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Abstract
Secure two-party computation allows two mutually dis-
trusting parties to jointly compute an arbitrary function
on their private inputs without revealing anything but the
result. An interesting target for deploying secure compu-
tation protocols are mobile devices as they contain a lot
of sensitive user data. However, their resource restrictions
make this a challenging task.

In this work, we optimize and implement the
secure computation protocol by Goldreich-Micali-
Wigderson (GMW) on mobile phones. To increase perfor-
mance, we extend the protocol by a trusted hardware to-
ken (i.e., a smartcard). The trusted hardware token allows
to pre-compute most of the workload in an initialization
phase, which is executed locally on one device and can be
pre-computed independently of the later communication
partner. We develop and analyze a proof-of-concept im-
plementation of generic secure two-party computation on
Android smart phones making use of a microSD smart-
card. Our use cases include private set intersection for
finding shared contacts and private scheduling of a meet-
ing with location preferences. For private set intersection,
our token-aided implementation on mobile phones is up
to two orders of magnitude faster than previous generic
secure two-party computation protocols on mobile phones
and even as fast as previous work on desktop computers.

1 Introduction

Secure two-party computation allows two parties to pro-
cess their sensitive data in such a way that its privacy
is protected. In the late eighties, Yao’s garbled cir-
cuits protocol [Yao86] and the protocol of Goldreich-

∗Please cite the conference version of this work published at
USENIX Security’14 [DSZ14].

Micali-Wigderson (GMW) [GMW87] showed the fea-
sibility of secure computation. However, secure com-
putation was considered to be mostly of theoretical in-
terest until the Fairplay framework [MNPS04] demon-
strated that it is indeed practical. Since then, many op-
timizations have been proposed and several frameworks
have implemented Yao’s garbled circuits protocol (e.g.,
FastGC [HEKM11]) and the GMW protocol (e.g., the
framework of [CHK+12]) on desktop PCs.

Motivated by the advances of secure computation
on desktop PCs, researchers have started to investigate
whether secure computation can also be performed in
the mobile domain. Mobile devices, in particular smart-
phones, are an excellent environment for secure computa-
tion, since they accompany users in their daily lives and
typically hold contact information, calendars, and pho-
tos. Users also store sensitive data, such as passwords or
banking information on their devices. Moreover, typical
smartphones are equipped with a multitude of sensors
that collect a lot of sensitive information about their users’
contexts. Therefore, it is of special importance to protect
the privacy of data handled in the mobile domain.

In contrast to desktop PCs, mobile devices are rather
limited in computational power, available memory, com-
munication capabilities, and most notably battery life.
Although mobile phones have seen an increase in process-
ing speed over the past years, they are still about one order
of magnitude slower than typical desktop computers when
evaluating cryptographic primitives (cf. §5.4). These dif-
ferences are due to the CPU architectures having a more
restrictive instruction set and being optimized for low
power consumption rather than performance, since mo-
bile devices are battery-powered and lack active cooling.
Moreover, the limited size of the main memory requires
the programmer to carefully handle data objects in order
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to avoid costly garbage collections on Java-based Android
smartphones. Network connections of mobile devices are
almost exclusively established via wireless connections
that have lower bandwidth and higher, often varying la-
tency compared to wired connections. Tasks that are
computationally intensive or require long send/receive
operations should be avoided when a mobile device is
running on battery, as such tasks quickly drain the battery
charge and thereby reduce the phone’s standby time. In-
stead, such operations could be pre-computed when the
mobile device is connected to a power source, which usu-
ally happens overnight. These limitations pose a big chal-
lenge for efficient secure computation and cause generic
secure computation protocols to be several hundred times
slower on mobile devices than on desktop PCs [HCE11],
even in the semi-honest adversary model.

To enable secure two-party computation in the mobile
domain, solutions have been developed that outsource
secure computation to the cloud, e.g., [KMR12, Hua12,
CMTB13]. However, recent events have shown that cloud
service providers can be forced to give away data to third
parties that are not necessarily trusted, such as foreign
government agencies. Even if the employed protocols en-
sure that the cloud provider learns no information about
the users’ sensitive data, he can still learn and hence be
forced to reveal meta-information such as the frequency
of access, communication partners involved, the com-
puted function, or the size of the inputs. Moreover, these
server-aided approaches require the mobile device to be
connected to the Internet which might not be possible in
every situation or may cause additional costs.

An alternative solution, which we also use in this work,
is to outsource expensive operations to a trusted hardware
token that has very limited computational resources and is
locally held by one of the communication partners.1 Such
hardware tokens are increasingly being adopted in prac-
tice, e.g., trusted platform modules (TPMs). Their adop-
tion is particularly noteworthy on mobile devices in the
form of smartcards that are the basis for subscriber iden-
tity modules (SIM cards), as well as for mobile payment
or ticketing systems. A first approach for outsourcing
Yao’s garbled circuits protocol to such a trusted hardware
token was proposed in [JKSS10]. However, this protocol
requires the function to be known in advance and uses
costly symmetric cryptographic operations during the on-
line phase. We give an alternative solution that removes
these drawbacks.

1This locality is also a security feature, as external adversaries either
need to corrupt the token before it is shipped to the user or later get
physical access to break into it.

1.1 Outline and Our Contributions

In this work, we introduce a scheme for token-aided ad-
hoc generic secure two-party computation on mobile de-
vices based on the GMW protocol. After introducing pre-
liminaries (§2) we detail our setting and trust assumptions
that are similar to the ones in a TPM scenario (§3). We
outline how a trusted hardware token can be used to shift
major parts of the workload into an initialization phase
that can be pre-computed on the token,independently of
the later communication partner (§4), e.g., while the mo-
bile device is charging. We thereby obtain a token-aided
secure computation scheme that is well-suited for efficient
and decentralized (ad-hoc) secure computation in the mo-
bile domain. We implement and evaluate our scheme (§5)
and demonstrate its performance using typical secure
computation applications for mobile devices, such as se-
curely scheduling a meeting with location preferences and
privacy-preserving set intersection (§6). We give related
work in §7 and a conclusion and directions for future work
in §8. More detailed, our contributions are as follows.

Token-Aided Ad-Hoc Secure Two-Party Computa-
tion on Mobile Devices (§4) We develop a token-aided
secure computation protocol which offloads the main
workload of the GMW protocol to a pre-computation
phase by introducing a secure hardware token T , held by
one party A (cf. §3). T is issued by a trusted third party
and provides correlated randomness [Hua12, Chap. 6]
to both parties that is later used in the secure computa-
tion protocol. To prepare the secure computation, the
other party B obtains seeds for his part of the correlated
randomness from T via an encrypted channel. To fur-
ther increase flexibility, we describe how to make the
pre-computation independent of the size of the evaluated
function | f |, at the cost of a t · log2 | f | factor communica-
tion overhead between T and B, where t is the symmetric
security parameter. In contrast to Yao-based approaches
[MNPS04,JKSS10,HCE11,HEK12] and previous realiza-
tions of the GMW protocol [CHK+12, SZ13, ALSZ13],
our protocol offers several benefits as summarized in
Tab. 1 (cf. §4.5 for details).

Table 1: Comparison with related work.

Property
Yao Token Yao GMW Ours

[HCE11] [JKSS10] [CHK+12] §4
f unknown in
init phase

3 7 3 3

ad-hoc communi-
cation� t · | f | 7 3 7 3

� | f | crypto op-
erations in ad-
hoc phase

7 7 7 3
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Implementation (§5) We implement our token-aided
protocol for semi-honest participants and evaluate its
performance using two consumer-grade Android smart-
phones and an off-the-shelf smartcard. Thereby, we pro-
vide an estimate for the achievable runtime of generic
secure computation in the mobile domain. Our imple-
mentation enables a developer to specify the functionality
as a Boolean circuit, which can, for instance, be gener-
ated from a high-level specification language. We show
that the performance of our token-aided pre-computation
phase is comparable to interactively generating the corre-
lated randomness using oblivious transfer.

Applications (§6) We demonstrate the practical feasi-
bility of the GMW protocol on mobile devices by perform-
ing secure two-party computation on two smartphones
using various privacy-preserving applications such as
availability scheduling (§6.1), location-aware schedul-
ing (§6.2), and set-intersection (§6.3). Most notably, for
private set-intersection, our token-aided scheme outper-
forms related work that evaluates generic secure compu-
tation schemes on mobile devices [HCE11] by up to two
orders of magnitude and has a performance that is compa-
rable with secure computation schemes that are executed
in a desktop environment [HEK12].

2 Preliminaries

In the following, we define our notation (§2.1) and the
ad-hoc scenario (§2.2), and give an overview of oblivious
transfer (§2.3) and the GMW protocol (§2.4). We describe
Yao’s garbled circuits in Appendix §A.

2.1 Notation
We denote the two parties that participate in the secure
computation as A and B. We use the standard notation
for bitwise operations, i.e., x⊕ y denotes bitwise XOR,
x∧ y bitwise AND, and x||y the concatenation of two
bit strings x and y. We refer to the symmetric security
parameter as t and the function to be evaluated as f .

2.2 Ad-Hoc Scenario
In an ad-hoc secure two-party computation scenario, two
parties that do not necessarily know each other in advance
want to spontaneously perform secure computation of
an arbitrary function f on their private inputs x and y.
Traditionally, secure computation protocols consist of
two interactive phases: the setup phase (independent of x
and y) and the online phase. We extend this setting by a
local init phase as depicted in Fig. 1.

