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Abstract

We introduce a notion of watermarking for cryptographic functions and propose a concrete
scheme for watermarking cryptographic functions. Informally speaking, a digital watermark-
ing scheme for cryptographic functions embeds information, called a mark, into functions
such as one-way functions and decryption functions of public-key encryption. There are two
basic requirements for watermarking schemes. (1) A mark-embedded function must be func-
tionally equivalent to the original function. (2) It must be difficult for adversaries to remove
the embedded mark without damaging the original functionality. In spite of its importance and
usefulness, there have only been a few theoretical works on watermarking for functions (or pro-
grams). Furthermore, we do not have rigorous definitions of watermarking for cryptographic
functions and concrete constructions.

To solve the above problem, we introduce a notion of watermarking for cryptographic func-
tions and define its security. Furthermore, we present a lossy trapdoor function (LTF) based on
the decisional linear (DLIN) problem and a watermarking scheme for the LTF. Our watermark-
ing scheme is secure under the DLIN assumption in the standard model. We use techniques of
dual system encryption and dual pairing vector spaces (DPVS) to construct our watermarking
scheme. This is a new application of DPVS. Our watermarking for cryptographic functions is a
generalized notion of copyrighted functions introduced by Naccache, Shamir, and Stern (PKC
1999) and our scheme is based on an identity-based encryption scheme whose private keys
for identities (i.e., decryption functions) are marked, so our technique can be used to construct
black-box traitor tracing schemes.

Keywords: digital watermarking, dual pairing vector space, dual system encryption, vec-
tor decomposition problem

∗This is the revised full version of "How to Watermark Cryptographic Functions" that appeared in Eurocrypt 2013
[Nis13]. We added the full proof and revised some definitions.

1



1 Introduction

1.1 Background

Digital watermarking is a technology that enables us to embed information, called a “mark”, into
digital objects such as images, movies, and audio files. Such marks should be detected by using
some procedure. There are two main properties of digital watermarking. The first is that the
appearance (or functionality) of marked objects is almost the same as that of the original objects
The second is that removing embedded marks without destroying the object is difficult. A main
application of watermarking is protecting copyright. We can trace and identify owners of digital
content by detecting watermarks. For example, if we find a potentially guilty user and illegally
copied digital content, we can detect a watermark and identify the owner who distributed the illegal
copy.

Most watermarking methods have been designed for perceptual objects, such as images. Only a
few studies have focused on watermarking for non-perceptual objects (e.g., software or programs).
Software is quite common digital content and can be easily copied. Software piracy is a serious
problem today. If illegally copied software is distributed, profits of software companies decrease.
Watermarking for programs is one of tools to solve the problem and has very useful, attractive, and
practical applications. However, they are little understood. We briefly explain related studies on
program watermarking below.

Naccache, Shamir, and Stern introduced the notion of copyrighted functions and proposed
a method for tracking different copies of functionally equivalent algorithms containing a sort of
“marks” [NSS99]. A copyrighted function is drawn from a keyed function family (this key plays
a role of marks). The security of the protocol guarantees that no adversary can output a function-
ally equivalent function with a new key even if many keyed functions are given. This is related to
watermarking schemes for programs (functions), but their security definition is a bit weak and not
sufficient for program watermarking because copyrighted functions do not guarantee that embed-
ded marks are not removed.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang considered the notion of soft-
ware watermarking (program watermarking) from a cryptographic point of view in their seminal
work [BGI+12]. They proposed a formalization of software watermarking and its security defini-
tion. The definition is simulation-based security and strong. They gave an impossibility result for
general-purpose program watermarking by using impossibility results of general-purpose program
obfuscation [BGI+12]. “General-purpose” means that program watermarking/obfuscation can be
applied to any program. Their security requirements cannot be achieved, so they leave positive the-
oretical results about watermarking (achieving concrete constructions for specific function families
by using a game-based security definition) as an open problem.

Yoshida and Fujiwara introduced the notion of watermarking for cryptographic data and a
concrete scheme for signatures [YF11]. Their idea is very exciting, but they did not propose a
formal security definition of watermarking for cryptographic data and their scheme is not provably
secure. They claim that the security of their scheme is based on the vector decomposition (VD)
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problem, which was introduced by Yoshida, Mitsunari, and Fujiwara [YMF10], but their proof is
heuristic, that is, they did not show a reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-based) definition
of security for watermarking schemes. Their definition seems to be very useful, but they focused
on watermarking for only perceptual objects [HMW07]. They gave no concrete construction that
satisfies their security definition.

1.2 Motivations and Applications

As explained in the previous section, there is no watermarking scheme for (cryptographic) func-
tions1 that is provably secure in a complexity-theoretic definition of security. Copyrighted functions
by Naccache et al. are provably secure based on the factoring assumption, but their definition of
security is weaker than that of watermarking, and their construction can only embed a bounded
number of distinct marks [NSS99]. Before we introduce our contribution, we present several ap-
plications of watermarking to explain motivations.

Traceable cryptographic primitives. One application of watermarking for cryptographic func-
tions (we often call it cryptographic watermarking) is constructing various traceable cryptographic
primitives. If we have a watermarking scheme for cryptographic functions, for example, trapdoor
one-way functions, collision-resistant hash functions (CRHF), and decryption functions, we can
construct a variety of traceable primitives or copyrighted cryptographic primitives since private-
key encryption, public-key encryption (PKE), digital signatures, and so on are constructed from
trapdoor one-way functions and often use CRHFs in their algorithms.

As pointed out by Naccache et al., watermarked functions have the following applications [NSS99]:

• We can produce software or programs that generates ciphertexts of the Feistel cipher based
on a one-way function [LR88], signatures of Rompel’s signature scheme [Rom90], or de-
crypted values of ciphertexts under PKE schemes based on a trapdoor one-way function. By
watermarking the underlying one-way function, if a malicious user illegally generate copies
of such software and distributes them, then a company that sold the software can trace them
and identify the guilty users.

• A company can sell MAC-functions based on watermarked one-way functions to users for
a log-in system on the Internet. The company records user IDs and marked functions in a
database. Users can use the MAC-functions to log-in to a member web site without revealing
their identity since all marked functions are functionally equivalent. However, if a malicious
user distributes an illegal copy and it is discovered, then the company can identify the guilty
user identity by detecting an embedded mark.

1We consider functions as a kind of program.
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Black-box traitor tracing. Kiayias and Yung proposed a method of constructing black-box
traitors tracing schemes from copyrighted PKE functions [KY02]. When we broadcast digital
content to a set of legitimate subscribers, we can use broadcast encryption schemes. If some of
the subscribers leak partial information about their decryption keys to a pirate, who is a malicious
user in broadcast encryption systems, then the pirate may be able to construct a pirate-decoder.
That is, the pirate may access to the content though s/he is not a subscriber. Traitor tracing enables
us to identify such malicious subscribers called traitor [CFN94]. Our cryptographic watermarking
scheme can be seen as a generalized notion of copyrighted functions and our construction is based
on identity-based encryption (IBE) schemes whose private keys for identities are marked (these are
copyrighted decryption functions of PKE), so our construction technique can be used to construct
black-box traitor tracing schemes and it has a quite powerful application.

Theoretical treatment of watermarking. There are many heuristic methods for software water-
marking [CT02], but there have only been a few studies that theoretically and rigorously treat the
problem in spite of its importance. Functions can be seen as a kind of software (and program) and
a large amount of software uses cryptographic functions, especially in a broadcast system, users
must use software with decryption functions to view content. We believe that our scheme for wa-
termarking for cryptographic functions is an important step toward constructing practical software
watermarking.

1.3 Our Contributions and Construction Ideas

To solve problems explained in Section 1.1, we introduce the notion of watermarking for crypto-
graphic functions, define a game-based security definition of them, and propose a concrete con-
struction. Our watermarking scheme is provably secure under the decisional linear (DLIN) as-
sumption. To the best of our knowledge, this is the first provably secure watermarking scheme for
functions (programs) in terms of theoretical cryptography and solves the open problem proposed
by Barak et al. [BGI+12].

Our security notion is based on the notion of strong watermarking introduced by Hopper et
al. [HMW07], but details are different since we focus on the definition for cryptographic functions.
Their definition takes into account only perceptual objects and they modeled the notion of similarity
by a perceptual metric space on objects that measures the distance between objects. Therefore, to
construct watermarking schemes for cryptographic functions, we need to modify their definition.
We define the similarity by preserving functionality. If, for some inputs, a marked function outputs
the same outputs as those of an original function for the inputs, then we say that the marked function
is similar to the original function. Watermarking schemes should guarantee that no adversary can
generate a function which is similar to a marked function for some inputs but unmarked. That is,
no adversary can remove embedded marks without destroying underlying functionality. This is a
primary difference from copyrighted functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs) [PW11]. LTFs are
powerful cryptographic functions. They imply standard trapdoor one-way functions, oblivious
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transfers, CRHFs, and secure PKE schemes against adaptive chosen ciphertext attacks (CCA) [PW11].
The watermarking scheme consists of four algorithms, key generation, mark, detect, and remove
algorithms. Marked function indices are functionally equivalent to the original ones, that is, for
any input, outputs of marked functions are the same as those of the original function. We call
this perfect functionality preserving property. The construction can be used to construct an IBE
scheme that can generate marked private keys for identities and marked signatures since our LTFs
are based on IBE schemes, as explained in the next paragraph. That is, we can construct decryption
algorithms in which watermarks can be embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based on the dual
pairing vector space (DPVS) proposed by Okamoto and Takashima [OT09, OT10, OT12]. We
can use the IBE scheme of Okamoto and Takashima [OT12] (which is a special case of their inner-
product predicate encryption (IPE) scheme) and that of Lewko [Lew12] to construct LTFs. Loosely
speaking, LTFs are constructed from homomorphic encryption schemes, and the IBE schemes of
Okamoto-Takashima and Lewko are homomorphic. There are many other homomorphic encryp-
tion schemes but we selected Okamoto-Takashima and Lewko IBE schemes because they are con-
structed by DPVS and the dual system encryption methodology introduced by Waters [Wat09].
The methodology is a key technique to achieve a watermarking scheme. In this paper, we write
only about the Lewko IBE scheme.

