*

How to Watermark Cryptographic Functions

Ryo Nishimaki
NTT

Secure Platform Laboratories

nishimaki.ryo@Ilab.ntt.co.jp

Abstract

We introduce a notion of watermarking for cryptographic functions and propose a concrete
scheme for watermarking cryptographic functions. Informally speaking, a digital watermark-
ing scheme for cryptographic functions embeds information, called a mark, into functions such
as one-way functions and decryption functions of public-key encryption. There are two basic
requirements for watermarking schemes. (1) A mark-embedded function must be function-
ally equivalent to the original function. (2) It must be difficult for adversaries to remove the
embedded mark without damaging the original functionality. In spite of its importance and
usefulness, there have only been a few theoretical works on watermarking for functions (or
programs). Furthermore, we do not have rigorous and meaningful definitions of watermarking
for cryptographic functions and concrete constructions.

To solve the above problem, we introduce a notion of watermarking for cryptographic
functions and define its security. Furthermore, we present a lossy trapdoor function (LTF)
based on the decisional linear (DLIN) problem and a watermarking scheme for the LTF. Our
watermarking scheme is secure under the DLIN assumption in the standard model. We use
techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct our
watermarking scheme. This is a new application of DPVS.

Keywords: digital watermarking, dual pairing vector space, dual system encryption, vec-
tor decomposition problem, copyrighting functions,

1 Introduction

1.1 Background

Digital watermarking is a technology that enables us to embed information, called a “mark”, into
digital objects such as images, movies, and audio files. Such marks should be detected by using
some procedure. There are two main properties of digital watermarking. The first is that the
appearance (or functionality) of marked objects is almost the same as that of the original objects

*An extended abstract of this paper appeared in Eurocrypt 2013, the 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, LNCS 7881, pages 111-125. This is the full version.

The second is that removing embedded marks without destroying the object is difficult. A main
application of watermarking is protecting copyright. That is, we can prevent unauthorized copying
of digital content by detecting watermarks. Another application is tracing and identifying owners
of digital content. For example, if we find a potentially guilty user and illegally copied digital
content, we can detect a watermark and identify the owner who distributed the illegal copy.

Most watermarking methods have been designed for perceptual objects, such as images. Only
a few studies have focused on watermarking for non-perceptual objects (e.g., software, program).
Software is quite common digital content and can be easily copied. Software piracy is a serious
problem today. If illegally copied software is distributed, profits of software companies decrease.
Watermarking for programs is one of tools to solve the problem and has very useful, attractive, and
practical applications. However, they are little understood. We briefly explain related studies on
program watermarking below.

Naccache, Shamir, and Stern introduced the notion of copyrighted functions and proposed a
method for tracking different copies of functionally equivalent algorithms containing “marks” [NSS99].
A copyrighted function is drawn from a keyed function family. It guarantees that no adversary can
output a functionally equivalent function with a new key even if many keyed functions are given.
This is related to watermarking schemes for program (functions), but their security definition is a bit
weak and not sufficient for program watermarking because copyrighted functions do not guarantee
that embedded marks are not removed.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang considered the notion of
software watermarking (program watermarking) from a cryptographic point of view in their sem-
inal work [BGI*12]. They proposed a formalization of software watermarking and its security
definition. However, the definition is too strong since it is simulation-based security. They gave
an impossibility result for general-purpose program watermarking by using impossibility results
of general-purpose program obfuscation [BGI*12]. “General-purpose” means that program wa-
termarking/obfuscation can be applied to any program. Their security requirements cannot be
achieved, so they leave positive theoretical results about watermarking (achieving concrete con-
structions for specific function families by using a game-based security definition) as an open
problem.

Yoshida and Fujiwara introduced the notion of watermarking for cryptographic data and a
concrete scheme for signatures [YF11]. Their idea is very exciting, but they did not propose a
formal security definition of watermarking for cryptographic data and their scheme is not provably
secure. They claim that the security of their scheme is based on the vector decomposition (VD)
problem, which was introduced by Yoshida, Mitsunari, and Fujiwara [YMF10], but their proof is
heuristic, that is, they did not show a reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-based) definition
of security for watermarking schemes. Their definition seems to be very useful, but they focused
on watermarking for only perceptual objects [HMWO7]. They gave no concrete construction that
satisfies their security definition.

1.2 Motivations and Applications

As explained in the previous section, there is no watermarking scheme for (cryptographic) func-
tions ! that is provably secure in a complexity-theoretic definition of security. Copyrighted func-
tions by Naccache et al. are provably secure based on the factoring assumption, but their definition
of security is weaker than that of watermarking, and their construction can embed a bounded num-
ber of marks [NSS99]. Before we introduce our contribution, we present several applications of
watermarking to explain motivations.

Traceable cryptographic primitives. One application of watermarking for cryptographic func-
tions (we often call it cryptographic watermarking) is constructing various traceable cryptographic
primitives. If we have a watermarking scheme for cryptographic functions, for example, trapdoor
one-way functions, collision-resistant hash functions (CRHF), and decryption functions, we can
construct a variety of traceable primitives or copyrighted cryptographic primitives since private-
key encryption, public-key encryption (PKE), digital signatures, and so on are constructed from
trapdoor one-way functions and often use CRHFs in their algorithms.
As pointed out by Naccache et al., watermarked functions have the following applications [NSS99]:

e We can produce software or program that generates ciphertexts of the Feistel cipher based on
a one-way function [LR88], signatures of Rompel’s signature scheme [Rom90], or decrypted
values of ciphertexts under PKE schemes based on a trapdoor one-way function. If a mali-
cious user illegally generate copies of such software and distributes them, then a company
that sold the software can trace them and identify the guilty users.

e A company can sell MAC-functions based on watermarked one-way functions to users for
a log-in system on the Internet. The company records user IDs and marked functions in a
database. If the users use them, they can log-in a member web site without revealing their
identity since all marked functions are functionally equivalent. However, if a malicious user
distributes an illegal copy and it is discovered, then the company can identify the guilty user
identity by detecting an embedded mark.

Black-box traitor tracing. Kiayias and Yung proposed a method of constructing black-box
traitors tracing schemes from copyrighted PKE functions [KY02]. When we broadcast digital
content to a set of legitimate subscribers, we can use broadcast encryption schemes. If some of
the subscribers leak partial information about their decryption keys to a pirate, who is a malicious
user in broadcast encryption systems, then the pirate may be able to construct a pirate-decoder.
That is, the pirate may access to the content though s/he is not a subscriber. Traitor tracing enables
us to identify such malicious subscribers called traitor [CFN94]. Our cryptographic watermarking
scheme can be seen as a generalized notion of copyrighted functions and our construction is based
on identity-based encryption (IBE) schemes whose private keys for identities are marked (these are

' We consider functions as a kind of program.

copyrighted decryption functions of PKE), so our construction technique can be used to construct
black-box traitor tracing schemes and it has a quite powerful application.

Theoretical treatment of watermarking. There are many heuristic methods for software water-
marking [CT02], but there have only been a few studies that theoretically and rigorously treat the
problem in spite of its importance. Functions can be seen as a kind of software (and program) and
a large amount of software uses cryptographic functions, especially in a broadcast system, users
must use software with decryption functions to view content. We believe that our scheme is an
important step toward constructing practical software watermarking.

1.3 Our Contributions and Construction Ideas

To solve problems explained in Background section, we introduce the notion of watermarking for
cryptographic functions, a game-based security definition of them, and a concrete construction.
Our watermarking scheme is provably secure under the decisional linear (DLIN) assumption. To
the best of our knowledge, this is the first provably secure watermarking scheme for functions
(program) in terms of theoretical cryptography and we solved the open problem proposed by Barak
etal. [BGIT12].

Our security notion is based on the notion of strong watermarking introduced by Hopper et
al. [HMWO7], but details are different since we focus on the definition for cryptographic functions.
Their definition takes into account only perceptual objects and they modeled the notion of similarity
by a perceptual metric space on objects that measures the distance between objects. Therefore, to
construct watermarking schemes for cryptographic functions, we should modify their definition.
We define the similarity by preserving functionality. That is, if a marked function is functionally
equivalent to an original function, then we say that the marked function is similar to the original
function. Watermarking schemes should guarantee that no adversary can generate a function which
is functionally equivalent to a marked function but unmarked. That is, no adversary can remove
embedded marks without destroying functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs) [PW11]. LTFs are
quite powerful cryptographic functions. They imply standard trapdoor one-way functions, oblivi-
ous transfers, CRHFs, and secure PKE schemes against adaptive chosen ciphertext attacks (CCA) [PW11].
The watermarking scheme consists of four algorithms, key generation, mark, detect, and remove
algorithms. Marked function indices are functionally equivalent to the original ones, that is, for any
input, outputs of marked functions are the same as those of the original function. The construction
can be used to construct an IBE scheme that can generate marked private keys for identities and
marked signatures since our LTFs are based on IBE schemes, as explained in the next paragraph.
That is, we can construct decryption algorithms in which watermarks can be embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based on the dual
pairing vector space (DPVS) proposed by Okamoto and Takashima [OT09, OT10, OT12]. We

use the IBE scheme of Okamoto and Takashima [OT12] (which is a special case of their inner-
product predicate encryption (IPE) scheme) and that of Lewko [Lew12] to construct LTFs. Loosely
speaking, LTFs are constructed from homomorphic encryption schemes, and the IBE schemes of
Okamoto-Takashima and Lewko are homomorphic. There are many other homomorphic encryp-
tion schemes but we selected Okamoto-Takashima and Lewko IBE schemes because they are con-
structed by DPVS and the dual system encryption methodology introduced by Waters [Wat(09].
The methodology is a key technique to achieve a watermarking scheme.

First, we explain how we use the dual system encryption methodology to construct water-
marking schemes. We apply the dual system encryption technique to not only security proofs
but also constructions of cryptographic primitives. In the dual system encryption, there are two
types for ciphertexts and private-keys respectively. The first type is called normal ciphertexts/keys
and the second type is called semi-functional ciphertexts/keys. They have the following proper-
ties. Semi-functional ciphertexts can be decrypted using normal keys and normal ciphertext can be
decrypted using semi-functional keys. However, semi-functional ciphertexts cannot be decrypted
using semi-functional keys. Normal ciphertexts/keys are computationally indistinguishable from
semi-functional ciphertexts/keys. In most cases, function indices of LTFs consist of ciphertexts of
homomorphic encryption [FGK*10, HO12, PW11], so, intuitively speaking, if we can construct
a function index by using not only (normal) ciphertexts but also semi-functional keys, then the
function index is functionally equivalent to a function index generated by (normal ciphertexts and)
normal keys as long as normal ciphertexts are used. Moreover, if we use semi-functional cipher-
texts, we can determine whether a function index is generated by semi-functional keys or not since
semi-functional ciphertexts cannot be decrypted using semi-functional key. Thus, a function index
that consists of semi-functional keys can be seen as a marked index and semi-functional ciphertexts
can be used in a detection algorithm of a watermarking scheme. This is the main idea. Note that our
construction technique can be used to construct an IBE scheme whose private keys can be marked
because our LTFs are based on such an IBE scheme.

Next, we explain how we construct watermarking scheme by using DPVS. DPVS is linear
space defined over bilinear groups and a vector consists of group elements [OT09, OT10]. One of
key features of DPVS is that if we conceal (i.e., do not publish) some basis of a subspace then we
can set a hidden linear subspace. A pair of dual orthonormal bases over groups are denoted by B
and B*. They are generated by a random linear transformation matrix that consists of elements in
a finite field. We use a hidden linear subspace spanned by a subset of B/B* for semi-functional
ciphertexts/keys as Okamoto-Takashima and Lewko IBE schemes [Lew12, OT10, OT12]. We de-
note the subset by B c B, B* C B*, respectively. A hidden linear subspace for semi-functional
ciphertexts and keys can be used as a detect key and a mark key of our watermarking scheme,
respectively. Thus, we can embed “marks” into the hidden linear subspace and they are indis-
tinguishable from non-marked objects because the decisional subspace problem is believed to be
hard [OT08, OT10]. Informally speaking, the decisional subspace problem is determining whether
a given vector is spanned by B (resp, B*) or B \ B (resp, B* \]B%*

Okamoto and Takashima introduced complexity problems based on the DLIN problem to prove
the security of their scheme [OT10, OT12] and these problems are deeply related to the VD prob-

lem [YMF10] and the decisional subspace problem. The VD problem says that it is difficult to
decompose a vector in DPVS into a vector spanned by bases of a subspace. Lewko also introduced
the subspace assumption [Lew12], which is implied by the DLIN assumption and highly related
to the decisional subspace assumption introduced by Okamoto and Takashima [OTOS8] and the VD
problem. All assumptions introduced by Okamoto-Takashima [OT10, OT12] and Lewko [Lew12]
are implied by the standard DLIN assumption.

If we can decompose a vector in DPVS into each linearly independent vector, then we can
convert semi-functional ciphertexts/keys into normal ciphertexts/keys by eliminating elements in
hidden linear subspaces, that is, we can remove an embedded mark from a marked function index.
Galbraith and Verheul and Yoshida, Mitsunari, and Fujiwara argued that the VD problem is related
to computational Diffie-Hellman problem [GVO08, YMF10]. It is believed that the VD problem
is hard. Therefore, no adversary can remove marks of our watermarking scheme (this is a just
intuition). However, we do not directly use the VD problem but the DLIN problem to prove the
security of our scheme. On the other hand, if we have a linear transformation matrix behind dual
orthonormal bases of DPVS, then we can easily solve the VD problem [OTO08, OT10], that is,
we can remove a mark if we have the matrix. Such an algorithm was proposed by Okamoto and
Takashima [OTO08].

