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Abstract

In a homomorphic signature scheme, given a vector of signatures ~σ corresponding to a dataset of
messages ~µ, there is a public algorithm that allows to derive a signature σ′ for message µ′ = f(~µ) for
any function f . Given the tuple (σ′, µ′, f) anyone can publicly verify the result of the computation of
function f . Along with the standard notion of unforgeability for signatures, the security of homomorphic
signatures guarantees that no adversary is able to make a forgery σ∗ for µ∗ 6= f(~µ).

We construct the first homomorphic signature scheme for evaluating arbitrary functions. In our
scheme, the public parameters and the size of the resulting signature grows linearly with the depth
of the circuit representation of f . Our scheme is secure in the standard model assuming hardness of
finding Small Integer Solutions in hard lattices. Furthermore, our construction has asymptotically fast
verification which immediately leads to a new solution for verifiable outsourcing with pre-processing
phase. Previous state of the art constructions were limited to evaluating polynomials of constant degree,
secure in random oracle model without asymptotically fast verification.



1 Introduction

With advances in cloud computing, an increasing amount of sensitive data is stored and computations on
them are performed remotely, raising questions of privacy of the data and correctness of computations.
Recently, a number of cryptographic schemes have been developed to address these concerns. For example,
fully homomorphic encryption [Gen09, BV11, BGV12] enables us to compute on encrypted data, paving
the road to achieving privacy in outsourcing. Many flavors of verifiable outsourcing schemes have been
developed to deal with the question of correctness of computations (cf. [Mic00, Kil92, GKR08, GGP10,
CKV10, AIK10, CKLR11, KRR13b, KRR13a] and many others). A particularly natural way to verifiably
outsource computation is through the notion of homomorphic signatures [CJL09, BFKW09, GKKR10,
BF11b, BF11a].

A homomorphic signature scheme is one where anyone can homomorphically compute on the signatures
~σ = (σ1, σ2, . . . , σ`) corresponding to a dataset ~µ = (µ1, µ2, . . . , µ`) and produce a signature σ′ for a circuit
C and the result µ′ = C(~µ) of applying C to the dataset ~µ. Given only the public key pk and the signature
σ′ on the circuit C and a message µ′, anyone can verify that σ′ is indeed the result of applying C to some set
of signed messages ~µ. In order to tie the signature to a particular dataset, we “tag” each dataset of messages,
and give the tag to the verification algorithm as well. A key feature is that this verification can be done
without knowing the original dataset ~µ.

The signature σ′ “proves” that the computation was done correctly, in the sense that computing a
signature σ′ for any pair (C, µ′) where µ′ 6= C(~µ) is hard for any PPT adversary. Moreover, the resulting
signature is compact, namely, its size and the time to verify it depends neither on the size of the original data
or the size of the circuit that was computed on it. This gives us a very natural, publicly verifiable scheme to
outsource computation.

However, constructions of homomorphic signatures have been few and far between. In particular:

• The initial schemes [CJL09, BFKW09, GKKR10, BF11b] handled only linear functions. The state
of the art is a scheme of Boneh and Freeman [BF11a] that can compute constant degree polynomial
functions on signed messages.

• The schemes are shown secure in the random oracle model.

• Finally, the polynomially homomorphic schemes rely on the short integer solutions (SIS) problem on
ideal lattices. In contrast, in the case of fully homomorphic encryption, we know several solutions by
now that rely on the SIS problem on arbitrary lattices with no ideal structure.

Our goal in this paper is to overcome these limitations and construct a fully homomorphic signature for
all circuits, without random oracles and based on the SIS problem on arbitrary lattices. We describe our
results and techniques in more detail below.

1.1 Our Results and Techniques

We show how to build a fully homomorphic signature scheme in steps, our starting point being the “hash-
and-sign” paradigm [DH76, RSA78] and the signature scheme of Bellare and Rogaway from trapdoor
permutations [BR93]. The signature algorithm generates a trapdoor permutation pair of functions fpk, f−1

pk
and a hash function H(·). The description of fpk and the hash function H(·) form the public key, and
f−1
pk is kept secret. The signature of message m is obtained by first hashing and then applying the trapdoor

inverse function on the result, namely, σ = f−1
pk (H(m)). To verify the signature, the user checks that
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fpk(σ) = H(m). It is not necessary to have a trapdoor permutation to make this paradigm work, rather, it
is enough to have a pre-image sampleable family of surjective trapdoor functions, as defined in [GPV08]. It
is natural to ask:

Can we make this signature scheme homomorphic?

Our first idea is to construct and use a special type of hash function, namely a fully homomorphic hash
function H(·). That is, H(m1) +H(m2) = H(m1 +m2) and H(m1)×H(m2) = H(m1 ×m2).1 Now,
suppose the trapdoor function also satisfies these homomorphic properties, then we can add (and multiply)
signatures of messages m1,m2 to obtain a signature on the result m1 +m2 (and m1 ×m2, respectively):

σ′ = f−1
pk

(
H(m1)

)
+ f−1

pk

(
H(m2)

)
= f−1

pk

(
H(m1) +H(m2)

)
= f−1

pk

(
H(m1 +m2)

)
To verify, the user checks that fpk(σ′) = H(m1 + m2), and similarly for multiplication. However, there is
a problem: there is no mechanism so far to authenticate the computation performed to arrive at the σ′! That
is, a user can apply any function f to a collection of signatures to obtain σ′, but then go on to claim that σ′

was obtained by applying a different function f ′. In other words, wherein lies the mechanism to authenticate
computations?

