
Providing Root of Trust for ARM TrustZone using SRAM PUFs

Shijun Zhao
TCA Laboratory, ISCAS
zqyzsj@gmail.com

Qianying Zhang
TCA Laboratory, ISCAS

zhangqy@tca.iscas.ac.cn

Guangyao Hu
Beijing Vion Technology, Inc

guangyaohu@gmail.com

Yu Qin
TCA Laboratory, ISCAS

qinyu@tca.iscas.ac.cn

Dengguo Feng
TCA Laboratory, ISCAS

fengdengguo@tca.iscas.ac.cn

Abstract
We present the design, implementation and evaluation of the
root of trust for the Trusted Execution Environment (TEE) pro-
vided by ARM TrustZone based on SRAM Physical Unclon-
able Functions (PUFs). We first implement a building block
which provides the foundations for the root of trust: secure key
storage and truly random source. The building block doesn’t
require on or off-chip secure non-volatile memory to store se-
crets, but provides a high-level security: resistance to physical
attackers capable of controlling all external interfaces of the
system on chip (SoC). Based on the building block, we build
the root of trust consisting of seal/unseal primitives for secure
services running in the TEE, and a software-only TPM service
running in the TEE which provides rich TPM functionalities
for the rich OS running in the normal world of TrustZone. The
root of trust resists software attackers capable of compromising
the entire rich OS. Besides, both the building block and the root
of trust run on the powerful ARM processor. In one word, we
leverage the SRAM PUF, commonly available on mobile de-
vices, to achieve a low-cost, secure, and efficient design of the
root of trust.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information System-
s]: Security and Protection

Keywords

TrustZone, Trusted Execution Environment, TPM Service, Root
of Trust, SRAM PUFs

1. Introduction
Mobile devices are offering more and more functionalities,

some of which are security-critical, such as e-commerce and
banking. Modern mobile OSes are usually equipped with sand-
box mechanisms [1, 2, 16] to prevent malicious applications il-
legally gaining access to sensitive data or compromising other
applications. However, modern mobile OSes, i.e., the Trusted
Computing Base (TCB) that mobile applications rely on, are so
complex that it is difficult to ensure the absence of vulnerabili-
ties which hackers can exploit to gain control of OSes and then

disable their sandbox mechanisms. Thus, it’s far from trivial to
provide a TEE for mobile applications.

To address this problem, design of trusted systems providing
TEEs for sensitive-critical application code with small TCB-
s is introduced. Such design can minimize potential security
vulnerabilities of TCBs which help attackers to compromise
systems. To this end, mainstream CPU designers and manu-
factures introduce new hardware primitives to their architec-
tures. Intel and AMD propose the late launch technology by
extending the x86 instruction set with their respective Trusted
eXecution Technology (TXT) [32] and Secure Virtual Machine
(SVM) [3] initiatives, which allows a software module run-
ning in an environment isolated from the entire OS. Some fa-
mous trusted systems have been implemented based on the late
launch technology, such as Flicker [46] and TrustVisor [45].
ARM presents TrustZone technology [4], which enables secure
services to run in the “secure world" of the processor. Sever-
al trusted systems for mobile devices have been implemented
leveraging ARM TrustZone technology, such as Nokia’s On-
board Credentials [20, 34], Sierraware’s SierraTEE [57], and
TOPPERS Project’s SafeG [55].

Actually, a CPU with late launch or TrustZone security ex-
tensions only provides an “isolated" execution environment,
but not a “trusted" one since it can’t attest to the user or an ex-
ternal verifier that the software running inside the environment
is untampered and trustworthy. At present, the state-of-the-art
for attestation is to compute a signature with an attestation key
over the software’s measurement, and the software’s measure-
ment and the attestation key are securely stored by the root of
trust. Thus, the root of trust provides a way to establish trust
in the execution environment. So only an isolated execution
environment equipped with a root of trust is a real “trusted"
execution environment (TEE).

Both Intel and AMD specify the TPM [63] as the root of trust
for late launch. Once the late launch instruction is triggered, the
software component that will run in the hardware-protected en-
vironment is atomically measured to the TPM. After that, an
attestation identity key of the TPM attests the identity of the
software component to an external verifier by signing the mea-
surement. However, ARM doesn’t specify the root of trust for
TrustZone. Current trusted systems and security services [20,
34, 56, 15, 39] based on TrustZone usually assume the avail-
ability of a unique device key which is accessible only inside
the secure world of TrustZone, and use the device key to serve

as the root of trust. Unfortunately, such device keys are not al-
ways available on mobile devices. For example, Nuno Santos
et al. designed a trusted language runtime [56] which required
a device key to serve as the platform identity. They implement-
ed a prototype on Nvidia’s Tegra 250 Dev Kit. However, this
platform is not equipped with such a device key. So they had to
hard-coding a software key in their implementation.

The device key should be stored securely and available af-
ter a reboot. After making a survey on popular TrustZone-
enabled development platforms equipped with device keys (X-
ilinx Zynq-7000 AP SoC, Samsang ExynosTM 5 SoC, FreeScale
i.MX53, and OMAPTM 3, 4 SoC families), we find that curren-
t secure key storage mechanisms for device keys usually rely
on the Battery-backed RAM (BBRAM) or eFuse technology.
However, the way of using these secure key storage mecha-
nisms to provide a root of trust has the following disadvantages:

1. The BBRAM mechanism requires a battery in order to
provide persistent storage across reboot. This approach
induces additional cost and requires physical room to add
a battery.

2. The eFuse mechanism is inflexible. The eFuse technol-
ogy is a one-time programmable memory, and once the
device key has been designed into the IC it can never
be changed again. However, key update is desirable in
practice. For example, many mobile systems use regular
key updates to prevent side-channel attacks [33, 38], and
users can improve their security level by updating their
device key to a larger one.

3. These mechanisms only provides secure key storage, and
they are not sufficient to serve as a root of trust. Build-
ing the root of trust in mobile devices requires a secure
random number generator (RNG). For example, RNG is
necessary for generating attestation identity keys. Thus,
in order to build their roots of trust, mobile devices should
be equipped with hardware RNGs, which add produc-
t cost. However, to the best of our knowledge, not all
devices implement a hardware RNG, such as Zynq-7000
AP SoC.

In this paper, we use a promising technology, SRAM PUFs,
to overcome above disadvantages. First, we build a building
block in the secure on-chip memory (OCM) which provides
the foundations for a root of trust:

• A primary seed extracted by a fuzzy extractor from the
on-chip SRAM start-up values. The primary seed is the
root of the secure storage as we use it to derive the unique
device key.

• A truly random seed extracted from the noise contained
in the on-chip SRAM start-up values. The random seed
is used to build a secure RNG for the secure OS.

Besides, the building block also provides secure boot of the se-
cure OS and secure services running inside the secure world
of TrustZone. The secure boot process is mandatory for Trust-
Zone as the image of the secure OS and secure services is load-
ed from non-secure persistent storage such as flash or SD card-
s. Different from current mechanisms providing roots of trust,
our approach doesn’t require persistent secure key storage and
a hardware RNG, but only a few kilos on-chip SRAM, which

is available on commodity ARM platforms. Our approach also
features flexibility for key updates as it is easy for the fuzzy
extractor to replace the primary seed with a new one which can
derive a new device key. Besides requiring no secure hard-
ware resources such as BBRAM or eFuse, the building block
achieves high security: it resists physical attackers capable of
controlling all the interfaces of the SoC in the platform.

Then, we provide the root of trust for secure services and the
rich mobile OS by leveraging the device key pair derived from
the primary seed:

• We leverage the device key to provide seal and unseal
primitives for secure services, which ensure that only the
specified secure service and platform can access user da-
ta and can also be used to store critical data by secure
services. The seal/unseal primitives implicitly attest to
the user the state of the platform and the secure service,
and can provide secure storage for secure services. Thus,
the seal/unseal primitives can be seen as the root of trust
for secure services running in the TEE.