The init phase takes place at any time before the parties
have identified each other and is used for pre-processing.

A B

Init Phase Setup Phase Online Phase

A B...?A
f(x,y)x y

f

Figure 1: The three secure computation phases.

In the setup phase, the parties have determined their com-
munication partner, establish a communication channel,
and know an upper bound on the function size | f |. In
the online phase, the parties provide their private inputs x
and y to the function f that they want to evaluate and
begin the secure computation. The ad-hoc time is the
combined time for setup and online phase.

2.3 Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block
for secure computation. In an OT protocol [Rab81], the
sender inputs two strings (s0,s1). The receiver inputs a
bit c ∈ {0,1} and obtains sc as output without revealing
to the sender which of the two messages he chose and
without the receiver learning any information about s1−c.
OT protocols, such as [NP01], require public-key cryp-
tography and make OT a relatively costly operation. OT
extension [IKNP03] allows to increase the efficiency of
OT by extending a small number of t base OTs to a large
number n� t of OTs whilst only using O(n) symmetric
cryptographic operations. Optimizations to the OT exten-
sion protocol of [IKNP03] were suggested in [ALSZ13],
which allow the parties to reduce the amount of data sent
per OT. Moreover, [ALSZ13] describes a more efficient
variant of the OT extension protocol for computing ran-
dom OT, where the sender obtains two random values as
output of the OT protocol.

2.4 The GMW Protocol

In the GMW protocol [GMW87], two (or more) parties
compute a function f , represented as Boolean circuit on
their private inputs by secret sharing their inputs using
an XOR secret sharing scheme and evaluating f gate
by gate. Each party can evaluate XOR gates locally by
computing the XOR of the input shares. AND gates,
on the other hand, require the parties to interact with
each other by either evaluating one OT or by using a
multiplication triple [Bea91] as shown in Appendix §B.
Finally, all parties send the shares of the output wires
to the party that shall obtain the function output. The
main cost factors in GMW are the total number of AND
gates in the circuit, called (multiplicative) size | f |, and
the highest number of AND gates between any input wire
and any output wire, called (multiplicative) depth d( f ).

3



Because an interactive OT is required for each AND
gate, it was believed that GMW is very inefficient com-
pared to Yao’s garbled circuits. However, in [CHK+12] it
was shown that by using OT extension [IKNP03] and OT
pre-computation [Bea95] many OTs can be pre-computed
efficiently in an interactive setup phase. Thereby, all use
of symmetric cryptographic operations is shifted to the
setup phase, leaving only efficient one-time pad opera-
tions for the online phase. Additionally, the setup phase
only requires an upper bound on | f | to be known be-
fore the secure computation. Follow-up work of [SZ13]
demonstrated that, by using OT to pre-compute multipli-
cation triples in the setup phase, the online phase can be
further sped up. Multiplication triples are random-looking
bits ai,bi, and ci, for i ∈ {A,B}, satisfying (cA⊕ cB) =
(aA⊕aB)∧ (bA⊕bB), that are held by the respective
parties and used to mask private data during the secure
computation. This masking is done very efficiently, since
no cryptographic operations are required. In [ALSZ13]
it was shown that multiplication triples can be generated
interactively using two random OTs. [Hua12] proposed
to let a trusted server generate the multiplication triples
and send (ai,bi,ci) to party i over a secure channel via
the Internet. In our work, we propose to do this locally,
without knowing the communication partner in advance.

3 Our Setting

In our setting, depicted in Fig. 2, we focus on ef-
ficient ad-hoc secure computation between two semi-
honest (cf. §3.1) parties A and B who each hold a mobile
device, which are approximately equally powerful but sig-
nificantly weaker than typical desktop computer systems.
The parties’ devices are connected via a wireless network
and battery-powered.

T

A B

Figure 2: The parties involved in the secure computation.

A holds a general-purpose tamper-proof hardware to-
ken T that has very few computational resources. T is
powered by A, and its functionalities are limited to the
standard functionalities described in §3.2. A and T are
connected via a physical low-bandwidth connection and
communicate via a fixed interface. B and T communi-
cate via A, i.e., every message that B and T exchange, is
seen and relayed by A. Note that this directly requires all
communication between B and T to be encrypted such

that it cannot be read by A. We assume that T behaves
semi-honestly, and is issued by a third party, external to
and trusted by both A and B (cf. §3.2).

3.1 Adversary Model

We assume that both parties behave semi-honestly in the
online phase, i.e., they follow the secure computation pro-
tocol, but may try to infer additional information about
the other party’s inputs from the observed messages. To
the best of our knowledge, all previous work on secure
computation between two mobile phones is based on the
semi-honest model (cf. §7.1). The semi-honest model is
suitable in scenarios where the parties want to prevent
inadvertent information leakage and for devices where
the software is controlled by a trusted party (e.g., business
phones managed by an IT department) or where code
attestation can be applied. Moreover, this model gives an
estimate on the achievable performance of secure compu-
tation. We outline how to extend our protocol to malicious
security in Appendix §F.

3.2 Trusted Hardware Token

We use the term trusted hardware token T to refer to a
tamper-proof, programmable device, such as a Java smart-
card, that offers a restricted set of functionalities. Such
functionalities include, for instance, hashing, symmetric
and asymmetric encryption/decryption, secure storage of
private keys, and secure random number generation. A
detailed summary of standard smartcard functionalities
is given in [HL08]. The hardware token is passive, i.e.,
it cannot initiate a communication by itself and only re-
sponds to queries from its host. It contains both persistent
and transient memory. T is physically protected against
attacks and is securely erased if it is opened by force.
Each token holds an asymmetric key pair, similar to an en-
dorsement key used in TPMs [TCG13], where the public
key is certified by a known trusted third party and allows
unique identification of T .

Tiny Trusted Third Party T acts as a tiny trusted third
party that behaves semi-honestly. This assumption is sim-
ilar to the TPM model that is widely used in desktop
environments. T only provides correlated randomness
that is later used in the secure computation and does never
receive any of A or B’s private inputs. We assume that
only certified code is allowed to be executed on T , and
that T can only actively deviate from the protocol if the
hardware token’s manufacturer programmed it to be mali-
cious. We assume the code certification was carried out
by a trusted third party, and argue that both the manu-
facturer and the certification authority would face severe
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reputation loss if it was discovered that they built back-
doors into their products. Moreover, we assume that
neither A nor B colludes with the hardware token man-
ufacturer. This non-collusion assumption is a common
requirement for outsourced secure computation schemes
such as [Hua12, KMR12, CMTB13] and enables the con-
struction of efficient protocols. Finally, note that, although
T is in A’s possession, A cannot easily corrupt T or ob-
tain its internal information, since T is assumed to be
tamper-proof and does not reveal internal secrets, i.e., the
costs of an attack are higher than the benefits from break-
ing T ’s security. This assumption also holds ifA colludes
with or impersonates B.

Protection Against Successful Hardware Attacks
A malicious adversary could try to break into the hard-
ware token. If such an attack is successful, the following
standard countermeasures can be used to prevent further
damage: A binding between token and key pair can be re-
alized by using techniques such as physically uncloneable
functions (PUFs), however, we are not aware of solutions
that are available in commercial products. To bind a to-
ken to a certain mobile device or person, T ’s certificate
could be personalized with one or multiple values that are
unique per user and that can be verified over an off-band
channel, such as the user’s telephone number or the ID of
the user’s passport. Another line of defense can be certifi-
cate revocation lists (CRLs) that allow the users to check
if a token is known to be compromised or malicious.

4 Token-aided Mobile GMW

In the following section, we give details on our token-
aided GMW-based protocol on mobile devices. Our goal
is to minimize the ad-hoc time, i.e., the time from es-
tablishing the communication channel between A and B
until receiving the results of the secure computation. We
consider the init phase to not be time critical, but we try
to keep its computational overhead small.

A A B

InitvPhase
MTvGen.v(§4.1)

SetupvPhase
SeedvTransferv(§4.2)

OnlinevPhase
CircuitvEvaluation

T T T

A B...

Figure 3: The three phases, workload distribution, and
communication in our token-aided scheme.

An overview of our protocol is given in Fig. 3. The
general idea is to let the hardware token generate mul-
tiplication triples from two (or more) seeds in the init
phase that are independent of the later communication
partner (§4.1). In the setup phase, T then sends one seed
to A and the other seed over an encrypted channel to
B (§4.2). The token thereby replaces the OT protocol
in the setup phase and allows pre-computing the mul-
tiplication triples independently of the communication
partner. The online phase of the GMW protocol remains
unchanged. In order to overcome the restriction that the
function size needs to be known in advance, we describe
a method that pre-computes several multiplication triple
sequences of different size and only adds a small commu-
nication overhead in the setup phase (§4.3). Finally, we
analyze the security of our protocol (§4.4) and compare
its performance to previous solutions (§4.5).

4.1 Multiplication Triple Pre-Generation
in the Init Phase

In the original GMW protocol, A and B interactively
generate their multiplication triples (an

A,b
n
A,c

n
A) and

(an
B,b

n
B,c

n
B) in the setup phase using 2n random OT ex-

tensions (cf. §2.4). Instead, we avoid this overhead in
the setup phase and let T pre-generate the multiplication
triples in the init phase as shown in Fig. 4: T first gener-
ates random seeds and then expands these seeds internally
into the multiplication triples and sends cn

A to A.

d

sB

cnBbnBanB

kB

sA

bnAanA

kA

cnA

T

A

cnA

Seed Expansion

Seed Generation

Figure 4: Multiplication triple pre-generation in the init
phase between A and T .