First, we explain how we use the dual system encryption methodology to construct water-
marking schemes. We apply the dual system encryption technique to not only security proofs
but also constructions of cryptographic primitives. In the dual system encryption, there are two
types for ciphertexts and private-keys respectively. The first type is called normal ciphertexts/keys
and the second type is called semi-functional ciphertexts/keys. They have the following proper-
ties. Semi-functional ciphertexts can be decrypted using normal keys and normal ciphertext can be
decrypted using semi-functional keys. However, semi-functional ciphertexts cannot be decrypted
using semi-functional keys. Normal ciphertexts/keys are computationally indistinguishable from
semi-functional ciphertexts/keys. In most cases, function indices of LTFs consist of ciphertexts of
homomorphic encryption [FGK+10, HO12, PW11], so, intuitively speaking, if we can construct
a function index by using not only (normal) ciphertexts but also semi-functional keys, then the
function index is functionally equivalent to a function index generated by (normal ciphertexts and)
normal keys as long as normal ciphertexts are used. Moreover, if we use semi-functional cipher-
texts, we can determine whether a function index is generated by semi-functional keys or not since
semi-functional ciphertexts cannot be decrypted using a semi-functional key. Thus, a function
index that consists of semi-functional keys can be seen as a marked index and semi-functional ci-
phertexts can be used in a detection algorithm of a watermarking scheme. This is the main idea.
Note that our construction technique can be used to construct an IBE scheme whose private keys
can be marked because our LTFs are based on such an IBE scheme.

Next, we explain how we construct watermarking scheme by using DPVS. DPVS is linear
space defined over bilinear groups and a vector consists of group elements [OT09, OT10]. One of
key features of DPVS is that if we conceal (i.e., do not publish) some basis of a subspace then we
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can set a hidden linear subspace. A pair of dual orthonormal bases over groups are denoted by B
and B∗. They are generated by a random linear transformation matrix that consists of elements in
a finite field. We use a hidden linear subspace spanned by a subset of B/B∗ for semi-functional
ciphertexts/keys as Okamoto-Takashima and Lewko IBE schemes [Lew12, OT10, OT12]. We de-
note the subset by B̂ ⊂ B, B̂∗ ⊂ B∗, respectively. A hidden linear subspace for semi-functional
ciphertexts and keys can be used as a detect key and a mark key of our watermarking scheme,
respectively. Thus, we can embed “marks” into the hidden linear subspace and they are indis-
tinguishable from non-marked objects because the decisional subspace problem is believed to be
hard [OT08, OT10]. Informally speaking, the decisional subspace problem is determining whether
a given vector is spanned by B (resp, B∗) or B \ B̂ (resp, B∗ \ B̂∗).

Okamoto and Takashima introduced complexity problems based on the DLIN problem to prove
the security of their scheme [OT10, OT12] and these problems are deeply related to the VD prob-
lem [YMF10] and the decisional subspace problem. The VD problem says that it is difficult to
decompose a vector in DPVS into a vector spanned by bases of a subspace. Lewko also introduced
the subspace assumption [Lew12], which is implied by the DLIN assumption and highly related
to the decisional subspace assumption introduced by Okamoto and Takashima [OT08] and the VD
problem. All assumptions introduced by Okamoto-Takashima [OT10, OT12] and Lewko [Lew12]
are implied by the standard DLIN assumption.

If we can decompose a vector in DPVS into each linearly independent vector, then we can
convert semi-functional ciphertexts/keys into normal ciphertexts/keys by eliminating elements in
hidden linear subspaces, that is, we can remove an embedded mark from a marked function index.
Galbraith and Verheul and Yoshida, Mitsunari, and Fujiwara argued that the VD problem is related
to computational Diffie-Hellman problem [GV08, YMF10]. It is believed that the VD problem
is hard. Therefore, no adversary can remove marks of our watermarking scheme (this is a just
intuition). However, we do not directly use the VD problem but the DLIN problem to prove the
security of our scheme. On the other hand, if we have a linear transformation matrix behind dual
orthonormal bases of DPVS, then we can easily solve the VD problem [OT08, OT10], that is,
we can remove a mark if we have the matrix. Such an algorithm was proposed by Okamoto and
Takashima [OT08].

Our construction is a new application of DPVS. DPVS has been used to construct fully secure
functional encryption, IPE, IBE and attribute-based signatures [Lew12, LOS+10, OT09, OT10,
OT11, OT12], but to the best of our knowledge, a linear transformation matrix for dual orthonormal
bases in DPVS has never been explicitly used for algorithms of cryptographic schemes. This is of
independent interest.

On the Impossibility of Watermarking. Barak et al. showed that if there exists indistinguisha-
bility obfuscation (iO), then there is no program watermarking with perfect functionality preserving
property [BGI+01, BGI+12]. Roughly speaking, if we apply iO to a marked program, then we can
remove the mark since if we still detect the mark from the obfuscated marked program, then we can
use it to distinguish an obfuscated marked program from an obfuscated unmarked program (indis-
tinguishability holds for functionally equivalent programs). We use a different definition from that
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of Barak et al., but the impossibility result holds in our setting since our watermarking scheme has
perfect functionality preserving property. This does not contradict to our results because we use
an assumption about outputs of adversaries. The assumption says adversaries are not allowed to
change the format of functions. Adversaries cannot use iO by the assumption. Someone think the
assumption is strong, but we can say our construction is an alternative approach to achieve water-
marking since Nishimaki and Wichs [NW15] and Cohen, Holmgren, and Vaikuntanathan [CHV15]
proposed program watermarking based on iO in their independent and concurrent works. Candi-
date constructions of iO are known [GGH+13b], but their underlying cryptographic tool called
multilinear maps [GGH13a, CLT13] were attacked [CHL+15, HJ15]. Thus, our construction that
does not assume iO is still meaningful. See discussion in Section 3 for more details.

1.4 Organization of This Paper

In Section 2, we introduce some notations and known cryptographic definitions, tools, and tech-
niques. In Section 3, we introduce our definition of watermarking for cryptographic functions. In
Section 4, we propose a concrete instantiation of watermarking schemes for lossy trapdoor func-
tions. In Section 5, we list a few concluding remarks and open issues.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is a
random variable or distribution, y R← D denote that y is randomly selected from D according to
its distribution. If S is a set, then x U← S denotes that x is uniformly selected from S. y := z
denotes that y is set, defined or substituted by z. When b is a fixed value, A(x)→ b (e.g., A(x)→
1) denotes the event that machine (or algorithm) A outputs a on input x. We say that function
f : N → R is negligible in λ ∈ N if f(λ) = λ−ω(1). Hereafter, we use f < negl(λ) to mean
that f is negligible in λ. A vector symbol denotes a vector representation over Zp, e.g., x⃗ denotes
(x1, . . . , xn) ∈ Znp . For two vectors x⃗ and v⃗, ⟨x⃗, v⃗⟩ denotes the inner-product

∑n
i=1 xivi. The

transpose of matrix X is denoted by X⊤. A bold face small letter denotes an element of a vector
space V, e.g., x ∈ V. Set GL(n,Zp) denotes the general linear group of degree n over Zp. We
denote probabilistic polynomial-time by PPT.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by
λ ∈ N. The statistical distance between two random variables X and Y over a countable set S is
defined as ∆(X,Y ) := 1

2

∑
α∈S |Pr[X = α]− Pr[Y = α]|.

Definition 2.1 We say that X and Y are statistically indistinguishable (We write X s≈ Y to denote
this) if

∆(Xλ, Yλ) < negl(λ).
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Definition 2.2 We say that X and Y are computationally indistinguishable (We write X
c
≈ Y to

denote this) if for all non-uniform PPT algorithm D,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| < negl(λ).

2.1 Cryptographic Bilinear Maps (or Pairings)

We consider cyclic groups G1, G2, and GT of prime order p. A bilinear map is an efficient mapping
e : G1 ×G2 → GT satisfying the following properties.

bilinearity: For all g ∈ G1, ĝ ∈ G2 and a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab.

non-degeneracy: If g and ĝ generate G1 and G2 respectively, then e(g, ĝ) ̸= 1.

If G1 = G2 = G, that is, both groups are the same, we call (p,G,GT , e, g) symmetric pair-
ing groups. Let Gbmp be a standard parameter generation algorithm that takes as input a security
parameter λ and outputs parameters (p,G,GT , e, g).