• We integrate a software-only TPM service into the se-
cure world of TrustZone, and use the device key as the
Endorsement Key (EK) of the TPM service. The TPM
service serves as the root of trust for the rich mobile OS
running in the normal world.

The root of trust, i.e., the seal and unseal primitives and the
TPM service, is implemented in the secure region of the main
memory of the device. We don’t implement the root of trust
in the OCM for the reason that the size of OCM is quite lim-
ited. The isolation provided by TrustZone protects the root of
trust from software attacks from the mobile OS. For the root of
trust, we don’t consider physical attacks such as physical tam-
pering the main memory of the device as this kind of attacks
falls outside of the protection capabilities of TrustZone.

Finally, we implement above design on real TrustZone hard-
ware, and present a thorough evaluation of our implementation,
including the TCB size, a quantitative analysis of the SRAM
PUF, randomness tests on the secure RNG, and performance of
the root of trust. The results show that the SRAM PUF is se-
cure and unique enough to provide the trust anchor for mobile
devices, and can provide foundations for the root of trust by
adding only 3.2K lines of code to the TCB. The performance
evaluation shows the root of trust is very efficient.

2. Background
This section describes ARM TrustZone, the on-chip memo-

ry, PUF, fuzzy extractor and truly random number generation
(TRNG), which are the key technologies used in our design.

2.1 ARM TrustZone
TrustZone is a set of hardware security extensions to AR-

M SoC covering the processor, memory, and peripherals [9].
TrustZone Address Space Controllers (TZASC) can partition
DRAM into distinct memory regions, and designate a memory
region as secure or normal. TrustZone Memory Adapters (TZ-
MA) provide a similar functionality for the OCM. TrustZone-
aware DMA controllers prevent a peripheral assigned to the
normal world from performing a DMA transfer to or from the
secure world memory. TrustZone Protection Controllers (TZPC)

Secure OS

...Application Application ...

GP TEE Client API

TrustZone Driver

Secure

Service

Secure

Service

Monitor

SMC

SMC

Normal World Secure World

Figure 1: TrustZone Overview

can configure peripherals to be secure or normal. These isola-
tion mechanisms partition all of the SoC’s hardware resources
into two worlds: the secure world and the normal world. The
world in which the processor is executing is indicated by an NS
bit, which is propagated through the system bus. The TrustZone-
enabled bus fabric ensures that no secure world resources can
be accessed by normal world components.

System designers can leverage TrustZone to run a small se-
cure OS and some secure services in the secure world, and run
untrusted software in the normal world. The secure OS man-
ages secure hardware sources, and dispatches the secure ser-
vices. Usually the secure services are security-sensitive code,
and the untrusted software is full blown mobile operating sys-
tems such as iOS, Android, and Windows 8. As the proces-
sor only runs in one world at a time, to run in the other world
requires context switch. This is done via a special instruction
called the Secure Monitor Call (smc). When the smc instruction
is triggered, the processor switches into a monitor mode which
performs the context switch and allows messages exchange be-
tween the two worlds. In order to facilitate an application in
the normal world to connect to and invoke a secure service in
the secure world, the GlobalPlatform consortium develops the
TEE client API specification [24], see Figure 1.

2.2 On-Chip Memory
Mobile devices are SoC based. The OCM of an SoC com-

monly consists of BootROM and SRAM. The BootROM stores
the initial boot code when the platform is powered up, which
loads a bootloader into the SRAM from external non-volatile
memory such as flash or SD cards. In order to establish a chain
of trust, the BootROM needs to authenticate the bootloader.

The on-chip SRAM is very fast memory in the SoC and con-
nects the processor via internal connection buses. Since the
on-chip SRAM has no address or data lines at device pins, it is
secure against physical attackers capable of controlling all the
external interfaces of the SoC. In a TrustZone-enabled SoC, the
on-chip SRAM can be isolated from the mobile OS, thus it’s al-
so capable of resisting software attacks. However, the on-chip
SRAM is quite limited, usually only dozens or hundreds of k-
ilobytes. That’s why we only implement the building block in
the OCM, and put the root of trust in the main memory.

2.3 PUF, Fuzzy Extractor, and TRNG
The concept of PUFs is first introduced by Pappu et al. [50,

51], which describes such hardware components that when e-
valuated by a stimulus (challenge) they provide a noisy re-
sponse that depends on manufacturing process variations of the

Figure 2: Fuzzy Extractor Overview

hardware components. Since the introduction, many types of
PUFs have been proposed in the literature, e.g. optical PUFs
[50], Silicon PUFs [22, 23], Coating PUFs [66], Ring Oscil-
lator PUFs [60], reconfigurable PUFs [36, 19], SRAM PUFs
[27, 29], Butterfly PUFs [35], Flip-Flop PUFs [40], Buskeeper
PUFs [58], and Flash memory-based PUFs [69].

PUFs should satisfy both high robustness and uniqueness.
The high robustness means that when a PUF is evaluated by
the same challenge over and over again it should produce re-
sponses up to a limited amount of noise. The high uniqueness
means that the responses of different PUFs to the same chal-
lenge should be independent. These two properties enable each
PUF to extract a reliable and unique key by applying a fuzzy
extractor introduced by Linnartz et al. [37] (as shielding func-
tion) and Dodis et al. [18]. PUFs together with fuzzy extractors
present an efficient approach for secure key storage: it directly
extracts secure keys from responses of PUFs, eliminating the
need for storing keys on secure non-volatile memory. This ap-
proach reduces hardware attack surfaces as keys are not present
when devices are powered off, and resists clone attacks as PUFs
are physically unclonable.

Up to now, many fuzzy extractor implementations have been
proposed [14, 13, 41, 42, 67, 43]. A fuzzy extractor consists of
a pair of procedures, generate (Gen) and reproduce (Rep), see
Figure 2. The Gen procedure extracts a key k from the PUF’s
response r and generates a helper data H which is not sensitive.
The Rep procedure reproduces k from a noisy response r′ under
the help of H. The key k is randomly chosen by the owner or
the issuer of the PUF during the Gen procedure, so it is easy
to bind a new key k′ to the PUF by running Gen again and
obtaining a new helper data H ′. This feature makes it easy to
perform key update mechanisms.

Another application area of PUFs is truly random number
generation (TRNG). Take SRAM PUFs for example, part of
the SRAM cell bits show noisy behaviour, and the entropy in
these noisy bits can be leveraged for random number genera-
tion. Several solutions [30, 61, 69, 68] have been proposed in
the literature.

Recently, invasive attacks on PUFs and SRAM PUFs in par-
ticular have been proposed [28, 49]. However, SRAM PUFs
reach at least the same security level as the conventional mech-
anisms for secure storage, which are inherently susceptible to
such invasive attacks as memory contents are retained even
when the IC is no longer powered on. Moreover, such invasive
attacks on SRAM PUFs require expensive laboratory equip-
ment and the cost is high, so it’s uneconomical for attackers
to only obtain a device unique secret. Some potential counter-
measures [28, 49] against invasive attacks on SRAM PUFs are
proposed, and SRAM PUFs are still a promising technology.

3. Adversary Models and Design Proper-
ties

3.1 Adversary Models
We distinguish between an adversary against the building

block and an adversary against the root of trust. The former
is stronger than the later as it is able to mount some physical
attacks.

Adversary Model for the Building Block. We assume a so-
phisticated adversary with physical access to all external inter-
faces of the SoC. In particular, the adversary can compromise
all software running in the normal world such as applications
and the mobile OS, and he can physically attach malicious pe-
ripherals such as DDR memory devices and even DMA-capable
devices to the SoC as he has access to external interfaces of the
SoC. We don’t consider side-channel attacks and sophisticated
hardware attacks, such as monitoring the high-speed internal
buses in SoC using microscopic logic probes and extracting the
contents of SRAM at startup by laser stimulation analysis.