Seed Generation In the seed generation step, T gen-
erates two seeds sA = GkA(d) and sB = GkB(d) using
a cryptographically strong Pseudo-Random Generator
(PRG) G, two master keys kA and kB, and a state value d,
which is unique per multiplication triple sequence and can
be instantiated with a counter. The two master keys kA
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and kB are constant for all multiplication triple sequences
and have to be generated and stored only once. Thereby,
T has to store only the unique state value d in its internal
memory for every multiplication triple sequence. Note
that the only values that will leave the internal memory
of T are the seeds sA and sB that will be sent in the
setup phase to A and B, respectively (cf. §4.2). In order
to ensure that sB is not sent out twice, we require sA
to be queried before sB and delete the state value d as
soon as sB has been sent out over the encrypted channel.
A security analysis of this scheme is given in §4.4.

Seed Expansion The seed expansion step com-
putes a valid multiplication triple sequence from the
seeds sA and sB by computing (an

A,b
n
A) = GsA(dA) and

(an
B,b

n
B,c

n
B) = GsB(dB) and setting the remaining value

cn
A = (an

A⊕an
B)∧ (bn

A⊕bn
B)⊕ cn

B, where dA and dB are
publicly known state values of A and B, respectively.
Due to the limited memory of the hardware token, the
sequence cn

A is computed block-wise such that T requires
only a fixed amount of memory, independently of n, and
each block is sent to A, who stores it locally. Note that
the values (an

A,b
n
A,a

n
B,b

n
B,c

n
B) do not need to be stored,

since they can be expanded from sA and sB, respectively.

4.2 Seed Transfer in the Setup Phase
In the setup phase, the hardware token sends the seeds sA
and sB to A and B, respectively, and the parties generate
their multiplication triples as depicted in Fig. 5. A obtains
his seed sA directly from T and can read the sequence
cn
A, which was obtained in the init phase, from its internal

flash storage. B’s seed sB, on the other hand, cannot
be sent in plaintext from T to B as the communication
between the token and B is relayed over A, which would
allow A to intercept sB and thus break the security of
the scheme. We therefore require the communication
between B and T to be encrypted and T to authenticate
itself to B with a certificate.

d

sB

kB

sA

kA

T

A

sA

bnAanA

B

sB

bnBanB cnBcnA

Figure 5: Seed transfer and seed expansion in the setup
phase. sB is sent from T to B over a secure channel.

An encrypted and one-way authenticated communica-
tion channel can be established using a key agreement
protocol from a wide variety of choices, cf. [MvOV96].
We choose two protocols that allow us to handle different
attacker models: For security against a malicious (ac-
tive) A we use TLS [IET08] (with RSA for public-key
crypto, AES for symmetric encryption, and HMAC as
message authentication code) and for security against
a semi-honest (passive) A we use KAS1-basic [NIS09]
(with AES for symmetric encryption), cf. Appendix §C
for details. Both schemes use T ’s public-key certificate
that is signed by a trusted third party. For every new
connection this certificate is verified by B and optionally
checked against a CRL and/or is checked to be consistent
with A’s identity over an out-of-band channel to protect
against successful hardware attacks (cf. §3.2).

4.3 Multiplication Triple Composition
The multiplication triple generation described until now
requires the function size n = | f | to be known beforehand.
While this may be the case for some functions, e.g., for
set intersection using bitwise AND (cf. §6.1), the size of
other functions depends on the number of inputs, e.g.,
the number of contacts in the address book (cf. §6.3).
The naive solution to not knowing n in advance would
be to generate several multiplication triple sequences of
fixed size ` in the init phase and send their dn/`e seeds
in the setup phase, when n is known. However, on aver-
age this approach wastes `/2 multiplication triples and
requires to send dn/`e multiplication triple seeds. Thus, a
smaller ` results in fewer wasted multiplication triples but
more communication overhead, while a higher ` results
in more wasted multiplication triples but less communica-
tion. Since typical function sizes in secure computation
range from millions [HEKM11] to even a billion AND
gates [CMTB13], an appropriate ` is difficult to choose.

Instead of generating fixed-length blocks of multipli-
cation triple sequences, we propose to generate m mul-
tiplication triple sequences s0, ...,sm−1 in the init phase,
where si contains 2i (0 ≤ i < m) multiplication triples.
In the setup phase, we then send a set of multiplication
triple seeds {sk |nk = 1}, where nk is the k-th bit of n.
This approach requires sending at most dlog2 ne seeds.
As communication between T and A is the bottleneck in
our implementation, we set the smallest size of a multi-
plication triple sequence such that it fits into one packet.
Add one sentence here please. Or maybe even another.
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4.4 Security Analysis
In this section, we briefly analyze the security of our
protocol for each of the three secure computation phases.

Init Phase In the init phase no private inputs are in-
volved and B is unknown. Therefore, A can only try to
manipulate the token, which is hard since the hardware
token is tamper-proof. Moreover, A receives only its cA
shares that do not reveal anything about B’s shares or T ’s
internal state, due to the cryptographically strong PRG.

Setup Phase The only attack a malicious A could play
in the setup phase, is to impersonate B. This attack
is prevented, since every seed sB can only be queried
once (cf. §4.1). The communication between the hard-
ware token and B is done through an encrypted channel,
so that A cannot get access to those messages. For active
security, we use TLS and add a MAC to every packet to
prevent modifications and avoid replay attacks. B cannot
actively attack the token since all communication to the
hardware token is controlled by A. Obviously, any party
can drop or ignore messages, but we exclude this simple
denial of service attack from our system model since we
assume both parties to be willing to participate in the
secure computation. The seeds that each party obtains
from the hardware token do also not reveal any additional
information since they are directly output from a crypto-
graphically strong PRG to which the hardware token’s
internal state is used as seed.

Online Phase The security for the online phase directly
carries over from the GMW protocol, as we do not intro-
duce any modifications to this phase.

4.5 Performance Comparison
We show that the asymptotic performance of our protocol
improves over existing solutions and also give concrete
parameters. A summary is shown in Tab. 1 on page 2 and
a more detailed comparison is given in Appendix §D. An
experimental evaluation of our protocol and applications
is provided in §5.4 and §6.

Asymptotic Performance The init phase of our proto-
col is, unlike [JKSS10], independent of a concrete in-
stance of f and can thus be pre-computed without know-
ing a communication partner. During the setup phase, the
communication complexity of our protocol is only O(t)
(orO(t · log2 | f |) if | f | is unknown), which improves upon
the communication of Yao’s protocol and the GMW pro-
tocol [CHK+12, SZ13, ALSZ13] with O(t · | f |) commu-
nication. Both parties have to do O(| f |/b) symmetric

cryptographic operations to expand their seeds.2 The on-
line phase is the first phase where f needs to be known.
Here, A and B send O(| f |) bits in d( f ) rounds, where
d( f ) is the depth of f . The parties’ computation com-
plexity is negligible, as no cryptographic operations are
evaluated. This is the biggest advantage over Yao’s gar-
bled circuits protocol [MNPS04, JKSS10,HCE11], where
O(| f |) symmetric cryptographic operations have to be
evaluated during the online phase.

Concrete Performance For 80 bit security, the best
known instantiation of Yao’s garbled circuits protocol
(resp. the GMW protocol) require per AND gate 240 bit
(resp. 164 bit) communication and 4+ 1 (resp. 12+ 0)
evaluations of symmetric cryptographic primitives in the
setup+online phase. In comparison, our solution requires
only 4 bit communication and 0.04+ 0 fixed-key AES
operations per AND gate.

5 Implementation

This section details the implementation of our scheme.
We introduce the smartcard that we use to instantiate
the hardware token (§5.1), give an overview of our An-
droid implementation (§5.2), outline our benchmarking
environment (§5.3), and experimentally compare the OT
extension-based multiplication triple generation to our
hardware token-based protocol (§5.4).

5.1 G&D Mobile Security Card

In our implementation we instantiate the trusted hardware
token T with the Giesecke & Devrient (G&D) Mobile
Security Card SE 1.0 (MSC). It is embedded into a mi-
croSD card that additionally contains 2 GB of separate
flash memory. The MSC is based on an NXP SmartMX
P5CD080 micro-controller that runs at a maximum fre-
quency of 10 MHz, has 6 kB of RAM, 80 kB of persistent
EEPROM, and is based on Java Card version 2.2.2. Note
that an applet can only use 1,750 Bytes of the 6 kB RAM
for transient storage. The MSC has co-processors for
3DES, AES and RSA that can be called from a Java Card
applet, as well as native routines for MD5, SHA-1 and
SHA256. The MSC runs the operating system G&D
Sm@rtCafe Expert 5.0 which manages the installed Java
Card applets, personalization data, and communication
keys. The communication between the Android operating
system and the MSC is done by a separate service via the
SIMalliance Open Mobile API.

2We instantiate PRG G with AES-128-CTR and block size b = 128.
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5.2 Architecture

The architecture of our implementation is depicted in
Fig. 6. To support flexibility and extensibility, our modu-
lar architecture consists of the Application that specifies
the functionality, the GMWService that performs secure
computation, and the MTService that performs the mul-
tiplication triple generation and transfer. All communi-
cation between A and T is done via the MSC Smartcard
Service supplied by G&D. The Application can be im-
plemented by a designer and specifies the desired secure
computation functionality as a Boolean circuit that can,
for instance, be compiled from a high-level circuit de-
scription language such as the Secure Function Definition
Language (SFDL) [MNPS04, MLB12] or the Portable
Circuit Format (PCF) [KMSB13].