Our construction is a new application of DPVS. DPVS has been used to construct fully secure
functional encryption, IPE, IBE and attribute-based signatures [Lew12, LOS*10, OT09, OT10,
OT11, OT12], but to the best of our knowledge, a linear transformation matrix for dual orthonormal
bases in DPVS has never been explicitly used for algorithms of cryptographic schemes. This is of
independent interest.

1.4 Organization of This Paper

In Section 2, we introduce some notations and known cryptographic definitions, tools, and tech-
niques. In Section 3, we introduce our definition of watermarking for cryptographic functions. In
Section 4 and 5, we propose the first and second concrete instantiations of watermarking schemes
for lossy trapdoor functions, respectively. In Section 6, we list a few concluding remarks and open
issues.

2 Preliminaries

Notations and Conventions. For any n € N\ {0}, let [n] be the set {1,...,n}. When D is a
random variable or distribution, y & D denote that y is randomly selected from D according to
its distribution. If S is a set, then z <~ S denotes that z is uniformly selected from S. y := z
denotes that y is set, defined or substituted by z. When b is a fixed value, A(x) — b (e.g., A(x) —
1) denotes the event that machine (or algorithm) A outputs @ on input z. We say that function
f: N — R is negligible in A € Nif f(A\) = A\~“(1), Hereafter, we use f < negl(\) to mean
that f is negligible in \. We denote the finite field of order ¢ by F,, and F, \ {0} by F;. A

vector symbol denotes a vector representation over Iy, e.g., & denotes (z1, ..., z,) € Fy. For two

vectors 7 and 7, (&, ¥) denotes the inner-product "7 | 2;v;. Matrix X ' denotes the transpose of
matrix X. A bold face small letter denotes an element of vector space V, e.g., ¢ € V. For bases
B := (b1,...,by) and B* := (b],..., b)) where b;,b; € V, (21,...2N)p := SN | 2;b; and
(Y1,---YnN)B* := sz\il y;b;. Set GL(n,F,) denotes the general linear group of degree n over IF,,.
If we use notation g/G to denote a generator in G, then we use multiplicative/additive notation. We
denote probabilistic polynomial-time by PPT.

Let ¥ = {X)}aeny and Y = {Y) }en denote two ensembles of random variables indexed by
A € N. The statistical distance between two random variables X and Y over a countable set .S is
defined as A(X,Y) := 13 _o|Pr[X = o] — Pr[Y = q|.

Definition 2.1 We say that X and) are statistically indistinguishable (We write X N Y to denote
this) if
A(X)\, Y)\) < negl()\)

Definition 2.2 We say that X and Y are computationally indistinguishable (We write X ~ Y to
denote this) if for all non-uniform PPT algorithm D,

IPr[D(Xy) = 1] — Pr[D(Y)) = 1]| < negl(\).

2.1 Cryptographic Bilinear Maps (or Pairings)

We consider cyclic groups G1, G2, and G of prime order ¢. A bilinear map is an efficient mapping
e : G1 x Gy — Gr satisfying the following properties.

bilinearity: Forall g € Gy, § € Go and a,b < F, e(g% §°) = e(g,).
non-degeneracy: If g/g generates G1/Go, then e(g, §) # 1.

If G = G2 = G, that is, both groups are the same, we call (¢, G, G, e, g) symmetric pairing
groups. Let Gpmp be a standard parameter generation algorithm that takes as input security param-
eter A and outputs parameters (¢, G, Gr, e, g).

2.2 Function Family of Lossy Trapdoor Functions

Definition 2.3 (Lossy Trapdoor Functions [PW08, PW11]) A lossy trapdoor function LTF with
domain D consists of four polynomial-time algorithms having the following properties.

Injective Key Generation: LTF.IGen outputs (ek, ik) where ek/ik is an evaluation/inversion key.
Evaluation: For X € D, LTF.Eval.;(X) outputs an image Y = f(X).
Inversion: LTF.Invert;,(Y) outputs a pre-image X = £, ' (Y).

Lossy Key Generation: LTF.LGen outputs (ek’, 1) where ek’ is an evaluation key.
Correctness: For all (ek, ik) & LTF.IGen(1*), and X € D, we have il (fer(X)) = X.
Indistinguishability: Let A be a security parameter. For all PPT A,

Advige 4 (A) = |Pr[A(1Y, [LTF.IGen(1M)])1)] — Pr[A(1*Y, [LTF.LGen(1M)]1)]| < negl()),

where [A]; is the first output of algorithm A.

Lossiness: We say that LTF is (-lossy if for all ek’ & LTF.LGen(1%), the image set f.;/(D) is of
size at most |D| /2.

We define a function family of LTF, LTFy := {LTF.Eval.(, -)|(ek, ik) & LTF.Gen(1*,b),b €
{0,1}} where LTF.Gen(1%,0) := LTF.IGen(1*) and LTF.Gen(1*,1) := LTF.LGen(1?).

2.3 Dual Pairing Vector Space [0OT09, OT10]

Definition 2.4 “Dual pairing vector spaces (DPVS)” (q,V,Gr, A, e) by a direct product of sym-
metric pairing groups (¢, G, Gr, e, G) are a tuple of prime ¢, N-dimensional vector space V :=
GY over [F,, cyclic group Gr of order ¢, canonical basis A := (a1,...,ay) of V, where a; :=
(0,...,0,G,0,...,0) (only the i-th coordinate is G), and pairing e : V x V — Gp. The
pairing is defined as e(x,y) := Hfil e(Gi, H;) € Gr where x := (G1,...,Gn) € V and
y = (Hy,...,Hy) € V. This is non-degenerate bilinear, i.e., e(sx,ty) = e(x,y) and if
e(x,y) = 1forally € V, then x = 0. For all i and j, e(a;, a;) = e(G,G)%i where §; ; = 1 if
i = j, and 0 otherwise, and e(G, G) # 1.

DPVS also has linear transformations ¢; j on V s.t. ¢; j(a;) = a; and ¢; j(a) = 0if k # j,

i—1 N—i

which can be easily achieved by ¢; j(xz) := (0,...,0,G;,0,...,0) where := (G1,...,GnN).
We call ¢; ; canonical maps. DPVS generation algorithm Ggp,s takes input 1" and N € N, and
outputs a description of paramy, := (¢, V, Gr, A, e) with security parameter A and N-dimensional
V. It can be constructed using Gpmp.

We describe random dual orthonormal bases generator Gop(1*, N), which is used as a sub-
routine in the proposed scheme.
Gob (1%, N)
param¥; := (¢, V,Gr, A, e) & Gapus(1*, N),
X = (xij) ¢ GL(N,Fy), v ¢ Fy,
(0i3) == w(X)Y, gr == e(G, G)", paramy = (paramyy, gr),

™M= i

Il
i

bl' = X@ja]‘,B = (bl, . ,bN),

j
b;k = Zﬁmaj,IBB* = (>(1(, ceey b}(\[),
j=1
return (paramy, B, B¥).

We briefly explain some important properties of DPVS [OT10].
N
. . /_H .
Vector space V: A vector space consists of N groups, i.e., V := G x - -+ X G, whose element is
expressed by N-dimensional vector « := (21G, ..., znG) (z; € Fyfori=1,...,N).

Canonical base A: There is canonical basis A := (aq,...,ay) of V, where a1 := (G,0,...,0),
as = (O,G,O,...,O),...,CI,N = (0,,O,G)

Pairing operation: e(x,y) := Hf\il e(r;G,y:G) = e(G, G)Zévzlwiyi = e(G,G)*Y € Gr,
where « := (21G,...,zyG) and y := (11G,...,ynG). Here, x and y are expressed by

coeflicient vectors over basis A such that (z1,...,2x5)a = (Z)a ;= x and (y1,...,yn)a =
(a =y

Base change: Canonical basis A is changed to dual orthonormal bases B := (by,...,by) and
B* := (b],...,by) of V using a uniformly chosen (regular) linear transformation, X :=

(Xi,j) (i GL(N, Fq), such that b; = z;vzl Xi,j Q5 = (Xi,lGa R 7Xi,NG)7 b: = Ej\le ﬂi,jaj =
(ViaG,... 9 NG) (i =1,...,N), and (¥;) := gZ)(XT)_1 where 1) & F;. It holds that
e(bi,b}) = e(G,G)% (6;; = 1if i = j, and §;; = 0if i # j). Here, & := x1by + -+ +
xnby € Vand y := y1b] + ---ynby € V can be expressed by coefficient vectors over
basis B and B* such that (z1,...,zy)p = (¥)p := x and (y1,...,y~N)s* = (¥~ = ¥,

and e(x,y) = e(G, G)Zivzla”iyi = ¢e(G,G)*Y € Gr.

Intractable problem: A decisional problem in this approach is the decisional subspace prob-
lem [OTO8]. Itisto tell v := v, 416N, 41+ - - vny O, = (0,...,0,0n,41, ..., UN,)B from
u:=uv1b; + - on, by, = (v1,...,vN,)B, Where (v1,...UN;) & Févl and No +1 < Nj.

9

Trapdoor: If we have trapdoor t* € span <b’1‘, cee bfv2>, then we can efficiently solve the deci-
sional subspace problem. Given v := vn,+1bN,+1+- - N, bN, orw := v b1+ - - N, DN,
we can tell v from u using t* since e(v, t*) = 1 and e(u, t*) # 1 with high probability.

Advantage of this approach: Itis easy to decompose z;a; = (0, ...,0,2;G,0,...,0) fromx :=
z1a1 + -+ xyany = (21G,...,xnG). In contrast, DPVS approach employs basis B,
which is linearly transformed from A using a secret random matrix X € Fy*". It seems
hard to decompose z;b; from x’ := x1b; + - - - x by (and the decisional subspace problem
seems intractable). In addition, the secret matrix X (and the dual orthonormal basis B* of
V) can be used as trapdoors for the decomposability (and distinguishability for the decisional
subspace problem through the pairing operation over B and B*).

Vector decomposition problem. The VD problem was originally introduced by Yoshida, Mit-
sunari, and Fujiwara [YMF10]. We present the definition of a higher dimensional version by
Okamoto and Takashima [OT08] to fit the VD problem into DPVS.

Definition 2.5 (CVDP: (¢, ¢3)-Computational Vector Decomposition Problem [OT08]) Let A
be a security parameter and Gp, be an algorithm that outputs a description of a ¢;-dimensional
DPVS (¢,V,Gr,A,e) and /1 > ¢5. Let A be a PPT machine. For all A € N, we define the
CVDP g, 1, advantage of A as

I (paramy, B, B*) & Gop (11, £1),
d
AV G 1) (A) = Pr w = Za:ibi (z1,. .. ,g]}gl) - (FqR)fl,
=1 vi= Yk wbi,w < A(1A, paramy, B, v)
The CVDP 4, 4,y assumption: For all PPT adversary A, Advfﬁzl’b)(/\) < negl(X).

A specific class of the CVDP instances that are specified over canonical basis A are tractable.

Lemma 2.6 (Easy Basis [OTO08]) Ler A be a canonical basis of V, and CVDP‘&I’@) be a spe-
cific class of CVDP g, 4,y in which B is replaced by A. The canonical maps ¢; ; on V can solve

CVDF"&1 05) in polynomial time.

Trapdoor. If we have a trapdoor, linear transformation matrix X behind B, then we can ef-
ficiently decompose vectors in DPVS, i.e., solve CVDP(y, () by using the efficient algorithm
Decomp given by Okamoto and Takashima [OTO08]. The input is (v, (b1, ..., bs,), X, B) such that
v = 251:1 y;b; is a target vector for decomposition, (by, ..., by,) is a subspace to be decomposed
into, X is a trapdoor (matrix), and B := (by, ..., by,) is a basis generated by using X . Algorithm
Decomp(v, (b1, ...,by,), X,B): computes u := Zflzl 252:1 ij:l TijXjxPr,i(V) Where ¢ is
the canonical map in Definition 2.4, (x; ;) = X and (7 ;) := (X) ™.

10

Lemma 2.7 ((OT08]) Algorithm Decomp solves CVDP y, 4,y by using X := (xi;) such that
bi = Zflzl Xi,jQj-

Multiplicative Notation of Dual Pairing Vector Space by Lewko [Lew12]. We introduce a
multiplicative notation by Lewko [Lew12]. For @,w € Zj (p is a prime), a € Zy, and g € G,
we define g7 := (¢g%,...,g""), g% := (g™,...,g%"), g"T¥ = (g1 tWn, ... g"»t®n), and

-

e(g”, g%) = [, e(g¥, g*). Lewko defined algorithm Dual(Zy) as follows: It chooses b;, b} €

Zp and ¢ ¢ Z, such that (b;, b¥) = 0 mod p for i # j, (b;,bf) = ¢ mod p for all i € [n] and

outputs (B, B*) where B := (bi,...,by) and B* := (b*,...,b%). We use the notation (B, B*)

ren
to express dual orthonormal bases in Z,, to distinguish from dual orthonormal bases (B, B*) in V.