Adversary Model for the Root of Trust. The adversary
against the root of trust is a strong software attacker. He can
compromise the mobile OS and have access to the interfaces of
the root of trust, which is provided to the mobile OS through
TrustZone mechanisms. However, the adversary cannot launch
physical attacks on the root of trust which are outside of the
scope of the protection provided by TrustZone technology [8].

3.2 Design Properties
We describe the desired properties for our design.

1. Secure. The root of secure storage for the root of trust,
i.e., the primary seed, should resist physical attacks. This
guarantees that even if the device is attacked by a physi-
cal attacker, we can deploy a new and secure root of trust
for the device. The root of trust should be completely
isolated from untrusted software such as the mobile OS,
and provide trusted computing functionalities for both
the mobile OS and secure services.

2. Efficient. The root of trust should run on the power-
ful ARM processor, so as to provide high performance
compared to the hardware root of trust, whose comput-
ing power might be very limited. Take the TPM 1.2 chip
for example, it only operates at 33M Hz, which makes
it a bottleneck for many security schemes and renders it
impractical for use in situations with demanding perfor-
mance requirements.

3. Economical. No requirements for hardware-based se-
cure storage (e.g., secure non-volatile memory) and the
hardware RNG, which decreases manufacturing cost and
complexity of mobile devices.

4. Flexible. The unique device key should be updated eas-
ily even after the device has left the production facility.
This property makes it easy to replace the root of trust
when the device is corrupted by physical attackers, and
to adopt key update mechanisms to prevent side-channel
attacks.

4. Design

TDDI
TrustZone

Driver
Unique Device
Key and RNG

Seal/Unseal
Primitives

TSS

Applications

Hardware Platform Building Block

On-Chip SRAM

PS TRS

TPM
Service

Secure

Services

Rich OS

Secure

Services

Normal World TrustZone TEE

GP TEE Client API Secure OS

Figure 3: Architecture of our Design

The goal of this work is to provide the root of trust for TrustZone-
enabled platforms in an economical and flexible way, which al-
lows a designer to develop a TEE to provide trusted computing
functionalities (for secure services and the mobile OS) with no
need for additional security hardware resources, and allows the
device owner to re-deploy the root of trust after the device is
corrupted by physical attacks. We further seek to establish a
chain of trust from the root of trust to the normal world, which
enables to boot a clean mobile OS for the normal world. Fig-
ure 3 illustrates the detailed architecture of our design, which
consists of the following components: the building block, the
secure RNG, the seal and unseal primitives for secure services,
the TPM service, and a TPM device driver interface (TDDI)
providing user-friendly interfaces of the TPM service. The fol-
lowing gives a brief introduction of these components.

The primary goal of the building block is to provide the foun-
dations for building a root of trust: a primary seed (PS) and a
truly random seed (TRS) extracted from the start-up values of
the on-chip SRAM cells. The building block also provides se-
cure boot for the secure OS and secure services. Secure boot
is important for the secure OS and secure services, as their im-
age is stored in external non-volatile memory which is subject
to attacks. As the building block resides in the secure on-chip
SRAM, it achieves a high security level: resistance against sim-
ple physical attacks on the SoC.

Besides securely booting the secure OS, the building block
transfers the TRS and the unique device key derived from the
PS to the secure OS. Based on the unique device key and the
TRS, the secure OS builds the root of trust for both secure ser-
vices and the rich OS: the seal/unseal primitives providing im-
plicit attestation mechanism and secure storage for secure ser-
vices in the TEE, and the TPM service which provides rich
trusted computing functionalities for the normal world. To fa-
cilitate the use of the TPM service, a kernel module called TD-
DI simulating a hardware TPM driver interface is provided in
the normal world.

4.1 Building Block in OCM
The building block consists of the reproduce procedure of

a fuzzy extractor and a truly random number (TRN) extrac-

PS

Randomly Select

On-Chip SRAM

Start up Values

BCH

Decoder

Helper Data H

Entropy

Extractor
RNG

Root of Trust

On-Chip SRAM

Start up Values

KG

Generate Procedure (Manufacturer)

Building Block

PS

BCH Encoder

Code C

Code C’

Helper Data H

Device Key

Device Key

TRS

Reproduce Procedure

r

r'

Cert

KDF k

KG

KDF k

Figure 4: The Generate Procedure and Building Block

tor which extract a primary seed PS and a truly random seed
TRS respectively from the on-chip SRAM start-up values. The
PS is associated with the device during the generate procedure
of the fuzzy extractor. Figure 4 illustrates the generate proce-
dure, which is performed by the manufacturer, and the building
block, which consists of the reproduce procedure of the fuzzy
extractor and the entropy extractor.

4.1.1 Generate Procedure
This procedure is run by the manufacturer while the device is

in the production facility. It takes as input the on-chip SRAM
start-up values r (r is the binary string consisting of start-up
values of SRAM cells), then performs the following steps:

1. Receive a large value PS which is randomly selected by
the manufacturer, then encode PS with the BCH error
correction code to obtain a code C = BCHEnc(PS).

2. The code C is XOR-ed with r to create the helper data
H, which can be stored in insecure non-volatile memo-
ry of the device and will be used to reproduce the same
primary seed PS during the reproduce procedure.

3. The PS is transferred to a key derivation function (KDF)
and a deterministic key generation (KG) algorithm, which
will generate a symmetric key k and a unique public/private
key pair (pk,sk) respectively. The symmetric key pro-
tects the secrecy of the secure OS (including secure ser-
vices) by encrypting its image, and the encrypted image
is stored on the device. The manufacture also issues a
certificate Certpk by signing pk, the standard measure-
ments of the building block and the image of the secure
OS. The two measurements will be used to build a chain
of trust on this device.

4. Finally, the manufacturer stores the helper data H, the en-
crypted secure OS, and Certpk in the non-volatile mem-
ory of the device.

In this phase, the device manufacturer implicitly embed the pri-
mary seed PS into the device. Here the “implicitly" means that
the primary seed is not physically stored on the device, but can
be re-generated during runtime. The manufacturer also issues
a certificate for the unique device key derived from PS.

4.1.2 Reproduce Procedure of the Building Block
This procedure takes as input the on-chip SRAM start-up

values r′ (measured and transferred by the BootROM, which is
the first code running on the device after powered on). SRAM
is a kind of PUF, and its start-up values are noisy because of the
manufacturing process variations, so r′ is a noisy variant of the
initial SRAM start-up values r. Thus the BCH error correction
code is used to eliminate the noise. The reproduce procedure
first XORs r′ with the helper data H to generate a noisy BCH
code C′ = r′⊕H. Then code C′ is transferred to the BCH de-
coder, which eliminates noise and generates the same PS that
the manufacturer selects during the generate procedure. Final-
ly, the symmetric key k used to decrypt the secure OS and the
unique device key are derived from PS.

4.1.3 Entropy Extractor of the Building Block
As not all SRAM start-up bit cells are noisy, we need an

entropy extractor to condense the entropy in the noisy SRAM
start-up bits. We use the randomness extractor proposed by
[17], which stands for the state-of-the-art secure RNG con-
struction, as our entropy extractor to produce a truly random
seed TRS full of entropy. The TRS will be given to the root of
trust, who will build a RNG by feeding TRS to a cryptographic
pseudo-random generator such as AES block cipher in counter
mode. Let η be the output length of our entropy extractor, i.e.,
the length of TRS, h be the min-entropy of SRAM start-up val-
ues, and I be an SRAM start-up binary string. According to
the construction of the entropy extractor proposed in [17], ac-
cumulating n bits entropy to the TRS requires at least dη/he
SRAM bits. As the seed in our construction also requires η

SRAM start-up bits, the length of I is at least dη/he+η . The
pseudocode of our concrete construction is showed in Algorith-
m 1. To fix the parameter h and thus determine the amount of
SRAM bits required by the entropy extractor, we estimate the
min-entropy of SRAM start-up values in Section 6.3.

