
Large Universe Ciphertext-Policy
Attribute-Based Encryption with White-Box

Traceability

Jianting Ning1, Zhenfu Cao1, Xiaolei Dong1, Lifei Wei2, and Xiaodong Lin3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
{jtning@,zfcao@cs.,dong-xl@cs.}sjtu.edu.cn

2 College of Information Technology,
Shanghai Ocean University, Shanghai 201306, China

Lfwei@shou.edu.cn
3 Faculty of Business and Information Technology,

University of Ontario Institute of Technology, Oshawa, Canada
xiaodong.lin@uoit.ca

Abstract. A Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
system extracts the decryption keys over attributes shared by multiple
users. It brings plenty of advantages in ABE applications. CP-ABE en-
ables fine-grained access control to the encrypted data for commercial
applications. There has been significant progress in CP-ABE over the re-
cent years because of two properties called traceability and large universe,
greatly enriching the commercial applications of CP-ABE. Traceability
is the ability of ABE to track the malicious users or traitors who inten-
tionally leak the partial or modified decryption keys to others for profits.
Nevertheless, due to the nature of CP-ABE, it is difficult to identify the
original key owner from an exposed key since the decryption privilege
is shared by multiple users who have the same attributes. On the other
hand, the property of large universe in ABE proposed by Lewko and
Waters enlarges the practical applications by supporting flexible num-
ber of attributes. Several systems have been proposed to obtain either
of the above properties. However, none of them achieve the two proper-
ties simultaneously in practice, which limits the commercial applications
of CP-ABE to a certain extent. In this paper, we propose a practical
large universe CP-ABE system supporting white-box traceability, which
is suitable for commercial applications. Compared to existing systems,
our new system has three advantages: (1) The number of attributes is
not polynomially bounded; (2) Malicious users who leak their decryption
keys could be traced; and, (3) The storage overhead for traitor tracing is
constant. We also prove the selective security of our new system in the
standard model under “q-type” assumption.

Keywords: Attribute-Based Encryption, Ciphertext-Policy, Large Uni-
verse, White-box Traceablity, Commercial Applications.
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1 Introduction

In traditional public key encryption, a user is privileged to share his/her da-
ta with others in a private manner. The access of a targeted user or device to
the shared data is all or nothing. In other words, one can get the entire ac-
cess capability to the shared data if given the secret key; otherwise, nothing
will be revealed. In many cases, however, this may not be true. For example, a
user may expect to share his/her data through a more general and expressive
way based on the targeted user or device’s credentials. To address this issue,
Sahai and Waters [34] introduced the notion of Fuzzy Identity-Based Encryp-
tion (FIBE). Goyal et al. [12] proposed two complementary forms of Attribute-
Based Encryption (ABE) : Key-Policy Attribute-Based Encryption (KP-ABE)
and Ciphertext-Policy Attribute-Based Encryption (CP-ABE). In the KP-ABE,
users’ decryption keys are issued according to an access policy and the cipher-
texts are annotated by attributes. In the CP-ABE, users’ decryption keys are
issued according to the attributes they possess and the encrypting party specifies
an access policy for the ciphertexts. A series of KP-ABE or CP-ABE schemes
have been proposed [3, 29, 10, 16, 36, 27, 20, 33, 32, 14, 24], aiming at better ex-
pressiveness, efficiency or security. In particular, large universe and traceability
are the two significant progress in ABE, we will discuss following.

Recently, Rouselakis and Waters [32] proposed a new construction and it-
s proof method for Large Universe Attribute-Based Encryption (LU-ABE). In
general, an ABE system can be classified to “small universe” and “large uni-
verse” constructions. In the “small universe” construction, the attributes are
fixed at system setup and the size of the attributes is polynomially bounded,
and furthermore the size of public parameters grows linearly with the number of
attributes. While in the “large universe” construction, the attributes need not
be specified at system setup and the size of the attribute universe is unbounded.
The “large universe” construction for ABE system brings an obvious advantage
that the designer of the ABE system need not bother to choose a particular
bound of the attributes at system setup.

On the other hand, several CP-ABE systems supporting traceability have
been proposed [22, 21, 24]. In CP-ABE, each user possesses a set of attributes
and can decrypt the ciphertext if his/her attributes satisfy the ciphertext’s ac-
cess policy. This results in an obvious consequence that the encrypter or system
does not know who leaks the decryption key to others intentionally. Due to the
fact that the attributes are shared by multiple users and different users may have
the same subset of attributes, the encrypter or system has no feasible method
to trace the suspicious receiver if the the decryption key is leaked. We take Al-
ice (with attributes {Alice, Assistant Professor, Computer Science}) and Bob
(with attributes {Bob, Assistant Professor, Computer Science}) as an example.
They both have the same decryption key corresponding to attributes {Assistant
Professor, Computer Science} and can decrypt such a ciphertext encrypted by
the attributes {Assistant Professor, Computer Science}. Suppose no other re-
ceiver in the system has both attributes ({Assistant Professor} and {Computer
Science}) at the same time. If it happens to exist a user who can decrypt the
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ciphertext except Alice and Bob, it is significant to find out who leaks such de-
cryption key to him, Alice or Bob? This drawback should be fixed in practice in
case of leaking decryption key. It is necessary to add the property of traceability
to the original ABE scheme, to identify who exactly leaks the decryption key.
The above traceability is called white-box traceability [24], which means that any
user who leaks his/her decryption key to the third user or device intentionally or
unintentionally will be identified. Also note that there exists a relatively stronger
notion named black-box traceability [23]: the leakage of the user is the decryption
equipment instead of its decryption key.

However, there exists no practical traceable CP-ABE system supporting the
property of large universe as the (non-traceable) CP-ABE system in [32]. Large
universe CP-ABE system with white-box traceability is not yet achieved in prac-
tice: (1) The CP-ABE systems supporting traceability proposed in [22, 21, 24] do
not support the property of large universe, the attributes need to be fixed at sys-
tem setup and the size of the attributes is polynomially bounded. Also, public
parameters’ size grows linearly with the number of attributes. (2) The large
universe CP-ABE system proposed in [32] is the first large universe CP-ABE
system secure in the standard model; however, it does not support the property
of traceability.

A Motivating Story. Consider a commercial application such as a pay-TV
system with huge number of users for example. Each user is labeled with lots of
related attributes, which which are defined as TV channels that the user have
ordered. As a versatile one-to-many encryption mechanism, CP-ABE system is
quite suitable in this scenario. The pay-TV system provides several TV channels
for users, and those who have paid for the TV channels could satisfy the access
policy to decrypt the ciphertext and enjoy the ordered TV channels. CP-ABE
enables fine-grained access control to the encrypted data according to attributes
in users’ ordered lists. However, there are two problems with this approach. First,
if someone (who does not have the privilege to access to those TV channels) buys
the decryption key from the Internet at a lower cost, she/he could also get access
to the TV channels. Then who is selling the decryption key? Second, as the TV
channels of the pay-TV system expand, an increasing number of new attributes
need to be added to the system to describe the new channels. If the number of
the attributes exceeds the bound set during the initial deployment of the pay-TV
system, then the entire system has to be re-deployed and possibly all its data
will have to be re-encrypted [32].