2.2 Function Family of Lossy Trapdoor Functions

Definition 2.3 (Lossy Trapdoor Functions [PW08, PW11]) A lossy trapdoor function LTF with
domain D consists of four polynomial-time algorithms having the following properties.

Injective Key Generation: LTF.IGen outputs (ek , ik) where ek and ik are an evaluation and an
inversion key, respectively.

Evaluation: For X ∈ D, LTF.Evalek (X) outputs an image Y = fek (X).

Inversion: LTF.Invertik (Y ) outputs a pre-image X = f−1ik (Y ).

Lossy Key Generation: LTF.LGen outputs (ek ′,⊥) where ek ′ is an evaluation key.

Correctness: For all (ek , ik) R← LTF.IGen(1λ), and X ∈ D, we have f−1ik (fek (X)) = X .

Indistinguishability: Let λ be a security parameter. For all PPT A,

Advindltf,A(λ) :=
∣∣∣Pr[A(1λ, [LTF.IGen(1λ)]1)]− Pr[A(1λ, [LTF.LGen(1λ)]1)]

∣∣∣ < negl(λ),

where [A]1 is the first output of algorithm A.

Lossiness: We say that LTF is ℓ-lossy if for all ek ′ R← LTF.LGen(1λ), the image set fek ′(D) is of
size at most |D| /2ℓ.

We define a function family of LTF, LTFλ := {LTF.Evalek (·)|(ek , ik)
R← LTF.Gen(1λ, b), b ∈

{0, 1}} where LTF.Gen(1λ, 0) := LTF.IGen(1λ) and LTF.Gen(1λ, 1) := LTF.LGen(1λ).
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2.3 Dual Pairing Vector Space [OT09, OT10]

For v⃗, w⃗ ∈ Znp , a ∈ Zp, and g ∈ G, we define gv⃗ := (gv1 , . . . , gvn), (gv⃗)a := gav⃗ = (gav1 , . . . , gavn),
and gv⃗+w⃗ := (gv1+wn , . . . , gvn+wn).

Definition 2.4 “Dual pairing vector spaces (DPVS)” (p,V,GT ,A,e) is constructed from a direct
product of symmetric pairing groups (p,G,GT , e, g) as follows. Number p is a prime. A cyclic
group GT of order p comes from pairings.

Vector space V: A vector space consists of N groups, i.e., V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is

expressed by N -dimensional vector x := (gx1 , . . . , gxN ) (xi ∈ Zp for i = 1, . . . , N ).

Canonical base A: There is canonical basis A := (a1, . . . ,aN ) of V, where a1 := (g, 1, . . . , 1),
a2 := (1, g, 1, . . . , 1), . . . ,aN := (1, . . . , 1, g).

Pairing operation: A pairing function e : V×V→ GT is defined by e(x,y) :=
∏N
i=1 e(gi, hi) ∈

GT where x := (g1, . . . , gN ) ∈ V and y := (h1, . . . , hN ) ∈ V. This is non-degenerate
bilinear, i.e., e(xs,yt) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 1. For all i
and j, e(ai,aj) = e(g, g)δi,j where δi,j = 1 if i = j, and 0 otherwise.

DPVS also have linear transformations ϕi,j on V s.t. ϕi,j(aj) = ai and ϕi,j(ak) = 1 if k ̸= j,

which can be easily achieved by ϕi,j(x) := (

i−1︷ ︸︸ ︷
1, . . . , 1, gj ,

N−i︷ ︸︸ ︷
1, . . . , 1) where x := (g1, . . . , gN ). We

call ϕi,j canonical maps. The DPVS generation algorithm Gdpvs takes input 1λ and N ∈ N, and
outputs a description of param′V := (p,V,GT ,A, e) with security parameter λ and N -dimensional
V. It can be constructed using Gbmp.

Lewko [Lew12] defined algorithm Dual(Znp ) as follows. It chooses b⃗i, b⃗∗j ∈ Znp and ψ U← Z∗p
such that ⟨⃗bi, b⃗∗j ⟩ = 0 mod p for i ̸= j, ⟨⃗bi, b⃗∗i ⟩ = ψ mod p for all i ∈ [n] and outputs (B,B∗)

where B := (⃗b1, . . . , b⃗n) and B∗ := (⃗b∗1, . . . , b⃗
∗
n). We consider Dual(Znp ) implicitly outputs

ψ ∈ Zp though we omit it.
We describe a random dual orthonormal bases generator Gob(1λ, N), which is used as a sub-

routine in the proposed scheme. We use a notation by Lewko [Lew12] instead of that of Okamoto
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and Takashima.

Gob(1λ, N)

param′V := (p,V,GT ,A, e)
R← Gdpvs(1λ, N),

(B,B∗)
R← Dual(Znp ),

gT := e(g, g)ψ, paramV := (param′V, gT ),

bi := gb⃗i ,B := (b1, . . . , bN ),

b∗j := gb⃗
∗
j ,B∗ := (b∗1, . . . , b

∗
N ),

return (paramV,B,B∗).

We use the notation (B,B∗) to express dual orthonormal bases in Zp to distinguish from dual
orthonormal bases (B,B∗) in V.

We briefly explain some important properties of DPVS [OT10, Lew12].

Pairing operation: e(x,y) :=
∏N
i=1 e(g

xi , gyi) = e(g, g)
∑N

i=1 xiyi = e(g, g)x⃗·y⃗ ∈ GT , where
x := (gx1 , . . . , gxN ) and y := (gy1 , . . . , gyN ). Here, x and y are expressed by coefficient
vectors over basis A such that (x1, . . . , xN )A = (x⃗)A :=

∏N
i=1 a

xi
i and (y1, . . . , yN )A =

(y⃗)A :=
∏N
i=1 a

yi
i .

Base change: Canonical basis A is changed to dual orthonormal bases B := (b1, . . . , bN ) and
B∗ := (b∗1, . . . , b

∗
N ) of V using a uniformly chosen (regular) linear transformation, X :=

(χi,j)
U← GL(N,Zp), such that bi =

∏N
j=1 a

χi,j

j = (gχi,1 , . . . , gχi,N ), b∗i =
∏N
j=1 a

ϑi,j
j =

(gϑi,1 , . . . gϑi,N ) (i = 1, . . . , N ), and (ϑi,j) := ψ(X⊤)−1 where ψ U← Z∗p. It holds that
e(bi, b

∗
j ) = e(g, g)δi,j (δi,j = 1 if i = j, and δi,j = 0 if i ̸= j). Here, x := bx11 × · · · ×

bxNN ∈ V and y := (b∗1)
y1 × · · · × (b∗N )

yN ∈ V can be expressed by coefficient vectors
over basis B and B∗ such that (x1, . . . , xN )B = (x⃗)B and (y1, . . . , yN )B∗ = (y⃗)B∗ , and
e(x,y) = e(g, g)

∑N
i=1 xiyi = e(g, g)x⃗·y⃗ ∈ GT .

Intractable problem: A decisional problem in this approach is the decisional subspace prob-
lem [OT08]. It is to tell v = (0, . . . , 0, vN2+1, . . . , vN1)B from u = (v1, . . . , vN1)B when an
element in V (N1 dimension) is given, where (v1, . . . vN1)

U← ZN1
p and N2 + 1 < N1.

Trapdoor: If we have trapdoor t∗ ∈ span
⟨
b∗1, . . . , b

∗
N2

⟩
, then we can efficiently solve the deci-

sional subspace problem. Given v := (0, . . . , 0, vN2+1, . . . , vN1)B or u := (v1, . . . , vN1)B,
we can tell v from u using t∗ since e(v, t∗) = 1 and e(u, t∗) ̸= 1 with high probability.

Advantage of this approach: It is easy to decompose axii = (1, . . . , 1, gxi , 1, . . . , 1) from x :=
ax11 × · · · ×a

xN
N = (x1, . . . , xN )A. In contrast, the DPVS approach employs basis B, which

is linearly transformed from A using a secret random matrix X ∈ Zn×np . It seems hard
to decompose bxii from x′ := (x1, . . . , xN )B (and the decisional subspace problem seems
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intractable). In addition, the secret matrixX (and the dual orthonormal basis B∗ of V) can be
used as trapdoors for the decomposability (and distinguishability for the decisional subspace
problem through the pairing operation over B and B∗).

Parameter Hiding. Let m ≤ n be a fixed positive integer and A ∈ Zm×mp be an invertible
matrix. Let Sm ⊆ [n] be a subset of size m. Lewko proposed how to obtain new dual orthonormal
bases (BA,B

∗
A) from (B,B∗). If Bm is an n × m matrix over Zp whose columns are vectors

b⃗i ∈ B such that i ∈ Sm, then BmA is also an n × m matrix. Let BA := (⃗a1, . . . , a⃗n) where
a⃗i := b⃗i for all i /∈ Sm and a⃗i := (BmA)ℓ for i ∈ Sm, i is the ℓ-th element of Sm and (BmA)ℓ
denotes the ℓ-th column of BmA. If B∗m is n × m matrix over Zp whose columns are vectors
b⃗∗i ∈ B∗ such that i ∈ Sm, then Bm(A−1)

⊤ is also n×m matrix. Let B∗A := (⃗a∗1, . . . , a⃗
∗
n) where

a⃗∗i := b⃗∗i for all i /∈ Sm and a⃗∗i := (B∗m(A
−1)
⊤
)ℓ for i ∈ Sm, i is the ℓ-th element of Sm and

(Bm(A
−1)
⊤
)ℓ denotes the ℓ-th column of Bm(A−1)

⊤. Lewko showed that these newly generated
bases are also dual orthonormal bases.