Our key idea is to sign messages using different trapdoor functions. Our key tool is a notion of fully
key-homomorphic trapdoor functions, a notion recently introduced in the work of Boneh et al. [BGG+14]
in the context of attribute-based encryption. Suppose m1 and m2 are signed using functions f−1

pk1
and f−1

pk2
respectively, then, assuming the family is also key-homomorphic, anyone can obtain a signature:

σ′ = f−1
pk1

(
H(m1)

)
+ f−1

pk2

(
H(m2)

)
= f−1

pk1+pk2

(
H(m1 +m2)

)
The verification algorithm checks that fpk1+pk2(σ′) = H(m1 +m2) (and respectively, for multiplication).

How can we implement this outline, and why is this secure? To see this, let us look at a toy version of our
instantiation of the fully homomorphic hash functions, and the fully key-homomorphic trapdoor functions
(these are already good enough to sign a single dataset and compute on the signatures). The recent work of
Boneh et al. [BGG+14] constructs a fully key-homomorphic injective trapdoor function, which is unsuitable
for our purposes. What we need is a fully key-homomorphic pre-image sampleable trapdoor function, which
we construct.

• Our hash function H is parameterized by ` + 1 uniformly random matrices B,D1, . . . ,D` ∈ Zm×nq

where n is the lattice dimension, q the modulus and m = Ω(n log q). The description of the hash
function also contains a “trapdoor” for the matrix B.

For an n-bit input ~µ = (µ1, . . . , µ`), we define

H(~µ) =
(
D1 + µ1B,D2 + µ2B, . . . ,D` + µ`B

)
• The trapdoor function family is parameterized by a matrix A ∈ Zm×nq . The domain of the function is
`-tuples of m×m matrices R ∈ Z2m×m with “small” entries, and the output is computed as

fA(R1, . . . ,R`) =
(
A1R1, . . . ,A`R`

)
1For the sake of simplicity, we abuse notation by denoting both the operation on the messages and the operation on the hash

values by the same operator, + or ×. The messages and their hashes live in different worlds and therefore, are operated on
differently.
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The one-wayness of this function follows from the hardness of the short integer solutions (SIS) problem
which asks for a “short” solution to the linear system of equations AR = 0, given a uniformly random
A. The parameters are set in a way that there are many solutions to this equation (even many short
solutions), but it is hard to find them. The famous worst-case to average-case reductions of Ajtai [Ajt96],
Micciancio and Regev [MR07] show that the average-case hardness of SIS follows from the worst-case
hardness of several standard lattice problems.

This is also a pre-image sampleable trapdoor function, as shown by Gentry, Peikert and Vaikun-
tanathan [GPV08]. That is, using a short basis of the lattice Λ⊥(A) = {x ∈ Zm : Ax = 0 (mod q)},
one can sample a random inverse (according to a discrete Gaussian distribution) of any given element
in the range of this function.

We now show that the hash function is fully homomorphic and the trapdoor function is fully key-
homomorphic. That is one can compute any circuit C (say, composed of NAND gates) on H(~µ) to get
a hash of the output H(C(~µ)), and given f−1

~pk
(H(~µ)), one can compute f−1

C( ~pk)
(H(C(~µ)). Let us see how to

compute a NAND gate on the hash values for the first two bits, namely, D1 + µ1B and D2 + µ2B. We first
compute a matrix D̃2 such that BD̃2 = D2. This can be done by invoking the deterministic “nearest plane”
algorithm of Babai [Bab86] using the trapdoor for B. We then compute

(D1 + µ1B) · D̃2 − µ1 · (D2 + µ2B) = D1D̃2 − µ1µ2 ·B = (D1D̃2 −B) + (µ1 NAND µ2) ·B
= Dout + (µ1 NAND µ2) ·B

Here, we think of D1D̃2 −B as the description of the hash function for the output wire of the NAND gate.
We proceed iteratively, in a gate-by-gate fashion, to compute the hash of the entire circuit evaluated on the
message.

Now, suppose that one has the inverses of D1 + µ1B and D2 + µ2B, namely matrices “short” R1 and
R2 such that

AR1 = D1 + µ1B and AR2 = D2 + µ2B

Homomorphic NAND of the signatures follows by observing that

A(R1D̃2 − µ1R2) = (D1 + µ1B)D̃2 − µ1(D2 + µ2B) = Dout + (µ1 NAND µ2) ·B

Thus, R1D̃2 − µ1R2 is a signature of the NAND of the first two bits which can be computed publicly,
by anyone who knows the signatures on the input. Proceeding this way gate-by-gate, one computes the
signature of the output of the circuit.

The size of the signatures grow by a poly(m) factor for each level of the circuit, and thus, to size mO(d)

where d is the depth of the evaluated circuit. To ensure correctness and security, we must set the modulus q
to be larger than this bound. In other words, to set the system parameter q, one has to fix a maximum depth
dmax of circuits that we evaluate with the scheme. Hence, we get a leveled fully homomorphic signature
scheme.