The problems, as described above, are the main obstacles when CP-ABE
is implemented in commercial applications such as pay-TV systems and social
networks. Due to the nature of CP-ABE, if a malicious user leaks its decryption
key to others for profits (such as selling the decryption key on the Internet),
it is difficult to find out the original key owner from an exposed key since the
decryption key is shared by multiple users who have the same attributes. As
such, the pay-TV company will suffer severe financial loss. Thus, it is necessary
for the pay-TV system to trace the malicious users who intentionally leak the
partial or modified decryption keys. Also, as the pay-TV system expands, an
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increasing new attributes (which describe new TV channels) have to be added to
the system. In previous CP-ABE constructions, the attributes are fixed at system
setup and the number of the attributes are bounded. If the bound is not specified
large enough, the attributes may exhaust if the number of the users exceeds the
threshold and the entire system needs to be completely re-built [32]. On the
other hand, if the bound is specified too large, it will increase the storage and
communication burden of the entire system due to the corresponding increase
of the public parameters’ size. Thus, it is necessary for the pay-TV system to
support flexible number of attributes. Lastly, since the number of users in a
pay-TV system could grow fast, the storage for traceability should not increase
linearly with the number of users. Otherwise, the storage for traceability will
become relatively huge and exhaust if the users increase dramatically. Thus, the
storage for traceability needs to be at a constant level in an ideal case.

1.1 Our Contribution

In this paper, we propose a new large universe CP-ABE system which is white-
box4 traceable on prime order bilinear groups. To the best of our knowledge, this
is the first practical CP-ABE system that simultaneously supports the following
three properties: white-box traceability, large universe and constant storage for
tracing. Compared with other constructions using composite order groups, we
build our construction on the efficient prime order bilinear groups. We also prove
our new system selectively secure in the standard model.

We solve the obstacles of CP-ABE implementation in the commercial appli-
cations such as pay-TV systems and social networks as follows:

1. We achieve the property of white-box traceability in CP-ABE. Our new
system can trace the malicious users who may leak the partial or modified
decryption keys to others for profits.

2. We obtain the property of large universe in white-box traceable CP-ABE. In
our new system attributes need not be fixed at system setup, the attributes’
size is not polynomially bounded and the public parameters’ size does not
grow linearly with the number of attributes.

3. We do not need to maintain an identity table for tracing as used in [24].
Instead, we adopt the Shamir’s (t̄, n̄) threshold scheme in tracing the mali-
cious users, the storage cost for traceability does not grow linearly with the
number of the users, it is constant which only depends on the threshold t̄.

4. It yields another result that the stored data for traceability need not be
updated when new users are added into the system or malicious users are
ejected out of the system, which makes the system more practical for appli-
cations.

Table 1 gives the comparison between our work and some other related work.

4 In this paper, we mainly aim to obtain a large universe CP-ABE system with white-
box traceability. The realization of black-box traceability for large universe CP-ABE
system will be our future work.
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Table 1. Comparison with other related work

[22] [21] [24] [32] Ours

Large Universe 1 × × ×
√ √

Traceability
√ √ √

×
√

Constant Storage for Tracing 2 √
× × −

√

Supporting Any Monotone Access Structures 3 × ×
√ √ √

Constructed on Prime Order Groups 4 √
× ×

√ √

Standard Model ×
√ √ √ √

1 In [22],[21] and [24], their systems only support small universe.
2 In [21] and [24], the storage for tracing is not constant. In [32], the proposed

system does not support traceability.
3 In [22] and [21], their systems do not support any monotone access structures.
4 In [21] and [24], their systems are constructed on the composite order groups.

1.2 Our Technique

In this subsection, we briefly introduce the main idea we utilize to realize the
properties of large universe and white-box traceability before giving the full
details in Section 4.

To realize large universe construction, we adopt the “individual randomness”
and “layer” technique from [19, 32]. We use the “layer” technique to encrypt data
securely and to be able to decrypt. We employ two “layers” : the “attribute”
layer and the “secret sharing” layer, and use a “binder term” to connect these
two layers securely. In the “attribute” layer, we utilize u, h terms to provide
a Boneh-Boyen-style [4] hash function (uAh). As for the “secret sharing” layer,
during KeyGen and Encrypt phases we use w term to hold the secret randomness
r and the secret randomness s’s shares respectively. Finally, we use the v term
to “bind” this two layers together.

To realize traceability, we use the Boneh-Boyen-style signature [4]. Compared
with the related work [24], we find that the table T with the tuple identity and
its randomness used in [24] grows linearly with the number of the users.5 With
the number of the users in a system scaling large, the corresponding identity
table T for traceability will expand as a result, which leads to heavy burden of
the storage space for T . Besides, the corresponding cost of searching K ′ in T
during the Trace phase is relatively huge. In this paper, we utilize the Shamir’s
(t̄, n̄) threshold scheme to optimize the property of traceability. We only need
store t̄ − 1 points on a polynomial f(x) at system setup. Consequentially, our
storage for traceability does not grow linearly with the number of the users and
is a constant.

The main idea of our traceability is as follows.

5 Note that in the extension of [24], it gives another signature scheme for the purpose
of removing the identify table T , but unfortunately the new signature scheme is not
as efficient as the original one. Besides, it brings some other parameters, which will
cause additional computation overhead.
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Firstly, the Setup algorithm initializes an instance of Shamir’s (t̄, n̄) thresh-
old scheme INS(t̄,n̄) and keeps a polynomial f(x) and t̄ − 1 points {(x1, y1),
(x2, y2), ..., (xt̄−1, yt̄−1)} on f(x) secret. Then we insert c into the decryption
key sk during KeyGen phase where c = Enck̄2(x||y), x = Enck̄1(id), y = f(x).6

During the Trace phase, the algorithm extracts (x∗ = x′, y∗ = y′) from x′||y′ =
Deck̄2(K ′) in the decryption key sk, and then it checks whether sk is issued by
system. If (x∗ = x′, y∗ = y′) ∈ {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)}, the algorithm
computes Deck̄1(x∗) to get id to identify the malicious user directly. Otherwise,
the algorithm computes the secret of INS(t̄,n̄) by interpolating with t̄−1 points
{(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} and (x∗, y∗). If the recovered secret is equal
to f(0), the algorithm computes Deck̄1(x∗) to get id to identify the malicious
user. If the equation fails, sk is not issued by the system. In this way, we could
trace the owner of the decryption key. Meanwhile, it brings the benefit that the
system only stores t̄− 1 points on f(x), and thus the storage for traceability is
a constant.