Algorithm 1 Entropy Extractor
INPUT: I,η ,h
OUTPUT: TRS
1: TRS← 1η

2: seed← Read first η bits from I
3: for i = 0→ dη/he do
4: T ← Read next η bits from I
5: TRS = TRS · seed + T , where · and + are operations

over the field F2η .
6: end for
7: return TRS

4.2 Root of Trust in Main Memory
We first show our construction of the secure RNG following

the instructions of [17]. Let || denote the concatenation of two
stings, [S]l1 denote the first l bits of S. Our construction lever-
ages AES function in counter mode as shown in Algorithm 2.
Based on the unique device key pair (sk, pk) and the secure

RNG, we design the seal and unseal primitives and the secure
TPM service, which compose the root of trust.

Algorithm 2 Random Number Generator
INPUT: TRS
OUTPUT: A random number R
1: X ← 1η

2: Set state S← TRS
3: k = [X ·S]256

1
4: (k′,R) = (AESk(0)||AESk(1),AESk(2))
5: Set [S]256

1 = k′

6: return R

4.2.1 The Simple Seal/Unseal Primitives
The simple seal and unseal primitives bind secure data with

both the platform and the particular secure service through cryp-
tographic encryption and hashing. A user seals his data data
to some secure service S running on some device D by the
following steps. The user first derives a symmetric key from
the code identity of S (the cryptographic hash over S’s bina-
ry): ks = KDF(hash(S)), then encrypts data with ks to get
T = Encks(data), and finally encrypts T with the device public
key to get an encrypted blob B = Encpk(T). Unsealing is the
reverse: using D’s private key sk to decrypt B to obtain the sym-
metrically encrypted blob T , deriving the symmetric ks using
the code identity of the secure service, and finally decrypting
data using the derived symmetric key.

As the user data is dully-encrypted by the device key and the
key derived from the secure service, only the device possessing
the device key and running the legitimate secure service can
obtain the user data. We will show in Section 4.3 that only the
platform running the legitimate secure OS can get the device
key, so the seal/unseal primitives guarantee that only platform
in a secure state can access the user data. In another word, the
seal/unseal primitives implicitly attest to users the state of the
TEE, i.e., an implicitly attestation mechanism. This mechanism
can also be used by secure services to store sensitive data.

4.2.2 TPM service
The TPM service provides rich trusted computing function-

alities for the mobile OS, such as secure storage, measurement,
and attestation. These functionalities can be used to bootstrap a
trusted mobile OS and further help the OS to extend the chain
of trust to applications, i.e., help the normal world run in a trust-
ed state. We will give a detailed description of the chain of trust
from the BootROM to the mobile OS in Section 4.3.

The TDDI facilitates the use of the TPM service by simulat-
ing a hardware TPM driver interface [64], see Figure 3. It for-
wards all commands to and receives responses from the TPM
service through the GP TEE Client API [24]. TDDI makes the
TPM service compatible with hardware TPMs at very low lev-
el, so applications previously leveraging hardware TPMs and
the TCG Software Stack (TSS) such as Trousers [72] and jTSS
[65] can leverage the TPM service without any modification.

4.3 Chain of Trust
Chain of trust is essential for TrustZone, as code running in

the secure world is stored in the insecure non-volatile storage
of the device, which is vulnerable to attacks from the normal
world. Establishing a chain of trust from the BootROM to the

Building

Block
BootROM Secure OS Rich OS

(pk,sk)r

On-Chip SRAM Main Memory

Figure 5: The Chain of Trust

mobile OS can protect the secrecy and integrity of the code run-
ning inside the secure world, and ensure to boot a trustworthy
mobile OS. We now show how to build a chain of trust under
our design, see the boot flow under our design in Figure 5.

When the device is powered up, the ARM processor runs
in the secure mode and immediately executes the immutable
code from the BootROM, which is laid down during chip fab-
rication and implicitly trusted. The BootROM first verifies the
integrity of the building block: this can be done by measur-
ing the image of the building block and using the manufacturer
public key to verify whether the measurement is signed by the
manufacturer1. Then the BootROM reads the start-up values r
of the on-chip SRAM, initializes the on-chip SRAM and loads
the building block into it. If the integrity verification succeed-
s, the BootROM transfers r to the building block and runs the
building block in the on-chip SRAM, else stops the startup.

The building block reproduces the primary seed PS by feed-
ing the SRAM start-up values r and the helper data H to the
reproduce procedure of the fuzzy extractor, and then derive a
symmetric key k and the unique device key pair (pk,sk) from
PS. The symmetric key k is used to decrypt the image of the
secure OS and secure services. Then the building block checks
the integrity of the image by verifying whether the measure-
ment of the image is signed by the manufacturer. If the verifica-
tion succeeds, the building block loads the image to the secure
region of the main memory, transfers (pk,sk) to the secure OS,
and runs the secure OS, else stops the startup. Before running
the secure OS, the building block erases all the information in
the on-chip memory, in particular, the SRAM start-up values,
the primary seed and the symmetric key.

When the secure OS starts up, it initializes the services con-
tained in the image (including the TPM service). Then it mea-
sures the image of the normal OS and extends the measure-
ment to Platform Configuration Registers (PCRs) of the TPM
service. Finally, the secure OS runs the normal OS. The nor-
mal OS can continually extend the chain of trust with the TPM
service.

A Brief Security Analysis. The BootROM ensures the in-
tegrity of the building block, the building block ensures both
the secrecy and integrity of the secure OS, and the secure OS
records the integrity of the normal OS. Thus, a complete chain
of trust is established since the power-up of the device. Our de-
sign of the TPM service helps the normal world to extend the
chain of trust to applications just like using a hardware TPM.

4.4 Key Update
A significant benefit of our design of the root of trust in com-

parison with existing physical secure key storage mechanisms
is that our design enables to deploy flexible key update mech-
anisms. We propose a key update protocol through which the

1It’s common for BootROM to provide the verification ability
in devices supporting secure boot, such as the Zynq-7000 SoC
[54] and iOS platforms [6].

1. M→D: nonce $←− {0,1}η

2. D→M: sig=SIGsk(nonce[,c])[,c]

3. M→D: M first performs the following steps:

(a) Verify sig by VERpk(sig)

(b) Choose PS′ $←− {0,1}η

(c) H ′ = r⊕BCHEnc(PS′) where r is SRAM values
collected during the Gen procedure

(d) k′ = KDF(PS′[,c]), (pk′,sk′) = KG(PS′[,c])

(e) Blob′ = AESk′(imS)

(f) Certpk′ = SIGskM (pk′,Hash(imB),Hash(imS))

Finally, M sends (H ′,Blob′,Certpk′) to D.

4. D verifies Certpk′ , deletes previous (H,Blob,Certpk),
and stores (H ′,Blob′,Certpk′).

Figure 6: Key Update Protocol

device owner can change his device key regularly.

Let x $←− S denote assigning x a value uniformly chosen from
a set S, {0,1}n denote the set of binary strings of length n, η

denote the security parameter, D be the device, M be the manu-
facturer. D has a unique device public/private key pair (pk,sk),
and the manufacture has a key pair (pkM ,skM) for signing. We
denote a signature scheme by a triple (KG,SIG,VER) where
KG is a key generation algorithm, SIG is a signature algorithm,
and VER is a verification algorithm. We use imB and imS to de-
note the image of the building block and secure OS respective-
ly, and use c to denote a mono counter. We define the protocol
in Figure 6, the option fields between square brackets are used
to resist the downgrading attack which will be described later.
Our key update protocol can be summarized in 3 simple step-
s (in the following description, the secure OS includes secure
services running in the secure world):

1. Verify the device (Step 1, 2, and 3.(a)): M sends to D a
random challenge nonce. D signs nonce with its private
device key and sends the signature to M. Then M verifies
the signature to check whether D possesses a legitimate
device key.