We can consider b; = ggi, b = g%, b = (Xi 5. Xin)s l;j = (i1, ..., %n) where X = (xi;)
T
and (X 1) = (9;).
Let m be a fixed positive integer such that m < n, A € Z;’me an invertible matrix, and .S,,, C
[n] a subset of size m. Lewko proposed how to obtain new dual orthonormal bases (‘B 4, 8%) from
(°B,B*) by using A. If B,, is an n x m matrix over Z, whose columns are vectors b; € B such

that ¢ € S,,, then B, A is also an n x m matrix. Let B4 := (dy,...,d,) where @; := b; for
all i ¢ S, and @; := (B, A)¢ for i € S,,, i is the ¢-th element of S,, and (B,, A), denotes the

=

{-th column of B,, A. If B}, is n X m matrix over Z, whose columns are vectors b; € 5" such
that i € S, then By, (A=) is also n x m matrix. Let 8% := (@},...,a") where @ := b* for
alli ¢ Sy, and @ := (B:n(A_l)T)g for i € Sy, i is the ¢-th element of S, and (Bm(A_l)T)g
denotes the ¢-th column of Bm(Afl)T. Lewko showed that these newly generated bases are also
dual orthonomal bases.

Lemma 2.8 ([Lew12]) For any fixed positive integers m < n, any fixed invertible A € 7)™ and
set Syr C [n] of size m, if (B, B*) & Dual(Zy), then (B 4,87) is also distributed as a random

sample from Dual(Zy) and its distribution is independent of A.
2.4 Complexity Assumptions

We write following assumptions by the multiplicative notation, but we can also use assumptions by
the additive notation.

Definition 2.9 (DLIN Assumption) The DLIN problem is to guess 8 € {0, 1}, given (T, g, f, h, f°,
h?,Qg) < G4n(1%), where GI"(1%): T := (¢,G,Gr,e,9) < Gomp(1*), &, 5,6,0 < Zy,

f ::_gf,h = g%, Qo = ¢°t7, Q1 & G, return 7 = (T, f,h, f‘s,h",QB). This advantage
Advei"()\) is defined as follows.

Advain()) .= ‘Pr [A(I) =1 ‘I & gg“”(ﬂ)} _Pr [A(I) S ‘z il gf“"(ﬂ)} ‘ .

11

We say that the DLIN assumption holds if for all PPT adversary A, Advai"(\) < negl()).

Definition 2.10 (Subspace Assumption) The subspace problem is to guess 5 € {0,1}, given
(Fa D7 Qﬁ)’ where gg’ss(lA): r & gbmp(l)\)e (SBa %*) <i DUH'(Z;), 7, ﬁv T1,T2, T3, 11, 12, U3 <U_

Zp’ fori € [k], U, == g#1bi+uzbk+z‘+u3b2k+i and
V= 971775;*+72652+i W, = ngﬂgf-l—Tzﬁg};H-i-ngkH
QQ = (%,,Vk) (Wl,..)

-
¢

D= (gh, ... gh, g, gh, g, g, gﬁgz+1,---79553'6,955“1,---,gb”,U1,~--,Uk,
ps), return Z := (I', D, Qg). This advantage Advdss()\) is defined as follows.

AdvE(N) =

Pr [A(=1 ’z<— gdss(1)} ~Pr [,4()1 ’I<— gdss(1)} ‘ .
We say that the subspace assumption holds if for all PPT adversary A, Advdss()\) < negl(A).

Theorem 2.11 ([Lew12]) The DLIN assumption implies the subspace assumption.

Definition 2.12 (DBDH assumption) The DBDH problem is to guess 5 € {0, 1}, given (T, g, g%,
%, 6% Qp) & gdbdh(ﬂ) where G§*"(1%): T := (¢,G,Gr,e,9) & Gomp(1Y), a,b,¢ & 7,

Qo := e(g, 9)®, Q1 & G, return (I, g, g%, ¢°, ¢°, Qp). This advantage AdvyPa"()\) is defined as
follows.

AV () 1= | Pr [A(Z) 1| T & ggan(1d) | = PrlA(T) — 1] T & ggber(1) ||

We say that the DBDH assumption holds if for all PPT adversary A, Adv4Pa"(\) < negl(\).

Boyen and Waters pointed out that the following theorem trivially holds [BWO06], but for confirma-
tion we write a proof 2 .

Theorem 2.13 For any adversary A, there exists PPT algorithm B such that Advdbdh < AdvdB“".

Proof. Given DLIN instance (T', g, g%, g%, g%, ¢°*, Q), adversary B for the DLIN problem gives
adversary A for the DBDH problem tuple (T', g, g%, ¢%, Q, T := e(¢°¢, g") -e(¢°", ¢*)) as a DBDH
instance. T = e(g,)"0t so0 if Q = g%+, then the tuple is the same as G&°. It implicitly
holds that a = k, b = &, ¢ = § + 0, abc = k&(6 + o). If Q = ¢¢ is a uniformly random element
in G, then T = e(g, g)"(®+?) is a uniformly random element in G and the tuple is the same as
G4bdh since § and o are uniformly random and independent of ¢, &, and &. O

2 This proof is based on personal communication with Keita Xagawa

12

3 Definitions of Cryptographic Watermarking

We define watermarking schemes for cryptographic functions (one-way functions, hash functions,
etc.). Our definition of watermarking schemes can be extended to treat cryptographic data in-
troduced by Yoshida and Fujiwara [YF11]. In this paper, we focus on a family of functions
F := {Fa},. For example, LTFs are cryptographic functions. Function F' is sampled from family
LTF, = {fek(-)\(ek, ik) & LTF.IGen(l’\)}.

A watermarking key generation algorithm for family F takes as inputs security parameter A
and outputs public parameter pk, secret key sk, mark key mk, detect key dk, and remove key rk.
That is, our watermarking schemes are asymmetric key watermarking schemes. Public parameter
pk includes sampling algorithm Samp~, which outputs a function F & F\ (The sampling al-
gorithm can take sk as an input). Note that the description of Sampr does not include sk. Our
cryptographic watermarking schemes for cryptographic functions F use public parameter pk and
secret key sk to choose a function F' & F, from the function family. It seems to be a restriction,
but it is very reasonable and unavoidable in our setting due to following two reasons.

1. Only authorized entities can generate marked functions from an original non-marked func-
tion which is privately generated.

2. If anyone can generate non-marked functions then its security is trivially broken as we will
see.

A mark key allows us to embed a mark in function F'. A marked function F’ must be similar to
original function F'. A detect/remove key allows us to detect/remove a mark in marked function
F’. We sometimes use notation WM(F') to denote a marked function of F'.

Definition 3.1 (Watermarking Scheme for Functions) A watermarking scheme for family F is
a tuple of algorithms CWM r := {WMGen, Mark, Detect, Remove} as follows.

WMGen: The key generation algorithm takes as input security parameter A and outputs public
parameter pk (including sampling algorithm Samp), secret key sk, mark key mk, detect
key dk, and remove key rk. That is, (pk, sk, mk, dk, rk) & WMGen(1*).

Mark: The mark algorithm takes as inputs mk and unmarked function F' and outputs marked
function F'. That is, F' & Mark(mk, F).

Detect: The detect algorithm takes as inputs dk and function F’ and outputs marked (detect a
mark) or unmarked (no mark), that is, Detect(dk, F’) — marked /unmarked.

Remove: The remove algorithm takes as inputs 7k and marked function F and outputs unmarked
function F' := Remove(rk, F).

13

As Hopper et al. noted [HMWO07], we do not allow any online communication between the Detect
and Mark procedures.

We define the security of cryptographic watermarking based on the definition of strong water-
marking with respect to the metric space proposed by Hopper et al. [HMWO07] and software water-
marking proposed by Barak et al. [BGI"12]. We borrow some terms from these studies [BGI*12,
HMWO7]. Hopper et al. defined a metric space equipped with distance function d and say that
object O1 and Oq are similar if d(O1,02) < ¢ for some 0. However, we do not use it since we
focus on function families (not perceptual objects).

Basically, the following properties should be satisfied. Most objects F' € F) must be un-
marked. We define similarity by the functional preserving property. That is, for all input z, output
distributions F'(x) and F”'(x) are identical. Given marked function F”, an adversary should not be
able to construct a new function F', which is functionally equivalent to F” but unmarked without
remove key rk.

Our definitions of the non-removability and unforgeability below are game-based definitions
and based on the notion of strong watermarking by Hopper et al. [HMWO07]. Our definitions are
specialized to focus on cryptographic functions (do not use metric spaces). The non-removability
states that even if the adversary is given marked functions, it cannot find a function that is similar
to a marked function but does not contain any mark. This is based on the security against removal
introduced by Hopper et al. [HMWO7]. The unforgeability states that the adversary cannot find
a new marked function. This is based on the security against insertion introduced by Hopper et
al. [HMWO7].

Definition 3.2 (Secure Watermarking for Functions) A watermarking scheme for function fam-
ily F is secure if it satisfies the following properties.

Meaningfulness: It holds that for any F' € F), Detect(dk, F') — unmarked.

Correctness: Forany F' € Fy, (pk, sk, mk, dk,rk) <& WMGen(1*) and WM(F) & Mark(mk, F),
it holds that Detect(dk, WM(F')) — marked and Detect(dk, Remove(rk, WM(F))) —
unmarked.

Preserving Functionality: For any input z € {0,1}" and F' € F,, it holds that WM(F')(z) =
F(z). If function F” preserves the functionality of function F, then we write F' = F”.

Polynomial Blowup: There exists a polynomial p such that for any F' € F), (WM(F)| < p(|F|+

Non-Removability: We say that a watermarking scheme satisfies non-removability (or is non-
removable) if it holds that Adv™(1%) := Pr[WMarkz _4(\) — (0,win)] < negl()). Ex-
periment WMark z 4(\) is shown in Figure 1.

Unforgeability: We say that a watermarking scheme satisfies unforgeability (or is unforgeable) if
it holds that Advﬁ_fwél(l)‘) = Pr[WMarkr 4(\) — (1, win)] < negl(X).

14

Experiment WMarkr 4(\):

(pk, sk, mk, dk, k) & WMGen(1*); MList := 0; CList := ();

(B,F) <£ AMO’CO’DO(l)‘,pk);

Detect(dk, F') — b; ldealDtc(F) — B’;

Case 8 = 0: If b = unmarked and B’ = {marked}; then return (0, win) else return lose
Case 8 = 1: If b = marked, and B’ = {unmarked}; then return (1, win) else return lose

Oracle MO(F) Oracle DO(F)

F' & Mark(mk, F); Detect(dk, F') — b;

MList := MList U {F'}; return b

return F”;

Oracle COr, () Procedure IdealDtc(F)

FE& R if (3F’ € Clist : F = F"); then return {marked}

P& Mark(mk, F); else if (3F” € MList : F = F’) then return {marked, unmarked}
CList := CList U {F'}; else return {unmarked}

MList := MList U {F"};

return F”

Figure 1: Experiment for non-removability and unforgeability

The adversary tries to find a function such that the outputs of the actual detection algorithm and
the ideal detection procedure are different. The ideal detection procedure searches a database and
outputs a decision by using online communication to the marking algorithm. The adversary has
access to oracles, i.e., the mark, detect, and challenge oracles. The mark oracle returns a marked
function for a queried non-marked function. The detect oracle determines whether a queried func-
tion is marked or not. The challenge oracle generates a new (non-marked) function, embeds a mark
in the new function, and returns the marked function (the original non-marked function is hidden).

Eventually, the adversary outputs function F and bit 5. Value § just indicates which experiment
is selected. When 3 = 0, it means that the adversary claim that it succeeded in removing a mark
from some marked function £ without the remove key. This case is for security against removal.
When 5 = 1, it means that the adversary claim that it succeeded in embedding a mark in some
original function F’ without the mark key. This case is for security against forgery.

As Hopper et al. explained [HMWO07], we must introduce the challenge oracle because if it
does not exist, then a trivial attack exists. If the adversary samples an unmarked function F' € F),
queries it to the mark oracle, and finally outputs them as solutions for 5 = 0. The actual detect
algorithm returns unmarked but the ideal detect procedure returns {marked, unmarked} since an
equivalent function is recorded in MList.

15

4 Proposed Watermarking Scheme based on Lewko’s scheme

We present LTFs and watermarking schemes for the LTFs that are secure under the DLIN assump-
tion in this section.

Generally speaking, LTFs can be constructed from homomorphic encryption schemes as ob-
served in many papers [FGK™10, HO12, PW11]. Lewko/Okamoto-Takashima proposed an IBE/IPE
scheme based on DPVS which is homomorphic and secure under the DLIN assumption (See Ap-
pendix A for descriptions of their schemes). We can easily construct a LTF from the IBE scheme
by applying the matrix encryption technique introduced by Peikert and Waters [PW08, PW11].
Note that IBE schemes are obtained from IPE schemes where the predicate is the equality test.

In this section, we present a scheme based on the Lewko IBE scheme. Basically, previous
works used homomorphic PKE schemes to construct LTFs. However, we use homomorphic /BE
schemes to achieve watermarking scheme since we would like to use identities as tags for function
indices and dual system encryption. To construct LTFs based on IBE schemes, we use not only
ciphertexts under some identity but also a private key for the identity. If there is no private key (we
call it conversion key in the scheme), then we cannot obtain valid outputs that can be inverted by
an inversion key of the LTF. Note that the conversion key is not a trapdoor inversion key for the
LTF.