1.3 Related Work

Sahai and Waters introduced the notion of Fuzzy Identity-Based Encryption in
[34]. Goyal, Pandey, Sahai and Waters [12] later formalized two notions of ABE:
CP-ABE (where user keys are labeled with sets of attributes and ciphertexts
are associated with policies) and KP-ABE (where ciphertexts are labeled with
sets of attributes and private keys are associated with access structures). Subse-
quently, many constructions of selectively secure KP-ABE and CP-ABE systems
were proposed [3, 29, 7, 29, 10, 16, 27, 36, 1]. Many advances have been made for
ABE as the following directions: new proof techniques to obtain fully secure [17,
27, 16, 20], decentralizing trust by setting multiple authorities [5, 6, 18] and out-
sourcing computation [30, 13]. The first large universe KP-ABE construction was
proposed in [19]. It was built on composite order groups and proved selectively
secure in the standard model. Then the first large universe KP-ABE construc-
tion on prime order groups was proposed in [15] inspired by the dual pairing
vector space framework [25, 26, 28]. Recently, the first large universe CP-ABE
construction [32] built on prime order bilinear groups was proposed by Rouse-
lakis and Waters. It was proved selectively secure in the standard model under
“q-type” assumption. Another branch of ABE research considers the problem
of traceability. The notion of accountable CP-ABE was first proposed in [22]
to prevent illegal key sharing among colluding users. Then a multi-authority
ciphertext-policy (AND gates with wildcard) ABE scheme with accountability
was proposed in [21], which allowed tracing the identity of a misbehaving user
who leaked the decryption key to others. Liu, Cao and Wong lately proposed a
white-box [24] and black-box [23] traceability CP-ABE system which supported
policies expressed in any monotone access structures.

6 Note that the tuple (x, y) is a point on f(x)
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1.4 Organization

Section 2 gives the formal definition of traceable large universe CP-ABE and its
security model. Section 3 introduces the background, including the notation, the
access policy, the linear secret sharing scheme, the prime order bilinear groups
and the assumptions. Section 4 presents the construction of our T-LU-CP-ABE
system as well as the security proof. Some extensions of our work are discussed
in Section 5. Finally, Section 6 presents a briefly conclusion and foresees our
future work.

2 Traceable Large Universe CP-ABE

2.1 Definition

A Traceable Large Universe CP-ABE (T-LU-CP-ABE) system is a CP-ABE
system where attributes need not be fixed at system setup and can trace the
user by his/her decryption key. We enhance the original large universe CP-ABE
system by adding users’ identities and a Trace algorithm to it according to
[24]. In particular, following the notation of the large universe CP-ABE system
introduced in [32], a T-LU-CP-ABE system consists of five algorithms as follows:

– Setup(1λ)→ (pp,msk) : The algorithm takes as inputs a security parameter
λ ∈ N encoded in unary. It outputs the public parameters pp and the master
secret key msk. We assume that the description of the attribute universe U
is contained in the public parameters.7 In addition, it initializes an instance
of Shamir’s (t̄, n̄) threshold scheme denoted by INS(t̄,n̄).

– KeyGen(1λ, pp,msk, id, S)→ skid,S : The key generation algorithm takes as
inputs the public parameters pp, the master secret key msk and a set of
attributes S ⊆ U for a user with identity id. The security parameter in
the inputs ensures that it is polynomial time in λ. The algorithm outputs a
secret key skid,S corresponding to S.

– Encrypt(1λ, pp,m,A) → ct : The encryption algorithm takes as inputs the
public parameters pp, a plaintext message m, and an access structure A over
U . It outputs the ciphertext ct.

– Decrypt(1λ, pp, skid,S , ct) → m or ⊥ : The decryption algorithm takes as
inputs the public parameters pp, a secret key skid,S , and a ciphertext ct. It
outputs the plaintext m or ⊥.

– Trace(pp, INS(t̄,n̄),msk, sk) → id or ᵀ : The tracing algorithm takes as
inputs the public parameter pp, an instance of of Shamir’s (t̄, n̄) threshold
scheme INS(t̄,n̄), the master secret key msk, and a secret key sk. The algo-
rithm first verifies whether sk is well-formed to determine whether sk needs
to be traced. If sk is well-formed and could recover the secret of INS(t̄,n̄),

7 In the previous CP-ABE systems, the attribute universe U was one of the argu-
ments in the Setup algorithm. In the large universe case, the attribute universe only
depends on the size of the security parameter and the group generation algorithm
[32].
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the algorithm outputs an identity id implying that sk is linked to id. Oth-
erwise, it outputs a special symbol ᵀ implying that sk does not need to be
traced. We define a secret key sk is well-formed which means that it passes
the key sanity check algorithm. The key sanity check is a deterministic al-
gorithm [9, 11], which is used to guarantee the secret key in the well-formed
decryption process.

2.2 T-LU-CP-ABE Selective Security

The security model of our T-LU-CP-ABE system is similar to that of the LU-
CP-ABE system [32], excepting every key query is companied with an explicit
identity. In this subsection we present the definition of selective security for our
T-LU-CP-ABE system. It is parameterized by the security parameter λ ∈ N and
is described by a game between an attacker and a challenger. The phases of the
game are as follows:

– Initialization : The attacker claims the challenge access structure A∗ he
will attack, and then sends it to the challenger.

– Setup : The challenger runs the Setup(1λ) algorithm and sends the public
parameters pp to the attacker.

– Query Phase 1 : In this phase the attacker can adaptively ask for secret
keys for the sets of attributes (id1, S1), (id2, S2), ..., (idQ1

, SQ1
). For each

(idi, Si) the challenger calls KeyGen(1λ, pp,msk, id, S) → skid,S and sends
skid,S to the attacker. The only restriction is that the attacker can not query
the sets that satisfies the challenge access structure A∗, i.e. ∀i ∈ [Q1] : Si /∈
A∗.

– Challenge : The attacker declares two equal length messagesm0 andm1 and
sends them to the challenger. The challenge flips a random coin β ∈ {0, 1}
and calls Encrypt(1λ, pp,mβ ,A∗)→ ct. It gives ct to the attacker.

– Query Phase 2 : This is the same as query phase 1. The attacker asks
for the secret key for the sets (idQ1+1, SQ1+1), ..., (idQ, SQ) with the same
restriction: ∀i ∈ [Q] : Si /∈ A∗.

– Guess : The attacker outputs a guess β′ ∈ {0, 1} for β.

The advantage of an attacker is defined to be Adv = Pr[β′ = β]−1/2 in this
game.

Definition 1. A traceable large universe ciphertext-policy attribute-based en-
cryption system is selectively secure if all probabilistic polynomial-time (PPT)
attackers have at most negligible advantage in λ in the above security game.

2.3 Traceability

In this subsection, we give the traceability definition for our T-LU-CP-ABE. It
is described by a game between an attacker and a challenger. The phases of the
game are as follows:
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– Setup : Here the challenger calls the Setup(1λ) algorithm and sends the
public parameters pp to the attacker.

– Key Query : The attacker submits the sets of attributes (id1, S1), ..., (idq, Sq)
to request the corresponding decryption keys.

– Key Forgery : The attacker will output a decryption key sk∗. If Trace(pp,
INS(t̄,n̄),msk, sk∗) 6= ᵀ and Trace(pp, INS(t̄,n̄),msk, sk∗) /∈ {id1, ..., idq},
then the attacker wins the game. The advantage of an attacker in this game
is defined to be Pr[Trace(pp, INS(t̄,n̄),msk, sk∗) /∈ {ᵀ, id1, ..., idq}].