2. Bind new device key (Step 3.(b) to 3.(f)): This step ac-
tually is a re-run of the generate procedure, during which
M implicitly embeds a new primary seed PS′ into the de-
vice. In this step, M generates a new helper data H ′, a
new encrypted blob of the secure OS using a new sym-
metric key k′ derived from PS′, and a certificate binding
the new device public key pk′ and measurements of the
building block and secure OS.

3. Deploy new device key (Step 4): D first verifies the cer-
tificate Certpk′ issued by M, and then stores the triple
(H ′,Blob′,Certpk′) in its non-volatile storage. H ′ will
be used to generate the new embedded primary seed PS′

during the reproduce procedure, which derives the new
device key (pk′,sk′). Blob′ is the encrypted image of the
secure OS using the new symmetric key k′. Certpk′ , con-

taining the standard measurement values of the building
block and secure OS, will help the device to establish a
chain of trust.

When the device reboots after running the key update pro-
tocol, the building block will generate PS′ under the help of
the new helper data H ′. As PS′ is randomly selected by M and
independent from the previous device key (pk,sk), the knowl-
edge of the previous key doesn’t give the adversary any help
in corrupting PS′. So the new device key derived from PS′ is
secure. Our key update protocol doesn’t resist downgrading at-
tacks: an adversary can roll back the device key to an old one
by copying previous helper data and encrypted blob of the se-
cure OS back to the device. However, this attack can be easily
prevented under the help of a secure mono counter c, see Fig-
ure 6. Once running the key update protocol, c is increased by
1, so the building block cannot compute the previous symmet-
ric key k as c has been changed, thus the secure OS cannot be
decrypted. Thus, only the new deployed software can boot the
system, which prevents downgrading attacks.

4.5 Security Analysis
We now discuss the security of our design, i.e., how the pri-

mary seed and the unique device key are protected.
Protection for the primary seed. We now show that the pri-
mary seed is secure even under a sophisticated adversary capa-
ble of controlling all external interfaces of the SoC. We list all
the possible attacks by which the adversary might compromise
the primary seed, and argue why these attacks cannot succeed
one by one.

1. Compromise the SRAM start-up values. The adver-
sary can generate the primary seed itself if it knows the
SRAM start-up values of the device. However, the ad-
versary cannot read the start-up values as the values are
transferred to the building block by the BootROM through
the internal buses in SoC which the adversary cannot
monitor.

2. Software attacks. The primary seed exists only when
the building block is running, and at this time the build-
ing block is the only code running on the device. The
chain of trust guarantees that only legitimate building
block can run in the OCM, so the adversary cannot com-
promise the primary seed through software attacks.

3. Attach malicious peripherals. The OCM is secure stor-
age for SoC as it has no address or data lines at device
pins. So malicious peripherals cannot read the contents
of the OCM from the pins of the device. Moreover, the
OCM is designated as secure, so the TZPC can prevent
malicious peripherals from accessing the OCM.

4. Attach malicious DMA-capable devices. The last pos-
sible attack that the adversary can mount is to attach a
malicious DMA-capable device to the SoC to read the
primary seed in the OCM. However, as we designate the
OCM as secure, the TrustZone-aware DMA Controller
can prevent malicious devices from accessing the OCM.

Protection for the device key. The device key is stored in the
secure OS which runs in the off-chip main memory such as
DRAM. The TrustZone isolation prevents all attacks from the
normal world, so adversaries capable of controlling the mobile

Zynq AP SoC
SRAM Chip

GPIO

GPIO

Figure 7: Physical view of our implementation

OS cannot compromise the device key. For the device key, we
don’t consider physical attacks that fall outside the defense ca-
pabilities of TrustZone technology. However, if the device key
is compromised by physical attacks, we can deploy a new one
by running the key update protocol, which can mitigate physi-
cal attacks on the device key.

5. Implementation
We now present our implementation on a TrustZone-enabled

development board, Zynq-7000 AP SoC Evaluation Kit [71].
This board is equipped with dual ARM Cortex-A9 MPCore,
1GB of DDR3 Memory, and an OCM module consisting of
256 KB of SRAM and 128 KB of ROM (BootROM).

5.1 SRAM PUF
Although Zynq-7000 AP SoC has 256 KB of on-chip S-

RAM, it is initialized by the BootROM once the board is pow-
ered on, preventing us from reading the initial values of the
on-chip SRAM. We then use an SRAM chip that is of the type
IS61LV6416-10TL [31] to serve as our SRAM PUF. This S-
RAM chip is equipped in a board [5] whose core is an ALTERA
Cyclone II EP2C5T144 chip. Figure 7 shows the Zynq devel-
opment board, the Cyclone board, and their connection. The
SRAM start-up data is transferred to the Zynq development
board by an FPGA implementation of Universal Asynchronous
Receiver/Transmitter (UART) in Verilog hardware description
language. A UART transmitter in the Cyclone board transmits
SRAM data via a General Purpose I/O (GPIO) pin, and a UART
receiver in the Zynq board receives the SRAM data via a GPIO
pin and stores the data to a RAM cache we build in the pro-
grammable logic of the Zynq development board. Then CPU
can fetch the SRAM data in the RAM cache via the AXI bus.

5.2 Building Block
We implement our building block based on the First Stage

BootLoader (FSBL) of Xilinx, which runs immediately after
the BootROM. The fuzzy extractor is based on an open source
BCH code [48], which can build BCH codes with different pa-
rameters. However, the original source code of [48] requires
more than 4MB memory, so it cannot directly run in the OCM.
We customize a [1020,43,439]-BCH code based on [48], and

SierraTEE
Driver

tpm_dev

main()

SierraTEE
Secure OS

Socket
main_loop()

...

User
Mode

Privilege
Mode

Secure WorldNormal World

GP TEE Client API

TPM_
CreateWrapKey()

TPM_
Seal()

TPM_
Unbind()

tpm_execute_command()

Figure 8: TPM Service Implementation

optimize the source code to make it require less than 40KB
memory. The [1020,43,439]-BCH code can decode a noisy
1020 bits message whose errors are less than b493/2c = 219,
and obtain 43 “error-free" bits. As the primary seed is of length
256 bits, we require at least d256/43e ∗ 1020 = 6120 bits S-
RAM start-up values and need to run the BCH code d256/43e=
6 times in our building block. For devices whose OCM is quite
limited, BCH codes with other parameters can be used. For ex-
ample, the [511,19,239]-BCH code only requires about 10KB
memory after our optimization.

The secure entropy extractor is implemented using a cus-
tomized Binary finite field library (BFFL) [12] for a finite field
of 512 bits. The BFFL consists of only about 300 lines of code,
and uses only a small fixed lookup table of 512 bytes. These
features make it suitable for our entropy extractor running in
the OCM.

We implement KG using the RSAREF library [52] (that we
modify to support 2048 bits and whose MD5 hash function is
replaced with SHA-2). The generation of the symmetric key for
secure boot is similar to the generation of a symmetric prima-
ry key in TPM 2.0 [62], so we implement KDF following the
_cpri__KDFa() function described in TPM 2.0. We also ad-
d RSA verification function [52] and AES decryption function
using Byte-Oriented-AES [44] to the building block to support
secure boot.

5.3 Root of Trust
In the normal world, we run a Linux OS with kernel version

3.8. In the secure world, we run the Open Virtualization Sier-
raTEE, which provides a basic secure OS running in the secure
world of TrustZone and is compliant with the Global Platfor-
m’s TEE Specifications [25]. The source code of SierraTEE
for Xilinx’s Zynq-7000 AP SoC now is available from Github
[26] under a GNU v2.0 License.

In the secure OS of SierraTEE, we implement the secure
RNG described in Algorithm 2 and the simple seal/unseal prim-
itives described in Section 4.2.1. The secure RNG is imple-
mented by the BFFL, and ExpandKey() and Encrypt() from
[44]. We locate the secure RNG in a GlobalPlatform TEE In-
ternal API TEE_GenerateRandom() (which is an empty func-
tion in the original SierraTEE source code2), thus the secure OS
and secure services can use our RNG by calling this function.
The seal/unseal primitives are implemented by the modified R-
SAREF library, KDF, SHA256, and the Byte-Oriented-AES.