4.1 LTF based on Lewko’s IBE scheme

Our LTF LTF,,;: based on the Lewko IBE is as follows.

LTF.IGen(1*) : It generates (D, D*) & Dual(Z3), chooses o, 0, o & Zips p := (Y1, ...,%0) &

Zf;, and sets gr = e(yg, g)ae‘{l'd? and gr; = gij for all j € [¢]. It chooses an arbitrary

tag € Z, and sy, 2, & Z, for all ¢ € [¢] and generates u; j := g%’ - gp" and v; =
gsriditsvitagdatszidstszitagds for g)] 4, j € [¢] where m;; = 1 and m;; = 0 (if i # 7). It

U AP N
chooses 71,79 < Z, and generates kg := g(@t71t28)0di—r0d;+ratagods—raod; ¢ returns

ek == (U,V , kisg) := ({ui,j}szl , {vi}le , ktag), ik == 1p. We call kg conversion key.
Hereafter, {u;;}, ; and {v;},; denote {u; ; }f j—1 and {vi}le, respectively if it is clear from
the context. Note ek includes tag, but we omit it for simplicity.

LTF.LGen(1*) : This is the same as LTF.IGen except that for all 4, j € [¢], m; ; = 0 and ik := L.

LTF.Eval(ek,Z): Forinput ¥ € {0, 1}, it parses ek = ({wis}i; {vi}; Ktag) and computes

] L T; . TiS1,i TiMij _ (®51) zj
Yj = H U; = gTj ar =91, 91
[[
Yoi1 — H vf" _ Hgﬂfisl,ica+$i81,it3gﬂi2+$i82,icis+$iSz,itagdl
; ;

2

- g<f,sﬁ>d1+<f,§1>tagd§+<f,§2>cig+<f7§2>tagd1

16

- -

where 51 := (s1,1,...,51,), 52 := (52,1, .., 52,¢), and gy, := €(Yey1, Krag) = e(g, g)*odr-d
and returns output y := (y1, ..., Ye, Yy, q)-
. . . . I ’ v _ (Z,51) x5, (Z,51)9;
LTF.Invert(ik,y): For input y, it computes 2 = y;/(y;,,)*"" = 91, 97 /97 and let

zj € {0,1} be such that z; = g7 . Itreturns & = (x1,...,2).

Theorem 4.1 LTF,,; is a lossy trapdoor function if the DBDH assumption holds.
Lemma 4.2 (Lossiness of LTF ;1) LTF i is (¢ — log q)-lossy.

Proof. We compute lossiness ¢’. For a lossy function index generated by LTF.LGen, an output is
Yy = (g;w,e(g,g)sll) = (9;111, . ,g%,e(g,g)s/l) where s| = (&, §1) € Z,. Here, secret trapdoor
1 is fixed by the function index. This means that for any given image vy, there are at least ¢ possible
values for (i, 51) and pre-images. Therefore, equation |D| /2¢ = ¢ holds by the definition of the

lossiness. By this equation, we can derive equation ¢ = ¢ — log ¢ since |D| = 2°. O

We introduce some notations before we show the indistinguishability. We borrow the notation

introduced by Peikert and Waters [PW11]. For matrix Y = (y; ;) € ZZX“’, we define g}’ =

(g3) € G;ﬂxw. Algorithm GenConceal(h,w) which was introduced by Peikert and Waters is as

follows.
1. Choose ¢ == (C1,...,Cp) < Zhand 9 = (41, ..., Pw, 1) < Z¥ x {1}.
2. LetV:=¢oyp=("vye ZZX(wH) be the outer product of ¢ and).

3. Output C := g¥ € G:};X (“+1) 45 the concealer matrix and 1) as the trapdoor.

The original concealer matrix by Peikert and Waters is over G but we use a matrix over Gp
since we use bilinear maps.

Lemma 4.3 (Indistinguishability of LTF ;1) If the DBDH assumption holds, then LTF . sat-
isfies indistinguishability.

Proof. For v = (¢n,..., ¢ 1), ggfl’ denotes (g%wl, . ,g%w‘f,g%). We need three steps to show
the lemma.

First, we will show that if the DBDH assumption holds, then (g% Y = ggpd’) is computationally
indistinguishable from (g%,y = g%) where ¢ & Z,, 9 & Z4 x {1}, and ¢ & Z5T. Note
that the ¢ + 1-th element of %) is fixed to 1. To show the indistinguishability, we define hybrid
distribution HYB,: We chooses), ¢ & 7, and 3 & Z£ x {1} and sets g7 := e(g, 9)* and y :=
(g%m, .. ,g%wj,yjﬂ, - ,yg,g%) where y; ¢~ G for k > j. That is, yj, is uniformly random
element for & > j. The output is (g%,). We note that HYB,, = (g;lf, gt) and HYB, = (g;lf, ggfp).
We show that for each j € [¢], HYB; and HYB,_; are computationally indistinguishable under

17

the DBDH assumption. We construct PPT algorithm 5 that uses distinguisher D for HYB; and
HYB;_;. B is given input (paramg, g, 9% g%, g%, Q) and computes (T,y) € Ggﬁrl X ng-l as
follows. B sets 7o41 := gr = e(g, g)*° for ag < Zp, Yei1 := e(g, ¢°)* = g% Tt implicitly holds

(:=c.
e For k € [j — 1], B chooses v and sets 73, := g%’“, i := e(g, g¢) oV = (g5)V*.

e Fork=j+41,...,4, B chooses v and sets 73, := g%’“, Yk L Gr.
e For k = j, B embeds the instance. That is, B sets 7; := e(g%, ¢*)* = g%, y; := Q0
(implicitly +; := ab).

If Q = e(g,)%, then y; = g?jc and (7,y) = HYB,. If Q & Gy, then Yj & géf where t; & Ly
and (7,y) = HYB;_;. Therefore, HYB; ~ HYB;_;. As a corollary, HYB,, ~ HYB’.

Second, We define new hybrid distributions HYBY, ..., HYB}, over matrices C € G
We define HYB!: We set elements in the first i rows of C' as an output of GenConceal. On the
other hand, we choose uniformly random elements in the last (¢ — i) rows over GETH. We can

easily verify that HYB), is the same as GenConceal and HYB;, is the uniform distribution over
C

GKTIX(EH). We show that for each i € [¢'], HYB] ~ HYB)_; if the DBDH assumption holds. We
construct PPT algorithm D that uses distinguisher D’ for HYB], and HYB!_,. D is given instance

(g;/f Y € Ggfl), D generates matrix C' as follows.

' x(€+1)
T .

e For k € [i — 1], chooses (j, < Z, and set the k-th row of C be ¢, := (g%b)gk = :Cr’”b.

e Fork=1i+1,...,¢, B chooses uniformly random elements over Ggﬂ).

e For k = 1, sets the i-th row of C' be ¢; := y. That is, D embeds the instance.

Ify = g%w, then the distribution is the same as HYB!, else if y is uniformly random, then the

distribution is the same as HYB/_,. Therefore, HYB, ~ HYB,.
Finally, we prove the lemma. In the above simulation, we can replace (¢ + 1)-th column

element g5 with gédiCtagdatsads +sotagds where (D, D) & Dual(Z5). We should simulate V' =
g@lﬂlJrgta‘gdé‘*32”73“2“‘@jl and kg = g](‘”’”ltz”g)e‘fiﬁ_7"195?37"2“"3;"‘%_7"2‘"’}l for sy < Zy. If we have
¢° = g¢ and matrix ® = (dy,. .., ds), then we can compute gé@1+Stgdz — (gC)di+tagd2 without
knowing ¢ since simulator B generates (D, D*) < Dual(Z8) by itself. B can also generate kig

since it has ©*. Therefore, in the above simulation we can replace (¢ + 1)-th column element
g% with ng1+Ctagd2+sgd3+sgtagd4 and add ktag — g(a+r1tag)6d’f—rﬁdérgtagad%—rgadﬁ (We can set

ap = aecfl . ﬁ). Therefore, LTF 1t satisfies indistinguishability. O

18

4.2 Watermarking Scheme for LTF,

In this section, we present our watermarking scheme. First, we give an overview of our construc-
tion.

We added extra two dimensions of DPVS to the original Lewko IBE scheme since we use the
extra dimensions to embed watermarks. Even if we add a vector spanned by d and d8 to conversion
key Kiag, which is spanned by dl, .. d4, the conversion key is indistinguishable from the original
one since vectors d7, dg, d7, d8 are hldden Moreover, the marked index works as the 0r1g1nal non-
marked index since elements in function index V" are spanned by dl, cee dy and components d7, d8
are canceled. However, if we have a vector which is spanned by d}, d:;, then we can detect the mark
which is generated by & , Jg If we have complete dual orthonormal bases (D, %), then we can
use the vector decomposition algorithm introduced in Section 2.3 and eliminate the vector spanned
by &, dS, i.e., watermarks.

Our watermarking scheme CWM,; for LTF ¢ is as follows:

WMGen(11): Tt generates (D,0*) & Dual(Z8), chooses a, 0, & & Zp, and sets gT = e(g,g)ae‘il"ff,
D : (gT,g ,...,g‘;“), pk = (]ﬁ,Samp), sk := (g afd} L 900 gf% go g‘"zi), mk =
(g d; ,9%), dk := (9‘57,9‘;8), andrk := (©,©*). The sampling algorithm Samp(paramv,}ﬁ), sk)
chooses tag € Z, and v & 78 3,5 & 7, and generates (ek,ik) == (U, V , kiag), 1)
as LTF.IGen. It computes kg := g(o‘”ltag)e”ljf_Tlgc%*T?tagUJg_T?Uﬁ. Note that sk is not

included in the description of Samp. Keys sk, mk, and rk are secret. Key dk can be dis-
closed.

Mark(mk, ek) Itparses ek = (U, V', ktag) = (U, V g("‘”ltag)@d _Tled*”ﬁag“d —r20d] 1), chooses

t7d7+t8d

t7,ts & Z,, and computes ktag = kt s by using g% and gd8 It outputs marked

function index WM(ek) = (U,V ktag)

Detect(dk, fe%): It parses ek = (U,V, Etag), chooses w7, ug < Z, , and computes ¢ := g“7J7+“8‘58.
Next, it computes A := e(c, Etag). If it holds that A = e(c, Etag) # 1, then it outputs
marked. Else if, it holds that A = 1, then it outputs unmarked. NOTE: If we allow public
detection, we publish detection key g“7j7+“8”78.

Remove(rk, /e\l;) It parses 7k = (D, D") and ek = u,v k:tag) runs the decomposition algo-
rithm. That is, it computes 7" "L 9T = Decomp(kztag, (g%, ..., g%m), D% (¢g%,...,g%))

for all m < 8, where z; € Z, and obtains g %495 for Jj = 1,...,8. It holds Etag =

gAdittEsds It computes ki, = ktag/gz7d 7+2d5 and outputs (U, V, Ki.g) as an un-
marked index.

We can easily understand that meaningfulness, correctness, and polynomial blowup hold.
Preserving functionality holds since elements in U and V' do not include vectors g% and g%
and vector g"'% %29 does not interfere the computation of LTF.Eval.

19

Note that if we do not have secret key (ng, . ,gdfl), then we cannot compute a complete
function index, that is, we cannot compute conversion key kt,g. This seems to be a restriction,
but in the scenario of watermarking schemes, this is acceptable by following reasons. We use
watermarking schemes to authorize objects and such objects are privately generated by authors.
For example, movies, music files, and software are generated by some companies and they do not
distribute unauthorized (unmarked) objects. Moreover, in the experiment on security, the adversary
is given a oracle which gives marked function indices. Thus, it is reasonable that unauthorized
parties cannot efficiently sample functions by themselves.

4.3 Security Proofs for CWM,, .t

Theorem 4.4 Our watermarking scheme CWM 11 is secure under the DLIN assumption.

We prove the theorem by proving Theorems 4.5 and 4.6.

Theorem 4.5 (Non-Removability) Our scheme CWM . ; satisfies non-removability under the
subspace assumption.

Proof. If A outputs (0, ek™), where Detect(dk, ek™) — unmarked and IdealDtc(ek*) — marked,
then we construct algorlthm B, which solves the subspace problem withk = landn = 8. Bis

given T, D = (g%, g%, g™, ... g% g7 g% g, ... g% Uy = g“l”l*“"'b?*’“bs p13), and Qy
where Qp is V) = 971’7” +T2f3b2 or Wy = gT”’b +72,3b +7563. B chooses 0, o, & & Z,, sets

dy =05 dy:=0b5 dy:=b dy:=b, ds:=b5 dg:=0b5 dr:=0b dg:=0b}
FooBy BBy BemBy demBy BBy Bemby BB &b
and can generate pk = (e (g)t gdi iy i (e(ghi, ghh)o'nat gBs gBi gB: i) and

mk = (g%, g%) = (g ,g%?). B has a detect key, which is essentially the same as g‘j7 and gdﬁ8
since g"gf , 9553 are given. (In a case of public detection, we publish (g”gf)¥ (955;)¥2.) Coefficients
B and 7 do not affect the detect algorithm. B has (gdg, ce gd%) but does not have g‘ﬁ since 953 is
not given. That is, BB has the mark key and perfectly simulates the mark oracle. On the other hand,
the secret key is mcomplete as follows, sk = (L, L, ¢%%, g7 g”“ffl) = (L, 1, g954,g"55,g‘7§6).