Definition 2. A traceable large universe ciphertext-policy attribute-based en-
cryption system is fully traceable if there has no polynomial time attacker have
non-negligible advantage in the above game.

3 Background

3.1 Notation

We define [l] = {1, 2, ..., l} for l ∈ N. By PPT we denote probabilistic polynomial-
time. We denote Zl×np be the set of matrices of size l × n with elements in Zp.
The set of row vectors of length n (i.e. Z1×n

p ) and the set of column vectors of
length n (i.e. Zn×1

p ) are the two special subsets. We denote (s1, s2, ..., sn) be a

row vector and (s1, s2, ..., sn)⊥ be a column vector. By vi we denote the i-th
element in a vector v. And by Mv we denote the inner product of matrix M
with vector v. We define F(U1 → U2) be the set of functions from set U1 to U2.

We denote GD = (p,G,GT , e) be the groups and the bilinear mapping de-
scription where G and GT are two multiplicative cyclic groups of prime order p
and e : G×GT is a bilinear map.

3.2 Access Policy

This subsection presents the definition of access structure referred to [2, 32].

Definition 3. (Access Structure [2]) : Let U denote the attribute universe. A
collection A ∈ 2U of non-empty sets of attributes is an access structure on U .
The sets in A are called the authorized sets, and the sets not in A are called
the unauthorized sets. A collection A ∈ 2U is called monotone if ∀B,C ∈ A : if
B ∈ A and B ⊆ C, then C ∈ A.

The main idea in ABE is that the role of the users is taken by the attributes.
Thus, the access structure A will contain the authorized sets of attributes. For
CP-ABE, if a user of the system posses an authorized set of attributes then
he can decrypt the ciphertext, otherwise, he can’t get any information from
ciphertext if the set he possed is unauthorized. In our construction, we restrict
our attention to monotone access structure.
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3.3 Linear Secret-Sharing Schemes

It is shown in [2] that a linear secret sharing scheme can realize any monotone
access structure. In this subsection, we will present the definition of linear secret-
sharing scheme (LSSS) referred to [2, 32].

Definition 4. (Linear Secret-Sharing Schemes (LSSS) [2, 32]). Let U denote
the attribute universe and p denote a prime. A secret-sharing scheme

∏
with

domain of secrets Zp realizing access structure on U in called linear (over Zp) if
1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists a matrix M with l rows

and n columns called the share-generating matrix. For i = 1, ..., l, we define a
function ρ labels row i of M with attribute ρ(i) from the attribute universe U ,
i.e. ρ ∈ F([l] → U). When we consider the column vector v = (s, r2, ..., rn)⊥,
where r2, ..., rn ∈ Zp are randomly chosen. Then Mv ∈ Zl×1

p is the vector of l
shares of the secret s according to

∏
. The share (Mv)j “belongs” to attribute

ρ(j), where j ∈ [l].

As shown in [2], every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Let∏

be an LSSS for the access structure A, S ∈ A be any authorized set and
let I ⊂ {1, 2, ..., l} be defined as I = {i ∈ [l] ∧ ρ(i) ∈ S}. Then, there exist
constants {ωi ∈ Zp}i∈I such that for any valid shares {λi = (Mv)i}i∈I of a
secret s according to

∏
, then

∑
i∈I ωiλi = s. Additionally, it is shown in [2]

that these constants {ωi}i∈I can be found in time polynomial in the size of the
share-generating matrix M . On the other hand, for any unauthorized set S′, no
such constants {ωi} exist.

Also note that if we encode the access structure as a monotonic Boolean
formula over attributes, there exists a generic algorithm by which we can generate
the corresponding access policy in polynomial time [2, 18].

In our construction, an LSSS matrix (M,ρ) will be used to express an access
policy associated to a ciphertext.

3.4 Prime Order Bilinear Groups

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e : G×G→ GT be a bilinear map. The bilinear map e has
the following properties:

1. Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
We say that G is a bilinear group if the group operations in G and the bilinear

map e : G × G → GT can both be computed efficiently. Notice that the map
e(·, ·) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

3.5 Assumptions

We adopt the “q-type” assumption of [32] as this construction’s assumption.
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Assumption 1 (“q-type” assumption [32]) We define the q-type problem
as follows. Initially choose a group generation algorithm with input the security
parameter, pick a random group element g ∈ G, and q + 2 random exponents
d, s, b1, b2, ..., bq ∈ Zp. If the attacker is given the group description (p,G,GT , e)
and y including the following terms:

g, gs

gd
i

, gbj , gsbj , gd
ibj , gd

i/b2j ∀(i, j) ∈ [q, q]

gd
i/bj ∀(i, j) ∈ [2q, q] with i 6= q + 1

gd
ibj/b

2
j′ ∀(i, j, j′) ∈ [2q, q, q] with j 6= j′

gsd
ibj/bj′ , gsd

ibj/b
2
j′ ∀(i, j, j′) ∈ [q, q, q] with j 6= j′,

it is hard for the attacker to distinguish e(g, g)sd
q+1 ∈ GT from an element which

is randomly chosen from GT .
An algorithm A that outputs β ∈ {0, 1} has advantage ε in solving the above

assumption if |Pr[A(y, e(g, g)sd
q+1

) = 0]− Pr[A(y, R) = 0]| ≥ ε.

Definition 5. We say that the q-type assumption holds if no PPT algorithm
has a non-negligible advantage in solving the q-type problem.

We define our l-SDH assumption according to [4, 9].

Assumption 2 (l-SDH assumption [4, 9]) : Let G be a bilinear group of prime
order p and g be a generator of G, the l-Strong Diffie-Hellman (l-SDH) problem

in G is defined as follows: given a (l+1)-tuple (g, gx, gx
2

, ..., gx
l

) as inputs, output
a pair (c, g1/(c+x)) ∈ Zp ×G. An algorithm A has advantage ε in solving l-SDH

in G if Pr[A(g, gx, gx
2

, ..., gx
l

) = (c, g1/(c+x))] ≥ ε, where the probability is over
the random choice of x in Z∗p and the random bits consumed by A.

Definition 6. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least in solving the l-SDH problem in G.

3.6 Shamir’s (t̄, n̄) threshold scheme

It is well known for Shamir’s (t̄, n̄) threshold scheme [35] (or Shamir’s secret
sharing scheme) in cryptography. The essential idea of that scheme is that t̄
points on a t̄ − 1 degree curve are sufficient to confirm such a curve, that is, t̄
points are enough to determine a t̄− 1 degree polynomial. For a (t̄, n̄) threshold
scheme, a secret can be divided into n̄ parts (or even more), which are sent
to each participant a unique part. All of them can be used to reconstruct the
secret. Suppose that the secret is assumed to be an element in a finite field
F∗p. Choose t̄ − 1 random coefficients a1, a2, · · · , at̄−2 ∈ Fp and at̄−1 ∈ F∗p and
set the secret in the constant term a0. Note that, we have such a polynomial:
f(x) = a0 + a1x + a2x

2 + · · · + at̄−1x
t̄−1. Every participant is given a point

(x, y) on the above curve, that is, the input to the polynomial x and its output
y = f(x). Given a subset with any t̄ points, we can recover the constant term a0

using the Lagrange interpolation.
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4 Our T-LU-CP-ABE System

In this section we propose the construction of our new large universe CP-ABE
system with white-box traceability.