Lemma 2.5 ([Lew12]) For any fixed positive integersm ≤ n, any fixed invertibleA ∈ Zm×mp and

set SM ⊆ [n] of size m, if (B,B∗) R← Dual(Znp ), then (BA,B
∗
A) is also distributed as a random

sample from Dual(Znp ) and its distribution is independent of A.

Vector decomposition problem. The VD problem was originally introduced by Yoshida, Mit-
sunari, and Fujiwara [YMF10]. We present the definition of a higher dimensional version by
Okamoto and Takashima [OT08] to fit the VD problem into DPVS.

Definition 2.6 (CVDP: (ℓ1, ℓ2)-Computational Vector Decomposition Problem [OT08]) Let λ
be a security parameter and Gob be an algorithm that outputs a description of a ℓ1-dimensional
DPVS (p,V,GT ,A, e) and ℓ1 > ℓ2. Let A be a PPT machine. For all λ ∈ N, we define the
CVDP(ℓ1,ℓ2) advantage of A as

AdvcvdpA,(ℓ1,ℓ2)(λ) := Pr

ω =

ℓ2∏
i=1

bxii

∣∣∣∣∣∣∣
(paramV,B,B∗)

R← Gob(1λ, ℓ1),
(x1, . . . , xℓ1)

U← (Zp)ℓ1 ,
v :=

∏ℓ1
i=1 b

xi
i , ω

R← A(1λ, paramV,B,v)

 .
The CVDP(ℓ1,ℓ2) assumption: For all PPT adversary A, AdvcvdpA,(ℓ1,ℓ2)(λ) < negl(λ).

A specific class of the CVDP instances that are specified over canonical basis A are tractable.

Lemma 2.7 (Easy Basis [OT08]) Let A be a canonical basis of V, and CVDPA
(ℓ1,ℓ2)

be a spe-
cific class of CVDP(ℓ1,ℓ2) in which B is replaced by A. The canonical maps ϕi,j on V can solve
CVDPA

(ℓ1,ℓ2)
in polynomial time.
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Trapdoor. If we have a trapdoor, linear transformation matrix X behind B, then we can ef-
ficiently decompose vectors in DPVS, i.e., solve CVDP(ℓ1,ℓ2) by using the efficient algorithm
Decomp given by Okamoto and Takashima [OT08]. The input is (v, (b1, . . . , bℓ2),X,B) such that
v :=

∏ℓ1
i=1 b

yi
i is a target vector for decomposition, (b1, . . . , bℓ2) is a subspace to be decomposed

into, X is a trapdoor (matrix), and B := (b1, . . . , bℓ1) is a basis generated by using X . Algorithm
Decomp(v, (b1, . . . , bℓ2),X,B): computes u :=

∏ℓ1
i=1

∏ℓ2
j=1

∏ℓ1
κ=1(ϕκ,i(v))

τi,jχj,κ where ϕ is
the canonical map in Definition 2.4, (χi,j) =X and (τi,j) := (X)−1.

Lemma 2.8 ([OT08]) Algorithm Decomp solves CVDP(ℓ1,ℓ2) by using X := (χi,j) such that
bi :=

∏ℓ1
j=1 a

χi,j

j .

2.4 Complexity Assumptions

Definition 2.9 (DLIN Assumption) The DLIN problem is to guess β ∈ {0, 1}, given (Γ, g, f, h, f δ,

hσ, Qβ)
R← Gdlinβ (1λ), where Gdlinβ (1λ): Γ := (p,G,GT , e, g)

R← Gbmp(1
λ), ξ, κ, δ, σ U← Zp,

f := gξ, h := gκ, Q0 := gδ+σ, Q1
U← G, return I := (Γ, f, h, f δ, hσ, Qβ). This advantage

AdvdlinA (λ) is defined as follows.

AdvdlinA (λ) :=
∣∣∣Pr [A(I)→ 1

∣∣∣I R← Gdlin0 (1λ)
]
− Pr

[
A(I)→ 1

∣∣∣I R← Gdlin1 (1λ)
]∣∣∣ .

We say that the DLIN assumption holds if for all PPT adversary A, AdvdlinA (λ) < negl(λ).

Definition 2.10 (Subspace Assumption) The subspace problem is to guess β ∈ {0, 1}, given
(Γ, D,Qβ), where Gdssβ (1λ): Γ R← Gbmp(1

λ), (B,B∗) U← Dual(Znp ), η, β, τ1, τ2, τ3, µ1, µ2, µ3
U←

Zp, for i ∈ [k], Ui := gµ1b⃗i+µ2b⃗k+i+µ3b⃗2k+i and

Vi := gτ1ηb⃗
∗
i+τ2βb⃗

∗
k+i Wi := gτ1ηb⃗

∗
i+τ2βb⃗

∗
k+i+τ3b⃗

∗
2k+i

Q0 := (V1, . . . , Vk) Q1 := (W1, . . . ,Wk)

D := (gb⃗1 , . . . , gb⃗2k , gb⃗3k+1 , . . . , gb⃗n , gη⃗b
∗
1 , . . . , gη⃗b

∗
k , gβb⃗

∗
k+1 , . . . , gβb⃗

∗
2k , gb⃗

∗
2k+1 , . . . , gb⃗

∗
n , U1, . . . , Uk,

µ3), return I := (Γ, D,Qβ). This advantage AdvdssA (λ) is defined as follows.

AdvdssA (λ) :=
∣∣∣Pr [A(I)→ 1

∣∣∣I R← Gdss0 (1λ)
]
− Pr

[
A(I)→ 1

∣∣∣I R← Gdss1 (1λ)
]∣∣∣ .

We say that the subspace assumption holds if for all PPT adversary A, AdvdssA (λ) < negl(λ).

Theorem 2.11 ([Lew12]) The DLIN assumption implies the subspace assumption.

Definition 2.12 (DBDH assumption) The DBDH problem is to guess β ∈ {0, 1}, given (Γ, g, ga,

gb, gc, Qβ)
R← Gdbdhβ (1λ), where Gdbdhβ (1λ): Γ := (p,G,GT , e, g)

R← Gbmp(1
λ), a, b, c U← Zp,
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Q0 := e(g, g)abc, Q1
U← GT , return (Γ, g, ga, gb, gc, Qβ). This advantage AdvdbdhA (λ) is defined as

follows.

AdvdbdhA (λ) :=
∣∣∣ Pr [A(I)→ 1

∣∣∣ I R← Gdbdh0 (1λ)
]
− Pr

[
A(I)→ 1

∣∣∣ I R← Gdbdh1 (1λ)
] ∣∣∣

We say that the DBDH assumption holds if for all PPT adversary A, AdvdbdhA (λ) < negl(λ).

Boyen and Waters pointed out that the following theorem trivially holds [BW06], but for confirma-
tion we write a proof 2.

Theorem 2.13 For any PPT adversary A, there exists PPT algorithm B such that AdvdbdhA ≤
AdvdlinB .

Proof. Given DLIN instance (Γ, g, gξ, gκ, gδξ, gσκ, Q), adversary B for the DLIN problem gives
adversaryA for the DBDH problem tuple (Γ, g, gκ, gξ, Q, T := e(gδξ, gκ) ·e(gσκ, gξ)) as a DBDH
instance. T = e(g, g)κξ(δ+σ), so if Q = gδ+σ, then the tuple is the same as Gdbdh0 . It implicitly
holds that a = κ, b = ξ, c = δ + σ, abc = κξ(δ + σ). If Q = gζ is a uniformly random element
in G, then T = e(g, g)κξ(δ+σ) is a uniformly random element in GT and the tuple is the same as
Gdbdh1 since δ and σ are uniformly random and independent of ζ, ξ, and κ. 2

3 Definitions of Cryptographic Watermarking

We define watermarking schemes for cryptographic functions (one-way functions, hash functions,
etc.). Our definition of watermarking schemes can be extended to treat cryptographic data in-
troduced by Yoshida and Fujiwara [YF11]. In this paper, we focus on a family of functions
F := {Fλ}λ. For example, LTFs are cryptographic functions. Function F is sampled from family
LTFλ := {LTF.Evalek (·)|(ek , ik)

R← LTF.Gen(1λ, b), b ∈ {0, 1}}.
A watermarking key generation algorithm for a family F takes as inputs security parameter

λ and outputs secret key sk, marking key mk, detection key dk, and removing key rk. Our wa-
termarking schemes are public detection watermarking schemes, that is, dk is public. The secret
key is used in a sampling algorithm SampF , which outputs a function F R← Fλ (The sampling
algorithm takes sk as an input). Note that the description of SampF does not include sk. Our
cryptographic watermarking schemes for cryptographic functions F use secret key sk to choose a
function F R← Fλ from the function family. It seems to be a restriction because adversaries cannot
generate functions in the family by themselves and use them for attacks. Function families where
we can publicly sample a function is more general. However, it is very reasonable in our setting
due to the following reason.