It implicitly holds o = /3. To simulate the challenge oracle without the complete sk, for
tag, BB chooses 7, 72, t7, tg & Z,, and computes

Ak/tag — (Ul)(a/—l-r’ltag)eg—r’l,ug@d;+r2tagod§—r20d2+t7d’7‘+t8d§

(a+m1 tag)@(f’{ —r10d3 +r2tagatf§ —roodi4(t7—0(c/ 41 tag))J";+(t870(a’+rﬁtag)u2)d‘§)

=g
We set 71 := pgry. This is a valid marked index. If A outputs valid unmarked index ek* =
(U*, V* K g) where ki, = glotrite’)0d; —r70d;+ritag"odi—130d; then BB computes A :

e(Qb; kiag-). If A = 1, then B outputs 0 (b = 0), otherwise, it outputs 1. B can output cor-
rect b. Analysis is as follows.

20

= i 3 = is given, then A = 1 since . does not include
o If Qp = gnbitmhb — gmndrtnfds jg o then A = 1 ki d t includ

vectors d5 and dg.

o IfQ = ngan+T2ﬁb§+T3b§ _ ngd7+Tz/3d8+Tsd1 is given, then A = e(g’g)(a—i-rltag)ev-gdyd{ 4
1.

Thus, B breaks the problem. a

Before we prove the unforgeability, we give a few remarks. Note that the adversary is not
allowed to output a function index whose identity is equal to those of indices generated by the
challenge oracle or are queried to the mark oracle. This is justified by the following fact. If it is
allowed, then it means the adversary has already had a (functionally equivalent) marked index for
the given or queried identity, that is, an IBE private key for the same identity. This is inevitable.
For simplicity, we prove the unforgeability explained above.

Of course, it may be possible that the adversary outputs a function index whose tag is the same
as an queried tag and functionality is different from given functions by the oracles. We can ex-
tend the unforgeability to stronger one by using known techniques that convert standard unforge-
able signature schemes into strongly unforgeable signature schemes. W§ nowﬁdeﬁne algorithfll
Xtr(pk, sk, tag). It chooses 1,79 ¢ Z, and outputs ki, := g(@F71t28)0d]—r10d;+ratagods—raody
We can consider kq,g be a signature for tag. Naor pointed out that signature schemes can be derived
from IBE schemes [BF03]. Thus, we can prove the unforgeability of our watermarking schemes by
using the unforgeability of signature schemes derived from IBE schemes of Okamoto-Takashima
and Lewko. Huang, Wong, and Zhao proposed a generic transformation technique for converting
unforgeable signature schemes into strongly unforgeable ones [HWZ07]. Let (Gen, Sign, Vrfy)
be strong one-time signature scheme. The conversion is as follows: generates (vkot, Skot) &
Gen(1*), oy, & Xtr(pk, sk, vkot), that is, tag is replaced by vk, and sig := Sign(skot, tag ||
k.k..) and outputs (k... Sig, vkot) as a signature. If we show that the adversary cannot forge a
marked index for tag which is not queried to the oracle and ki,g in our scheme is replaced with
(K ok, Sig-Vkot) (of course, ek includes tag though we omit it), then our watermarking scheme
satisfies strong unforgeability of watermarking schemes by the strongly unforgeable property. That
is, we can show that the adversary cannot output a function index with a queried tag. In this paper,
we prove the standard unforgeability for simplicity.

Next, we prove unforgeability.

Theorem 4.6 Our scheme CWM 1 satisfies unforgeability under the subspace assumption.

Proof. Let qu and gc be the number of queries to the mark oracle and the challenge oracle,
respectively. There are two types of conversion keys in our scheme [Wat09].

Normal: ktag — g(a—&—rltag)ecff —rﬁdé—&—rﬁagadé —rgacfj‘l+t7j§+tgfg

Semi-functional: ktag — g(a—l-rltag)@d’l‘—rl@d;+T2tagad§ —raody+tsdi+tedg+trdr+isds We can gener-

ate semi-functional conversion keys if we have the secret key and (g%, g%).

21

Both types of conversion keys give a correct output (we can check this by simple calculation).
To show that our scheme satisfies unforgeability, we introduce the following games: We consider
game Game-i where the challenge oracle generates semi-functional conversion keys for the first
i € [qc| queries and semi-functional conversion keys for the remaining (gqc — i) queries. Note that
the mark oracle does not generate function indices. It only embeds marks for queried indices. Let
Advﬁorge_'\I (resp. Adv]corge %) denote the advantage of the adversary in Game-(i) for outputting a
normal (resp. semi- functional) conversion key for a non-given or non-queried tag.

1. In Game-(0), the challenge oracles return normal conversion keys. First, We can show
Lemma 4.7: If A outputs a valid semi-functional conversion key, then we can construct
algorithm By (simulator for A) that solves the subspace problem

2. Next, we consider Game-(7). We can show Lemma 4.8: If A detects the change of answers
by the challenge oracle (from normal answer to semi-functional answer), we can construct
algorithm B (simulator for .A) which solves the subspace problem.

3. Last, we consider Game-(gc), where all answers of the challenge oracle to .4 are semi-
functional conversion keys. We can show Lemma 4.9: If adversary A outputs a valid normal
conversion key, then we can construct algorithm By which solves the subspace problem.

By Lemma 4.7, 4.8, and 4.9, we can show the following:

Adv Forge()\) Adv forge N + Adv forge -S < Adv forge N + qCAdV%UbS + AdVngL;bS
< Adv%;bs + gcAdvE™S + Advi®

Lemma 4.7 If A outputs a semi-functional marked index in Game-(0), then we can construct an
algorithm that break the subspace assumption with k = 2 and n = 8.

Lemma 4.8 If there exists A that distinguishes Game-(i — 1) from Game-(i), then we can con-
struct an algorithm that break the subspace assumption with k = 2 and n = 8.

Lemma 4.9 If A outputs a normal marked index in Game-(qc), then we can construct an algo-
rithm that break the subspace assumption with k = 1 and n = 8.

The theorem follows from these lemmas (the DLIN assumption implies the subspace assumption).
First, we give a proof of Lemma 4.7.

Proof of lemma. 1f A outputs (1, ek™) where Detect(dk, ek™) — marked and IdealDtc(ek*) —
unmarked, then we construct algorlthm B which solves the subspace problem k=2andn=8.B

is given T, D = (g",..., g%, g ng g"b1 gﬁbz gﬁbg 9554 g% v g bs U, = gu1b1+u2b3+u3b5
Uy = gu1b2+uzb4+u3b6’ 3), and Qp, where Qy, is (Vla VQ) — (7177b1+7'26b3’gnnb2+72,8b4) or (Wh

22

Wo) = (gnmbitmefbs by gmuby+m2bi+73b) For dual orthonormal bases (D, D*), we first con-
sider dual orthonormal bases (§, §*) as follows:

fi=nbi fo=aby f=p fi=pb = fo=by fr=0 fi=
fiﬁ::nflgl f;k::nflgg ﬁ::ﬁfll_))g fiﬁ::ﬁflgzl ﬁ;"::g ']Eg::l_;G _;k :57 _g‘ =

B chooses random matrix A € ZZXQ, which is invertible except negligible probability. Matrix
A € 72°? and (A=1)" are applied to f5, fg and f¥, f& as changes of basis marix, respectively.
That is, B sets al; = ﬁ and cli‘ = f;* fori=1,...,4,7,8 and it implicitly sets ® = §4, D* = F.
By Lemma 2.8, (D, ©*) are correct dual orthonormal bases.

In order to set § := o’ 17, oc:=0dp implicitly, B chooses a, 0,0 & Zp, and computes pk =
(e(g,)00 g, g) = (e(gh, g71)o", g, g2, g%, gP%5) and sk = (9001, 001, g0
975, 7% = (ga@ b gt 99 P2, 7%, g°'%1) since it has (971, g"b2 %%, 7). (g7, 7954),
o, and o'. Bhasdk = (g°) which is calculated by A and (g% b s) and mark key mk =
(gd) which is calculated by A and (g 7 bs) and can simulate the mark oracle since it has
(g"7, g 8) and (g g"%). Note that B does not have gd’ and gdG since ¢” and g are not given.

In order to simulate the challenge oracle, for tag, B chooses 71,12, t7, ts & Z,, and computes
Etag = g(o‘”ltag)g‘ﬁ —r10d5+rotagods —r2odi+trdi+tsdy This is a valid marked index. Let Qp =

(T1,Ty). If Aoutputs valid ek* = (U*, V™, ki,) where
kg = glatritag”)0d; —0ds+r5tag* a*d§—r§a*ﬁ+t§f§+t§tié+t§ﬁ+t§cf§’

then computes Cy := e(11, ¢)90‘ = e(g, g)a9T1d1 4O = T1(T2)%8", and A := e(C, Ktag- *).
In this game, we assume that .4 outputs a semi- functlonal marked index, so (t%,t5) # 0 and
(t7,13) # 0.
o If Ty = gnhitmfli = grnditnds and Ty = grinbs+7200 = gride4mdi then it holds that
C = g‘rldl+Tltagd2+7'2d3+7'2tagd4 and A = 6(0 ktag) (g g)aandl-d’l"

o IfTy = grlﬂb +7'25b —l—7'3b5 _ gT1d1+T2d3+7'3b5 and Ty = ngb*+Tgﬂb +7—3b6 _ gTQJ1+Tgtﬁ+ngg’

then €' = gnds-ritaedh i adratagdi 498 and A = e(C, ki) = o(g, g)2ndbdi 47

where v* # 0.

In the latter case, the coefficient vector of (5;, gg) is (73,tagms), thus the coefficient vector of
(ds, dg) is 3A™1(1,tag*) " and y = (tg,tg)TgA_l(Ltag*)T. These coefficients are uniformly
random since B chose uniformly random A. If A/Cy = 1, then B outputs 0 (b = 0). Else if
A/Cy # 1, then it outputs 1. Thus, B can break the assumption. |

Next, we prove Lemma 4.8.

23

ooxt

L

Proof of lemma. 1If A outputs (1, ek™) where Detect(dk, ek™) — marked and IdealDtc(ek™) —
unmarked, then we construct algorrthm B which solves the subspace problem k=2andn=28.8
is given I, D = (g™, gb4 gb7 gbs gnbr gﬂbQ gﬁb:; gﬁb4 g%, ... ,gbs U, = gﬂlbl+u2b3+u3b5
Uy = g“1b2+“2b4+”3b6 ,u3) and Qp where Qp is (V1,V2) = (gﬂ”b i4maBb; | gminbs 4280 4) or (Wr,
Wa) = (g b +7aBb+7sbs | gminbi+72Bbi+7s8) | For dual orthonormal bases (D, D*), we set

dy := by dy := by d3 == b3 dy = by dr := by dg := bg
1:=01 2= b I = bj dy == b} 7:=b7 dg = bg

B chooses random matrix A € Z2*?, which is invertible except negligible probability. Matrix A
and (A_l)—r are applied as changes of basis matrix to fé, ﬁ; and fg‘, fé‘, respectively, that is, it
implicitly holds that ® := B4 and ©* := B and they are correct distribution and reveal no
information about A by Lemma 2.8. In order to set ¢ := n and o := 8 implicitly, B chooses c &
Z,, and compute e(g, g)"‘("il"flk = e(gl;1 g”g 1)e, Here it holds that gedl = g”bl and g"ds = gﬁb

Bcan generate pk = (e(g, g)a9d1 i gh ...) = (gh, ... g"*) and sk = (g abd} g0d; | 0d:
g°% 97) ((g"b)« g"b g"b2 gﬂbS gﬂb 1). Bhas mk = (g% d;) which is calculated by A
and (g g%) and dk = (9 7. gds), which is calculated by A and ((g ,9%)) and can simulate the
mark oracle since it has (g%, g 5), (g ,g%), and a.

B can generate normal conversion keys by using sk and mk, so it returns normal conversion
keys for j-th query where ¢ < j. It can also compute semi-functional conversion key since it has
(gbg , gb 6) and can compute random linear combination of them, that is, gt’b +t655 It is equivalent
to a vector spanned by gdé and g‘i* Thus, B returns semi-functional conversion keys for j-th query
where j < i. Let Qp = (Tl, T5). In order to simulate i-th query, for tag;, B chooses t7, tg & Ly

~ .o
and computes Ki,g, : (g”b)Ty 38 (Ty)~* gt7d +sdy Here, we can consider as r1 1= 71, 7y := To.
o If Ty = gmbi+728b5 and Ty = ¢gm02+7260 then

Etagi _ g(oc—ﬁ-ntagz)@dl 719d2+720tagld§—Tgadz+t7d;+t8d§.

This is exactly Game-(i — 1).
o If T} = gTrngf—&-Tzﬂg;—&-ngg and T = ngg;—&-mﬂgZ—&-ngg’ then

Etag_ _ g(a—&—ntagl)@d § —T10d5+20tag; d; —r20d; +tag TsbE —Tsby +trds +tsdy
7

This is exactly Game-(3).