Our TPM service is implemented by creating a secure ser-

2It is reasonable that SierraTEE doesn’t implement this func-
tion: secure RNGs are not commonly available on devices.

Table 1: TCB size of our implementation
Code (LOC)

Building Block

Fuzzy Extractor 0.3K
Entropy Extractor 0.8K
KG and KDF 1.7K
Secure Boot 0.4K
Total 3.2K

Root of Trust

Secure RNG 0.8K
Seal/Unseal 1.9K
TPM Service 21.1K
Total 23.8K

vice in the secure world running a software TPM [59] whose
Endorsement Key is the unique device key. Figure 8 depicts our
implementation. The original software TPM [59] is a daemon
application listening on a Unix socket for incoming TPM com-
mand requests, and transferring received TPM requests to the
main_loop() function who dispatches these requests to corre-
sponding TPM functions. The original software TPM requires
TCP/IP software stack, but it’s infeasible for the secure world
to include such a big software stack. So we move the main()
function to the normal world, and leave the main_loop() func-
tion as the entry of the TPM service. When the main() function
receives a TPM command request, it transfers the request to the
main_loop() function though the GP TEE client API. We also
port the tpmd_dev Linux kernel module of the software TPM
to the normal world, which simulates a hardware TDDI, and
connects the TPM daemon through a socket connection. An-
other technical issue that we meet during implementation is the
storage of the persistent data. Storing persistent data of the TP-
M service happens when a TPM command request is success-
fully processed or the TPM_SaveState() command is called.
Unfortunately, the secure world has no persistent secure stor-
age. We solve this issue by encrypting the persistent data using
another symmetric key derived from the primary seed and stor-
ing the encrypted blob in the normal world.

6. Evaluation
We present the TCB size of our implementation of the build-

ing block and the root of trust. We then perform tests to evalu-
ate the robustness and uniqueness of the SRAM PUF. We also
perform the NIST randomness tests on our secure RNG. Final-
ly, we present a performance evaluation of the root of trust.

6.1 TCB Size
We present the number of lines of source code of the build-

ing block and the root of trust in Table 1, and all implemen-
tations are written in C. As shown in Table 1, the TCB size
of the building block and the simple seal/unseal primitives is
very small: the total size of the building block is 3.2K and the
seal/unseal primitives is 1.9K. One reason for the small TCB
size of our implementation is that we leverage some very ef-
ficient open source libraries such as BFFL and Byte-Oriented-
AES. The TCB size of the TPM service is much bigger as it
provides rich trusted computing functionalities.

6.2 Tests on SRAM PUF
We test the robustness and uniqueness of the SRAM PUF,

which are two most important properties of PUFs. For the S-

Figure 9: Robustness and Uniqueness Evaluation

RAM PUF, high robustness means that the start-up values from
the same address range (the challenge to SRAM PUFs) should
not differ significantly between the generate procedure and re-
produce procedure. This property guarantees that errors be-
tween the generate and reproduce procedure can be corrected
by the BCH code, thus the primary seed randomly chosen by
the manufacturer during the generate procedure can be recon-
structed during the reproduce procedure. The robustness of an
SRAM PUF is usually assessed by the Hamming distance be-
tween repeated measurements of SRAM cells from the same
address range, which is defined by HD(x̄, ȳ)=∑

L
i=1 xi⊕ yi where

x̄ and ȳ are two start-up binary strings of the SRAM PUF, L is
the length of x̄ and ȳ, and xi and yi are the i-th bit of x̄ and
ȳ respectively. We perform 100 measurements on the same
address range of 6120 bits in the SRAM chip, compare the
100 measurements to each other, and depict the Hamming Dis-
tance histogram of the 100(100− 1)/2 = 4950 comparison-
s in Figure 9 (left). The analysis shows the average Ham-
ming distance of the SRAM PUF start-up binary strings is 273
(273/6120 = 4.46%), and the maximum Hamming distance
is 343 (343/6120 = 5.6%). We now assess the robustness of
our fuzzy extractor, i.e., the ability to reconstruct the implic-
itly embedded primary seed in the reproduce procedure. Un-
der assumption that all SRAM bits are independent, the max
bit error probability p is 0.056. Considering experimental re-
sults of [27] obtained under the condition that large environ-
ment variations are taken into account (and to be conserva-
tive), we set p = 0.15. Notice that the [1020,43,439]-BCH
code can correct up to t = 219 errors. Thus the probability that
the fuzzy extractor cannot reconstruct the 43 “error-free" bit-
s can be calculated by P = ∑

1020
i=219+1

(1020
i
)

pi(1− p)1020−i =

1−∑
219
i=0

(1020
i
)

pi(1− p)1020−i < 10−7. As the building block
runs the fuzzy extractor 6 times to generate a 256 bits primary
seed, the robustness of the building block (i.e., the probability
that the building block can reconstruct the primary seed), can
be calculated by PBB = (1−P)6 > 1−10−6.

The SRAM PUF should achieve high uniqueness, which mean-
s that start-up binary strings from different SRAM PUFs should
be random and independent from each other. This property
guarantees that knowledge of SRAM start-up values of one de-

vice doesn’t help in the prediction of SRAM start-up values of
another device. We use three methods to assess the uniqueness
of the SRAM PUF:

1. Hamming distance measure. As we expect that different
SRAM PUFs behave independently from each other, the
Hamming distance between start-up binary strings from
different SRAM PUFs should be close to one half of the
length of the start-up binary string.

2. Min-entropy estimation. Min-entropy provides a low-
er bound for the unpredictability of the SRAM start-up
strings. We assume that all bits from the SRAM start-
up strings are independent, so each bit can be viewed as
an individual binary source. We leverage the method de-
scribed in NIST 800-90 [11] to assess the min-entropy of
a binary bit: H =−log2(pmax), where pmax =max{p0, p1}
(p0 and p1 are probabilities of the binary bit output ze-
ro and one respectively). The min-entropy of the SRAM
start-up strings is defined by: Htotal = ∑

n
i=1 Hi where n is

the length of the start-up string.

3. CTW compression. Context-Tree Weighting (CTW) [70]
is an optimal compression algorithm for stationary sources
and is commonly used to estimate entropy.

We implement 100 SRAM PUFs using 100 different address
ranges of 6120 bits in the SRAM chip. A histogram of Ham-
ming distances between start-up binary strings of the 100 S-
RAM PUFs (100 ∗ 99/2 = 4950 comparisons) is depicted in
Figure 9 (right). Our analysis shows that the Hamming dis-
tance distribution closely matches a normal distribution with
mean 2972 (which is close to one half of 6120) and a stan-
dard deviation of 44 (44/6120=0.7%). The min-entropy and the
CTW compression ratio of the 100 SRAM PUFs startup strings
are 4835 (4835/6120 = 79%) and 99% respectively. All the
results show that our SRAM PUF satisfies high uniqueness.

6.3 NIST Test on the RNG
As we use the noise present in the SRAM start-up values to

accumulate entropy for the secure RNG, we first need to esti-
mate the entropy in the start-up values. This time the input of
the min-entropy estimation method is not SRAM start-up bina-
ry strings from different SRAM PUFs but binary strings from
repeated measurements on the same SRAM PUF. We perfor-
m 100 measurements on the same address range of 6120 bits,
and calculate the min-entropy. The results show that the min-
entropy rate of the SRAM chip is about 5.5%. To be conser-
vative, we set the min-entropy rate to be 2%. Notice that our
implementation of the entropy extractor extracts a truly random
seed of 512 bits, so the required length of the SRAM start-up
values is 512/0.02+512 = 25.5K bits.