• In a realistic setting, only authorized entities can generate marked functions from an origi-
nal non-marked function which is privately generated. They do not distribute non-marked
functions.

2This proof is based on personal communication with Keita Xagawa
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A marking key allows us to embed a mark in function F . A marked function F ′ must be similar to
original function F . A detection and removing key allow us to detect and remove a mark in marked
function F ′, respectively. We sometimes use notation WM(F ) to denote a marked function of F .

Definition 3.1 (Watermarking Scheme for Functions) A watermarking scheme for family F is
a tuple of algorithms CWMF := {WMGen, SampF ,Mark,Detect,Remove} as follows.

WMGen: The key generation algorithm takes as an input security parameter λ and outputs secret
key sk, marking keymk, detection key dk, and removing key rk. That is, (sk,mk, dk, rk) R←
WMGen(1λ).

SampF : The sampling algorithm takes as an input sk and outputs a function in the family F .

Mark: The marking algorithm takes as inputs mk and unmarked function F and outputs marked
function F̃ . That is, F̃ R← Mark(mk,F ).

Detect: The detection algorithm takes as inputs dk and function F ′ and outputs marked (detect a
mark) or unmarked (no mark), that is, Detect(dk, F ′)→ marked/unmarked.

Remove: The removing algorithm takes as inputs rk and marked function F̃ and outputs unmarked
function F := Remove(rk, F̃ ).

As Hopper et al. noted [HMW07], we do not allow any online communication between the Detect
and Mark procedures.

We define the security of cryptographic watermarking based on the definition of strong water-
marking with respect to the metric space proposed by Hopper et al. [HMW07] and software water-
marking proposed by Barak et al. [BGI+12]. We borrow some terms from these studies [BGI+12,
HMW07]. Hopper et al. defined a metric space equipped with distance function d and say that
object O1 and O2 are similar if d(O1, O2) ≤ δ for some δ. However, we do not directly use it since
we focus on function families (not perceptual objects).

Basically, the following properties should be satisfied. Most objects F ∈ Fλ sampled by the
sampling algorithm must be unmarked. We define similarity by ϵ-approximation. That is, if for
randomly chosen input x, output F (x) is equal to F ′(x) with probability ϵ, then we say F ′ ϵ-
approximates F . Given marked function F ′, an adversary should not be able to construct a new
function F̃ , which ϵ-approximates F ′ but is unmarked without removing key rk.

Our definition of the non-removability below is a game-based definition and based on the notion
of strong watermarking by Hopper et al. [HMW07]. Our definitions are specialized to focus on
cryptographic functions (do not use metric spaces). The non-removability states that even if the
adversary is given marked functions, it cannot find a function that is similar to a marked function
but does not contain any mark. This is based on the security against removal introduced by Hopper
et al. [HMW07].

Before we introduce our definitions, we introduce the notion of ϵ-approximation of functions.
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Definition 3.2 (ε-Approximating a Function) A function f ′ is said to ε-approximate a function
f : {0, 1}n → {0, 1}∗, denoted by f ′ ∼=ε f , if Prx←{0,1}n [f ′(x) = f(x)] ≥ ε.

Definition 3.3 (Secure Watermarking for Functions) A watermarking scheme for function fam-
ily F is secure if it satisfies the following properties.

Meaningfulness: For any (sk,mk, dk, rk)
R← WMGen(1λ) and F R← SampF (sk), it holds that

Detect(dk, F )→ unmarked.

Correctness: For any (sk,mk, dk, rk)
R← WMGen(1λ), F R← SampF (sk), and WM(F )

R←
Mark(mk,F ), it holds that Detect(dk,WM(F ))→ marked and Detect(dk,Remove(rk,WM(F )))→
unmarked.

Preserving Functionality: For any input x ∈ {0, 1}n and F ∈ Fλ, it holds that WM(F )(x) =
F (x). If function F ′ preserves the functionality of function F , then we write F ≡ F ′.

Polynomial Blowup: There exists a polynomial p such that for any F ∈ Fλ, |WM(F )| ≤ p(|F |+
|mk|).

Non-Removability: We say that a watermarking scheme satisfies non-removability (or is non-
removable) if it holds that Advnrmv

F ,A (1λ, ϵ) := Pr[Expnrmv
F ,A (λ, ϵ)→ win] < negl(λ) where ϵ is

a parameter for ϵ-approximation of functions. Experiment Expnrmv
F ,A (λ, ϵ) is shown in Figure

1.

On the security experiments. In our construction, the detection key dk is public, given to A,
and we need not the detection oracle DO. For generality, we write the case that dk is not public.

The adversary tries to find a function such that the outputs of the actual detection algorithm
and the ideal detection procedure are different. The ideal detection procedure searches a database
and outputs a decision by using online communication to the marking algorithm. The parameter ϵ
is called the approximation factor. The adversary has access to oracles, i.e., the mark, detect, and
challenge oracles. The mark oracle returns a marked function for a queried non-marked function.
The detect oracle determines whether a queried function is marked or not. The challenge oracle
generates a new (non-marked) function, embeds a mark in the new function, and returns the marked
function (the original non-marked function is hidden).

Eventually, the adversary outputs function F . It means that the adversary claims that it suc-
ceeded in removing a mark from some marked function F ′ without the remove key. The function
F should be similar to (ϵ-approximate) the function F ′.3 This is for security against removal.

In the ideal detection procedure, we need check function F ϵ-approximates F ′. We can achieve
this by comparing outputs of F and F ′ for uniformly random input x in many times. We can use

3In the previous version of this paper, we used the pefect functionality preserving condition for the adversary. How-
ever, we revised the definition based on the definition by Nishimaki and Wichs [NW15] since we cannot check the
perfect functionality preserving condition in polynomial time.
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Experiment Expnrmv
F ,A (λ, ϵ):

(sk,mk, dk, rk)
R←WMGen(1λ); MList := ∅; CList := ∅;

F
R← AMO,CO,DO(1λ);

Detect(dk, F )→ b; IdealDtc(F )→ B′;
If b = unmarked and B′ = {marked}; then return win else return lose

OracleMO(F )

F ′
R← Mark(mk,F );

MList := MList ∪ {F ′};
return F ′;

Oracle COFλ
()

F
R← Fλ;

F ′
R← Mark(mk,F );

CList := CList ∪ {F ′};
MList := MList ∪ {F ′};
return F ′

Oracle DO(F )
Detect(dk, F )→ b;
return b

Procedure IdealDtc(F )

if (∃F ′ ∈ CList : F ∼=ϵ F
′); then return {marked}

else if (∃F ′ ∈ MList : F ∼=ϵ F
′) then return {marked, unmarked}

else return {unmarked}

Figure 1: Experiment for non-removability

Chernoff bound to analyze it. This algorithm is very standard one and similar analyses were shown
in many papers. In this paper, we refer to the analysis by Nishimaki and Wichs [NW15]. The check
algorithm is in Figure 2. See [NW15] for the detail of the analysis.

Theorem 3.4 ([NW15]) If F ϵ-approximates F ′, then the algorithm Test(F, F ′) outputs 1 except
with negligible probability.

As Hopper et al. explained [HMW07], we must introduce the challenge oracle because if
it does not exist, then we cannot define a meaningful security experiment for non-removability.
Adversaries should try to remove a mark in a marked function whose original unmarked function is
unknown to adversaries. Thus, we need an entity that gives adversaries freshly sampled unmarked-
functions.

We can consider the following trivial attack scenario, but it is not a valid attack. If the adversary
samples an unmarked function F ∈ Fλ, queries it to the mark oracle, and finally outputs them as
solutions. The actual detect algorithm returns unmarked but the ideal detect procedure returns
{marked, unmarked} since an equivalent function is recorded in MList.

Discussion on the definition. We require that legal marked functions output by the marking al-
gorithm satisfy the preserving functionality. As we introduced in the introduction, it is impossible
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Inputs: Two functions f0 and f1.

Parameters: 0 < ϵ < 1.

Set cnt := 0 and R := 8λ(1/ϵ)2. For i = 1, . . . , R, do

1. Choose zi ← D where D is the domain of functions.

2. If f0(zi) = f1(zi) then set cnt := cnt+ 1

Let ϵ̂ := cnt/R ∈ [0, 1] be the fraction of trials in which f0(zi) = f1(zi).

If ϵ̂ < 3
4ϵ, then output 0, else 1.

Figure 2: Test algorithm Test for approximation of functions

to construct watermarking schemes that satisfies the preserving functionality if we assume the ex-
istence of iO [BGI+12]. To avoid the impossibility result by Barak et al., we restrict adversaries.
When we prove the security of our watermarking scheme, we assume that adversaries must output
a function that follows the format of the original functions. More concretely, in our scheme, a func-
tion consists of group elements and one integer and adversaries must output group elements and
one integer as a function description to win the security game. Thus, we can avoid the impossibility
results. We call this restriction the same format assumption in this paper. If arbitrary strategies are
allowed, adversaries can use iO to attack our watermarking scheme since obfuscation plays a role
of mark-remover [BGI+01, BGI+12] as we explained in Section 1.3. However, they can not use it
under the same format assumption since obfuscated functions by the candidate constructions of iO
do not consist of group elements [GGH+13b, BR14, BGK+14, AGIS14, AB15, Zim15].