To deal with multiple datasets, we need a “tagged” version of these fully key-homomorphic trapdoor
functions, which we will construct in Section 4, borrowing on ideas from [ABB10a, BGG+14]. Security in
the sense of Boneh and Freeman [BF11a] follows from the hardness of the SIS problem. For more details,
see Section 4.
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2 Homomorphic Signatures: Definitions

We follow the notation introduced by Boneh and Freeman [BF11a]. We use λ to denote the security
parameter throughout this paper. LetM be a message space and let C be a collection of circuits C :M` →
M that take ` inputs over the message spaceM and produce an output inM. A homomorphic signature
scheme for the class of circuits C (called a C-homomorphic signature scheme) is a tuple of polynomial-time
algorithmsHS =(Setup, Sign,Eval,Verify) which work as follows:

• Setup(1λ, 1`): The setup algorithm takes the security parameter λ, and the maximum size of the dataset
` that it signs at any one time. It outputs a public key pk and a secret key sk.

• Sign(sk, t, i, µ): The signing algorithm takes the secret key sk, a tag t ∈ {0, 1}λ, a message µ ∈M and
an index i ∈ [`], and outputs a signature σ. We remark that the tags are used to differentiate the message
sets that one produces signatures for.

• Eval(pk, t, ~µ = (µ1, µ2, . . . , µ`), ~σ = (σ1, σ2, . . . , σ`), C): The evaluation algorithm takes the public
key pk, the tag t ∈ {0, 1}λ, a vector of messages ~µ and their signatures ~σ, and a circuit C ∈ C, and
outputs a derived signature σ′.

• Verify(pk, t, µ′, σ′, C): The verification algorithm takes the public key pk, the tag t ∈ {0, 1}λ, a
message/signature pair µ, σ and a circuit C ∈ C. It outputs reject (0) or accept (1).

We remark that the verification algorithm always takes the result of a homomorphic evaluation as input.
This is without loss of generality since in this work we are interested in arbitrary circuit collections, which
include all “projection circuits” that output their i’th argument, namely all circuits Pi(µ1, µ2, . . . , µ`) = µi.
In particular, this will allow for verification of individual message signatures.

Definition 2.1 (Correctness). We say that a C-homomorphic signature schemeHS is correct if:

1. For all tags t ∈ {0, 1}λ, all µ ∈M, and all i ∈ [`]:

Pr
[
(pk, sk)← Setup(1λ, 1`);σ ← Sign(sk, t, i, µ) : Verify(pk, t, µ, σ, Pi) = 1

]
= 1

where the probability is over the coins of the algorithms inHS.

2. For all tags t ∈ {0, 1}λ, all messages ~µ = (µ1, . . . , µ`) ∈M`, and all circuits C ∈ C:

Pr
[
(pk, sk)←Setup(1λ, 1`); σi ← Sign(sk, t, i, µi);

µ′ = C(µ1, µ2, . . . , µ`); σ
′ ← Eval(pk, t, ~µ, ~σ, C) : Verify(pk, t, C(~µ), σ′, C) = 1

]
= 1

where the probability is over the coins of the algorithms inHS.

We say that a signature scheme is fully homomorphic if it is homomorphic with respect to a family of
all poly-size circuits C. In this paper, we construct leveled fully homomorphic signature schemes that are
homomorphic for the class of all circuits whose depth is bounded by a polynomial function d = d(`).

Length Efficiency. An important criterion that makes homomorphic signature schemes non-trivial is the
notion of length efficiency. We say that a fully homomorphic signature schemeHS is length-efficient if for
a fixed security parameter λ, the length of the derived signature depends only on λ, and not on either the size
of the dataset ` or the size of the circuit C. In the case of a leveled fully homomorphic signature scheme,
we relax this requirement and allow the length of the signature to depend polynomially on the depth of the
evaluated circuit (but not on its size).
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2.1 Security

We now define the notion of unforgeability of homomorphic signature schemes.

Definition 2.2 (Unforgeability). A homomorphic signature schemeHS is unforgeable with respect to a class
of circuits C taking ` inputs if for all security parameters λ ∈ N, and all probabilistic poly-time adversaries
A, the advantage of A winning the following game is negligible in λ. (We will let Osk(·) denote an oracle
that takes a vector of messages ~µ ∈ M` as input, chooses a random tag t ∈ {0, 1}λ and outputs a set of
signatures ~σ and the tag t, where σi = Sign(sk, t, i, µi)).

GameHS,A(1λ):

1: (pk, sk)← Setup(1λ, 1`)
2: (t∗, µ∗, σ∗, C∗)←AOsk(·)(pk)

// Let q be the number of oracle calls to Osk

// Let {~µj}j∈[q] be the datasets queried to Osk and
// let {~σj , tj}j∈[q] be the associated replies

3: Output 1 iff Verify(pk, t∗, µ∗, σ∗, C∗) = 1 and
(a) t∗ 6= tj for all j ∈ [q] or
(b) t∗ = tj for some j ∈ [q] but µ∗ 6= C∗(~µj).

Remarks. A forgery of type (a) corresponds to the standard notion of unforgeability for signature schemes.
That is, the adversary is able to produce a valid signature for a fresh tag which was never issued in the honest
execution. The forgery of type (b) corresponds to the security requirement for homomorphic signatures.
Namely, here, the adversary should not be able to falsely claim the output of a circuit of her choice on a
signed dataset.

Definition 2.3 (Selective-unforgeability). Define the game GameHS,A(1λ)sel to be the same as GameHS,A(1λ)
except that the adversary outputs the dataset of messages ~µ and the challenge tag t∗ ∈ {0, 1}λ before the
challenger runs the Setup algorithm (~µ can be ⊥ in the case the adversary will make a type (a) forgery).

