving a signature query for an identity ID and a message m, B responses the adversary’s signature
queries as follows :
1. If ID , ID∗, B first runs Private-Key-Extract-Oracle to generate a private key skID, then performs the Sign
algorithm to create a signature on m for the identity ID.
2. If ID = ID∗, B picks three random values r0, r1, k ∈ Zp, computes h = H(m, ID, (gγ)r0 · gr1 , gk · (gαγ)(−1/t)) and
generates a signature on m as follows
δ1 = (gαγ)−(b+ch/t) · (u′∏i∈U ui)r1 · (gγ)r0·J(ID) · (v′ · vh)k, δ2 = (gγ)r0 · gr1 , δ3 = gk · g−γ/t1 .

It is a valid signature,this is because

δ1 = (gαγ)−(b+ch/t) · (u′
∏
i∈U

ui)r1 · (gγ)r0·J(ID) · (v′ · vh)k

= (g−(b+ch/t)
1 )γ · (u′

∏
i∈U

ui)r1 · gr0·J(ID)·γ · (v′ · vh)k

= (gα2 · g−α2 · g
−(b+ch/t)
1 )γ · (u′

∏
i∈U

ui)r1 · gr0·J(ID)·γ · (v′ · vh)k

= (gα2 · (gt
2 · gb+ch)−(α/t))γ · (u′

∏
i∈U

ui)r1 · (gJ(ID))r0·γ · (v′ · vh)k

= (gα2 · (gt
2 · gb · (gc)h)−(α/t))γ · (u′

∏
i∈U

ui)r1 · (gF(ID)
2 gJ(ID))r0·γ · (v′ · vh)k

= (gα2 · (v′ · vh)−(α/t))γ · (u′
∏
i∈U

ui)r1 · (u′
∏
i∈U

ui)r0·γ · (v′ · vh)k

= (gα2 · (u′
∏
i∈U

ui)r0 )γ · (u′
∏
i∈U

ui)r1 · (v′ · vh)k−(α·γ/t)

furthermore,

e(δ1, g) = e((gα2 · (u′
∏
i∈U

ui)r0 )γ · (u′
∏
i∈U

ui)r1 · (v′ · vh)k−(α·γ/t), g)

= e(gα2 , g)γe(u′
∏
i∈U

ui, gr0γ+r1 )e((v′ · vh)k−(α·γ/t), g)

= XID∗ · e(δ2, Fu (ID∗)) · e(δ3, v′ · vh)
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Table 1: Comparison of certificateless signature schemes in the standard model
Schemes Length Sign Verify Size

Scheme [10] 3|G| 6E + ( nu+nm
2 + 3)MG 3P + ( nu+nm

2 )MG + 1E + 2MGT (nu + nm + 5)|G|
Scheme [12] 4|G| 6E + ( nu

2 + 3)MG 5P + ( nu
2 + 1)MG + 1E + 2MGT (nu + 7)|G|

Scheme [13] 3|G| 9E + ( nu+nm
2 + 3)MG 5P + ( nu+nm

2 )MG + 2MGT (nu + nm + 4)|G|
Ours scheme 3|G| 2E + 2MG 3P + ( nu

2 + 1)MG + 1E + 2MGT (nu + 6)|G|

Output: Eventually,AII outputs a forgery signature δ∗ on message m∗ with respect to (ID∗, PKID∗). If F(ID∗) , 0, B
will abort. Otherwise, u′

∏
i∈U ui = gJ(ID∗). Since δ∗ is a valid certificateless signature on message m∗ with respect to

ID∗ and pkID∗ , we have

e(δ∗1, g) = XID∗ · e(δ∗2, ID∗) · e(δ∗3, v
h∗)

= e(gα, gβγ) · e(δ∗2, g
J(ID∗)) · e(δ∗3, g

ch∗)
= e(g, gαβγ) · e((δ∗2)J(ID∗), g) · e((δ∗3)ch∗ , g)

Therefore B can output δ∗1/(δ
∗
2)J(ID∗)(δ∗3)ch∗ as the solution to the instance of Many-DH problem.

Now we evaluate the success probability of solving the Many-DH problem. B will not abort during the proof if
the following conditions hold simultaneously.
(1) All private key extraction queries on an identity ID have ID , ID∗.
(2) F(ID∗) = 0 mod p.

We can see the probability that ID , ID∗ during private key extraction queries is 1− 1
qp

. Pr[F(ID∗) = 0 mod p] =
1
l

1
n+1 . Let l = 2qp − 1. We get

Pr[¬abort] ≥ (1 − 1
qp

) · 1
l

1
n + 1

≥ 1
2qp(n + 1)

If the simulation does not abort, adversary makes the correct guess with probability 1
2 + ϵ. Thus, the advantage of B

is at least ϵ
2qp(n+1) .

The time complexity of the challenger B is dominated by the exponentiations and multiplications performed in
queries. The private key extraction queries need to do O(n) multiplications and O(1) exponentiations. The computa-
tional costs for the signing query are O(1) multiplications and O(1) exponentiations. The public key query needs to
carry out O(1) exponentiations. Therefore, the time complexity of B is t + O(qpn + qs)tm + (qp + qk + qs)te).

4.2. Performance analysis
To evaluate the performance of different schemes, we use the simple method from [12]. Performance comparison

of our scheme and the previous schemes [10, 12, 13] in the standard model is summarized in Table 1, where MG

denotes the multiplication in G, MGT denotes the multiplication in GT , E denotes the exponentiation in G and P
denotes the pairing computation, ‘length’ denotes the signature length, ‘Size’ denotes the number of group elements
in G to be included in system parameters. From Table 1, we can get that our scheme has smaller size of system
parameters, shorter length of signature, higher computational efficiency than the previous schemes [10, 12, 13] in the
standard model.

5. Conclusion

In this paper, we propose a new certificateless signature scheme and prove that our new scheme is existentially
unforgeable against adaptively chosen message attack in the standard model. Compared with the previous schemes
[10, 12, 13] in the standard model, our new scheme offers shorter system parameters, shorter length of signature, and
higher computational efficiency.
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