The GMWService implements the GMW protocol and
performs the secure computation, given a circuit descrip-
tion and corresponding inputs. The MTService generates
the multiplication triples using either OT extension (OT-
Ext) based on the memory efficient implementation
of [HS13] including the optimizations from [ALSZ13] or,
if one of the parties holds a hardware token, our token-
aided protocol of §4. If a hardware token is present, the
MTService manages the multiplication triple generation
during the init phase by querying the token and storing
the received cA sequences. For the MSC, the multiplica-
tion triple generation on T is performed via a Java Card
applet (MT JC Applet) that implements the functionality
in §4.1 and is accessible through the Java Card interface.
Our implementation can be installed as a regular Android
app and does not require root access to the smartphone or
a custom firmware.

Secure computation is performed by having an Applica-
tion running on each smartphone, which specifies the func-
tion f both parties want to compute securely. From this
function the Application generates a circuit description,
which it sends to the GMWService. The GMWService
interprets the circuit and queries the MTService for the
required number of multiplication triples | f |. The MTSer-
vices on both smartphones then communicate with each
other and check whether one of the smartphones holds
a hardware token (A in Fig. 6). If so, both MTServices
perform the seed transfer protocol (cf. §4.2), expand the
obtained seeds (A loads the corresponding cA sequences
obtained in the init phase), and merge the obtained mul-
tiplication triple sequences (cf. §4.3). If no hardware
token is present, the MTServices generate the multipli-
cation triples by invoking OT extension. The MTSer-
vice then provides the multiplication triples (ai,bi,ci) for
i ∈ {A,B} to the GMWService. Finally, the Applications
send their inputs x and y, respectively, to the GMWSer-
vice, which performs the secure computation and returns
the output zi = f (x,y).

A B

G&D MSC
SCService OT-Ext

T

. . .

GMWService

MTService

f;x zA

jfj

Application

aA;bA;cA

GMWService

MTService

OT-Ext

zB

Application

f;y

jfj aB;bB;cB

. . .

MT  
JC Applet

. . .

Figure 6: Modular architecture design.

5.3 Benchmarking Environment

For our mobile benchmarking environment we use two
Samsung Galaxy S3’s, which each have a 1.4 GHz ARM-
Cortex-A9 Quad-Core CPU, 1 GB of RAM, 16 GB of
internal flash memory, a mircoSD card slot, and run the
Android operating system version 4.1.2 (Jelly Bean). For
the communication between the smartphones, we use Wi-
Fi direct. For the evaluation, we put the smartphones next
to each other on a table. The G&D mobile security card is
connected to the mircoSD card slot of one of the phones.
We use the short-term security setting recommended by
NIST [NIS12], i.e., a symmetric key size of 80 bits and
a public key size of 1,024 bit with a 160 bit subgroup.
We instantiated the pseudo-random generator G that is
used for seed expansion (cf. §4.1) with AES-128 in CTR
mode. The hardware token generates multiplication triple
sequences of size 2m for 11≤ m≤ 24. We used m = 11
as lower bound on the size, since 2,048 is the biggest
size we can transfer from T to A with a single packet,
and m = 24 as upper bound, since it was appropriate for
our case studies in §6. Finally, we point out that our
implementation is single-threaded and utilizes only one
of the four available cores of our smartphones. We leave
the extension to multiple threads as future work.

5.4 Performance Evaluation

First, we want to quantify the runtime differences between
the mobile and the desktop environment. We measure the
execution time for AES-128 in ECB mode for an identi-
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cal single-threaded Java implementation in both domains.
The smartphone version is running with 5.5 MB/s while
the desktop version achieves 61.1 MB/s. The optimized
AES-256 implementation of Truecrypt3, written in C/C++
and assembly, achieves 143.1 MB/s on the same desktop
machine, running without parallelization. For compar-
ison, the smartcard (cf. §5.1) is running AES-128 at a
maximum speed of 16.7 KB/s.

In the following we evaluate the performance of our
token-based scheme (cf. §4) on smartphones, using TLS
or KAS1-basic as key agreement protocol, and compare it
to the OT extension based multiplication triple generation.
In our evaluations we only include the time for init and
setup phase, since the online phase is identical for both
approaches. Results for the online phase are given in §6.
All values are averaged over 10 measurements.

Fig. 7 gives an overview over the timings for the gen-
eration of 2m (11≤ m≤ 24) multiplication triples using
either OT extension in the setup phase or the hardware
token (§4.1) in the init phase. Additionally, the setup
phase using TLS and KAS1-basic is depicted, which in-
cludes the seed transfer and the seed expansion of B.
We always assume the worst case number of seeds to be
transferred, i.e., for 224 multiplication triples, we transfer
24− 10 = 14 seeds (cf. §4.3). Both axes in Fig. 7 are
given in a logarithmic scale.
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Figure 7: Performance evaluation of the multiplication
triple generation and setup phase.

We observe that OT extension on mobile devices is
able to generate 224 multiplication triples in 1,529 s, cor-
responding to 10,971 multiplication triples per second.
We ran the same code on two desktop PCs with a 2.5 GHz
Intel Core2Quad CPU and 4 GB RAM, connected via Gi-
gabit LAN and were able to compute 224 multiplication
triples in 139 s, which indicates a performance decrease
of factor 11. While the performance decrease on mobile

3http://www.truecrypt.org

devices compared to desktop computers was significantly
less than the factor of 1000 observed in [HCE11], it is still
insufficient for efficiently computing complex functions
such as private set-intersection, which typically requires
millions of OTsto be evaluated.

In comparison, the multiplication triple generation of
the hardware token during the init phase is able to gener-
ate 224 multiplication triples in 2,883 s, corresponding to
5,819 multiplication triples per second. For the hardware
token-based protocol we observe that the times for send-
ing the seeds using the TLS and KAS1 key agreement
protocols grow very slowly with the number of multipli-
cation triples, since the amount of data to be encrypted
and sent grows only with log2 | f |. Additionally, the TLS-
based key agreement protocol (4.6 s for 211 multiplication
triples) is around factor 3 slower than the KAS1-based
key agreement (1.3 s for 211 multiplication triples).

The overall computation and communication workload
of OT extension is substantially larger than in our token-
based scheme, but its multiplication triple generation rate
is not much faster. This can be explained by the faster
processing power of the smartphones compared to that
of T and the higher bandwidth of Wi-Fi direct compared
to the relatively slow communication channel between
A and T . However, OT extension suffers from high en-
ergy consumption, due to the CPU utilization incurred by
the symmetric cryptographic operations, as well as the
Wi-Fi direct communication [PFW11].

We use PowerTutor4 to measure the energy consump-
tion of the smartphone’s CPU for generating 219 multi-
plication triples and compare the interactive evaluation
of random OT extensions with our smartcard solution.
Note that Fig. 8 only displays the CPU’s energy consump-
tion whereas the energy consumption of Wi-Fi and the
smartcard is not included. However, we argue that the en-
ergy consumption of the smartcard is not a critical factor,
since these operations can be performed when the phone
is charging. The Wi-Fi connection, on the other hand, is
required for OT during the setup phase, thus increasing
the already high battery drain even further. Moreover, the
OT computations have to be done on both devices simul-
taneously, draining both devices’ batteries. Therefore, our
token-based solution is particularly well-suited for the
mobile domain, where energy consumption and battery
lifetime are critical factors.

6 Applications

To evaluate the performance of our protocols, we use
the mobile phones and setting as specified in §5.3 and
consider the following privacy-preserving applications:
availability scheduling (§6.1), location-aware schedul-

4http://powertutor.org
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Figure 8: Accumulated smartphone CPU energy con-
sumption during the generation of multiplication triples.

ing (§6.2), and set intersection (§6.3). We implemented
the applications and depict the performance results for an
average of 10 iterations. We use KAS1-basic (cf. §C) as
key authentication scheme. We pre-generated the circuits
using the framework of [SZ13], wrote them into a file,
and read them on the smartphone. The time for reading
the circuit file is included in the setup phase.

6.1 Availability Scheduling

Privacy-preserving availability scheduling is a com-
mon example for secure computation on mobile de-
vices [HCC+01, BJH+11] and enables A and B to find a
possible time slot for a meeting without disclosing their
schedules to each other. To schedule a meeting, A and B
specify a duration and time frame for the meeting. Each
party i ∈ {A,B} then divides the time frame when the
meeting can take place (e.g., a week) into n time slots
tn
i = (ti,1, ..., ti,n) and denotes each time slot ti, j ∈ {0,1}

as either free (ti, j = 1) or occupied (ti, j = 0). The parties
compute their common availability tn

Avail by computing
the bitwise AND of their time slots, i.e., tn

Avail = tn
A∧ tn

B.
Overall, this circuit has n AND gates and depth 1. Note
that the bitwise AND circuit performs a general function-
ality and can, for instance, be used for privacy-preserving
set intersection where elements are taken from a small
domain [HEK12] or location matching [CADT13]. For
our experiments, we set the time frames s.t. meetings
can be scheduled between 8 am and 10 pm for one day
divided into 15 minute slots (n = 56 slots), one week di-
vided into 15 minute slots (n = 392 slots), and one month
divided into 10 minute slots (n = 2,604 slots). We depict
our results in the upper half of Tab. 2.