We say a homomorphic signature schemeHS is selectively-unforgeable with respect to a circuit class C
if no adversary can win the game GameselHS,A(1λ) with non-negligible probability.

From selective to full security. We remark that it is possible to convert a signature scheme satisfying
selective unforgeability into one that satisfies (full) unforgeability by the standard complexity leveraging
arguments (as used in, e.g., Identity-Based [BB04] and Attribute-Based [GVW13] encryption schemes).
The reduction suffers a loss proportional to the length of the tag and the challenge dataset of messages.

3 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq denote the ring
of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n×m
matrices with entries in Zq. We use bold capital letters (e.g. A) to denote matrices, bold lowercase letters
(e.g. x) to denote vectors. The notation AT denotes the transpose of the matrix A.
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If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′) matrix
formed by concatenating A1 and A2. A similar notation applies to vectors. When doing matrix-vector
multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to
denote a polynomial function of n. We say an event occurs with overwhelming probability if its probability
is 1− negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes the nearest integer
to x, rounding towards 0 for half-integers.

Randomness Extraction We will use the following lemma, which is a generalization of the leftover hash
lemma due to Dodis et al. [DRS04]. Agrawal, Boneh and Boyen [ABB10b] proved the lemma for prime
moduli q and Agrawal, Freeman and Vaikuntanathan [AFV11] observed that it holds for any square-free q.

Lemma 3.1 ([ABB10b, Lemma 4]). Suppose thatm > (n+1) lg q+ω(log n) that that q > 2 is square free.
Let R ∈ {−1, 1}m×k be chosen uniformly at random for some polynomial k = k(n). Let A,B be matrices
chosen uniformly at random in Zn×mq ,Zn×kq respectively. Then, for all vectors w ∈ Zm, the distribution
(A,AR,RTw) is statistically close to distribution (A,B,RTw).

Norm of a Random Matrix Let Sm denote the m-sphere: i.e. the set of vectors in Rm+1 of length 1. We
define the norm of a matrix R ∈ Rm×m to be supx∈Sm−1 ||Rx||.

Lemma 3.2 ([LPRTJ05, Fact 2.4], [ABB10b, Lemma 5]). Let R ∈ {−1, 1}m×m be chosen at random.
Then, Pr[||R|| > 12

√
2m] < e−2m.

3.1 Trapdoors for Lattices and SIS Problem

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution over Zm with
parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · σ. Note that

DZm,σ is
√
m · σ-bounded.

Lemma 3.3 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized algorithm
TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = Ω(n log q), outputs
a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix T ∈ Zm×m such that the distribution of A is
negl(n)-close to uniform.

There is an efficient algorithm NearestPlane that takes as input a matrix A ∈ Zm×nq together with its
trapdoor T ∈ Zm×m, and a matrix U← Zn×mq and outputs a matrix R ∈ Zm×m such that: (a) AR = U;
and (b) ||R|| ≤ ||T|| ·O(m).

3.2 Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices. Looking ahead, the
algorithm SampleLeft [ABB10b, CHKP12] will be used to sample keys in the real system, while the
algorithm SampleRight [ABB10b] will be used to sample keys in the simulation.
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Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of Λ⊥q (A),
a matrix B in Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter α. (1)

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈
Zm+m1 in the coset ΛF+u.

Theorem 3.4 ([ABB10b, Theorem 17], [CHKP12, Lemma 3.2]). Let q > 2, m > n and α > ‖T̃A‖ ·
ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in (1) outputs a vector e ∈ Zm+m1

distributed statistically close to DΛF+u,α, where F := (A ‖ B).

Algorithm SampleRight(A,B,R,TB,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix B in
Zn×mq , a “short” basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian
parameter α.

(2)

Output: Let F := (A ‖ AR + B). The algorithm outputs a vector
e ∈ Zm+k in the coset ΛF+u.

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m. Let Sm be the
m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ := supx∈Sm−1 ‖R · x‖.

Theorem 3.5 ([ABB10b, Theorem 19]). Let q > 2,m > n and α > ‖T̃B‖ · sR · ω(
√

logm). Then
SampleRight(A,B,R,TB,u, α) taking inputs as in (2) outputs a vector e ∈ Zm+k distributed statistically
close to DΛF+u,α, where F := (A ‖AR + B).

Definition 3.1 ([MR07]). For any n ∈ Z and any functions m = m(n), q = q(n), β = β(n), the average-
case Small Integer Solution problem (SISq,m,β) is: given an integer q, a matrix A ∈ Zn×mq chosen uniformly
at random and a real β, find a non-zero integer vector z ∈ Zm\{0} such that Az = 0 mod q and ||z|| ≤ β.

Micciancio and Regev [MR07] showed that solving the average-case SISq,m,β problem for certain
parameters is equivalent to solving worst-case instances on hard lattice problems.