4.1 Construction

– Setup(1λ) → (pp,msk) : The algorithm runs the group generator algorith-
m g(1λ) and gets the groups and the bilinear mapping description GD =
(p,G,GT , e), where (G,GT ) are groups of order p and e is the bilinear map-
ping. Let U = Zp be the attribute universe. The algorithm randomly chooses
g, u, h, w, v ∈ G and α, a ∈ Zp. Besides, the algorithm chooses a probabilis-
tic encryption scheme (Enc,Dec) [8] from a binary string to Z∗p with dif-

ferent secret key k̄1, k̄2. Furthermore, it initializes an instance of Shamir’s
(t̄, n̄) threshold scheme INS(t̄,n̄)

8 [35] and keeps f(x) 9 and t̄ − 1 points
{(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} secret. It sets (GD, g, u, h, w, v, ga, e(g, g)α)
as pp and (α, a, k̄1, k̄2) as msk.

– KeyGen(1λ, pp,msk, id, S = {A1, A2, ..., Ak} ⊆ Zp)→ skid,S : The algorithm
computes: x = Enck̄1(id), y = f(x), c = Enck̄2(x||y). Note that the comput-
ing result c is not distinguished from a random number 10. And it randomly
chooses r, r1, r2, ...rk ∈ Zp. The decryption key skid,S is set as follows:

〈K = gα/(a+c)wr,K ′ = c, L = gr, L′ = gar,
{Kτ,1 = grτ ,Kτ,2 = (uAτh)rτ v−(a+c)r}τ∈[k]〉

– Encrypt(1λ, pp,m ∈ GT , (M,ρ) ∈ (Zl×np ,F([l] → Zp))) → ct : The al-
gorithm takes the public parameters pp, a plaintext message m and ran-
domly chooses −→y = (s, y2, ..., yn)⊥ ∈ Zn×1

p , where s is the random secret
to be shared according to Subsection 3.3. It gets the vector of the shares−→
λ = (λ1, λ2, ..., λl) by computing the inner product λi = Mi

−→y , where Mi

is the i-th row of M . Then it randomly picks l exponents t1, t2, ..., tl ∈ Zp.
The ciphertext ct is set as follows:

〈(M,ρ), C = m · e(g, g)αs, C0 = gs, C ′0 = gas,
{Ci,1 = wλivti , Ci,2 = (uρ(i)h)−ti , Ci,3 = gti}i∈[l]〉

It outputs the ciphertext ct.

8 In our system, it requires n̄ is greater than the number of the total users.
9 If all of the users register and get the secret keys at the beginning of system initial-

ization, the system could secretly store f(0) instead of the polynomial f(x) since the
storage for f(x) is much larger than that of f(0).

10 Due to the definition of probabilistic encryption, x is not distinguished from a ran-
dom number. In addition, f is linear function and thus y is also a random number.
Therefore, c, combined with x and y and through a probabilistic encryption, can
also be a random number.
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– Decrypt(1λ, pp, skid,S , ct)→ m or⊥ : The algorithm first computes the set of
rows in M that produces a share to attributes in S, that is, I = {i : ρ(i) ∈ S}.
If the attribute set S is not an authorized set of the access policy, then
it cannot satisfy the access structure of (M,ρ), the algorithm outputs ⊥.
Otherwise, the algorithm lets {ωi ∈ Zp}i∈I be a set of constants such that∑
i∈I ωiMi = (1, 0, ..., 0), where Mi is the matrix M ’s i-th row. Note that∑
i∈I ωiλi = s if the attribute set S is authorized, and there may exists other

different ways to choose the values of ωi to satisfy this. Then it computes:

E = e(K,CK
′

0 C ′0) = e(g, g)αse(w, g)(a+c)sr

D =
∏
i∈I

(e(LK
′
L′, Ci,1)e(Kτ,1, Ci,2)e(Kτ,2, Ci,3))ωi = e(g, w)(a+c)rs

F = E/D = e(g, g)αs

where τ is the attribute ρ(i)’s index in S (it depends on i). It outputs the
plaintext m = C/F .
Correctness:

F =
E

D
=

e(g, g)αse(w, g)(a+c)sr∏
i∈I D1 ·D2 ·D3 ·D4 ·D5

=
e(g, g)αse(w, g)(a+c)sr

e(g, w)(a+c)r
∑
i∈I ωiλi

= e(g, g)αs

where

D1 = e(g, w)(a+c)rλiωi , D2 = e(g, v)(a+c)rtiωi , D3 = e(g, uρ(i)h)−rτ tiωi ,
D4 = e(uρ(i)h, g)rτ tiωi , D5 = e(v, g)−(a+c)rtiωi .

– Trace(pp, INS(t̄,n̄),msk, sk) → id or ᵀ : If the sk is not in the form of
sk = (K,K ′, L, L′, {Kτ,1,Kτ,2}τ∈k) and can not pass the key sanity check,
the algorithm will output ᵀ. Otherwise, sk is a well-formed decryption key,
and the algorithm will do as follows:
(1) The algorithm extracts (x∗ = x, y∗ = y) from x||y = Deck̄2(K ′) in sk.
(2) If (x∗ = x, y∗ = y) ∈ {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)}, the algorithm

computes Deck̄1(x∗) to get id to identify the malicious user (with id).
Otherwise, go to (3).

(3) The algorithm recovers the secret a∗0 of INS(t̄,n̄) by interpolating with
t̄ − 1 points {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} and (x∗ = x, y∗ = y). If
a∗0 = f(0), it computes Deck̄1(x∗) to get id to find out the malicious
user. Otherwise, the algorithm outputs ᵀ.

Key Sanity Check:

(1) K ′ ∈ Z∗p,K, L, L′,Kτ,1,Kτ,2 ∈ G.

(2) e(L′, g) = e(L, ga).

(3) e(K, gagK
′
) = e(g, g)αe(L′LK

′
, w).
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4.2 Selective Security Proof

In the selective security proof, although we can proof that directly based on the
Assumption 1 as [32] does, for simplicity, we will reduce the selective security
of our T-LU-CP-ABE system to that of Rouselakis and Waters’s system in [32]
which is proved selectively secure under Assumption 1.

For simplicity, we denote by Σlucpabe, Σtlucpabe the LU-CP-ABE system in
[32] and our system respectively. Note that the security model of our system
Σtlucpabe is almost same with that of the system Σlucpabe in [32], excepting every
key query is companied with an explicit identity.

Lemma 1. [32] If the assumption 1 holds, then the LU-CP-ABE system Σlucpabe
is selectively secure.

Selective security of our new T-LU-CP-ABE:

Lemma 2. If the LU-CP-ABE system Σlucpabe is selectively secure in the game
of [32], then our new T-LU-CP-ABE system Σtlucpabe is selectively secure in the
game of Subsection 2.2.