In the latter case, the coefficient vector of bf and b is X := (tag;73, —73). If A outputs valid
ek* = (U*, V*, ki,.+) where
tag*
k* glotriteg”)0ds —0ds+ritag o dy—rio* d+tEdE L dE e ds+tsdy
tag*

24

(maybe (t£,) = 0), then B computes C := Uy (Us)t%€" = guuﬁ+u1tag*d3+u2c73,+u2tag*d1+u355+u3tag*56
and Cj := (e(g™1,U1))* = (e(g, g)*?4). The coefficient vector of (b, bg) is Y := (us, tag* us).
The adversary must output a new function index and make it marked, so tag* is different from all
tag, which are given (resp. querled) from the challenge oracle (resp to the mark oracle) The
coefficient vector of (dZ, d6) and (ds, dg) are X' := 7347 (tag;, —1) " and Y’ := pu3 A~1(1, tag"),
respectively. The distribution of all values except ktagi and (Cy, C) is independent of transforma-

tion matrix A and tag* # tag;, so coeflicient X' and Y are uniformly random by Lemma 2.8. B
computes A := e(C, Ktag*).

If t£ = t§ = 0 (i.e., normal conversion key) and A/Cy = 1, then B outputs 0. If (,t5) # 0
(i.e., semi-functional conversion key) and A/Cy # 1, then B outputs 1. Thus, if A detects the
change, that is, if there is non-negligible difference between that A outputs a normal conversion
key and a semi-functional conversion key, then B can break the subspace assumption. |

Last, we prove Lemma 4.9.

Proof of lemma. If A outputs (1, ek™) where Detect(dk, ek*) — marked and IdealDtc(ek*) —
unmarked, then we construct algorithm B which solves Subspace problem k = 1 and n = 8. Bis

given T, D = (g% g%, g, ... ghs g% g% P . gl Uy = gribriusbatisls yig) and Qy
where Qy, is V; = gT”’b1+T25b2 or Wy = gT”’b T+72/3bs +T3b . For dual orthonormal bases (D, D*),
we set

*

I :=0b5 dy:=0b; d3:=b dy:=b; ds:=b dg:=by dy:=0b> dg:=Db}
(1_;{::53 C?QK::(_);; Jg;::gg, Cﬁ::gﬁ d%::l?l _é 252 —57 d; :gg.
Bchoosesﬂ@ oo & Zy, and can compute pk = (e(g,g)ae‘il'gf ﬂgdﬁl,ﬂ. .. ,g‘i‘l) = (e(g%, 954)‘)‘/“3‘9,

g%, 9* g%, g%) where o = o/ps, dk = (g7, %) = (¢, ¢%) and mk = (9%, %) =
(g g° 8) (i.e., can simulate the mark oracle) but does not have gd since 953 is not given. That
is, it has 1ncomplete sk = (gaed g% di g *,g 5,9° q*) = (L, L g(’";4 055 "bﬁ) B also has
(gd5 g%) = (g ,g%). Here, Uy = g“1d5+“2d6+“3d1 and we use it to s1rnulate conversion keys
without the complete secret key. In order to simulate the challenge oracle, for tag, B chooses

U
1,72, 15, tg, t7, tg < Z, and computes
%tag — (Ul)(o/fr’ltag)agfr/l,ugﬁdé+rgtago'c?§frgodt’i+tgcz‘g+tgclﬂg+t7dﬂ;+tgcf§

_ g(a+r1tag)9(ff —ry 95?2‘ +r2tag0'cf§ 77”20'dt’£+(t’5 —0(a/+r tag) 1)d:i;+(tg 79(a’+r’1tag),u2)d% +t7af§+tscz;§

It implicitly holds r; := psr}. This is a valid marked semi-functional conversion key. If A outputs

normal conversion key ek™ = (U*, V", kg,) where

k* o (a—i—'ri‘tag*)ﬂf{—T{Gdé+r§tag*a*cz§—T%‘U*tﬁ—i—ﬁzﬁ—kt@i@
tag* — g)

25

then B chooses s1, s < Z, and computes C' := gsl‘iﬁsltag*@*”%*”tag*dz, Co := e(g,g)slo‘eg“'gji,
and A = e(C - T,ki,,.). If T = gnnitmf — grnds+728ds then A/Cy = 1. If T =

tag
ngle’{-FTzﬁbg-&-stg — ngnd5+725d6+T3d1’ then A/C() — e(g7g)73(a+7“ftag*)9d1'df # 1. Thus, B can
break the subspace assumption.]
Thus, we finished the proof of Theorem 4.6 a

As we see in the proof of Theorem 4.6 above, even if forgeries by the adversary do not include
marks, the proof holds. That is, the adversary cannot output an un-marked index.

S Proposed Scheme Based on Okamoto-Takashima scheme

We can obtain a LTF and its watermarking scheme by using Okamoto-Takashima IPE scheme
based on DPVS (with additive notation) [OT10, OT12]. The construction idea is the same as that
of LTF it and CWM 1t In this section, we present a scheme based on Okamoto-Takashima IPE
scheme.

5.1 LTF based on Okamoto-Takashima IPE scheme

We propose our LTF construction, LTF 44 := (LTF.IGen, LTF.LGen, LTF.Eval, LTF.Invert) based
on Okamoto-Takashima IPE [OT10, OT12]. Instead of using the inner-product predicate, we use
the equality-test predicate for simplicity.

LTF.IGen(1") : It generates (paramy, B, B*) & Gob(17,10) (See Section 2.3 for Gop), chooses
¥ & F!, and sets B := (bo, by, by, by) and g1, = e(bo,b})?7 for all j € [{]. It chooses
Ci, i & F, and w; & F, for all i € [¢] and generates u;; := g% gT” and v; =
(Gi,wi(1,tag), 0%, ;) forall i, j € [¢] where m;; = 1ifi = j and m; ; = 0 otherwise. For
a conversion key, it chooses o < T, 7 < F2 and generates ki,g := (1, 0(tag, —1), 0%, 77, 0%,
0)p«. Itreturns ek := (U, V., ktag) := ({wiy}, ;» {vi}; krag) (5 = 1,....0), 1k == 1.

LTF.LGen(1*) : This is the same as LTF.IGen except that for all 4, j € [£], m; ; = 0 and ik := L.

LTF.Eval(ek,Z): Forinput Z € {0,1}*, it computes

yj :Huiqj _ngzC'L P ULN _gé 7C>g
i
Yetr1 iZZSCiUi :Z ;G viw; (1, tag), 0°, z;0:)m
i i
=((Z,¢), (%,&)(1,tag), 0% (7, §))m
where ¢ :(ooy)@= (wi,...,wp),and G := (@1, ..., 00), andyz_s_1 = e(Yet1, ko) =
e(bo, b3)'%<) and returns output y := (y1,. .., ys, Yyi1)-

26

LTF.Invert(ik, y): For input y, it computes z’; := i/ (Whe1)¥ = gg’ogg’? /gf’gwj and let z; €

{0,1} be such that 2, = g7/ It returns Z = (x1,.. .,).

Theorem 5.1 LTFq,s is a lossy trapdoor function if the DBDH assumption holds.

The proof is followed from the next two lemmas.
Lemma 5.2 (Lossiness of LTF,44) LTF,q4q4 is (¢ — log q)-lossy.

Proof. We compute lossiness ¢'. For a lossy function index generated by LTF.LGen, every output

Yy = (gg¢,e(G,G)<£’5>) = (%,...,g%,e(G, G)¢') where ¢! = (7,() € F,. Here, 4 is fixed

—

by the function index. For any given image vy, there are at least ¢ possible values for (%, () and
pre-images. Therefore, |D| /2¢ = ¢, equivalently ¢’ = ¢ — log ¢ since |D| = 2¢. O

Lemma 5.3 (Indistinguishability of LTF,q4q) If the DBDH assumption holds, then LTF,4q satis-
fies indistinguishability.

Proof. This proof is essentially the same as that of LTF, ;. The difference is as follows: In
the simulation, we can replace (¢ 4+ 1)-th column element g% with (¢,w(1,tag), 0%, ¢)p where

(paramy, B, B*) & Gop(1*,10) and B := (b, by, ba, by). We should simulate V' = (¢, w(1, tag),
06,90)]3; = (b + wby + wtagby + by and kg = (1, 0(tag, —1),04,77, 0)p~ for 77 & Fg and
w,p « F,. If we have (G = ¢G and matrix X = (Xi,;) behind (B, B*), then we can compute

Cbo without knowing ¢ since simulator /8 generates (paramy, B, B*) < Go(1*, 10) by itself and
has matrix X and by = Z?:o X0,;a; = (x0,0G, ..., X0,9G), and compute {xo,;G = x0,;(CG)
for any j € {0,...,9}. B can also generate K, since it has B*. Therefore, in the above sim-

ulation we can replace (¢ + 1)-th column element g% with (¢,w(1,tag),0%, ¢)p and add kg =
(1,0(tag, —1),0%,17,0)p-. Therefore, LTF,qyq satisfies indistinguishability. O

5.2 Watermarking Scheme for LTF,q4

Next, we present watermarking scheme CWM, 44 for LTF based on Okamoto-Takashima IPE.

WMGen(LTF,qq): It generates (paramy, B, B*) & Gob(11,10). It sets B = (bo, b1, ba, by),
pk = (paramy, B, Samp), sk := (bg, b7, b3, bs, b)), mk = (b5, %), dk := (by, bs), and
rk = (X T)~! = (0;;). Sampling algorithm Samp(paramy, B, sk) chooses ¥ < F¢,

¢, @ < F!, and generates (ek,ik) := ((U,V, kiag),?) as LTF.IGen (or LTF.LGen).
Note that sk is not included in the description of Samp. Keys sk, mk, and rk are secret. Key
dk can be disclosed.

Mark(mk, ek): It parses ek = (U,V , kiag) = (U,V,(1,a(tag,—1),()2,77,02,0)3*), chooses

U7y 48 & [F,, and computes Etag = kiag + (07, 7, s, 0)p= by using (b%, bg). It outputs
marked function index WM(ek) = (U, V, ktag).

27

Detect(dkz,glg): It parses ek = (U,Vv, Etag), chooses 07, dg L Fy, and computes ¢ := d7b7 +
dsbs. Next, computes A := e(c, %tag). If it holds that A = e(c, %tag) # 1, then outputs
marked. Else if, it holds that A = 1, then outputs unmarked. NOTE: If we allow public
detection, we publish detection key d7b7 + Jgbs.

Remove(rk, ;E): It parses 7k = (»(X ")~1) and ek = (U,V, Etag) and runs the decomposition
algorithm. That is, computes Z;-”:O zjbj = Decomp(ktag, (bo, - - ., bm), (X 1)~ B*) for

all m < 9, where z; € F, and obtains zjb;f for all j = 0,...,9. It computes kfcag =
Etag — (27b7 + 23b3) and outputs (U, V', ki,) as an unmarked index.

We can easily understand that meaningfulness, correctness, and polynomial blowup hold. Preserv-
ing functionality holds since elements in U and V' do not include vectors b; and bg and 117b7+ usbyg
does not interfere the computation of LTF.Eval. We can prove the security of this scheme as the
proof of CWM 1t

5.3 Security Proofs for CWM, 44

Theorem 5.4 Our watermarking scheme CWM,qq is secure watermarking scheme under the DLIN
assumption.

We introduce some assumptions that are implied by the DLIN assumption to prove the security
of CWM,q4q4.

5.3.1 New Complexity Problems from DLIN.

In this section, we introduce new complexity problems, Another Basic Problem 0, 1, and 2 (ABPO,
ABPI1, ABP2) based on the DLIN problem to prove the security of the additive version of our
scheme. The new problems can be considered as a variants of Basic Problem 0 (BPO) introduced
by Okamoto and Takashima [OT10].

First, we review some complexity problems over DPVS that are reduced to the DLIN prob-
lem [OT10, OT12].

Definition 5.5 (Basic Problem 0 [OT10]) Basic Problem 0 (BPO) is to guess 3, given (paramgpg,

28

B, B*, ys, f, G, G, 66G) & GBPO(1Y), where GBPO(17):

paramg := (¢, G,Gr, G, e) & gbmp(l)\)a

X = ;f’; = (Xij)ij & GL(3,Fy),
X3
K £<— IF ,
b; == rk(Xi)a Z] 1Xigai(i=1,3),
(J) = Z] 1Uiga;(i=1,2,3),

parampgpg := (paramy, g7),
Yo = (0,0,0)p-,
f = (w,7,0)p,

return

paramy := (¢, V,Gr, A e) & gdpvs(ﬁ,:a, paramg),

(Wij)iji=| Uo | ==(X")""
gr = e(G,G)"*

@ = (bl,bg)
B* := (b7, b3, b3),

d,0,w <—IFq, 0T <—IE‘;,

yT = (57 P U)B*

(paramBP07 @a]B*) yﬁv fv K:Ga fG, 5€G)

Lemma 5.6 ([OT101) For any adversary B, there is PPT machine D, whose running time is essen-
tially the same as that of D, such that for any security parameter \, AdePo(/\) < AdvBHN () +

5/q.

Definition 5.7 (Problem 1[OT10, OT12]) Problem 1 is to guess [, given (param,B,I@*,eB,l,

{ei}izo,..n) & gpl(l)‘ n) where

GEY (1%, n) :(paramy, B, B*) <= Gop(1*, 4n + 2)

* * *
:(bo, 1,...,bn,b2n+1,...