4 Our Fully Homomorphic Signature Scheme

Circuit Representation. Let Cλ be a collection of Boolean circuits each having at most ` = `(λ) input
wires and one output wire. For each C ∈ Cλ, we index the wires of C in the following way. The input wires
are indexed 1 to `, the internal wires have indices `+1, `+2, . . . , |C|−1 and the output wire has index |C|,
which also denotes the size of the circuit. We assume that the circuit is composed of NAND gates. Each
gate g is indexed as a tuple (u, v, w) where u and v are the incoming wire indices, and w > max(u, v) is the
outgoing wire index. The “fan-out wires” in the circuit are given a single number. That is, if the outgoing
wire of a gate feeds into the input of multiple gates, then all these wires are indexed the same. (See e.g.
[BHR12, Fig 4].)
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4.1 Our Construction

Our C-homomorphic signature schemeHS = (Setup, Sign,Eval,Verify) works as follows.

• Setup(1λ, 1`, 1dmax): The key-generation algorithm takes the security parameter, the maximum number
of inputs in the circuit family and the maximum depth dmax, and proceeds as follows.

1. Set the parameters n = n(λ, dmax), q = q(n, dmax),m = m(n, dmax). Let s1 = s1(n) and
s2 = s2(n) denote Gaussian parameters and let B = B(n, dmax) ∈ Z denote an upper bound
on the size of signatures. (See Section 4.3 for details on how to choose these parameters). These
parameters are implicitly known to all of the algorithms below.

2. Sample `+ 1 random matrices: A, {Di}i∈[`] in Zn×mq .

3. Sample two matrices with associated trapdoors:

(A∗,TA∗)← TrapGen(1n, 1m, q) and (B,TB)← TrapGen(1n, 1m, q)

4. Output the public key pk = (A,A∗,B,TB, {Di}i∈[`]) and the secret signing key TA∗ .

• Sign(sk, t, i, µ): The signing algorithm takes the secret key sk, the tag of the signing dataset t, the
message index i and the message µ, and proceeds as follows.

1. Let At := [A∗|A + tB] denote the “dataset lattice”.

2. Let [R2|R1]← SampleLeft(A∗,A + tB,TA∗ ,Di + µB, s2) such that:

[A∗|A + tB]

[
R2

R1

]
= A∗R2 + (A + tB)R1 = Di + µB

3. Output the signature σ = [R2|R1].

• Eval(pk, t, ~µ, ~σ, C): The evaluation algorithm takes the public key pk, the dataset tag t, the set of
messages ~µ, signatures ~σ and the circuit C ∈ C. It computes a homomorphic signature recursively gate
by gate, input to output as follows:

1. For each wire i, let Di ∈ Zn×mq be the “public key” associated with that wire. (Such matrices for
the input wires are fixed by the Setup algorithm). Let At := [A∗|A + tB] ∈ Zn×2m

q denote the
“dataset lattice”.

2. Let g = (u, v, w) be a NAND gate carrying input values x, y. By induction, we have
(
Ru,Rv

)
∈

Z2m×m such that:
AtRu = Du + xB and AtRv = Dv + yB

3. Define the public key associated with the output wire as Dw := DvD̃u −B where

D̃u ← SampleD(B,TB,D, s1) ∈ Zm×m

Recall that this means BD̃u = Du.

4. Compute the homomorphic signature:

Rw = Rv · D̃u − yRu
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5. Finally, output R|C| ∈ Z2m×m as the homomorphic signature.

• Verify(pk, t, µ, σ, C): The verification algorithm takes as input the public key pk, message µ, signature
σ and a circuit C. It accepts only if the following conditions are satisfied:

1. Parse σ = R ∈ Z2m×m and verify ||R||∞ ≤ B.

2. Let At := [A∗|A + tB] ∈ Zn×2m
q and let DC denote the public key associated with the circuit C

as computed by the evaluation algorithm defined above. Verify that

AtR = DC + µB mod q

4.2 Correctness

We show that for the choice of parameters specified above, the verification algorithm accepts an honestly
computed homomorphic signature. Consider a particular dataset t of of messages {µi}i∈[`], signatures
{σi}i∈[`] and an evaluation of circuit C. Let At be the dataset lattice, DC denote the public key derived with
respect to circuit C and σ = R ∈ Z2m×m be the homomorphically computed signature, as per the scheme
description. We show that:

At ·R = DC + C(~µ)B

We start with an inductive claim. Consider a NAND gate g = (u, v, w) carrying input values x, y,
respectively.

Claim 4.0.1. Let Ru,Rv be signatures of values x, y respectively under public keys Du,Dv such that
AtRu = Du + xB and AtRv = Dv + yB. Let Rw = Rv · D̃u − yRu and Dw := Dv · D̃u −B. Then,

At ·Rw = Dw + (x NAND y)B

Furthermore, ||Rw|| ≤ ||Rv|| · poly(m) + ||Ru||.

Proof.

At ·Rw = At ·
(
Rv · D̃u − yRu

)
= At ·Rv · D̃u − yAt ·Ru

= (Dv + yB) · D̃u − y(Du + xB)

= Dv · D̃u + yDu − yDu − xyB
= Dv · D̃u − xyB
= Dw + (1− xy)B = Dw + (x NAND y)B

The bound on the size of Rw follows from the fact that ||D̃u|| ≤ poly(m).