Proof. Suppose there exists a PPT adversary A with a challenge matrix
M∗ that has advantage AdvAΣtlucpabe in selectively breaking our T-LU-CP-
ABE system Σtlucpabe, where M∗ is an l×n matrix satisfies the restriction that
l, n ≤ q. We construct a PPT algorithm B that has advantage AdvBΣlucpabe in
selectively breaking the underlying LU-CP-ABE system Σlucpabe, which equals
to AdvAΣtlucpabe.

– Initialization : B gets a challenge policy (M∗, ρ∗) from A and then sends
this received challenge policy to Σlucpabe. Note that M∗ is an l × n matrix,
where l, n ≤ q, and ρ∗ ∈ F([l]→ Zp).

– Setup : Σlucpabe gives B the public parameter ppΣlucpabe as follows:

g = g w = gd

v = gṽ ·
∏

(j,k)∈[l,n](g
dk/bj )M

∗
j,k u = gũ ·

∏
(j,k)∈[l,n](g

dk/b2j )M
∗
j,k

h = gh̃ ·
∏

(j,k)∈[l,n](g
dk/b2j )−ρ

∗(j)M∗j,k e(g, g)α = e(gd, gd
q

) · e(g, g)α̃

Then B randomly chooses a ∈ Zp, adds ga to ppΣlucpabe as a new public
parameter pp and gives the new pp = (D, g, u, h, w, v, ga, e(g, g)α) to A.
Finally, it initializes an instance of Shamir’s (t̄, n̄) threshold scheme and
keeps f(x) and t̄− 1 points {(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} secret.

– Query Phase 1 : The adversary A will submit (id, S) to B to query a
decryption key, then B submits S to Σlucpabe and gets the corresponding
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decryption key as follows:

K̂0 = gα̃(gd)r̃
∏n
i=2(gd

q+2−i
)wi , K̂1 = gr̃

∏
i∈[n](g

dq+1−i
)wi

K̂τ,2 = gr̃τ ·
∏

i′∈[l],ρ∗(i′)/∈S
(gbi′ )

r̃
Aτ−ρ∗(i′) ·

∏
(i,i′)∈[n,l],ρ∗(i′)/∈S

(gbi′d
q+1−i

)
wi

Aτ−ρ∗(i′)

K̂τ,3 = Ψ̂ · Φ̂ , where

Ψ̂ = (uAτh)r̃τ · (K̂τ,2/g
r̃τ )ũAτ+h̃ ·

∏
(i′, j, k) ∈ [l, l, n], ρ∗(i′) /∈ S

(g

b
i′d

k

b2
j )

r̃(Aτ−ρ∗(j))M∗j,k
Aτ−ρ∗(i′)

·
∏

(i, i′, j, k) ∈ [n, l, l, n]

ρ∗(i′) /∈ S, (j 6= i′ ∨ i 6= k)

(g

b
i′d

q+1+k−i

b2
j )

(Aτ−ρ∗(j))wiM
∗
j,k

Aτ−ρ∗(i′)

Φ̂ = v−r̃
∏
i∈[n](g

dq+1−i
)−ṽwi ·

∏
(i, j, k) ∈ [n, l, n], i 6= k

(g
dq+1+k−i

bj )−wiM
∗
j,k

B computes x = Enck̄1(id), y = f(x), c = Enck̄2(x||y) (c ∈ Z∗p) and 1/(a+c)
modulo p. Then B sets r = r̃/(a + c) and K ′ = c implicitly and randomly
chooses g′ ∈ G, then computes

K = (K̂0)
1
a+c = g

α̃
a+c ((gd)r̃

∏n
i=2(gd

q+2−i
)wi)

1
a+c

L = (K̂1)
1
a+c = g

r̃
a+c (

∏
i∈[n](g

dq+1−i
)wi)

1
a+c = gr(

∏
i∈[n](g

dq+1−i
)wi)

1
a+c

L′ = (K̂1)
a
a+c g′ = g

ar̃
a+c (

∏
i∈[n](g

dq+1−i
)wi)

a
a+c g′ = gar(

∏
i∈[n](g

dq+1−i
)wi)

a
a+c g′

Kτ,1 = K̂τ,2, Kτ,2 = K̂τ,3 = Ψ̂ · Φ̂

B sends the decryption key skid,S = 〈K,K ′, L, L′, {Kτ,1,Kτ,2}τ∈[|S|]〉 to A.
Note that g′ makes L′ uncorrelated to L.

– Challenge : The attacker A outputs two equal length messages (m0,m1)
and sends them to B. Then B submits (m0,m1) to Σlucpabe, and gets the
challenge ciphertext as follows:

〈(M∗, ρ∗), Ĉ = mβ · T · e(g, gs)α̃, Ĉ0 = gs, Ĉi,3 = gti = (gsbi)−1,

Ĉi,1 = wλ̃i · (gsbi)−ṽ ·
∏

(j, k) ∈ [l, n], j 6= i

(gsd
kbi/bj )−M

∗
j,k ,

Ĉi,2 = (gsbi)−(ũρ∗(i)+h̃) ·
∏

(j, k) ∈ [l, n], j 6= i

(gsd
kbi/b

2
j )−(ρ∗(i)−ρ∗(j))M∗j,k〉

where T is the challenge term and gs the corresponding term of the
assumption in Σlucpabe.

Then B sets C = Ĉ, C0 = Ĉ0, C
′
0 = (Ĉ0)a = gas, Ci,1 = Ĉi,1, Ci,2 =

Ĉi,2, Ci,3 = Ĉi,3. Finally, B gives the challenge ciphertext ct = 〈(M∗, ρ∗), C, C0,
C ′0, {Ci,1, Ci,2, Ci,3}i∈[l]〉 to A.

– Query Phase 2 : This phase is the same with Phase 1.
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– Guess : The attacker outputs his guess β′, and gives it to B. Then B gives
β′ to Σlucpabe.
Since the distributions of the public parameters, decryption keys and chal-
lenge ciphertext in the above game are the same as that in the real system,
we have AdvBΣlucpabe=AdvAΣtlucpabe.

Theorem 1. If Assumption 1 holds, then our T-LU-CP-ABE system is selec-
tively secure.

Proof. It follows directly from Lemma 1 and Lemma 2.

4.3 Traceability Proof

In this subsection, we will give the traceability proof of our T-LU-CP-ABE
system based on l-SDH assumption. We use a proof method from [4] and [24].

Theorem 2. If the l-SDH assumption holds, then our T-LU-CP-ABE system
is fully traceable provided that q < l.

Proof. Suppose there exists a PPT adversary A that has non-negligible
advantage in winning the traceability game after making q key queries, w.l.o.g.,
assuming l = q + 1, we construct a PPT algorithm that has non-negligible
advantage in breaking the l-SDH assumption. B is given an instance of l-SDH
assumption problem as follows.

Let be G a bilinear group of order p and g be a generator of G, e : G ×
G → GT be a bilinear map, a ∈ Z∗p. B is given an instance INSSDH =

(G,GT, p, e, ḡ, ḡ
a, ḡa

2

, ..., ḡa
l

). B’s goal is to output a bit β′ ∈ {0, 1} to determine
a tuple (ci, wi) ∈ Z∗p×G satisfying wi = ḡ1/(a+ci) for solving the l-SDH problem.