We then perform the complete set of randomness tests from
NIST 800-22 [53] on our implementation of the secure RNG.
We use the RNG to generate 128.000.000 bits output, and di-
vide it into 125 strings of 1.024.000 bits. The result shows that
at least 124 strings (99%) pass all tests.

6.4 Performance of The Root of Trust
We first evaluate the performance delay introduced by the

context switch between the secure world and the normal world.
This evaluation is done by invoking an empty service running
in the secure world. The result shows that the context switch
only requires about 2 milliseconds (ms).

Table 2: Performance Evaluation (in ms). Avg. of 100 runs.
Command Key Time Command Key Time
Simple Seal 2048 4 Sign 2048 17
Simple Unseal 2048 17 1024 6
TakeOwnership 2048 1056 Seal 2048 4
MakeIdentity 2048 947 1024 4
ActivateIdentity 2048 18 Unseal 2048 18
Quote 2048 17 1024 6

CreateWrapKey 2048 972 Unbind 2048 17
1024 85 1024 6

LoadKey 2048 18
1024 6

Table 3: TPM chip vs TPM service (in ms, key size: 2048
bits). Avg. of 100 runs.

LoadKey Sign Seal Unseal Unbind
TPM 1.2 chip 781 609 63 625 625
TPM Service 18 17 4 18 17

We then evaluate the performance of the simple seal/unseal
primitives and some TPM commands of the TPM service, and
summarize the results in Table 2 (the number in the Key col-
umn denotes the key length in bits). We also compare the TPM
service with a TPM 1.2 hardware chip produced by Nation-
al Semiconductor, which is embedded in an IBM ThinkCenter
M52 81114 host. The comparison is shown in Table 3. The re-
sults of the performance evaluation on the TPM service include
the context switch delay. The results indicate that the TPM ser-
vice is very efficient compared to TPM hardware chips.

7. Related Work
Researchers at Johns Hopkins University Applied Physics

Laboratory working with the Trusted Computing Group devel-
op specifications for trusted computing technologies in mobile
devices [47]. They define the root of trust and chain of trust as
basic requirements for a mobile TPM, which are supported by
our design.

ARM defines an architecture [10] for TrustZone-enabled plat-
forms based on GlobalPlatform TEE API standards. The archi-
tecture leverages hardware resources such as hardware keys,
crypto accelerators, and Secure Element to provide the root of
trust. Nokia’s On-board Credentials system uses an assumed
device key to provide root of trust for the platform. These ap-
proaches require special hardware components to provide se-
cure storage and randomness for TEE. However, these hard-
ware components are not always available in devices. Further-
more, the conventional secure storage provided by hardware
keys is inflexible when key update is required.

Areno et al. present a methodology that uses PUFs to protect
the TEE [7]. Their idea is similar to this work. However, they
only concern about the secure-boot process on a TrustZone-
enabled platform, and other security functionalities such as at-
testation and RNGs are not considered. Furthermore, they only
discuss how their design can be implemented by FPGA tech-
nology and don’t give a concrete implementation.

Another related work is TEEM [21], a portable Trusted Com-
puting module that can provide trusted computing functionali-

ties for various computing platforms such as desktop machines
and mobile devices. TEEM is designed as a secure TPM ser-
vice running in the secure world of TrustZone, and a prototype
is implemented on a general ARM SoC development board.
However, their implementation doesn’t isolate TEEM from the
Rich OS. Actually, the TEEM runs on an entire Linux OS,
which makes the TCB very large. Furthermore, their work ig-
nores the root of trust for TEEM, i.e., they don’t consider how
to establish a chain of trust for TEEM from powered on.

8. Conclusion
In this paper, we presented a research prototype that provides

the root of trust for TrustZone-enabled platforms using SRAM
PUFs. Our prototype first leveraged the SRAM PUF common-
ly available on mobile devices to provide foundations for the
root of trust (secure storage, randomness, and secure boot) in a
very small TCB size of about 3.2K LOC, then built the root of
trust running in the secure world of TrustZone, which enabled
to establish a complete chain of trust for mobile devices. An-
other advantage of our prototype is that it enables to deploy key
update mechanisms easily. As a result, we demonstrated that
the SRAM PUF could provide the root of trust for TrustZone-
enabled platforms in a secure, efficient and flexible way.

9. Acknowledgments
We thank Yevgeniy Dodis, Sylvain Ruhault for their sugges-

tions on building our secure RNG. We especially thank Anto-
nio Bellezza for providing an efficient customized finite field
library.

10. References
[1] App Sandbox Design Guide.

https://developer.apple.com/library/mac/document
ation/Security/Conceptual/AppSandboxDesignGuide/
AboutAppSandbox/AboutAppSandbox.html.

[2] SE for Android.
http://selinuxproject.org/page/SEforAndroid.

[3] Advanced Micro Devices. Secure Virtual Machine Architecture
Reference Manual. AMD Publication, (33047), 2005.

[4] T. Alves and D. Felton. Trustzone: Integrated hardware and
software security. ARM white paper, 3(4), 2004.

[5] Anne’s fashion shoes. ALTERA EP2C8F256 Core Board.
http://www.aliexpress.com/item/Altera-ep2c8f256
-core-board-belt-sdram-sram-fpga-development-boa
rd-power-supply-pin/1427214650.html.

[6] Apple. iOS Security. http://images.apple.com/ipad/bu
siness/docs/iOS_Security_Feb14.pdf.

[7] M. Areno and J. Plusquellic. Securing trusted execution
environments with puf generated secret keys. In Trust, Security
and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on, pages 1188–1193.
IEEE, 2012.

[8] ARM. ARM Security Technology Building a Secure System
using TrustZone R© Technology.

[9] ARM. Designing with TrustZone R© - Hardware Requirements.
[10] ARM. Securing the System with TrustZone R© Ready Program.

http://www.arm.com/products/security-on-arm/tru
stzone-ready/index.php.

[11] E. B. Barker and J. M. Kelsey. Recommendation for random
number generation using deterministic random bit generators
(revised). NIST, 2007.

[12] A. Bellezza. Binary finite field library 0.02. http:
//www.beautylabs.net/software/finitefields.html.

[13] C. Bösch. Efficient fuzzy extractors for reconfigurable hardware.
Master’s Thesis, Ruhr-University Bochum, 2008.

[14] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and
P. Tuyls. Efficient helper data key extractor on fpgas. In
Cryptographic Hardware and Embedded Systems–CHES 2008,
pages 181–197. Springer, 2008.

[15] M. Claudio, K. Nikolaos, S. Claudio, K. Kari, and Č. Srdjan.
Smartphones as practical and secure location verification tokens
for payments. In NDSS, 2014.

[16] A. Desnos and P. Lantz. Droidbox: An android application
sandbox for dynamic analysis.
https://code.google.com/p/droidbox/, 2011.

[17] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and
D. Wichs. Security analysis of pseudo-random number
generators with input:/dev/random is not robust. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 647–658. ACM, 2013.

[18] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In
Advances in cryptology-Eurocrypt 2004, pages 523–540.
Springer, 2004.

[19] I. Eichhorn, P. Koeberl, and V. van der Leest. Logically
reconfigurable pufs: Memory-based secure key storage. In
Proceedings of the sixth ACM workshop on Scalable trusted
computing, pages 59–64. ACM, 2011.

[20] J.-E. Ekberg, N. Asokan, K. Kostiainen, P. Eronen, A. Rantala,
and A. Sharma. Onboard credentials platform design and
implementation. Nokia Research Center Helsinki, Finland, 2008.

[21] W. Feng, D. Feng, G. Wei, Y. Qin, Q. Zhang, and D. Chang.
Teem: A user-oriented trusted mobile device for multi-platform
security applications. In Trust and Trustworthy Computing,
pages 133–141. Springer, 2013.

[22] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Controlled
physical random functions. In Computer Security Applications
Conference, 2002. Proceedings. 18th Annual, pages 149–160.
IEEE, 2002.