By induction, from Claim 4.0.1 it follows that for the output signature σ = R we have that

Aw ·R = DC + C(~µ)B

In addition, the size of the signature is ||R||∞ ≤ B = mO(dmax).
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4.3 Parameter Selection

Let λ denote the security parameter. We set the lattice parameter n = poly(λ). We set the size of the
bound on the signature to B = ω(2dmax). Now, we set the modulus q = q(n) = nO(dmax) > B and
m = O(n log q). We set the Gaussian parameters s1 = O(

√
n log q). To use the indistinguishability

of the outputs of SampleLeft and SampleRight algorithms we set s1 = ω(m log q
√

logm). To satisfy
correctness, we now need to establish the maximum size of the homomorphic signatures. By definition of
SampleLeft algorithm the signature size is ||σ||∞ ≤ s2

√
m. Now for any two signatures σu, σv as input to

gate g = (u, v, w) the output signature is computed as:

Rw = Rv · D̃u − yRu

where ||D̃u||∞ ≤ s1
√
m. Hence, the size of the output signature is bounded by O(s1s2m

3). And more
generally, for depth dmax circuit, the size of the output signature is bounded by O(s1s2m

O(dmax)).

4.4 Security Proof

Assume there exists and adversary A that wins the selective-unforgeability security game 2.3. We construct
an adversary A∗ that breaks the SISq,m,β problem for lattice defined by the basis A∗ ∈ Zn×mq , where q,m
as as in the scheme above and we specify β later. A∗ will run the simulated experiments (Setup∗,Sign∗).
Let (t∗, ~µ∗) be the challenge tag and the vector of messages (which could be empty) on which the adversary
A will make a forgery. If ~µ∗ =⊥, this corresponds to a type (a) forgery: that is, the adversary will never
request any signatures for t∗. Otherwise, it corresponds to a type (b) forgery. Let q be an upper bound on
the number of signing queries, and let v∗ ∈ [q] be chosen at random (representing a query guess on which
the adversary will ask for signatures for the challenge dataset ~µ∗ on which it will make a type (b) forgery).

• Setup∗(1λ, `, dmax):

1. Set the parameters n = n(λ, dmax), q = q(n, dmax),m = m(n, dmax). Let s1 = s1(n), s2 =
s2(n) denote the Gaussian parameters. Let β = β(n, dmax) denote the upper bound on the size of
signatures. (See Section 4.3). These parameters are implicitly known to all of the algorithms below.

2. Sample a matrix with associated trapdoor:

(B,TB)← TrapGen(1n, 1m, q)

3. Sample U ∈ {−1, 1}m×m at random and let A = A∗U− t∗B mod q.

4. Type (a) forgery: If ~µ∗ =⊥, then for all i, choose matrix Ui ∈ {−1, 1}m×m at random and set

Di = A∗Ui

Type (b) forgery: Otherwise, sample [Ri,2|Ri,1]T ← (DZm,s2)2m and set

Di = [A∗|A∗U]

[
Ri,2

Ri,1

]
− µ∗iB

Note that, Ri = [Ri,2|Ri,1]T corresponds to a signature σi of message µ∗i for tag t∗ since At =
[A∗|A + t∗B] = [A∗|A∗U] and therefore,

At ·Ri = Di + µ∗iB

as required.
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5. Initialize a query counter v = 0.

6. Output the public key pk = (A,A∗,B,TB, {Di}i∈[`]).

• Sign∗(~µ):

1. If the query counter v 6= v∗ or ~µ∗ =⊥ (indicating that adversary will make a type (a) forgery),
then:

(a) Choose a random tag t. Abort the simulation if t = t∗ (which happens only with negligible
probability).

(b) For all i ∈ [`], compute the signature σi = [R2|R1]T , where

[R2|R1]T ← SampleRight
(
A∗, (t− t∗)B,U,TB,Di + µiB, s2

)
By the correctness of SampleRight, we have:

[A∗|A + tB]

[
R2

R1

]
= [A∗|A∗U + (t− t∗)B]

[
R2

R1

]
= Di + µB

(c) Update the query counter v and output the set of signatures ~σ = {σi}i∈[`].

2. Otherwise, if ~µ 6= ~µ∗ then abort (indicating wrong query guess for the challenge dataset). Else,
output the set of signatures ~σ = {σi = [Ri,2|Ri,1]T } chosen at the setup phase.

From Lemma 4.1, the output of the above experiments is statistically indistinguishable from the real
game. Therefore, the winning adversary outputs a forgery (σ∗, µ∗, C∗). To generate the SIS solution for
A∗ ∈ Zn×mq we distinguish between the two cases:

• Type (a) forgery: In this case, the adversary never asked to sign any messages corresponding to the
challenge tag t∗. However,

[A∗|A∗U]

[
R2

R1

]
= DC + µ∗B

where DC is derived from {Di} and C as per the evaluation algorithm. In Lemma 4.2, we show that
DC = A∗UC + kB for some small norm matrix UC and integer k. Hence, we have

A∗R2 + A∗UR1 = A∗UC + (k + µ∗)B

Rearranging, we obtain:
A∗
(
R2 + UR1 −UC) = (k + µ∗)B

If k + µ∗ = 0 (which can only happen if the adversary makes a forgery for an input wire for message
µ = 0), then output (R2 +UR1−UC) as the SIS solution. Otherwise, output (R2 +UR1−UC)TB

as the solution. Note that in type (a) forgery, the adversary gets no information about UC since all
signatures are generated completely independently by SampleRight algorithm. Hence, with all but
negligible probability the adversary outputs [R2|R1]T such that (R2 + UR1) 6= UC . Therefore, the
output is a non-zero SIS solution.
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• Type (b) forgery: In this case, the adversary requested a set of signatures ~σ∗ = {σi = [Ri
2|Ri