Before starting the traceability game withA, B takes (G,GT, p, e, ḡ, ḡ
a, ḡa

2

, ..., ḡa
l

)

as inputs and sets Bi = ḡa
i

for i = 0, 1, ..., l, then interacts with A in the trace-
ability game as follows:

– Setup : B randomly chooses q distinct values c1, ..., cq ∈ Z∗p. Let f(y) be the

polynomial f(y) =
∏q
i=1(y + ci). Expand f(y) and write f(y) =

∑q
i=0 αiy

i.
Where α0, ..., αq ∈ Zp are the coefficients of the polynomial f(y). Then B
computes g ←

∏q
i=0(Bi)

αi = ḡf(a) and ga ←
∏q+1
i=1 (Bi)

αi−1 = ḡf(a)·a. B
randomly chooses α, θ ∈ Zp and u, h, v ∈ G, and then gives A the public
parameter pp = (GD, g, u, h, w = gθ, v, ga, e(g, g)α). Also, it initializes an
instance of Shamir’s (t̄, n̄) threshold scheme and keeps f(x) and t̄− 1 points
{(x1, y1), (x2, y2), ..., (xt̄−1, yt̄−1)} secret.

– Key Query : A submits (idi, Si) to B to query a decryption key. When it
comes to i-th query, we assume i ≤ q. Let fi(y) be the polynomial fi(y) =

f(y)/(y+ci) =
∏q
j=1,j 6=i(y+cj). Expand fi(y) and write fi(y) =

∑q−1
j=0 βjy

j .

B computes σi ←
∏q−1
j=0(Bj)

βj = ḡfi(a) = ḡf(a)/(a+ci) = g1/(a+ci).
B chooses r, r1, ..., rk ∈ Zp randomly, then gives A the skidi,Si as follows:

〈K = (σi)
αwr = gα/(a+ci)wr,K ′ = ci, L = gr, L′ = gar,

{Kτ,1 = grτ ,Kτ,2 = (uAτh)rτ (va · vci)−r = (uAτh)rτ v−(a+ci)r}τ∈[k]〉
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– Key Forgery : A submits a decryption key sk∗ to B. Note that the distri-
butions of public parameters and decryption keys in the above game are the
same as that in the real system. Let εA denote the event that A wins the
game, i.e. sk∗ is in the form of sk∗ = (K,K ′, L, L′, {Kτ,1,Kτ,2}τ∈[|S∗|]) and
satisfies the key sanity check and K ′ 6= {c1, .., cq}. If εA does not happen, B
chooses a random bit β′ ∈ {0, 1} and a tuple (cs, ws) ∈ Zp×G as the solution
to l-SDH problem. If εA happens, using long division B writes the polynomi-
al f as f(y) = γ(y)(y + K ′) + γ−1 for some polynomial γ(y) =

∑q−1
i=0 (γiy

i)
and some γ−1 ∈ Zp. Note that γ−1 6= 0, since f(y) =

∏q
i=1(y + ci), ci ∈ Z∗p

and K ′ 6= {c1, .., cq}, as thus y+K ′ does not divide f(y). Then B computes
gcd(γ−1, p). And B computes a tuple (cs, ws) ∈ Zp ×G as follows:

Assuming L = gr where r ∈ Zp is unknown, we have L′ = gar,K =

gα/(a+K′)wr. Then B computes 1/γ−1 (mod p) (since gcd(γ−1, p) = 1) and
then does following computation:

σ ← (K/Lθ)α
−1

= g1/(a+K′) = ḡf(a)/(a+K′) = ḡγ(a)ḡ
γ−1

(a+K′)

ws ← (σ ·
∏q−1
i=0 B

−γi
i )1/γ−1 = ḡ1/(a+K′), cs ← K ′ mod p ∈ Zp

Note that e(ḡa · ḡcs , ws) = e(ḡa · ḡK′ , ḡ1/(a+K′)) = e(ḡ, ḡ). Therefore (cs, ws)
is a solution for the l-SDH problem.

Now we evaluate the advantage of B in breaking l-SDH assumption.
Let εSDH(cs, ws) denote the event that (cs, ws) is a solution for the l-SDH

problem, which can be verified by checking whether e(ḡa · ḡcs , ws) = e(ḡ, ḡ)
holds. Note that when B randomly chooses (cs, ws), εSDH(cs, ws) happen-
s with negligible probability, say zero for simplicity. And the probability
of (cs, ws) satisfies e(ḡa · ḡcs , ws) = e(ḡ, ḡ) is 1 in the case of (A win ∧
gcd(γ−1, p) = 1) when B outputs (cs, ws).

So B solves the l-SDH problem with probability

Pr[εSDH(cs, ws)]
= Pr[εSDH(cs, ws)|A win] · Pr[A win]+
Pr[εSDH(cs, ws)|A win ∧ gcd(γ−1, p) 6= 1] · Pr[A win ∧ gcd(γ−1, p) 6= 1]+
Pr[εSDH(cs, ws)|A win ∧ gcd(γ−1, p) = 1] · Pr[A win ∧ gcd(γ−1, p) = 1]

= 0 + 0 + 1 · Pr[A win ∧ gcd(γ−1, p) = 1] = Pr[A win ∧ gcd(γ−1, p) = 1]
= Pr[A win] · Pr[gcd(γ−1, p) = 1] = εA

2

Pr[β′ = β] = Pr[β′ = β|εSDH(cs, ws)] · Pr[εSDH(cs, ws)] = 1
2 ·

εA
2 = εA

4

Therefore B can solve the l-SDH problem with non-negligible advantage,
which conflicts with the l-SDH assumption.

5 Extensions

5.1 Transform from One-Use T-LU-CP-ABE to Multi-Use
T-LU-CP-ABE

The construction in our system is a one-use T-LU-CP-ABE construction. Since
the ρ in our system is an injective function for each access policy associated to a
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ciphertext. During the row label of the share-generating matrix, the attributes
are only used once. This kind of construction is called one-use CP-ABE.

We can extend our new T-LU-CP-ABE system to a multi-use system using
the encoding technique in [16]: we take k copies of each attribute A instead of
a single attribute. Then we have new “attributes”: {A : 1, ..., A : k}. Now we
can label a row of the access matrix A with {A : i}. Thus the attribute can be
used multiple times. Note that the size of the public parameters do not grow
linearly with the number of the involved attributes, so that the size of the public
parameters will remain the same size under this transformation. Besides the
access matrix’s size does not change under this transformation either, thus the
size of the ciphertext also remains the same size. This makes our T-LU-CP-ABE
system more suitable for commercial applications.

5.2 Revocable T-LU-CP-ABE

Through our new T-LU-CP-ABE system proposed in this paper, it is easy to
trace the malicious user who leak his/her decryption key for benefits. This evokes
another significant issue to be considered: how to revoke the malicious users. Sev-
eral work has focused on designing revocable ABE [31, 33]. With the technology
of ciphertext delegation and piecewise key generation introduced in [33], we can
achieve a revocable T-LU-CP-ABE construction. Furthermore, since we make
use of the Shamir’s (t̄, n̄) threshold scheme in the Trace algorithm, the system
only need store t̄− 1 tuples in system for tracing, rather than an identify table
T which contains all users’ identifies. This brings an obvious advantage that the
system need not update the identify table T when some users are revoked.