€0,1 '= <O7wg1702 7On7’y)37

* u S U 2
7b4n+1)7w”7 < quZ < Fq

€1,1 = (Oawgla 'gv 0n7 Ona V)Bv

€; = wbi,i:2,...,n,

return (paramy, B, B* ces1,{€iti=a. n).

Lemma 5.8 ([OT10, OT12]) For any adversary B, there is PPT machine D, whose running time is
essentially the same as that of B, such that for any security parameter)\, Advlpgl N\ < Adv%"IN N+

6/q.

29

Definition 5.9 (Problem 2 [OT12]) Problem 2 is to guess /3, given (param, I@, B*, {hfi,w €}i=1,.n) <

952(1’\, n) where

ng(l)‘, n) :(paramy, B, B¥) & gob(l’\,4n +2)
B := (bo, b1, ..., bn, bani1, bans1),w,7, 8,80, 0 < Fy,
i=1,...,n,& = (011,077,
hai = (07551'70”70”56061')0)3*7
T,i = (075a77a70n760€i70)3*7

— = =, n n
€; == (O7wei7aei70 70 70)37

return (paramy, ﬁ, B*, {hgﬂ-, €i}i=1,..n)

Lemma 5.10 ([OT12]) For any adversary B, there is PPT machine D, whose running time is es-
sentially the same as that of B, such that for any security parameter A, Advgz(/\) < Adij)"IN (M) +

5/q.

Next, we introduce ABPO. ABPO seems to be somewhat stronger than BPO since a coefficient
for by in f is given to the adversary. However, we can show that if the DLIN problem is hard, then
ABPO is also hard. This is proved by a technique that is similar to that of Okamoto and Takashima.

Definition 5.11 (Another Basic Problem 0) Another Basic Problem 0 (ABPO) is to guess 5 €
{0, 1}, given (paramagpg, B, B*, yg, f, 7, kG, G, 06G) & GABPO(11), where Q’?BPO(lA):

paramg := (¢,G,Gr, G, e) & gbmp(ﬂ), paramy := (¢, V,Gp, A, e) & gdpvs(l’\,?)),

X1, th
X = %2 = (Xi,j)ij L GL(3,Fy), (¥ij)ij = 122 = (XT)_l, K, & L F;,
X3 93
b= (Xi)a = Y j—1xija; (i = 1,3), B := (b1, bs),
by = (T)n = S0 dijay (1= 1,2,3), B" 1= (€b], bj, wb3), B* = (b}, b3, b3),
gr = e(G, G), paramagpo = (Paramy, gr),
5,0,(.0,9@1?(1, p,T(iF;,
Yo = (6£,0,0K)p: = (6,0,0)5., y1 = (6§, p,0k)B+ = (6,9, 0)g+
fi=(w,7,0)p
return (paramABPO,@,@*,yﬁ, f, 7, kGG, 0EQ)

30

Lemma 5.12 For any adversary B, there is a PPT algorithm &, whose running time is essentially
the same as that of B such that for any security parameter), AdvgBPO < Adng'N +5/q

Before we prove the lemma above, we first introduce a lemma that was proved by Okamoto
and Takashima [OT10].

i—1 N—i
— —
Lemma 5.13 ([OT10]) Canonical maps are defined as follows, ¢; ;(x) = (1,...,1,G;,1,...,1)
where x = (G1,...,GN). We can efficiently sample a random linear transformation W :=

PR Zjvzl 1i.j®i.; of V with random coefficients {rm}i’de] & GL(N,F,) by using {¢; ;}. Ma-
trix (ry ;) == ({ri,j}_l)—r defines the adjoint action onV for pairing e, i.e., e(W (x), (W*I)T(y)) =
e(x,y) forany x,y €V, via (VV‘I)T = Zf;l Z;VZI T Pie

Next, we prove Lemma 5.12 by using the lemma above.

Proof. Assume that there exists an adversary B that solves ABPO for contradiction. We con-
struct an algorithm &£ that solves the DLIN problem. Algorithm £ is given a DLIN instance
(paramg, G, EG, kG, G, 0kG, Yp). To use B, £ set up parameters. £ generates paramy :=
(q,V,Gr, A, €) := Gypys(17,3), computes gr := e(G, G) and parampgpg := (paramy, gr), and
sets two (3 x 3) matrices

1 0 1/¢ 1 0 0
=00 1 Jlhe=| —1/6 —1/k 1
01 1/k 0 1 0
Itis easily verified that 1'[-(1'[*)T = I3. To simulate bases of ABP0, £ computes following vectors.
Eul = (£,0,1)a, uy = (0,0, 1)4, kuz = (0,k,1)a,
uy ‘= (1,0,0)A, ug = (—1/§, —1/I<&, 1)&, us ‘= (0, 1,0)A.

Note that £ cannot calculate us since it does not have 1/« and 1/£. Next, £ chooses 7, ¢, T & Fq,
such that 7 # O and sets v := (G, NG, 7G) = (p,1, 7)a and w := (6{G, 0kG, Y3). By Lemma
5.13, £ generates random linear transformation W on V and sets b; := W (u;) fori = 1,2, 3,

T T

* 1\ T * * — * * — *
§by = (W 1) (€ut), b; == (W 1) (u3), kb3 == (W 1) (Ku3),
B .= (b1?b3)7 B* := (gbiv ;Kb;))a
F=Ww), yg=W") (wh),
and parampgpg := (paramy, g7). To use adversary 553 of ABPO, £ gives (paramABpo,I@,@*, ys, fiT,

kG, EG, 6EQG) to B as an input. If B outputs ', then & outputs 3 := /3. Note that £ can give T to
B since &£ chose 7.

31

Next, we analyze the success probability of £. We must argue that the the simulated input is
a valid instance of ABPO. If we set U := (u1,u2,u3), 0 :=n+ 7/k and w := ¢ + 7/&, then it
holds 6 # 0 since 7 # 0, and we can rewrite

o= (g7 f = W(v) = W((w,7,0)0)
=(w—7/§,0 —T/K,T)a = (w,T,0)B
= wuq + Tuy + us
= (w,7,0)y

Thus, f is a valid input. We analyze two cases.

Case 3 = 0: In this case, it holds Y3 = Y = (6 + 0)G. Thus, it holds

T

wj = (066G, 0kG, (6 + 0)G) = (W) (wp)
= (86,0k,0 + 0)a = (W) ((6¢,0,05)1)
— b€ui + onu — (06,0,0%)s:
= (8£,0,0K)y, = (4,0,0)z,,
where U* := (uj,u3,u3). In this case, we can have (6,0, 0)g. and the distribution of

(paramABpo,@,@*,yo, F,7, kG, G, 0G) is exactly the same as an output of GHBPO(1%)
when k # 0 and £ # 0. The event that k = 0 or £ = 0 happens with probability 2/q.

Case 3 = 1: In this case, Y3 = Y1 = 9G is uniformly distributed in G. We set p := 1 — 0 — 0.
In this case, it holds

= (5¢G, oKG, (5 + p+ 0)G) =W (w})

= (0&,0Kk,0 +p+0)a =(W" 1) ((6¢, p,ok)u~)
= SEut + pug- + orul = (6&, p, oK)B~

= (68, p, oK) y+ = (d,p,0)

where p is uniformly distributed. In this case, we can have (4, p, o)g. and the distribution

of (parampgpo, @, IE*, y1, F, 7, kG, EG, 6£G) is exactly the same as an output of GPEPO(174)
when k # 0, £ # 0, and p # 0. The event that Kk = 0 or & = 0 or p = 0 happens with
probability 3/q.

Therefore, if B outputs 3, then £ can correctly output B=8. a

Next, we introduce "Another Basic Problem 1", that is similar to the "Basic Problem 1" intro-
duced by Okamoto and Takashima [OT10]

32

Definition 5.14 (Another Basic Problem 1) Another Basic Problem 1 (ABP1) is to guess 5 €
{0, 1}, given (paramagpy, B, B*, eg, h, T) & ggBPl(ﬂ), where

géBPl(lk) ; (paramy, B, B¥) £ gob(l/\7 10)
0,0,w,0 @Fq, 0, &K &F;
B := (by,...,be, by, kbs, bo), B := (b],...,bY),
eo := (0,0%,0%,0%,6¢,0r,0)5 = (0,0%,0%,0%,4, 0,0)z
e1:= (p,0%,0%,02,8¢,0k,0)5 = (p,0%,02,02,6,0,0)5
h := (7,0%,0%,0% w,6,0)s-

return (paramv,@, I@*, e, h, 7).

Lemma 5.15 For any adversary B, there is a PPT algorithm £, whose running time is essentially
ABPO

the same as that of B such that for any security parameter)\, AdvgBPl < Advg
Proof. Assume that there exists adversary B that solves ABP1 for contradiction. We construct
algorithm &. & is given the ABPO instance (paramagpg, B, B*, y3, f, 7, kG, G, 66G). For vector
v = (G1,G2,G3) € G3, we use notation (v,0"3) := (G, G, G3,0"3). £ generates random
linear transformation W on V, parses B = (b1, b3), B* = (£b}, bj, xb3), chooses ¢ <& FX, and
sets

do := W (b3,07) djy = (W) (b2,07)

di = W0, G0 (i=1,...6) d =W H (0¥ G0 (i=1,...,6)
Edr == W (£b},07) d; = p(W) (61,07
kds = W (kb3,07) ds = (W1 (bs,07)

dy == W(0°,G) d; =W 1(0%,Q),

g5 = W(ys,0) p=v(W) (£,0)

= (1,0% w,6,0)p-
D := (do,dy, ..., dg, dr,ds,dy) D* = (df,...,d3)

IfD/) = <d07d17 e ,d6,§d77 ’%d87 dg)'

€ gives (paramagpo, 15, Iﬁ)*, g, P, 7) to B as an input of ABPO and outputs whatever 5 outputs.
Case 3 = 0: Inthis case, y5 = (6£,0,0k)p+, anditholds g5 = (0,0°%,6¢, 0k, 0)p = (0,0°,4,0,0)s5.

Case 8 = 1: Inthiscase, y3 = (6§, p, ok)p+, and itholds g5 = (p, 0%,6¢,0k,0)p = (p, 08,0, 0, 0)5-

33

Thus, the simulation by £ is valid and B works correctly. That is, £ can guess correctly. a

Definition 5.16 (Another Basic Problem 2) Another Basic Problem 2 (ABP2) is to guess 5 €
{0,1} given (parampgpy, B, B*, e, h,7) & Q?Bm(l)‘), where

GAE2(1%) - (paramy, B, B*) < Gop(1*, 10),
§,0,0,0 & Fy, 70,6,k & F,
B := (bo, b1, ba, Ebs, kba, bs, ..., by), B := (b],...,b5),
eo = (0,0%,6¢,0k,0%,0)5 = (0,02,4,0,0%,0%,0)z,
er = (p,0%,0¢,05,0%,0)p = (p,0%,6,0,0%,0%,0),
h = (1,0%,w,6,0% 0%, 0)p-

return (paramv,ﬁ, I/B\%*, es, h,).

Lemma 5.17 For any adversary B, there is a PPT algorithm &, whose running time is essentially

the same as that of B such that for any security parameter)\, AdvgBP2 < AdvéBPO

This can be proved as Lemma 5.15.

5.3.2 Proof of Theorem 5.4

To prove Theorem 5.4, we prove Theorem 5.18 and 5.19 explained below since if the DLIN prob-
lem is hard, then BP1, BP2, ABPO, ABP1, and ABP2 are also hard.

Theorem 5.18 (Non-removability) Our scheme CWM satisfies non-removability if Another Basic
Problem 1 is hard.

Proof. 1f A outputs (0, ek*) where Detect(dk, ek*) — unmarked and IdealDtc(ek*) — marked,
then we can construct an algorithm that solves Another Basic Problem 1.

B is given ABP1 instance (param,ﬁ,I/B\%*, ep, h,) & gg\Bpl(ﬁ), parses B= (bo, ..., bs, &by,
kbg,bg) B* := (b*,...,b3), and sets pk := (paramy, b, by, ba, by), sk := (L, b, b5, bE, b)),
dk := (£br, kbg), mk := (b3, bg). B can simulate the mark oracle since it has mk. Here, B does
not have by and cannot directly compute conversion key ki,z. However, it can use h. In order to

simulate the challenge algorithm for tag, BB chooses o', 7, jig & Fo, 1 & Iﬁ‘g and computes

ktag = (1/7_)’7’ + (07 U/(tagv _1)7 027 773 M7, 148, O)]B*
= (1,0’ (tag, —1), 0%, 7, 7 + w/7, ug + 0/7,0)=.

B can compute it since it has 7, h, and B*.

34

If A outputs ek = (U, V, kiag+) where unmarked Ko = (1, 0% (tag*, —1),0%,77*,02,0)p+
whose function is the same as an answer by the simulated challenge oracle, then I3 chooses ¢, @ &
[F, and computes C := e}, + wb; + wtag*bs + pbg and A := e(C, ktag+). If the coeflicient of by
in Kgg+ 1s not 0, then its functionality is not preserved, so the coefficient should be 0. Even if the
coefficients of b3 and b} in Kktag+ are not 0, this does not affect the computation of A since C' does
not include elements by b3 and b,.

If b = 0, then C' = (0, w(1,tag*), 0% 6¢, 0k, p)p. In this case, it holds A = 1 and B outputs
0.