The multiplication triple generation in the init phase
can be performed in several hundred milliseconds, since
it requires only one (for 56 and 392 time slots) or two

(for 2,604 time slots) packet transfers between T and A.
The setup phase, more detailed the seed transfer protocol,
is the main bottleneck in this application, as T has to
perform asymmetric and symmetric cryptographic opera-
tions. Finally, the online phase requires only milliseconds
but has a high variance, due to the communication over
Wi-Fi direct and the small number of communication
rounds that are performed in the online phase.

For comparison, we evaluated the same circuit using
the mobile Yao implementation of [HCE11] on the same
phones, which took factor 1.6 (for the day time frame) up
to factor 12 (for the month time frame) longer, cf. Tab. 2.

Table 2: Performance for availability and location-aware
scheduling. | f | is the size of the circuit and d( f ) its depth.
All values measured on smartphones (cf. §5.3).

Time Frame Day Week Month
Availability Scheduling §6.1
| f | / d( f ) 56 / 1 392 / 1 2,604 / 1
Init [s] 0.37 (±1.6%) 0.37 (±1.6%) 0.73 (±1.0%)
Setup [s] 1.3 (±13%) 1.3 (±13%) 1.3 (±13%)
Online [s] 0.002 (±150%) 0.003 (±167%) 0.007 (±129%)
Ad-Hoc [s] 1.3 (±13%) 1.3 (±13%) 1.3 (±13%)

Mobile Yao [HCE11]
Ad-Hoc [s] 2.14 (±7.1%) 3.82 (±4.7%) 15.9 (±2.7%)

Location-Aware Scheduling §6.2
| f | / d( f ) 39,864 / 69 280,605 / 87 1,872,206 / 106
Init [s] 6.9 (±0.3%) 48.5 (±0.2%) 319.6 (±0.5%)
Setup [s] 1.4 (±7.1%) 1.8 (±7.0%) 4.8 (±4.8%)
Online [s] 0.16 (±35%) 0.82 (±7.4%) 5.9 (±18%)
Ad-Hoc [s] 1.5 (±8.4%) 2.6 (±6.5%) 10.7 (±11%)

6.2 Location-Aware Scheduling
In the following we show that our system can be adapted
to compute arbitrary and complex functions. We intro-
duce the location-aware scheduling functionality which
extends the availability scheduling of §6.1, s.t. the dis-
tance between the users is considered as well. The
location-aware scheduling functionality takes into account
the user’s location in a time slot, computes the distance
between the users, verifies if a meeting is feasible, and
outputs the time slot in which the users have to travel
the least distance to meet each other. We argue that this
approach is practical, since such position information are
often already included in the users’ schedules.

In the location-aware scheduling scheme, we assume
that the user i ∈ {A,B} also inputs the location of the
previous appointment Pi and the next appointment Ni and
the distances that he can reach from his previous appoint-
ment pi and from his next appointment ni (cf. Fig. 9 for
an example). Such pi and ni can be computed in plain-
text using the distance between Pi and Ni, the free time
until the next appointment and the duration of the meet-
ing. The minimal distance among all time slots where
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Figure 9: Location-aware scheduling for one time slot of A and B with previous locations PA and PB, reachable
distances from previous appointments pA and pB, next locations NA and NB and corresponding reachable distances nA
and nB. The meeting can be scheduled between NA and PB as the reachable ranges overlap.

the reachable ranges for A and B overlap is selected as
final result. If successful, the function outputs the identi-
fied time slot and for each user whether he should leave
from the location of the previous or next appointment.
A detailed description of the functionality is given in Ap-
pendix §E. We evaluate the scheme on the same number
of time slots used in §6.1 (day, week, month) and depict
the performance in the lower half of Tab. 2.

Compared to availability scheduling, the location-
aware scheduling circuit is significantly bigger and re-
quires more communication rounds. When performing
the scheduling for a month, the circuit consists of 1.8 mil-
lion instead of 2,604 AND gates for availability schedul-
ing. The time for the init phase increases linearly with the
number of AND gates and requires 319 s when perform-
ing scheduling for a month. The time for the setup phase is
increased less, since the seed transfer grows only logarith-
mically in | f | and the seed expansion is done efficiently.
The online phase is also slowed down substantially (6 s
for a month time frame), but is still practical.

6.3 Private Set Intersection

Private set intersection (PSI) is a widely studied problem
in secure computation and can be used for example to
find common contacts in users’ address books [HCE11].
It enables two parties, each holding a set SA and SB with
elements represented as σ -bit strings to determine which
elements both have in common, i.e., SA ∩ SB, without
disclosing any other contents of their sets. While many
special-purpose protocols for PSI exist, e.g., [CT10,
CT12, CADT13], generic protocols mostly build on the
work of [HEK12], where the Sort-Compare-Shuffle (SCS)
circuit was outlined. The idea is to have both parties lo-

cally pre-sort their elements, privately merge them, check
adjacent values for equality, and obliviously shuffle the
resulting values to hide their order.

We implement the SCS-WN circuit of [HEK12] which
uses a Waksman permutation network to randomly shuffle
the resulting elements. We perform the comparison for bit
sizes σ ∈ {24,32,160} and compare the ad-hoc runtime
of our protocol to the implementation of [HCE11] for σ ∈
{24,32}. The results from [HEK12] are compared to ours
for σ ∈ {32,160}. The results are given in Fig. 10 and
in Tab. 3. Note that [HCE11] and [HEK12] implement
Yao’s garbled circuits protocol using pipelining, whereas
we use the GMW protocol.
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Figure 10: Private set intersection runtime for σ = 32 bit
elements using our token-based protocol on two smart-
phones (§5.3) and [HEK12] on two desktop PCs.

For a fair comparison, we ran the code from [HCE11]
on our Samsung Galaxy S3 smartphones and observed an
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approximate speedup of factor 2 compared to the measure-
ments from their paper, that were made on older hardware
(two Google Nexus One phones). Note that our perfor-
mance results, as well as the values for the implemen-
tation of [HCE11] are benchmarked on mobile devices
connected via Wi-Fi Direct, while [HEK12] is bench-
marked on two desktop PCs (two Core2Duo E8400 3GHz
PCs connected via 100 Mbps LAN).

From Fig. 10 we observe that, due to the seed transfer
in our setup phase (cf. §4.2), the Yao’s garbled circuits
implementation of [HEK12] is faster for up to 256 in-
puts. However, the seed transfer time amortizes for larger
inputs and our token-based scheme outperforms the imple-
mentation of [HEK12], even though our implementation
runs on substantially slower mobile phones while theirs
is evaluated on two desktop PCs. From Tab. 3 we observe
that our scheme outperforms the Yao’s garbled circuits
implementation of [HCE11], evaluated on identical mo-
bile phones, by factor 18 for 32 inputs with σ = 24 bit
and by up to factor 550 for 1,024 inputs with σ = 32 bit.

Finally, we compare the performance of our protocol
to the PSI protocol of [CADT11, CADT13]. We use
their reported numbers for pre-computed PSI on 20 input
values and set the bit size σ = 160 in our protocol.5 The
protocol of [CADT11, CADT13] needs 3.7 s, while our
ad-hoc runtime is only 2.1 s (±4.8%). Note, however,
that their approach has only a constant number of rounds
and can be sped up using multiple cores.

7 Related Work

We classify related work into three categories: secure
function evaluation (§7.1), server-aided secure function
evaluation (§7.2), and token-based cryptography (§7.3).

7.1 Generic Secure Function Evaluation
The foundations for secure function evaluation (SFE)
were laid by Yao [Yao86] and Goldreich et al. [GMW87]
who demonstrated that every function that is efficiently
representable as Boolean circuit can be computed securely
in polynomial time with multiple parties.

SFE Compiler A first compiler for specific secure
two-party computation functionalities was presented in
[MOR03]. The Fairplay framework [MNPS04] was the
first efficient implementation of Yao’s garbled circuits
protocol [Yao86] for generic secure two-party compu-
tation and enabled a user to specify the function to be
computed in a high-level language. The FastGC frame-
work [HEKM11] improved on the results of Fairplay by

5Note that [CADT11, CADT13] also support bigger bit sizes, since
they operate on 1,024-bit ElGamal ciphertexts.

evaluating functions with millions of Boolean gates in
mere minutes using optimizations such as the free XOR
technique [KS08] and pipelining. The FastGC framework
has been used to implement various functions such as
privacy-preserving set intersection [HEK12], genomic se-
quencing, or AES [HEKM11], and was optimized with
respect to a low memory footprint in [HS13].

Next to Yao’s garbled circuits protocol, the GMW pro-
tocol [GMW87] recently received increasing attention.
The work of [CHK+12] efficiently implemented GMW in
a setting with multiple parties. Subsequently, [SZ13] op-
timized GMW for the two-party setting and showed that
GMW has advantages over Yao’s garbled circuits protocol
as it allows to pre-compute all symmetric cryptographic
operations in a setup phase and that the workload can be
split evenly among both parties.

SFE on Mobile Devices A recent line of research aims
at making SFE available on mobile devices, such as smart-
phones. In [HCE11] the authors port the FastGC frame-
work [HEKM11] to smartphones and observe a substan-
tial performance reduction when compared to the desk-
top environment. They identify the slower processing
speed and the high memory requirements as the main
bottlenecks. Similarly, [CMSA12] ported the Fairplay
framework [MNPS04] to smartphones. A compiler with
smaller memory constraints than Fairplay was presented
in [MLB12]. We emphasize that previous works on
generic SFE on mobile devices use Yao’s garbled circuits
protocol, whereas our approach is based on GMW.