The same format assumption is a strong assumption, but our watermarking scheme is still
meaningful. First, all current candidate constructions of iO are based on graded encoding schemes
[GGH13a, CLT13, GGH15, CLT15]. Several serious attacks to graded encoding schemes were
found in some candidate constructions [CLT13, CHL+15, CGH+15]. Of course, all iO construc-
tions are not attacked so far [CGH+15], but the security of graded encoding schemes have not been
well-studied yet. Constructing watermarking schemes under the assumption that there is no iO is
meaningful though it may be a bad news. Nishimaki and Wichs [NW15] and Cohen, Holmgren,
and Vaikuntanathan [CHV15] independently and concurrently proposed watermarking schemes
against arbitrary strategies under the assumption that there exists iO. Thus, we can say that our
watermarking scheme is an alternative construction in case that there is no iO. Second, in realistic
scenarios, potentially illegal users may be required to reveal illegal copy of marked functions and if
they reveal functions whose format is different from that of original functions, then we can decide
that they are suspicious users. Of course, in this case, we cannot achieve the black-box type trac-
ing, but it is still meaningful. Lastly, our construction of watermarking scheme itself is interesting
because hidden subspaces of DPVS can be used to achieve watermarking.
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Experiment ExpufF ,A(λ):

(pp, sk,mk, dk, rk)
R←WMGen(1λ);

F
R← AMO,DO(1λ, pp);

Vrfy(pp, F )→ b;
If b = 1, then return win else return lose

OracleMO()

F
R← SampF (sk);

F ′
R← Mark(mk,F );

return F ′;

Oracle DO(F )
Detect(dk, F )→ b;
return b

Figure 3: Experiment for unforgeability

On the secret sampling of functions. We can consider auxiliary security definitions for water-
marking where we need a secret key to sample function indices. Adversaries may forge function
indices without using a secret key for sampling. Thus, we introduce a verification algorithm to
check validity of function indices. The security definition is a natural analogy of the unforgeability
of standard digital signatures.

Definition 3.5 (Verifiable Function Indices) Function indices of a watermarking scheme for func-
tion family F are verifiable if the scheme satisfies the following properties.

Verifiability: There exists an algorithm Vrfy (1-bit output) such that for any (pp, sk,mk, dk, rk)
R←

WMGen(1λ) and F R← SampF (sk), Vrfy(pp, F ) → 1. Here, we assume that the algorithm
WMGen also outputs a public parameter for verification.

Unforgeability: We say that a watermarking scheme satisfies unforgeability (or is unforgeable) if
it holds that AdvufF ,A(1

λ) := Pr[ExpufF ,A(λ) → win] < negl(λ). Experiment ExpufF ,A(λ) is
shown in Figure 3.

4 Proposed Watermarking Scheme based on Lewko’s scheme

We present LTFs and watermarking schemes for the LTFs that are secure under the DLIN assump-
tion in this section.

Generally speaking, LTFs can be constructed from homomorphic encryption schemes as ob-
served in many papers [FGK+10, HO12, PW11]. Lewko and Okamoto-Takashima proposed an
IBE and IPE scheme based on DPVS which is homomorphic and secure under the DLIN assump-
tion, respectively (See Appendix A for descriptions of their schemes). We can easily construct a
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LTF from the IBE scheme by applying the matrix encryption technique introduced by Peikert and
Waters [PW08, PW11]. Note that IBE schemes are obtained from IPE schemes where the predicate
is the equality test.

In this section, we present a scheme based on the Lewko IBE scheme. Basically, previous
works used homomorphic PKE schemes to construct LTFs. However, we use homomorphic IBE
schemes to achieve a watermarking scheme because we would like to use the dual system encryp-
tion technique. We assign a tag for each function index and use the tag as an identity of IBE. To
construct LTFs based on IBE schemes, we use not only ciphertexts under some identity but also
a private key for the identity. If there is no private key for identities, then we cannot obtain valid
outputs that can be inverted by an inversion key of the LTF. Note that the private key for an identity
of IBE is not a trapdoor inversion key for the LTF.

4.1 LTF based on Lewko’s IBE scheme

Our LTF LTFmult based on the Lewko IBE is as follows.

LTF.IGen(1λ) : It generates (D,D∗) U← Dual(Z8
p), chooses α, θ, σ U← Zp, ψ := (ψ1, . . . , ψℓ)

U←
Zℓp, and sets gT := e(g, g)αθd⃗1·d⃗

∗
1 and gTj := g

ψj

T for all j ∈ [ℓ] where ℓ is the input length of

functions. It chooses an arbitrary tag ∈ Zp and s1,i, s2,i
U← Zp for all i ∈ [ℓ] and generates

ui,j := g
s1,i
Tj
·gmi,j

T and vi := gs1,id⃗1+s1,itagd⃗2+s2,id⃗3+s2,itagd⃗4 for all i, j ∈ [ℓ] wheremi,i = 1

and mi,j = 0 (if i ̸= j). (Matrix M = {mi,j}i,j = I .) It chooses r1, r2
U← Zp and

generates ktag := g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4 . It returns ek := (U ,V ,ktag, tag) :=

({ui,j}ℓi,j=1 , {vi}
ℓ
i=1 ,ktag, tag), ik := ψ. Hereafter, {ui,j}i,j and {vi}i denote {ui,j}ℓi,j=1

and {vi}ℓi=1, respectively if it is clear from the context.

LTF.LGen(1λ) : This is the same as LTF.IGen except that for all i, j ∈ [ℓ], mi,j = 0 and ik := ⊥.
(MatrixM = 0.)

LTF.Eval(ek , x⃗): First, it parses ek = ({ui,j}i,j , {vi}i ,ktag, tag). For input x⃗ ∈ {0, 1}ℓ, it
computes

yj :=
∏
i

uxii,j =
∏
i

g
xis1,i
Tj

· gximi,j

T = g
⟨x⃗,s⃗1⟩
Tj

g
xj
T

yℓ+1 :=
∏
i

vxii =
∏
i

gxis1,id⃗1+xis1,itagd⃗2+xis2,id⃗3+xis2,itagd⃗4

= g⟨x⃗,s⃗1⟩d⃗1+⟨x⃗,s⃗1⟩tagd⃗2+⟨x⃗,s⃗2⟩d⃗3+⟨x⃗,s⃗2⟩tagd⃗4

where s⃗1 := (s1,1, . . . , s1,ℓ), s⃗2 := (s2,1, . . . , s2,ℓ), and y′ℓ+1 := e(yℓ+1,ktag) = e(g, g)αθd⃗1·d⃗
∗
1⟨x⃗,s⃗1⟩

and returns output y := (y1, . . . , yℓ, y
′
ℓ+1).
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LTF.Invert(ik ,y): For input y, it computes x′j := yj/(y
′
ℓ+1)

ψj = g
⟨x⃗,s⃗1⟩
Tj

g
xj
T /g

⟨x⃗,s⃗1⟩·ψj

T and let
xj ∈ {0, 1} be such that x′j = g

xj
T . It returns x⃗ = (x1, . . . , xℓ).

Theorem 4.1 LTFmult is a lossy trapdoor function if the DBDH assumption holds.

Lemma 4.2 (Lossiness of LTFmult) LTFmult is (ℓ− log p)-lossy.

Proof. We compute lossiness ℓ′. For a lossy function index generated by LTF.LGen, an output is
y = (g

s′1ψ
T , e(g, g)s

′
1) = (g

s′1
T1
, . . . , g

s′1
Tℓ
, e(g, g)s

′
1) where s′1 = ⟨x⃗, s⃗1⟩ ∈ Zp. Here, secret trapdoor

ψ is fixed by the function index. This means that for any given image y, there are at most p possible
values for ⟨x⃗, s⃗1⟩ and pre-images. Therefore, equation |D| /2ℓ′ = p holds by the definition of the
lossiness. By this equation, we can derive equation ℓ′ = ℓ− log p since |D| = 2ℓ. 2

We introduce some notations before we show the indistinguishability. We borrow the notation
introduced by Peikert and Waters [PW11]. For matrix Y = (yi,j) ∈ Zh×wp , we define gYT =

(g
yi,j
T ) ∈ Gh×w

T . Algorithm GenConceal(h,w) which was introduced by Peikert and Waters is as
follows.

1. Choose ζ := (ζ1, . . . , ζh)
U← Zhp and ψ := (ψ1, . . . , ψw, 1)

U← Zwp × {1}.

2. Let V := ζ ⊗ψ = ζ⊤ψ ∈ Zh×(w+1)
p be the outer product of ζ and ψ.

3. Output C := gVT ∈ Gh×(w+1)
T as the concealer matrix and ψ as the trapdoor.

The original concealer matrix by Peikert and Waters is over Gh×w, but we use a matrix over GT

since we use bilinear maps.

Lemma 4.3 (Indistinguishability of LTFmult) If the DBDH assumption holds, then LTFmult sat-
isfies indistinguishability.