If b = 1, then C = (p, w(1,tag*), 0%, 6¢, 0k, p)p. In this case, it holds A # 1 and B outputs
1. O

Theorem 5.19 (Unforgeability) Our scheme CWM satisfies unforgeability under the DLIN as-
sumption.

Proof. We can prove this theorem by considering similar games in the proofs of Theorem 4.6 in
Section 4.3.

Lemma 5.20 If A outputs semi-functional marked index in Game-0, then we can construct an
algorithm that break Problem I with n = 2.

Proof of lemma. B is given instance (param,B,@*,ebJ,eQ) £ gﬁl(lk,z), parses B* =
(b3, b5, b5,b%, ... by) and B = (by, ..., bg) and sets B := (by, by, by, by), pk := (paramy, B),
sk := (by, by, b3, bs, bg), dk := (by, bg), and mk := (b7, bg). In order to simulate the challenge
algorithm for tag, B computes kg := (1,0 (tag, —1), 02,7, u1, pi2,0)+ by using sk and mk. If
Aoutputs ek = (U, V', ktag=), Where kiagx = (1, 0*(tag®, —1), 7%, 7%, ii*, 0)g~, then B computes
C := ep,1 +tag*es + by + pbg and Cp := g:CF. Note that if the coefficient of by in Kag+ is 0, then
the functionality is not preserved. We set ¢’ := ¢ + 7.

If b = 0, then C = (¢, w(1,tag*),0°, ¢')p.

If b =1, then C = (¢, w(1,tag*), Z,0%, ¢')p.

Thus, B outputs the correct guess by computing A := e(C, kiag+). If A/Cy = 1, then B
outputs 0. Otherwise, it outputs 1.]

Lemma 5.21 If there exists A which distinguishes Game-(i — 1) from Game-(i), then we can con-
struct an algorithm that break Problem 2 with n = 2.

Proof of lemma. B is given instance (param,fl%, B*, hy, 1, hp o, €1, €2) & GP2(14,2), parses B =
(bo,b1,b2,bs,...,bg) and B* = (by, ..., by), and sets B = (b, b1, ba, by), pk = (paramV,I@’),
sk := (bg, by, b3, bt, bg), dk := (by, bs), and mk := (b3, bg). In order to simulate the challenge
algorithm for tag, B computes ki = (1,0(tag,—1), 7,7, [i,0)g+. B can compute it as both
normal and semi-functional since it has B* and can set 7 := 0.

When B answer i-th query, it computes krag, = tag;hy, | — hp o + bj + 7105 + 72bg + 1 b7 +

p2bg.

35

If b = 0, then ko, = (1,d(tag;, —1), 02,71 + dotag;, o — o), i1, i2, 0)B.

If b = 1, then kg, = (1,6(tag;, —1), 7(tag;, —1), 71 + dotag;, 72 — do, 1, 12, 0)p. These
correspond to Game-(i — 1) and Game-(i), respectively.

If A outputs ek = (U, V, kiag+) Where kagx = (1,0%(tag*, —1), 7, i*, 77*,0)p+, then B
chooses C, ¢ & F, and computes Cp := g% and

C = ey +tag'es + Cbg + pby
= (¢, w(1,tag"), o (1, tag"), 0%, @)

If 7* = 0 (normal), then A /Cp = 1 holds and B outputs 0.
If 7 # 0 (semi-functional), then A/Cy # 1 holds and B outputs 1 since tag* # tag;. [|

Lemma 5.22 [f A outputs normal marked index in Game-qc, then we can construct an algorithm
that break Another Basic Problem 2.

Proof of lemma. B is given instance (param,I@Ig,@*7 e, h,7) & Q@sz(l’\),parses@ = (b, b1, b,
€bs, kby, bs, ..., by) and B* := (b1,...,by), and sets pk := (paramy, by, b1, b2, by), sk :=
(L, b],b5,b:,b;), dk := (b7, bg), mk := (b, bg). In order to simulate the challenge algorithm
for tag, BB chooses 1, T2 ¢~ Fx and 7, /i & F? and computes

ktag = (1/7—)’1’ + (07 U(tag7 _1)7 71,72, ﬁ? ﬁv O)B*
= (17 J(tagv _1>7 T + w/Ta T2 + 0/7—7 ﬁ? ﬁv O)B*

B can compute it since it has I@%*, h, and 7.

If A outputs ek = (U, V, ktagr) Where ko = (1,0*(tag*, —1), 0% 77*, i*,0)p+, then B
chooses ¢ & [F, and computes C' := ey, + wby + wtag*by + pbg and A := e(C, ktag~).

If b =0, then C = (0, w(1,tag*), 5¢, ok, 0%,).

If b = 1, then C = (p,w(1,tag*), o, ok, 0%, ©)p.

If b =0, then A = 1 and B outputs 0. If b = 1, then A # 1 and B outputs 1. Thus, B can
guess correctly. |

The theorem follows the lemmas. O

6 Concluding Remarks

We introduced the notion of cryptographic watermarking schemes, defined its security notion, and
proposed two concrete constructions by using DPVS. Both of them are secure under the DLIN
assumption in the standard model. This gives us the first positive result about provably secure
watermarking schemes. We list a few remarks.

36

Constructions Based on the Symmetric External Diffie-Hellman Assumption. Chen, Lim,
Ling, Wang, and Wee proposed an IBE scheme by using the subspace assumption based on the
symmetric external Diffie-Hellman (SXDH) assumption, where the decisional Diffie-Hellman as-
sumption holds in both groups of an asymmetric pairing group [CLL"12]. Their IBE scheme is
similar to Lewko’s scheme and we can apply our technique to their scheme. Thus, we can construct
a more efficient watermarking scheme based on the SXDH assumption.

Constructions Based on Composite-Order Pairing Groups. We use the canceling property of
DPVS and sub-group decision type assumption to prove the security. Composite-order pairing
groups also have such properties [LW10, LOS™10]. Therefore, we can construct watermarking
schemes based on composite-order pairing groups. However, we do not give concrete constructions
in this paper since, generally speaking, schemes based on composite-order groups are less efficient
than schemes based on prime-order groups due to large composites. One may think that we do not
have remove algorithms if we use composite-order groups since we do not have trapdoor matrices
of DPVS and the decomposition algorithm by Okamoto and Takashima. However, we note that if
we use prime factors of composites as trapdoors, then we can also achieve remove algorithms in
the composite-order group setting.

Open Issues. Our watermarking schemes are called the detection-type watermarking scheme, in
which we can verify just one-bit information, embedded or not. We can consider a stronger variant
called the extraction-type watermarking scheme, in which we can embed a message as a mark
and extract it. In fact, our schemes can be modified into extraction-type schemes by adding extra
(21 — 2)-dimension to our schemes for pi-bit messages since we can embed a one-bit message for
each 2-dimension. However, this is quite inefficient. Thus, it is an open problem to construct more
efficient extraction-type watermarking schemes.

Acknowledgements.

The author is grateful to Keita Xagawa for illuminating discussions and insightful comments about
constructions of watermarking schemes. The author would like to thank Kazumaro Aoki and At-
sushi Fujioka for helpful comments about applications of watermarking and the presentation of
the introduction. The author would like to thank Shota Yamada for pointing out that we can use
prime factors of a composite to construct a remove algorithm in the composite-order group setting.
The author also would like to thank Masayuki Abe, Angelo De Caro, Akinori Kawachi, Katsuyuki
Takashima, Maki Yoshida and anonymous reviewers of Asiacrypt 2012 and Eurocrypt 2013 for
helpful comments.

37

References

[BFO3]

[BGIT12]

[BWO06]

[CFN9%4]

[CLL*12]

[CTO2]

[FGK™10]

[GVO08]

[HMWO07]

[HO12]

[HWZ07]

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Comput., 32(3):586-615, 2003.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 290-307. Springer, 2006.

Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, volume 839 of
Lecture Notes in Computer Science, pages 257-270. Springer, 1994.

Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter ibe
and signatures via asymmetric pairings. In Pairing, volume 7708 of Lecture Notes in
Computer Science, pages 122-140. Springer, 2012.

Christian S. Collberg and Clark D. Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Trans. Software Eng., 28(8):735-746,
2002.

David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev.
More constructions of lossy and correlation-secure trapdoor functions. In Public Key
Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 279-295.
Springer, 2010.

Steven D. Galbraith and Eric R. Verheul. An analysis of the vector decomposition prob-
lem. In Public Key Cryptography, volume 4939 of LNCS, pages 308-327. Springer,
2008.

Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermark-
ing. In TCC, volume 4392 of Lecture Notes in Computer Science, pages 362-382.
Springer, 2007.

Brett Hemenway and Rafail Ostrovsky. Extended-DDH and lossy trapdoor functions.
In Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 627—643. Springer, 2012.

Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation to strongly
unforgeable signatures. In ACNS, volume 4521 of LNCS, pages 1-17. Springer, 2007.

38

[KYO02]

[Lew12]

[LOST10]

[LR88]

[LW10]

[NSS99]

[OTO08]

[OT09]

[OT10]

[OT11]

[OT12]

[PWOS]

Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In
EUROCRYPT, volume 2332 of LNCS, pages 450-465. Springer, 2002.

Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In EUROCRYPT, volume 7237 of LNCS, pages 318-335.
Springer, 2012.

Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchi-
cal) inner product encryption. In EUROCRYPT, volume 6110 of LNCS, pages 62-91.
Springer, 2010.

Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Computing, 17(2):373-386, 1988.

Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure hibe with short ciphertexts. In TCC, volume 5978 of Lecture Notes in
Computer Science, pages 455—479. Springer, 2010.

David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In
Public Key Cryptography, volume 1560 of LNCS, pages 188—-196. Springer, 1999.

Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and signatures
from vector decomposition. In Pairing, volume 5209 of LNCS, pages 57-74. Springer,
2008.

Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for
inner-products. In ASIACRYPT, volume 5912 of LNCS, pages 214-231. Springer,
2009.

Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, volume 6223 of
LNCS, pages 191-208. Springer, 2010.

Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for
non-monotone predicates in the standard model. In Public Key Cryptography, volume
6571 of LNCS, pages 35-52. Springer, 2011.

Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchi-
cal) inner product encryption. In EUROCRYPT, volume 7237 of Lecture Notes in
Computer Science, pages 591-608. Springer, 2012.

Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC 08, pages 187-196. ACM, 2008.

39

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM
J. Comput., 40(6):1803-1844, 2011.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387-394. ACM, 1990.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In CRYPTO’ 09, volume 5677 of LNCS, pages 619-636. Springer,
2009. full version available from http://eprint.iacr.org/2009/385.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryptographic data.
IEICE Transactions, 94-A(1):270-272, 2011.

[YMF10] Maki Yoshida, Shigeo Mitsunari, and Toru Fujiwara. The vector decomposition prob-
lem. IEICE Transactions, 93-A(1):188-193, 2010.

A Lewko IBE and Okamoto-Takashima IPE Schemes

We present Lewko IBE scheme and Okamoto-Takashima IPE scheme for reference.

A.1 Identity-Based Encryption

We review Lewko IBE scheme, IBE| [Lew12] in this section.

Setup(1*): It generates A := (¢,G,Gr,¢,9) < Gomp(1*) and (D, D*) < Dual(Z), chooses
a, 0,0 & Zyp, and sets pk := (A, e(g7g)a9d1-d;

It outputs (pk, msk).
Gen(msk, ID): Itchooses ry,ry <= Z, and generates skyp := g(o‘”lID)Mf*Tled‘;*"ﬂD"Jgf”?”‘ﬁ.
Enc(pk, ID, M): It chooses s1, 2 & Z,, and generates Cq := M - (e(g,g)ae‘jl'czf)sl and

C:= gleﬁSlID‘i?*s?JS*S?IDJ“. It outputs ciphertext ct := (Cp, C).
Dec(skrp,ct): It outputs M := Cy/e(skrp,C).

Theorem A.1 ([Lew12]) If the DLIN assumption holds, then |BE| is adaptively secure against
chosen plaintext attacks.

A.2 Attribute-Hiding Inner-Product Encryption [OT12]

We review an adaptively secure attribute-hiding inner-product encryption scheme by Okamoto and
Takashima, IPEgT [OT12].

Setup(l’\,@) : It generates (paramg, B, B*) & G (1A, 4n + 2), sets B = (bo, .., bn,bani1)
and B* := (by, ... b}, b3,,1,...,b},), and returns pk := (paramg, B), msk := B*.

40

i d 0 od 0 od odt
9%, ™), msk = (g"%, g%, "%, g%, g7%).

1 n 2n n 1
= AN AN TN AN A
Gen(pk, msk,v € Fy \ {0}): Itselectso & Fyandn & F?, computes k* == ("1, o0, 02,7 7,70 Dp-,

and returns sky := k*.

—
3
g
3
—

3

AN AN TN AN
¢y Wi, 0%, 0",)

Enc(pk, M, 7 € Fy \ {6}): It selects w, @, ¢ < [F,, computes ¢ := (
and co 1= M - g%, and returns ¢z := (c1, ¢2).

Dec(pk, sky := k™, cz := (€1, ¢2)): It computes M’ := ¢y /e(cy, k*) and returns M.

If ¥- ¥ =0, then e(cy, k*) = g?rw”f'ﬁ = g%.

Theorem A.2 ([OT12]) If the DLIN assumption holds, then \PEqT is adaptively attribute-hiding
against chosen plaintext attacks.

41