Several special-purpose protocols for mobile de-
vices using homomorphic encryption were proposed in
[BJH+11] (activity scheduling), [CDA11] (scheduling,
interest sharing), and [CADT11, CADT13] (comparison,
location-based tweets, common friends). In contrast to
generic solutions, such custom-tailored protocols can be
more efficient, but are restricted to specific functionalities.
Their extension to new use cases is complex and usually
requires new security proofs.

7.2 Server-Aided SFE
One way to speed up generic secure computations on
resource constrained devices is to outsource expensive
operations to one or more servers. In [HS12] a system for
fair server-aided secure two-party computation using two
servers was introduced. SALUS [KMR12] is a system
for fair SFE among multiple parties using a single server.
A system that allows cloud-aided garbled circuits evalu-
ation between one mobile device and a server was intro-
duced in [CMTB13] and its efficiency was demonstrated
on large-scale practical applications, such as a secure
path finding algorithm. Both [CMTB13] and [KMR12]
achieve security against malicious adversaries, but require
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Table 3: Ad-hoc runtime of private set intersection where each party inputs n values of σ bits, measured on identical
mobile phones (§5.3). [HEK12] results are on PCs and taken from the paper (— indicates that no numbers were given).

Number of Inputs n 32 64 128 256 512 1,024

σ = 24bit
| f | 22,432 52,096 118,656 266,240 590,336 1,296,384
Ours [s] 1.7 (±2.2%) 1.9 (±3.4%) 2.1 (±2.4%) 2.5 (±2.4%) 3.6 (±4.2%) 7.4 (±8.7%)
[HCE11] [s] 30 68 161 410 1,052 3,010

σ = 32bit

| f | 30,368 70,528 160,640 360,448 799,232 1,755,136
Ours [s] 1.7 (±2.7%) 1.9 (±3.5%) 2.3 (±7.7%) 3.0 (±18%) 4.4 (±9.8%) 8.5 (±20%)
[HCE11] [s] 42 87 233 565 1,468 4,662
[HEK12] [s] — — 1 2.2 4.95 10.5

σ = 160bit
| f | 156,768 364,096 829,312 1,860,864 4,126,208 9,061,376
Ours [s] 2.2 (±8.8%) 2.7 (±16%) 4.0 (±1.9%) 7.0 (±1.9%) 14.3 (±2.9%) 28.7 (±1.4%)
[HEK12] [s] — — — — — 51.5

at least one party to be a machine with more computing
power than a mobile phone as it evaluates multiple garbled
circuits. [Hua12] proposes that a trusted server generates
multiplication triples that are sent to both parties over
a secure channel, requiring O(| f |) bits communication.
Instead, we propose to replace the server with a trusted
hardware token and show that the communication to one
party can be reduced to sub-linear complexity. Moreover,
they achieve security against malicious adversaries based
on [NNOB12]; we sketch how to extend our work to
malicious security in Appendix §F.

We consider this line of research as orthogonal to ours,
since it focuses on outsourcing secure computations to a
powerful but untrusted cloud server. In contrast, we focus
on secure computation between two mobile devices where
computations are outsourced to a trusted, but resource
constrained smartcard locally held by one party.

7.3 Token-Based Cryptography

Another approach is to outsource computations to trusted
hardware tokens, such as smartcards. These tokens are
typically resource-constrained, but have the advantage of
offering a tamper-proof trusted execution environment.

Setup Assumptions for UC Hardware tokens can be
used as setup assumption for Canetti’s universal compos-
ability (UC) framework, as they allow to construct UC
commitments, with which in turn any secure computa-
tion functionality can be realized, e.g., [Kat07, DNW09,
DKMQ11]. These works are mainly feasibility results
and have not been implemented yet.

SFE in Plaintext As discussed in [HL08], the trivial
solution to performing SFE using hardware tokens would
be to have each party send its inputs over a secure channel
to the token, which evaluates f and returns the output. A
similar approach with multiple tokens, which additionally
provides fault tolerance was given in [FFP+06].

When using the hardware token for plaintext evalua-
tion, the performance of the time-critical online phase is
limited by the performance of the token, which is typi-
cally very low. Moreover, this requires the token to hold
all input values in memory, which quickly exceeds its
very limited resources.6 Alternatively, the token could
use external secure memory to store inputs and interme-
diate values, e.g., [IS05, IS10], but this would require
symmetric cryptographic operations in the online phase.
Additionally, each new functionality would have to be
implemented on the token, whereas our scheme is imple-
mented only once and supports arbitrary functionalities.

Specific Functionalities An efficient protocol for pri-
vate set-intersection using smartcards was presented
in [HL08]. This protocol was extended to multiple un-
trusted hardware tokens in [FPS+11]. An anonymous
credential protocol was presented in [BCGS09].

Outsourcing Oblivious Transfer There are several
works that use hardware tokens to compute oblivious
transfer (OT): [GT08] implemented non-interactive OT
using an extension of a TPM, [Kol10] proposed OT se-
cure in the malicious model using a stateless hardware
token, and [DSV10] provided non-interactive OT in the
malicious model using two hardware tokens.

We outsource the setup phase of the GMW protocol,
which previously was done via OT, to the hardware token.
Previous works on outsourcing n OTs require the hard-
ware token to evaluate O(n) symmetric (or even asym-
metric) cryptographic operations in the ad-hoc phase. In
comparison, our scheme requires T to evaluate O(n/t)
symmetric cryptographic operations in the init phase and
onlyO(log2 n) symmetric cryptographic operations in the
setup phase (cf. Tab. 4 on p. 19).

6The smartcard we use in our experiments has 1,750 Bytes of RAM,
which would be completely filled if each party provided 300 inputs of
24 bits length in private set intersection (cf. §6.3).
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8 Conclusion and Future Work

In this work, we demonstrated that generic ad-hoc secure
computation can be performed efficiently on mobile de-
vices when aided by a trusted hardware token. We showed
how to extend the GMW protocol by such a token, similar
to a TPM, to which most costly cryptographic operations
can be outsourced. Our scheme pre-computes most of the
workload of GMW in an initialization phase, which is per-
formed independently of the later communication partner
and without knowing the function or its size in advance.
This is particularly desirable as the pre-computation can
happen at any time, e.g., when the device is connected
to a power source, which happens regularly with modern
smartphones. The remaining interactive ad-hoc phase
is very efficient and can be executed in a few seconds,
even for complex functionalities. We implemented sev-
eral privacy-preserving applications that are typical for
mobile devices (availability scheduling, location-aware
scheduling, and set-intersection) on off-the-shelf smart-
phones using a general-purpose smartcard and showed
that their execution times are truly practical. We found
that the performance of our scheme is two orders of mag-
nitude faster than that of other generic secure two-party
computation schemes on mobile devices and comparable
to the performance of similar schemes in the semi-honest
adversary model implemented on desktop PCs.

We see several interesting directions for future research.
As our scheme is based on the GMW protocol, it can
easily be extended to more than two parties, e.g., for
securely scheduling a meeting, cf. [CHK+12]. More-
over, our scheme can be modified to also provide security
against malicious parties, cf. [Hua12] (we provide more
details in Appendix §F). Another direction might be equip-
ping both mobile devices with a hardware token to further
improve efficiency and/or security.

Acknowledgements

We thank the anonymous reviewers of USENIX Security
2014 for their helpful comments on our paper. We also
thank Giesecke & Devrient for providing us with multi-
ple smartcards and the authors of [HCE11] for sharing
their code with us. This work was supported by the Ger-
man Federal Ministry of Education and Research (BMBF)
within EC SPRIDE, by the Hessian LOEWE excellence
initiative within CASED, and by the European Union Sev-
enth Framework Program (FP7/2007-2013) under grant
agreement n. 609611 (PRACTICE).

References

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider,
M. Zohner. More efficient oblivious transfer

and extensions for faster secure computation.
In Computer and Communications Security
(CCS’13), p. 535–548. ACM, 2013.

[BCGS09] P. Bichsel, J. Camenisch, T. Groß, V. Shoup.
Anonymous credentials on a standard Java
card. In Computer and Communications
Security (CCS’09), p. 600–610. ACM, 2009.

[Bea91] D. Beaver. Efficient multiparty protocols
using circuit randomization. In Advances in
Cryptology – CRYPTO’91, volume 576 of
LNCS, p. 420–432. Springer, 1991.

[Bea95] D. Beaver. Precomputing oblivious transfer.
In Advances in Cryptology – CRYPTO’95,
volume 963 of LNCS, p. 97–109. Springer,
1995.

[BHKR13] M. Bellare, V. Hoang, S. Keelveedhi, P. Ro-
gaway. Efficient garbling from a fixed-key
blockcipher. In Symposium on Security and
Privacy (S&P’13), p. 478–492. IEEE, 2013.

[BJH+11] I. Bilogrevic, M. Jadliwala, J.-P. Hubaux,
I. Aad, V. Niemi. Privacy-preserving activ-
ity scheduling on mobile devices. In ACM
Data and Application Security and Privacy
(CODASPY’11), p. 261–272. ACM, 2011.

[CADT11] H. Carter, C. Amrutkar, I Dacosta,
P. Traynor. Efficient oblivious computation
techniques for privacy-preserving mobile ap-
plications. Technical report, Georgia Insti-
tute of Technology, 2011.

[CADT13] H. Carter, C. Amrutkar, I. Dacosta,
P. Traynor. For your phone only: Custom
protocols for efficient secure function evalu-
ation on mobile devices. Journal of Security
and Communication Networks (SCN), 2013.