1]T } for
the dataset ~µ∗. Its output is (σ∗ = [R∗2|R∗1]T , µ∗, C∗) such that C(~µ∗) 6= µ∗. Let σ′ = [R′2|R′1]T ←
Eval(pk, t∗, ~µ∗, ~σ∗, C∗) be computed honestly. Then, we have

At

[
R′2
R′1

]
= DC + C∗(~µ∗)B and

At

[
R∗2
R∗1

]
= DC + µ∗B

Hence,

At

[
R′2 −R∗2
R′1 −R∗1

]
=
(
C∗(~µ∗)− µ∗

)
B

Therefore, σ′ − σ∗ is non-zero (otherwise, C∗(~µ∗) = µ∗ contradicting valid forgery). Expanding At

from its definition, we have

A∗(R′2 −R∗2) + A∗U(R′1 −R∗1) =
(
C∗(~µ∗)− µ∗

)
B ⇐⇒

A∗
(
(R′2 −R∗2) + U(R′1 −R∗1)

)
=

(
C∗(~µ∗)− µ∗

)
B

Output
(
(R′2 −R∗2) + U(R′1 −R∗1)

)
TB as the SIS solution for lattice A∗ ∈ Zn×mq .

Lemma 4.1. Let (pk, {~σi}) be the output in the real execution and (pk∗, {~σi}∗) be the output in the
simulated execution by the Setup,Sign algorithms respectively. We show that the two distributions are
statistically indistinguishable.

Proof. First, we argue the claim for the type (a) forgery simulation. We can summarize the difference in
the execution of the algorithms as follows.

• In real Setup, matrix A∗ ∈ Zn×mq is chosen with the trapdoor by running TrapGen algorithm. In
simulated Setup∗, A∗ are chosen uniformly at random (by the average-case SIS generator).

• In real Setup, matrices (A, {Di}i∈[`]) are chosen uniformly at random. In simulated Setup∗, matrix
A = A∗U− t∗B for a uniformly random U ∈ {−1, 1}m×m. Also, for all i, Di = A∗Ui for uniformly
random Ui ∈ {−1, 1}m×m. The public key pk is defined as (A,A∗,B, {Di}i∈[`],P).

• Finally, the real Sign algorithm generates each vector of signatures ~σi by using SampleLeft algorithm
and a trapdoor for matrix A∗ (on each message independently). Whereas, the simulated Sign∗ algorithm
generates the signatures using SampleRight algorithm and a trapdoor for B.

We now argue that the distribution
(
A,A∗,B, {Di}i∈[`],P, {~σi}i∈[q]

)
is statistically indistinguishable

in the two experiments. Observe that by Lemma 3.3, for sufficiently large m = Ω(n log q) (see Section 4.3
for all parameter selections), A∗ ∈ Zn×mq is distributed statistically close to uniform. Now, let A′ =

[A|D1| . . . |D`] ∈ Zn×(`+1)m
q . Then, by Lemma 3.1, it follows that(

A∗,A′
) s
≈
(
A∗, [A∗U− t∗B|A∗U1| . . . |A∗U`]

)
for randomly matrices A∗,A′ from Zn×mq ,Zn×(`+1)m

q and [U|U1| . . . |U`] ∈ {−1, 1}m×(`+1)m chosen at
random. Tuple (B,P) is generated identically in both executions. Therefore, we conclude that pk in real is
indistinguishable from pk∗ in simulated experiment.
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Now, consider a signing oracle query on dataset ~µ, given the public key. Note that the simulation
aborts with negligible probability. Otherwise, let At = [A∗|A + tB] for a randomly chosen tag t. Let
C = Di + µiB ∈ Zn×mq be the coset defined by message µi. By Theorems 3.4, 3.5, for sufficiently
large Gaussian parameter s2 (see Section 4.3), the output of SampleLeft and SampleRight is distributed
statistically close to DΛAt+C,s2 . This proves the claim for type (a) forgery.

Next, we argue that the output of the above algorithms is indistinguishable from real for type (b)
simulation. We start by summarizing the differences in the executions.

• In real Setup, matrix A∗ ∈ Zn×mq is chosen with the trapdoor by running TrapGen algorithm. In
simulated Setup∗, A∗ are chosen uniformly at random (by the average-case SIS generator).

• In real Setup, matrices (A, {Di}i∈[`]) are chosen uniformly at random. In simulated Setup∗, matrix
A = A∗U− t∗B for a uniformly random U ∈ {−1, 1}m×m. Also, for all i ∈ [`],

Di = [A∗|A∗U]

[
Ri,2

Ri,1

]
− µ∗iB

for [Ri,2|Ri,1]T ← (DZm,s2)2m. The public key pk is defined as (A,A∗,B, {Di}i∈[`],P).

• Finally, the real Sign algorithm generates each vector of signatures ~σi by using SampleLeft algorithm
and a trapdoor for matrix A∗ (on each message independently). Whereas, for all tags t 6= t∗ the
simulated Sign∗ algorithm generates the signatures using SampleRight algorithm and a trapdoor for B.
For tag t = t∗ the simulator outputs the set of signatures ~σ = {σi = [Ri,2|Ri,1]T chosen at the setup.