6 Conclusion and Future Work

In this work, we have presented a practical large universe CP-ABE system sup-
porting white-box traceability. Specifically, we have achieved the property of
white-box traceability in CP-ABE, which could trace the malicious users leak-
ing the partial or modified decryption keys to others for profits. We have also
obtained the property of large universe in white-box traceable CP-ABE where
the attributes’ size is unbounded and the public parameters’ size does not grow
linearly with the number of attributes. In addition, we optimize the system in
tracing the malicious users to cut down the storage cost for traceability and to
make the system efficient in the user revocation. Based on the above advantages,
our new system could be applied to many scenarios such as pay-TV systems and
social networks. As far as we known, this is the first practical CP-ABE system
that simultaneously supports white-box traceability and large universe. We have
also proved our new system selectively secure in the standard model.

In our future work, we will focus on the stronger notion for traceability named
black-box traceability. In that scenario, the malicious users leak their decryption
devices instead of decryption keys. Specifically, the malicious users could hide
the decryption algorithm by tweaking it, as well as the decryption keys. In this
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case, due to the fact that the decryption keys and decryption algorithm are both
not well-formed, the new system supporting white-box traceability in this paper
will fail. It will be our future work to obtain a large universe CP-ABE system,
which supports black-box traceability.

There is another important issue about public auditing we need to pay atten-
tion to. Suppose a user Bob is identified as a malicious user by the system, but
claims to be innocent and framed by the system. It is a big problem to judge
whether Bob is in fact innocent or not. In this case, the suspected user does
not trust the system and the system needs to provide some evidence persuasive
enough to prove that the suspected user is guilty. To address this issue, a public
auditor which is played by a trusted third party needs to be introduced. How-
ever, the suspected user does not want the public auditor to know the private
information since in the Trace phase the auditor will obtain Bob’s decryption
keys and be able to decrypt all the data that Bob has. Achieving a traceable
large universe CP-ABE system with public auditors is still an open problem,
and we will keep working on it.
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1. Nuttapong Attrapadung, Benôıt Libert, and Elie De Panafieu. Expressive key-
policy attribute-based encryption with constant-size ciphertexts. In Public Key
Cryptography–PKC 2011, pages 90–108. Springer, 2011.

2. Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,
PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel, 1996.

3. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 321–334. IEEE, 2007.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture
Notes in Computer Science, pages 56–73. Springer, 2004.

5. Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptog-
raphy, pages 515–534. Springer, 2007.

6. Melissa Chase and Sherman SM Chow. Improving privacy and security in multi-
authority attribute-based encryption. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 121–130. ACM, 2009.

7. Ling Cheung and Calvin Newport. Provably secure ciphertext policy abe. In Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pages 456–465. ACM, 2007.



20 J. Ning et al.

8. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

9. Vipul Goyal. Reducing trust in the pkg in identity based cryptosystems. In Ad-
vances in Cryptology-CRYPTO 2007, pages 430–447. Springer, 2007.

10. Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. In Automata, Languages and Programming,
pages 579–591. Springer, 2008.

11. Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box accountable
authority identity-based encryption. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 427–436. ACM, 2008.

12. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of the
13th ACM conference on Computer and communications security, pages 89–98.
ACM, 2006.

13. Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryp-
tion of abe ciphertexts. In USENIX Security Symposium, page 3, 2011.

14. Susan Hohenberger and Brent Waters. Attribute-based encryption with fast de-
cryption. In Public-Key Cryptography–PKC 2013, pages 162–179. Springer, 2013.

15. Allison Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In Advances in Cryptology–EUROCRYPT 2012, pages
318–335. Springer, 2012.

16. Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hi-
erarchical) inner product encryption. In Advances in Cryptology–EUROCRYPT
2010, pages 62–91. Springer, 2010.

17. Allison Lewko and Brent Waters. New techniques for dual system encryption and
fully secure hibe with short ciphertexts. In Theory of Cryptography, pages 455–479.
Springer, 2010.

18. Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In
Advances in Cryptology–EUROCRYPT 2011, pages 568–588. Springer, 2011.

19. Allison Lewko and Brent Waters. Unbounded hibe and attribute-based encryption.
In Advances in Cryptology–EUROCRYPT 2011, pages 547–567. Springer, 2011.

20. Allison Lewko and Brent Waters. New proof methods for attribute-based en-
cryption: Achieving full security through selective techniques. In Advances in
Cryptology–CRYPTO 2012, pages 180–198. Springer, 2012.

21. Jin Li, Qiong Huang, Xiaofeng Chen, Sherman SM Chow, Duncan S Wong, and
Dongqing Xie. Multi-authority ciphertext-policy attribute-based encryption with
accountability. In Proceedings of the 6th ACM Symposium on Information, Com-
puter and Communications Security, pages 386–390. ACM, 2011.

22. Jin Li, Kui Ren, and Kwangjo Kim. A2be: Accountable attribute-based encryption
for abuse free access control. IACR Cryptology ePrint Archive, 2009:118, 2009.

23. Zhen Liu, Zhenfu Cao, and Duncan S Wong. Blackbox traceable cp-abe: how to
catch people leaking their keys by selling decryption devices on ebay. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 475–486. ACM, 2013.

24. Zhen Liu, Zhenfu Cao, and Duncan S. Wong. White-box traceable ciphertext-
policy attribute-based encryption supporting any monotone access structures.
IEEE Transactions on Information Forensics and Security, 8(1):76–88, 2013.

25. Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and sig-
natures from vector decomposition. In Pairing-Based Cryptography–Pairing 2008,
pages 57–74. Springer, 2008.



Large Universe CP-ABE with White-Box Traceability 21

26. Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In Advances in Cryptology–ASIACRYPT 2009, pages 214–231.
Springer, 2009.

27. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryp-
tion with general relations from the decisional linear assumption. In Advances in
Cryptology–CRYPTO 2010, pages 191–208. Springer, 2010.

28. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryp-
tion with general relations from the decisional linear assumption. In Advances in
Cryptology–CRYPTO 2010, pages 191–208. Springer, 2010.

29. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 195–203. ACM, 2007.

30. Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Theory
of Cryptography, pages 422–439. Springer, 2012.

31. Jun-lei Qian and Xiao-lei Dong. Fully secure revocable attribute-based encryption.
Journal of Shanghai Jiaotong University (Science), 16:490–496, 2011.

32. Yannis Rouselakis and Brent Waters. Practical constructions and new proof meth-
ods for large universe attribute-based encryption. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 463–
474. ACM, 2013.

33. Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ci-
phertext delegation for attribute-based encryption. In Advances in Cryptology–
CRYPTO 2012, pages 199–217. Springer, 2012.

34. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

35. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

36. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In Public Key Cryptography–PKC 2011,
pages 53–70. Springer, 2011.