[23] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon
physical random functions. In Proceedings of the 9th ACM
conference on Computer and communications security, pages
148–160. ACM, 2002.

[24] Global Platform Device Technology. TEE client API
specification version 1.0. http://globalplatform.org,
2010.

[25] GlobalPlatform. GlobalPlatform Device Specifications. http://
www.globalplatform.org/specificationsdevice.asp.

[26] J. González. Open Virtualization for Xilinx’s ZC-702.
https://github.com/javigon/OpenVirtualization.

[27] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls. Fpga
intrinsic pufs and their use for ip protection. In Cryptographic
Hardware and Embedded Systems-CHES 2007, pages 63–80.
Springer, 2007.

[28] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert. Cloning
physically unclonable functions. In Hardware-Oriented Security
and Trust (HOST), 2013 IEEE International Symposium on,
pages 1–6. IEEE, 2013.

[29] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up sram state
as an identifying fingerprint and source of true random numbers.
Computers, IEEE Transactions on, 58(9):1198–1210, 2009.

[30] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up sram state
as an identifying fingerprint and source of true random numbers.
Computers, IEEE Transactions on, 58(9):1198–1210, 2009.

[31] Integrated Silicon Solution, Inc. IS61LV6416-10TL.
http://www.alldatasheet.com/datasheet-pdf/pdf/5
05020/ISSI/IS61LV6416-10TL.html.

[32] Intel Corporation. LaGrande technology preliminary architecture
specification. Intel Publication, (D52212), May 2006.

[33] P. C. Kocher. Leak-resistant cryptographic indexed key update,

Mar. 25 2003. US Patent 6,539,092.
[34] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala.

On-board credentials with open provisioning. In Proceedings of
the 4th International Symposium on Information, Computer, and
Communications Security, pages 104–115. ACM, 2009.

[35] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls.
The butterfly puf protecting ip on every fpga. In
Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, pages 67–70. IEEE, 2008.

[36] K. Kursawe, A. Sadeghi, D. Schellekens, B. Skoric, and P. Tuyls.
Reconfigurable physical unclonable functions-enabling
technology for tamper-resistant storage. In Hardware-Oriented
Security and Trust, 2009. HOST’09. IEEE International
Workshop on, pages 22–29. IEEE, 2009.

[37] J.-P. Linnartz and P. Tuyls. New shielding functions to enhance
privacy and prevent misuse of biometric templates. In Audio-and
Video-Based Biometric Person Authentication, pages 393–402.
Springer, 2003.

[38] D. Liu and Q. Dong. Combating side-channel attacks using key
management. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–8.
IEEE, 2009.

[39] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions
for trusted sensors. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, pages
365–378. ACM, 2012.

[40] R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic pufs from
flip-flops on reconfigurable devices. In 3rd Benelux workshop on
information and system security (WISSec 2008), volume 17,
2008.

[41] R. Maes, P. Tuyls, and I. Verbauwhede. Low-overhead
implementation of a soft decision helper data algorithm for sram
pufs. In Cryptographic Hardware and Embedded Systems-CHES
2009, pages 332–347. Springer, 2009.

[42] R. Maes, P. Tuyls, and I. Verbauwhede. A soft decision helper
data algorithm for sram pufs. In Information Theory, 2009. ISIT
2009. IEEE International Symposium on, pages 2101–2105.
IEEE, 2009.

[43] R. Maes, A. Van Herrewege, and I. Verbauwhede. Pufky: A fully
functional puf-based cryptographic key generator. In
Cryptographic Hardware and Embedded Systems–CHES 2012,
pages 302–319. Springer, 2012.

[44] K. Malbrain. Byte-Oriented-AES.
https://code.google.com/p/byte-oriented-aes/.

[45] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. Trustvisor: Efficient tcb reduction and attestation. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages
143–158. IEEE, 2010.

[46] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb
minimization. In ACM SIGOPS Operating Systems Review,
volume 42, pages 315–328. ACM, 2008.

[47] K. N. McGill. Trusted mobile devices: Requirements for a
mobile trusted platform module. JOHNS HOPKINS APL
TECHNICAL DIGEST, 32(2):544, 2013.

[48] R. Morelos-Zaragoza. Encoder/decoder for binary BCH codes in
C (Version 3.1).
http://www.rajivchakravorty.com/source-code/unce
rtainty/multimedia-sim/html/bch_8c-source.html.

[49] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit. Invasive
puf analysis. In Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2013 Workshop on, pages 30–38. IEEE, 2013.

[50] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical
one-way functions. Science, 297(5589):2026–2030, 2002.

[51] P. S. Ravikanth. Physical one-way functions. PhD thesis,
Massachusetts Institute of Technology, 2001.

[52] RSA Data Security Inc. RSAREF. http:
//www.homeport.org/~adam/crypto/rsaref.phtml.

[53] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A

statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report,
DTIC Document, 2001.

[54] L. Sanders. Secure Boot of Zynq-7000 All Programmable SoC.
2013.

[55] D. Sangorrin, S. Honda, and H. Takada. Dual operating system
architecture for real-time embedded systems. In Proceedings of
the 6th International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT), Brussels,
Belgium, pages 6–15, 2010.

[56] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm
trustzone to build a trusted language runtime for mobile
applications.

[57] Sierraware. Open Virtualization - ARM TrustZone and ARM
Hypervisor Open Source Software.
http://www.sierraware.com.

[58] P. Simons, E. van der Sluis, and V. van der Leest. Buskeeper
pufs, a promising alternative to d flip-flop pufs. In
Hardware-Oriented Security and Trust (HOST), 2012 IEEE
International Symposium on, pages 7–12. IEEE, 2012.

[59] M. Strasser and H. Stamer. A software-based trusted platform
module emulator. In Trusted Computing-Challenges and
Applications, pages 33–47. Springer, 2008.

[60] G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings
of the 44th annual Design Automation Conference, pages 9–14.
ACM, 2007.

[61] G. Taylor and G. Cox. Behind intel’s new random-number
generator. IEEE Spectrum, 2011.

[62] TCG. Trusted Platform Module Library Part 1: Architecture,
Family 2.0, Level 00 Revision 01.07, 2014.

[63] Trusted Computing Group.
http://www.trustedcomputinggroup.org.

[64] Trusted Computing Group. TPM Software Stack (TSS)
Specification, Version 1.2.
https://www.trustedcomputinggroup.org/resources/
tcg_software_stack_tss_specification.

[65] TU Graz, IAIK. jTSS–Java TCG Software Stack.
http://trustedjava.sourceforge.net, 2009.

[66] P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh,
and R. Wolters. Read-proof hardware from protective coatings.
In Cryptographic Hardware and Embedded Systems-CHES
2006, pages 369–383. Springer, 2006.

[67] V. Van der Leest, B. Preneel, and E. Van der Sluis. Soft decision
error correction for compact memory-based pufs using a single
enrollment. In Cryptographic Hardware and Embedded
Systems–CHES 2012, pages 268–282. Springer, 2012.

[68] V. van der Leest, E. van der Sluis, G.-J. Schrijen, P. Tuyls, and
H. Handschuh. Efficient implementation of true random number
generator based on sram pufs. In Cryptography and Security:
From Theory to Applications, pages 300–318. Springer, 2012.

[69] Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan.
Flash memory for ubiquitous hardware security functions: true
random number generation and device fingerprints. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages 33–47.
IEEE, 2012.

[70] F. M. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The
context-tree weighting method: Basic properties. Information
Theory, IEEE Transactions on, 41(3):653–664, 1995.

[71] Xilinx. Zynq-7000 All Programmable SoC ZC702 Evaluation
Kit. http://www.xilinx.com/products/boards-and-kit
s/EK-Z7-ZC702-G.htm.

[72] K. Yoder et al. TrouSerS–Open-source TCG Software Stack.
http://trousers.sourceforge.net, 2007.