We now argue that the distribution
(
A,A∗,B, {Di}i∈[`],P, {~σi}i∈[q]

)
is statistically indistinguishable

in the two experiments. Observe that by Lemma 3.3, for sufficiently large m = Ω(n log q) (see Section 4.3
for all parameter selections), A∗ ∈ Zn×mq is distributed statistically close to uniform. Now, let A′ =

[A|D1| . . . |D`] ∈ Zn×(`+1)m
q . Then, from Lemma 3.1 and Lemma 3.3, it follows that(

A∗,A′
) s
≈
(
A∗, [A∗U− t∗B|A∗R1,2 + A∗UR1,1 − µ∗1B| . . . |A∗R`,2 + A∗UR`,1 − µ∗`B]

)
for randomly matrices A∗,A′ from Zn×mq ,Zn×(`+1)m

q . Tuple (B,P) is generated identically in both
executions. Therefore, we conclude that pk in real is indistinguishable from pk∗ in simulated experiment.

Now, consider a signing oracle query on dataset ~µ, given the public key. If ~µ 6= ~µ∗ then the signatures are
generated using the trapdoor for B. From Theorems 3.4 and 3.5 we conclude that the output is distributed
statistically close. In addition, without the public key, the signatures on the challenge dataset are distributed
statistically indistinguishable from real by Theorem 3.4. Put together, the signatures and the public key are
indistinguishable from real. This proves the claim for type (b) forgery.

Lemma 4.2. Let C be an arbitrary circuit taking at most ` bit input and outputting one bit. Let A∗,B ∈
Zn×mq . Fix the public keys for all input wires as Di = A∗Ui for Ui ∈ {−1, 1}m×m for all i ∈ [`]. For each
gate g = (u, v, w) assume input public keys Du,Dv are fixed and let

Dw = DvPBD(Du)−B

where P is of low norm such that BP = P2(In) ∈ Zn×mq . Then, the public key associated with the output
wire of the circuit C is of the form A∗UC + kB, where UC is of low norm and k ∈ Z (in fact, k ∈ {0, 1}).
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Proof. We proceed by the induction on the circuit depth: for all wires w, the public key is of the form
Dw = A∗Ui + iwB where iw ∈ Z. Clearly, the base case holds as for all input wires, Di = A∗Ui + 0B.
Now, consider a gate g = (u, v, w) where Du = A∗Uu + iuB and Dv = A∗Uv + ivB for integers iu, iv.
Then,

Dw := DvPBD(Du)−B

=
(
A∗Uv + ivB

)
PBD(Du)−B

= A∗UvPBD(Du) + ivBPBD(Du)−B

= A∗UvPBD(Du) + ivP2(In)BD(Du)−B

= A∗UvPBD(Du) + ivDu −B

= A∗UvPBD(Du) + A∗Uu + iuB−B

= A∗
(
UvPBD(Du) + Uu

)︸ ︷︷ ︸
small norm

+iwB

Hence, by induction we obtain that DC = A∗UC + kB for some small norm matrix UC as claimed.
Similarly, we can calculate the size of the matrix UC . Initially, for all input wires, Ui ∈ {−1, 1}m×m.
Now, for a gate g = (u, v, w), we have Uw = (UvPBD(Du) + Uu). Hence, ||Uw||∞ = O(s1m

3). By
induction, we obtain that the size of the output matrix ||UC ||∞ = O(s1m

O(dmax)).

5 Extensions

5.1 Arithmetic Circuits and Larger Message Space

In the construction of Attribute-Based Encryption from fully key-homomorphic encryption, Boneh et al.
[BGG+14] show how to support arithmetic circuits where the values on wires can come from a large field.
We note that the same technique of using deterministic Babai’s algorithm can be used in our construction to
support arithmetic circuits with weighted gates. More formally, first we add the trapdoor for B in the public
parameters (this does not affect the security since in our proof, the matrix B and its trapdoor are known by
the simulated). Now, say the user holds two signatures Ru and Rv corresponding to wires values x and y
(∈ Zq), respectively, satisfying:

At ·Ru = Du + xB and At ·Rv = Dv + yB

Consider an addition gate g = α1x + α2y for constants α1, α2. First, the user computes Wu (using
deterministic Babai’s algorithm [Bab86]) such that B ·Wu = α1B. Similarly, the user computes Wv such
that B ·Wv = α2B. At last, the user compute the homomorphic signature as Rw = Ru ·Wu + Rv ·Wv.
Hence,

At · (Ru ·Wu + Rv ·Wv) = (Du + xB) ·Wu + (Dv + yB) ·Wv

= (Du ·Wu + Dv ·Wv) + (α1x+ α2y)B

And hence we set the public key for the output wire as (Du ·Wu + Dv ·Wv). It is important to note
that the public key is deterministically derived with respect to the circuit, and does not depend on the wire
values x or y (it depends α1, α2 which are circuit specifications). Homomorphic signatures for weighted
multiplication can be computed similarly.
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5.2 Extendability

Our main scheme presented in Section 4 is defined with respect to a circuit family with a fixed number of
inputs `. We can extend the construction to a family with unbounded number of inputs, but in the random
oracle model. That is, instead of fixing the public keys A1, . . . ,A` for all input wires, the public parameters
specify a description of a hash functionH : Z→ Zm×nq . To assign a message µ for an input wire with index
i, we first compute the public key for the wire Ai = H(i) and proceed signing as before. In the random
oracle model, the output Ai is uniformly distributed over Zm×nq and our proof remains virtually identical.
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