[CDA11] E. D. Cristofaro, A. Durussel, I. Aad. Re-
claiming privacy for smartphone applica-
tions. In Pervasive Computing and Com-
munications (PerCom’11), p. 84–92. IEEE,
2011.

[CHK+12] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin,
D. Rubenstein. Secure multi-party compu-
tation of Boolean circuits with applications
to privacy in on-line marketplaces. In Cryp-
tographers’ Track at the RSA Conference
(CT-RSA’12), volume 7178 of LNCS, p. 416–
432. Springer, 2012.

14



[CMSA12] G. Costantino, F. Martinelli, P. Santi,
D. Amoruso. An implementation of secure
two-party computation for smartphones with
application to privacy-preserving interest-
cast. In Privacy, Security and Trust
(PST’12), p. 9–16. IEEE, 2012.

[CMTB13] H. Carter, B. Mood, P. Traynor, K. Butler.
Secure outsourced garbled circuit evaluation
for mobile phones. In USENIX Security’13,
p. 289–304. USENIX, 2013.

[CT10] E. De Cristofaro, G. Tsudik. Practical pri-
vate set intersection protocols with linear
complexity. In Financial Cryptography and
Data Security (FC’10), volume 6052 of
LNCS, p. 143–159. Springer, 2010.

[CT12] E. De Cristofaro, G. Tsudik. Experimenting
with fast private set intersection. In Trust
and Trustworthy Computing (TRUST’12),
volume 7344 of LNCS, p. 55–73. Springer,
2012.
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A Yao’s Garbled Circuits Protocol

In Yao’s garbled circuits protocol, one party, called the
creator, generates a Boolean circuit of the function f and
garbles the circuit by assigning symmetric keys to the
input wires of the circuit and recursively encrypting every
possible output wire key of a Boolean gate using its input
wire keys. The creator then sends the garbled circuit
together with the wire keys that correspond to his input
bits to the other party, called evaluator. Both parties run
OT s.t. the evaluator obtains the wire keys that correspond
to his input bits. The evaluator then decrypts the garbled
circuit gate by gate using the input keys to each gate
to obtain the output key. Depending on which party is
supposed to obtain the output, the evaluator either sends
the resulting keys to the creator or the creator provides a
mapping from output keys to their plaintext equivalents.

Several improvements have been proposed for Yao’s
garbled circuits protocol, and today’s most efficient tech-
niques provide free XOR gates [KS08], send 3t bits per
AND gate over the network using the garbled row reduc-
tion technique [NPS99], perform four/one fixed-key AES
evaluation per AND gate when creating/evaluating the
garbled circuit [BHKR13], and allow the garbled circuit
generation and evaluation to be pipelined [HEKM11].

Related Work [IS05, IS10] extended Yao’s garbled cir-
cuits protocol with an efficient secure array access by
employing a secure coprocessor that uses the client as se-
cure external storage. Outsourcing Yao’s garbled circuits
protocol to a hardware token was discussed in [JKSS10],

where the authors proposed to let the hardware token
generate the garbled circuit, which reduces the communi-
cation complexity.

These schemes that utilize hardware tokens to increase
the performance of Yao’s garbled protocol require one
party to evaluate the garbled circuit, which requires | f |
symmetric cryptographic operations during the online
phase. As outlined by [HCE11], the resource limitation
of mobile devices results in substantial performance penal-
ties when evaluating symmetric cryptographic operations.

B Evaluation of AND Gates in GMW

In the GMW protocol, the evaluation of XOR gates
does not require communication between the parties,
but AND gates must be evaluated interactively. The
AND gate evaluation can be realized with an OT pro-
tocol to obliviously obtain the gate’s output [CHK+12].
Alternatively, the parties can use (pre-generated) multi-
plication triples, which are random-looking bits ai,bi,
and ci, that are held by the respective parties i ∈ {A,B}
and satisfy (cA⊕cB) = (aA⊕aB)∧ (bA⊕bB). Multipli-
cation triples can be generated in an interactive way using
OT [SZ13, ALSZ13], by a trusted server [Hua12], or by a
trusted token, which we propose in our work.

The evaluation of an AND gate with inputs x and y,
which are shared between the parties as x = xA⊕ xB and
y = yA⊕ yB, is performed as follows: First, the parties
mask the shares xi and yi with the multiplication triple
shares ai and bi for i∈ {A,B} and send the masked inputs
to their communication partner.

A→B : dA = xA⊕aA, eA = yA⊕bA
B →A : dB = xB⊕aB, eB = yB⊕bB

The variables d = dA⊕ dB and e = eA⊕ eB are then
calculated locally by both parties.

d = xA⊕aA⊕ xB⊕aB = x⊕a

e = yA⊕bA⊕ yB⊕bB = y⊕b

zA and zB are the private output shares of the AND gate
and locally calculated by each party:

A : zA = de⊕dbA⊕ eaA⊕ cA
B : zB = dbB⊕ eaB⊕ cB

Correctness By calculating zA⊕ zB the AND gate out-
put can be reconstructed. Note that c = cB ⊕ cA = ab,
according to the definition of multiplication triples. Thus
ab⊕ c = 0, which allows for the removal in the last step.

17



zA⊕ zB = de⊕dyA⊕ exA⊕ cA⊕dyB⊕ exB⊕ cB
= (x⊕a)(y⊕b)⊕ (x⊕a)yA⊕ (y⊕b)xA⊕ cA
⊕ (x⊕a)yB⊕ (y⊕b)xB⊕ cB

= (x⊕a)(y⊕b)⊕ (x⊕a)y⊕ (y⊕b)x⊕ c

= (x⊕a)(y⊕b)⊕ (xy⊕ay)⊕ (yx⊕bx)⊕ c

= xy⊕ay⊕ xb⊕ab⊕ xy⊕ay⊕ yx⊕bx⊕ c

= xy⊕ab⊕ c

= xy

C Key Agreement Protocols

The following section gives a more detailed overview of
the implemented key agreement protocols that are used in
our protocol to secure the channel from T via A to B, as
described in §4.2.

TLS Creating a one-way authenticated channel is a
common problem on the Internet, where a user wants
to access a web-service that is provided by an unknown
server in an untrusted network. In this scenario, the Trans-
port Layer Security (TLS) protocol [IET08] is the most
widely adopted protocol. TLS provides flexibility by
specifying different authentication mechanisms and al-
gorithms for each functionality. We instantiate the seed
transfer protocol with the TLS variant using a public-key
certificate, which is held by T . B acts as TLS client and is
not authenticated, as he does not hold a certificate. We in-
stantiate TLS with RSA-1536-OAEP as asymmetric prim-
itive, AES-128-CBC as symmetric primitive, SHA256 as
hash function and HMAC-SHA256 for message authenti-
cation.

KAS1 While TLS is the standard for authenticated key
agreement on the Internet, the security guarantees and
functionalities it provides are more than what is required
for a passive (semi-honest) adversary. We therefore out-
line a second protocol, the key agreement scheme KAS1-
basic [NIS09], which is more lightweight but also pro-
vides the required security features for the semi-honest
adversary model. It lacks the key confirmation that is
offered by TLS, however, this does not affect the confi-
dentiality of the protocol as we can exclude active attacks.
To agree on a shared secret key using KAS1-basic, B acts
as initiator and T as responder. B creates a shared se-
cret Z, encrypts it using T ’s public key and sends it to T
who can then decrypt it with its private key. T replies
with a nonce NV and both parties can afterwards derive
the key material from the mutually known Z, NV , and
the parties’ identifiers. In our implementation, we choose
T ’s certificate serial number and the MAC address of the

phone’s network interface as party identifiers. We instan-
tiate the asymmetric cipher with RSA-1536-OAEP, use
AES-128-CBC as symmetric cipher and SHA256 as key
derivation function.

D Detailed Performance Estimation

In the following, we theoretically estimate the perfor-
mance of our protocol without (Ours A §4.1) and with
multiplication triple composition (Ours B §4.3) and com-
pare it to the performance of Yao’s garbled circuits proto-
col using pipelining as implemented in [HCE11], Yao’s
garbled circuits protocol with hardware token extension
as described in [JKSS10], and the GMW protocol with
random OT extension as implemented in [SZ13,ALSZ13].
An overview of the comparison is given in Tab. 4. We
give the computation and communication complexity
and the required information to compute a function and
divide them into init phase, setup phase and online
phase (cf. §2.2). Note that for the evaluation of Yao’s
garbled circuits protocol, we omit the input key transfer
via OT, since it depends on the actual function that is com-
puted and is negligible for many functions [ALSZ13]. We
denote f as the evaluated function, | f | as its multiplicative
size, d( f ) as its multiplicative depth. t is the symmetric
security parameter and b is the block size of the cipher (in
our implementation we use AES-128 with t = b = 128).

Pipelined Yao [HCE11] In the pipelined Yao’s garbled
circuits protocol, B acts as circuit garbler andA as circuit
evaluator (cf. §A). Since the pipelining extension is used,
the garbled circuit generation and evaluation is performed
on-the-fly in the online phase. B generates and garbles the
circuit by encrypting the truth table for each non-linear
Boolean gate, which requires evaluating 4| f | symmetric
cryptographic operations. B then sends the garbled circuit
of size 3t| f | bits toA, andA evaluates the garbled circuit
using | f | symmetric cryptographic operations.