Proof. For ψ = (ψ1, . . . , ψℓ, 1), g
ζψ
T denotes (gζψ1

T , . . . , gζψℓ
T , gζT ). We need three steps to

show the lemma. First, we will show that if the DBDH assumption holds, then (gψT ,y = gζψT )

is computationally indistinguishable from (gψT ,y = gtT ) where ζ U← Zp, ψ
U← Zℓp × {1}, and

t
U← Zℓ+1

p . Note that the (ℓ+ 1)-th element of ψ is fixed to 1.

To show the indistinguishability, we define hybrid distribution HYBj : We chooses α0, ζ
U← Zp

and ψ U← Zℓp × {1} and sets gT := e(g, g)α0 and y := (gζψ1

T , . . . , g
ζψj

T , yj+1, . . . , yℓ, g
ζ
T ) where

yk
U← GT for k > j. That is, yk is uniformly random element for k > j. The output is (gψ,y).
We note that HYB0 = (gψT , g

t
T ) and HYBℓ = (gψT , g

ζψ
T ). We show that for each j ∈ [ℓ], HYBj

and HYBj−1 are computationally indistinguishable under the DBDH assumption.
We construct PPT algorithm B that uses distinguisher D for HYBj and HYBj−1. B is given

input (paramG, g, g
a, gb, gc, Q) and computes (τ ,y) ∈ Gℓ+1

T × Gℓ+1
T as follows. B sets τℓ+1 :=

gT := e(g, g)α0 for α0
U← Zp, yℓ+1 := e(g, gc)α0 = gcT . It implicitly holds ζ := c.
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• For k ∈ [j − 1], B chooses ψk and sets τk := gψk
T , yk := e(g, gc)α0ψk = (gcT )

ψk .

• For k = j + 1, . . . , ℓ, B chooses ψk and sets τk := gψk
T , yk

U← GT .

Finally, B embeds the instance, that is, sets τj := e(ga, gb)α0 = gabT , yj := Qα0 (implicitly ψj :=
ab). If Q = e(g, g)abc, then yj = g

ψjζ
T and (τ ,y) = HYBj . If Q U← GT , then yj

U← g
tj
T where

tj
U← Zp and (τ ,y) = HYBj−1. Therefore, HYBj

c
≈ HYBj−1. As a corollary, HYB0

c
≈ HYBℓ.

Second, We define new hybrid distributions HYB′0, . . . ,HYB
′
ℓ′ over matrices C ∈ Gℓ′×(ℓ+1)

T .
In HYB′i, elements in the first i rows ofC are computed as in GenConceal. On the other hand, ele-
ments in the last (ℓ′− i) rows are uniformly random over Gℓ+1

T . HYB′ℓ′ is the same as GenConceal

and HYB′0 is the uniform distribution over Gℓ′×(ℓ+1)
T . We show that for each i ∈ [ℓ′], HYB′i

c
≈

HYB′i−1 if the DBDH assumption holds. We construct PPT algorithm D that uses distinguisher D′

for HYB′i and HYB′i−1. D is given instance (gψT ,y ∈ Gℓ+1
T ), D generates matrix C as follows.

• For each k ≤ (i− 1), chooses ζk
U← Zp and set the k-th row of C be ck := (gψT )

ζk = gζkψT .

• For k = i, sets the i-th row of C be ci := y. That is, D embeds the instance.

• For the other rows, sets uniformly random elements over G(ℓ+1)
T .

If y = gζψT , then the distribution is the same as HYB′i, else if y is uniformly random, then the

distribution is the same as HYB′i−1. Therefore, HYB′0
c≈ HYB′ℓ.

Finally, we prove the lemma. Our final goal is to show ({ui,j}i,j , {vi}i ,ktag, tag) for M =
I is indistinguishable from ({ui,j}i,j , {vi}i ,ktag, tag) for M = 0. In the above simulation,

we only consider {ui,j}i,j and gζT instead of
{
vi = gs1,id⃗1+s1,itagd⃗2+s2,id⃗3+s2,itagd⃗4

}
i
. The key

point is that we can replace (ℓ + 1)-th column element gζT with gζd⃗1+ζtagd⃗2+s2d⃗3+s2tagd⃗4 where
(D,D∗)

R← Dual(Z8
p) in the above simulation since the simulator can generate bases (D,D∗)

and choose tag
U← Zp by itself. We must simulate V = gζd⃗1+ζtagd⃗2+s2d⃗3+s2tagd⃗4 and ktag =

g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2r2tagσd⃗∗3−r2σd⃗∗4 for s2

U← Zp. If we have gζ = gc and matrix D = (d⃗1, . . . , d⃗8),
then we can compute gζd⃗1+ζtagd⃗2 = (gζ)d⃗1+tagd⃗2 without knowing ζ since simulator B generates
(D,D∗)

R← Dual(Z8
p) by itself. B can also generate ktag since it has D∗. Therefore, in the

above simulation we can replace (ℓ+ 1)-th column element gζT with gζd⃗1+ζtagd⃗2+s2d⃗3+s2tagd⃗4 and
add ktag = g(α+r1tag)θd⃗

∗
1−r1θd⃗∗2r2tagσd⃗∗3−r2σd⃗∗4 (We can set α0 := αθd⃗1 · d⃗∗1). Therefore, LTFmult

satisfies indistinguishability. 2

4.2 Watermarking Scheme for LTFmult

In this section, we present our watermarking scheme. First, we give an overview of our construc-
tion.
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We added extra two dimensions of DPVS to the original Lewko IBE scheme since we use the
extra dimensions to embed watermarks. Even if we add a vector spanned by d⃗∗7 and d⃗∗8 to an element
ktag in a function index, which is spanned by d⃗∗1, . . . , d⃗

∗
4, it is indistinguishable from the original

one since vectors d⃗7, d⃗8, d⃗∗7, d⃗
∗
8 are hidden. Moreover, the marked index works as the original non-

marked index since elements in function index V are spanned by d⃗1, . . . , d⃗4 and components d⃗∗7, d⃗
∗
8

are canceled. However, if we have a vector which is spanned by d⃗7, d⃗8, then we can detect the mark
which is generated by d⃗∗7, d⃗

∗
8. If we have complete dual orthonormal bases (D,D∗), then we can

use the vector decomposition algorithm introduced in Section 2.3 and eliminate the vector spanned
by d⃗∗7, d⃗

∗
8, i.e., watermarks.

Our watermarking scheme CWMmult for LTFmult is as follows:

WMGen(1λ): It generates (D,D∗) U← Dual(Z8
p), chooses α, θ, σ U← Zp and u7, u8

U← Z∗p, and sets

gT := e(g, g)αθd⃗1·d⃗
∗
1 , pp := D̂ := (paramV, gT , g

d⃗1 , . . . , gd⃗4), sk := (D̂, gαθd⃗∗1 , gθd⃗∗1 , gθd⃗∗2 , gσd⃗∗3 ,
gσd⃗

∗
4), mk := (gd⃗

∗
7 , gd⃗

∗
8), dk := (D̂, c := gu7d⃗7+u8d⃗8), and rk := (D,D∗). Keys sk, mk,

and rk are secret. Parameter pp and Key dk are public.

Samp(sk): The sampling algorithm chooses tag ∈ Zp and ψ U← Zℓp, s⃗1, s⃗2
U← Zℓp, and generates

(ek, ik) := ((U ,V ,ktag, tag),ψ) as LTF.IGen. It computes ktag := g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4 .

Mark(mk, ek): It parses ek = (U ,V ,ktag, tag) = (U ,V , g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4 , tag),

chooses t7, t8
U← Zp, and computes k̃tag := ktag ·gt7d⃗

∗
7+t8d⃗

∗
8 by using gd⃗

∗
7 and gd⃗

∗
8 . It outputs

marked function index WM(ek) = (U ,V , k̃tag, tag).

Detect(dk, ẽk): It parses ẽk = (U ,V , k̃tag, tag) and dk = (D̂, c). Next, it computes ∆ :=

e(c, k̃tag). If the following condition holds, then it outputs marked, otherwise outputs
unmarked.

• ∆ = e(c, k̃tag) ̸= 1

Remove(rk, ẽk): It parses rk = (D,D∗) and ẽk = (U ,V , k̃tag, tag), runs the decomposition al-

gorithm. That is, it computes
∑m

j=1 g
zj d⃗

∗
j = Decomp(k̃tag, (g

d⃗∗1 , . . . , gd⃗
∗
m),D∗, (gd⃗

∗
1 , . . . , gd⃗

∗
8))

for all m < 8, where zj ∈ Zp and obtains gzj d⃗
∗
j for j = 1, . . . , 8. It holds k̃tag =

gz1d⃗
∗
1+···+z8d⃗∗8 . It computes k′tag := k̃tag/g

z7d⃗∗7+z8d⃗
∗
8 and outputs (U ,V ,k′tag, tag) as an

unmarked index.

Vrfy(pp, ek): It parses ek = ({ui,j}i,j , {vi}i ,ktag, tag), chooses s1, s2
U← Zp, computes u′ :=

gs1T and v′ := gs1d⃗1+s1tagd⃗2+s2d⃗3+s2tagd⃗4 , and checks e(v′,ktag) = u′. The equation holds,
then outputs 1. Else 0.

We can easily verify that meaningfulness, correctness, and polynomial blowup hold. Note that the
sampling algorithm uses sk to sample a function index and sk does not include (gd⃗

∗
7 , gd⃗

∗
8). Thus,

meaningfulness hold with probability 1.
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Preserving functionality holds since elements in U and V do not include vectors gd⃗7 and gd⃗8

and vector gt1d⃗
∗
7+t2d⃗

∗
8 does not interfere the computation of LTF.Eval.