Token-Assisted Yao [JKSS10] A token-assisted vari-
ant Yao’s garbled circuits protocol was described
in [JKSS10]. In their scheme, B prepares a token T and
sends it to A. T acts on behalf of B, and generates and
locally sends the garbled circuit to A. In the setup phase,
B sends its input keys to A and A obtains its input keys
directly from T . Finally, in the online phase, A evaluates
the garbled circuit.

In the token-assisted protocol of [JKSS10], T performs
the garbling. Since T is very resource constrained, it
cannot hold the entire garbled circuit in memory at a time
and therefore has to re-generate the input and output keys
each time it garbles a gate. The computation complex-
ity for garbling the circuit is thereby increased to 7| f |
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Table 4: Comparison of Generic SFE Protocols ( f : the function to be computed securely, t: symmetric security
parameter, b: block size, d: depth, sym: symmetric cryptographic operations). Empty cells correspond to no complexity
or prerequisites.

Phase
Pipelined Yao Token Yao GMW OT-ext Ours A Ours B

[HCE11] [JKSS10] [SZ13, ALSZ13] §4.1 §4.3

Init
required f | f |
A⇔T comm. 4t| f | | f |
T comp. 7| f | sym 5| f |/t sym

Ad-hoc

Setup

required | f | | f |
A/T⇔B comm. t 2t| f | t t · log2 | f |
A comp. 6| f | sym 2| f |/b sym
B comp. 6| f | sym 3| f |/b sym

Online

required f f
A⇔B comm. 3t| f | 4| f |, d( f ) rounds
A comp. | f | sym negligible
B comp. 4| f | sym negligible

evaluations of symmetric cryptographic primitives, com-
pared to 4| f | in standard Yao’s garbled circuits protocol.
The communication complexity between A and T is also
increased to 4t| f | compared to 3t| f | in standard Yao’s
garbled circuits protocol, since the garbled row reduction
technique cannot be applied.

The evaluation in the online phase is the same as in the
standard Yao’s garbled circuits protocol and requires | f |
evaluations of symmetric cryptographic operations by A.
The generation, garbling, and transmission from A to T
can be done in the init phase but requires the computed
function f to be known in advance. If f is not known in
advance, these steps have to be performed in the ad-hoc
phase.

GMW OT Extension [SZ13, ALSZ13] In contrast
to Yao’s garbled circuits protocol, the GMW protocol
(cf. §2.4) allows to shift all evaluations of symmetric
cryptographic operations into the setup phase, which
is independent of f , only requires | f | to be known
in advance, and evenly balances the workload among
the parties [CHK+12, SZ13]. Using the OT extension
of [ALSZ13], each party has to evaluate 6| f | symmet-
ric cryptographic operations in the setup phase. This is
slightly higher than in Yao’s garbled circuits protocol,
which requires 4| f | symmetric cryptographic operations
for the creator and | f | for the evaluator. The communi-
cation complexity on the other hand is slightly lower for
GMW and amounts to 2t| f | compared to 3t| f | for Yao. In
the online phase, the parties only evaluate simple one-time
pad operations but have to perform d( f ) communication
rounds, which makes the performance highly dependent
on the network’s latency.

Ours A §4.1 In our basic token-assisted GMW proto-
col described in §4.1, | f | has to be known to have T
pre-compute the multiplication triples in the init phase.
To generate | f | multiplication triples, the computation
complexity of T is dominated by 5| f |/b symmetric cryp-
tographic operations for the seed expansion. Finally, T
sends the expanded multiplication triples to A which re-
quires | f | bits to be sent from T to A. In the setup phase,
T has to send the seeds for the multiplication triple se-
quences to B which requires t bits of communication, and
A and B have to expand their seeds using 2| f |/b symmet-
ric cryptographic operations for A and 3| f |/b symmetric
cryptographic operations for B. Finally, the parties per-
form the online phase of GMW, which is the same as for
the OT extension-based GMW protocol described before.

Ours B §4.3 The token-assisted GMW protocol with
multiplication triple composition described in §4.3 allows
the init phase to be independent of | f |. Compared to the
basic token-assisted protocol, the only overhead that is
added is an increase of the communication complexity in
the setup phase to t · log2 | f |.

E Description of the Location-Aware
Scheduling Algorithm

In the location-aware scheduling application described in
§6.2,A andB each hold a schedule ti (for i∈{A,B}), that
is composed of n time slots, where each time slot ti, j =
(ai, j,Pi, j, pi, j,Ni, j,ni, j) is assigned an availability ai, j ∈
{0,1}, a previous location Pi, j ∈ ({0,1}σ × {0,1}σ ),
a reachable distance from the previous location pi, j ∈
{0,1}σ , the next location Ni, j ∈ ({0,1}σ ×{0,1}σ ), and
a reachable distance from the next location ni, j ∈ {0,1}σ ,
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where σ is the bit size of the coordinates. The scheduler
sets ai, j to whether the time slot is available (ai, j = 1) or
not, Pi, j to the location of the previous appointment of
i, and Ni, j to the location of the next appointment of i.
Additionally, it sets pi, j and ni, j to the distances from Pi, j
and Ni, j, respectively, that i can reach given the available
time left until the next appointment, the time that i has to
travel from Pi, j to Ni, j, and the duration of the meeting.
Note that the scheduling algorithm can compute all this
in plaintext.
To identify a time slot for an appointment, the sched-
uler securely computes the distances d0, j, ...,d3, j for all
combinations of the previous and next meetings: d0, j =
D(PA, j,PB, j), d1, j = D(PA, j,NB, j), d2, j = D(NA, j,PB, j),
and d3, j = D(NA, j,NB, j), where D is a distance func-
tion. To check, if the reachable ranges overlap, the sched-
uler computes dk, j ≤ rk, j where r0, j = pA, j + pB, j, r1, j =
pA, j + nB, j, r2, j = nA, j + pB, j, and r3, j = nA, j + nB, j.
Among these possible meetings, the scheduler selects
those that are available for both parties (aA, j ∧aB, j = 1)
and the one with the minimal distance dk, j, 0≤ k ≤ 3 for
all j in order to minimize the distance that both parties
have to travel. The scheduler outputs the index j of the
optimal time slot t j as well as for A whether the short-
est distance was computed from PA, j or NA, j and for B
whether the shortest distance was computed from PB, j or
NB, j. In our experiments we use σ = 16 bit coordinates
and the Manhattan distance as distance function D.

F Extension to Active Security

To achieve security against active adversaries, the TinyOT
protocol of Nielsen et al. [NNOB12] can be realized with
a trusted hardware token in our mobile setting. Similar
to the GMW protocol, TinyOT uses XOR-based secret
sharing, such that every bit x is shared amongst the parties
A and B as x = xA⊕xB. The protocol prevents malicious
attacks by adding a MAC and local key to every share
used in the secure computation and thereby allowing for
oblivious authentication. A bit is considered authenti-
cated if the authenticity of both shares can be verified by
the parties.

[Hua12] has shown that the TinyOT protocol can be
based on correlated randomness that is provided by a
trusted server. In the following we show how our token-
based solution can be extended to realize an efficient
pre-computation for the TinyOT protocol while maintain-
ing a low communication between T and B. The basic
idea is to pre-generate all values for B from a seeded PRF,
while A’s values are calculated on T , sent out during the
init phase, and stored locally on A. When B connects to
A to start the secure computation, he receives the seeds
for all required values and expands them. Thereby the
communication complexity in the ad-hoc phase remains

low. In fact, all pre-calculated values can be expanded
from a single seed. However, since the global keys ∆i
must be unique and are used in the entire protocol, we
cannot apply the trick of §4.3 to compose blocks of multi-
plication triples of different sizes. Thus, we also require
an upper bound for the function size | f | in advance.

F.1 Protocol Description
In the TinyOT protocol, every party i ∈ {A,B} holds a
unique and uniformly random global key ∆i that is fixed
for one instance of the secure computation protocol. Ev-
ery bit share xi, held by party i is authenticated with a
MAC Mxi and a uniformly random local key Kxi satisfying
Mxi = Kxi ⊕ xi∆i, such that xi and Mxi are held by party i,
while ∆i and Kx are held by the other party. The original
TinyOT protocol proposes choosing Kxi at random and
calculating Mxi , however, we can also pick a random Mxi

and compute Kxi = Mxi ⊕ xi∆i accordingly. Thereby we
are able to pre-generate MACs and keys for shares held
by both A and B. The TinyOT protocol allows for local
authenticated evaluation of XOR gates and interactive
authenticated evaluation of AND gates, which prevents
manipulations from malicious adversaries as they can
easily be detected.

Init Phase In the init phase, A initiates the pre-
calculation of all required values for the TinyOT protocol
on the token. T calculates B’s values using a PRG and
stores the used seed in its secure storage. Values, that are
intended forA are calculated and sent from T toA, where
they are stored locally. The values that are pre-calculated
for either party are the global key ∆i, authenticated ran-
dom bits with the corresponding local keys and MACs,
authenticated AND bits and authenticated OT bits.

Setup Phase After A and B connected to each other, a
secure channel between the token and B is established. T
then sends B’s PRG seed to B, where they are expanded.
Thereby, we only require a minimal amount of commu-
nication between T and B, for establishing the secure
channel and sending one seed.

Online Phase The online phase is identical to the
TinyOT protocol without further modifications. Both
parties create authenticated shares of their private inputs
and begin the secure computation according to the pro-
tocol definition. In the end, one or both parties reveal
their output shares, validate the MACs, and calculate the
plaintext output.
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