We can also verify that verifiability holds. The procedure can be seen as verification of signa-
tures for tags (IBE schemes are transformed into signature schemes by the Naor’s transformation).

Note that if we do not have secret key (gd⃗
∗
1 , . . . , gd⃗

∗
4), then we cannot compute a complete

function index, that is, we cannot compute an element ktag. This seems to be a restriction, but in the
scenario of watermarking schemes, this is acceptable by following reasons. We use watermarking
schemes to authorize objects and such objects are privately generated by authors. For example,
movies, music files, and software are generated by some companies and they do not distribute
unauthorized (unmarked) objects. Moreover, in the experiment on security, the adversary is given a
oracle which gives marked function indices. Thus, it is reasonable that unauthorized parties cannot
efficiently sample functions by themselves.

4.3 Security Proofs for CWMmult

Definition 4.4 (The same format assumption) Adversaries in the experiment Expnrmv
F ,A (λ, ϵ) and

ExpufF ,A(λ) for CWMmult output group elements and one integer.

Theorem 4.5 Our watermarking scheme CWMmult for ϵ = 1/poly(λ) is secure under the DLIN
and same format assumptions.

We prove the theorem by proving Theorems 4.6.

Theorem 4.6 (Non-Removability) Our scheme CWMmult satisfies non-removability under the
subspace and same format assumptions.

Proof. If A outputs ek∗, where Detect(dk, ek∗) → unmarked and IdealDtc(ek∗) → marked,
then we construct algorithm B, which solves the subspace problem with k = 1 and n = 8. B is
given Γ, D = (gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗8 , gηb⃗

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , . . . , gb⃗

∗
8 , U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , µ3), and Qb

where Qb is V1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2 or W1 = gτ1η⃗b

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 . B chooses θ, α′, σ U← Zp, sets

d⃗1 := b⃗∗3 d⃗2 := b⃗∗4 d⃗3 := b⃗∗5 d⃗4 := b⃗∗6 d⃗5 := b⃗∗7 d⃗6 := b⃗∗8 d⃗7 := b⃗∗1 d⃗8 := b⃗∗2

d⃗∗1 := b⃗3 d⃗∗2 := b⃗4 d⃗∗3 := b⃗5 d⃗∗4 := b⃗6 d⃗∗5 := b⃗7 d⃗∗6 := b⃗8 d⃗∗7 := b⃗1 d⃗∗8 := b⃗2,

and can generate (e(g, g)αθd⃗1·d⃗
∗
1 , gd⃗1 , . . . , gd⃗4) := (e(gb⃗

∗
4 , gb⃗4)α

′µ3θ, gb⃗
∗
3 , gb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6) and mk =

(gd⃗
∗
7 , gd⃗

∗
8) := (gb⃗1 , gb⃗2). B can compute a detection key since gηb⃗

∗
1 , gβb⃗

∗
2 are given and B can

compute (gηb⃗
∗
1)u

′
1(gβb⃗

∗
2)u

′
2 . B has (gd⃗

∗
2 , . . . , gd⃗

∗
8) but does not have gd⃗

∗
1 since gb⃗3 is not given. That

is, B has the mark key and perfectly simulates the mark oracle. On the other hand, the secret key is
incomplete as follows, sk = (⊥,⊥, gθd⃗∗2 , gσd⃗∗3 , gσd⃗∗4) := (⊥,⊥, gθ⃗b4 , gσb⃗5 , gσb⃗6).
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It implicitly holds α = α′µ3. To simulate the challenge oracle without the complete sk, for
tag, B chooses r′1, r2, t7, t8

U← Zp and computes

k̃tag := (U1)
(α′+r′1tag)θg−r

′
1µ3θd⃗

∗
2+r2tagσd⃗

∗
3−r2σd⃗∗4+t7d⃗∗7+t8d⃗∗8

= g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4+(t7−θ(α′+r′1tag)µ1)d⃗

∗
7+(t8−θ(α′+r′1tag)µ2)d⃗

∗
8 .

We set r1 := µ3r
′
1. This is a valid marked index. If A outputs valid unmarked index ek∗ =

(U∗,V ∗,k∗tag∗ , tag
∗) , then B computes ∆ := e(Qb,k

∗
tag∗).

There is a possibility that k∗tag∗ does not include gd⃗
∗
1 , that is, for some s1 ∈ Zp, it may not hold

e(gs1d⃗1 ,k∗tag∗) = gs1T . However, this case does not happen with non-negligible probability due to
the ϵ-approximation condition and the property of algorithm Test. Correctly computing (ℓ+ 1)-th
element of the output of the function for random input x⃗ is equivalent to that for some s1 it holds
e(gs1d⃗1+s1tag

∗d⃗2+s2d⃗3+s2tag∗d⃗4 ,k∗tag∗) = gs1T where gT = e(g, g)αθd⃗1·d⃗
∗
1 .

For randomly chosen x, it holds that yℓ+1 :=
∏
i(v
∗
i )
xi =

∏
i g
xis

∗
1,id⃗1+xis

∗
1,itagd⃗2+xis

∗
2,id⃗3+xis

∗
2,itagd⃗4

and e(yℓ+1,k
∗
tag∗) = e(g, g)αθd⃗1·d⃗

∗
1⟨x⃗,s⃗∗1⟩ for some s⃗∗1, s⃗

∗
2 ∈ Zℓp with probability ϵ. We can consider

⟨x⃗, s⃗∗1⟩ = s1.
If ∆ = 1, then B outputs 0 (b = 0), otherwise, it outputs 1. B can output correct b. Analysis is

as follows.

• If Q0 = gτ1η⃗b
∗
1+τ2βb⃗

∗
2 = gτ1ηd⃗7+τ2βd⃗8 is given, then ∆ = 1 since A succeeds removing the

mark and k∗tag∗ does not include vectors d⃗∗7 and d⃗∗8.

• If Q1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 = gτ1ηd⃗7+τ2βd⃗8+τ3d⃗1 is given, then ∆ ̸= 1 since k∗tag∗ includes

gd⃗
∗
1 with non-negligible probability due to the ϵ-approximation condition.

Thus, B breaks the problem. 2

Before we prove the unforgeability, we give a few remarks. First, we prove the unforgeability
in a model where the adversary is not allowed to output a function index whose tag is equal to one
of tags of indices generated by the mark oracle. Of course, it may be possible that the adversary
outputs a function index whose tag is the same as a given tag and functionality is different from
given functions by the oracles.

We can convert this weaker security into the strong security where the adversary is allowed
to output a function index whose tag is equivalent to a given tag by the mark oracle because our
function indices can be seen as signatures for tags (Naor’s transformation) and there is a generic
transformation as follows. We can extend the unforgeability to stronger one by using known
techniques that convert standard unforgeable signature schemes into strongly unforgeable signa-
ture schemes. We now define algorithm Xtr(pk, sk, tag). It chooses r1, r2

U← Zp and outputs
ktag := g(α+r1tag)θd⃗

∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4 . We can consider ktag be a signature for tag. Naor

pointed out that signature schemes can be derived from IBE schemes [BF03]. Thus, we can prove
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the unforgeability of our watermarking schemes by using the unforgeability of signature schemes
derived from IBE schemes of Lewko.

Huang, Wong, and Zhao proposed a generic transformation technique for converting unforge-
able signature schemes into strongly unforgeable ones [HWZ07]. Let (Gen, Sign,Vrfy) be strong
one-time signature scheme. The conversion is as follows: generates (vkot, skot)

R← Gen(1λ),
kvkot

R← Xtr(pk, sk, vkot), that is, tag is replaced by vkot, and sig := Sign(skot, tag ∥ kvkot) and
outputs (kvkot , sig, vkot) as a signature. If we show that the adversary cannot forge a marked index
for tag which is not queried to the oracle and ktag in our scheme is replaced with (kvkot , sig.vkot)
(of course, ek includes tag though we omit it), then our watermarking scheme satisfies strong un-
forgeability (what we defined in Section 3) by the strongly unforgeable property. That is, we can
show that the adversary cannot output a function index with a given tag. In this paper, we prove
the standard unforgeability for simplicity.

Next, we prove unforgeability.

Theorem 4.7 Our scheme CWMmult satisfies unforgeability under the subspace and same format
assumptions.

Proof. Let qM be the number of queries to the mark oracle. There are two types of element ktag
(we call this element key hereafter) in our scheme [Wat09].

Normal key: ktag = g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4+t7d⃗∗7+t8d⃗∗8

Semi-functional key: ktag = g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4+t5d⃗∗5+t6d⃗∗6+t7d⃗∗7+t8d⃗∗8 . We can

generate semi-functional keys if we have the secret key and (gd⃗
∗
5 , gd⃗

∗
6).

Both types of keys give a correct output (we can check this by simple calculation). By the termi-
nology of Gerbush, Lewko, O’neill, and Waters [GLOW12], we can define forgery classes, Type I
and Type II forgery as follows.

VI := {(tag∗,k∗tag∗) ∈ V | t5, t6 ∈ Z∗p, e(gt5d⃗5+t6d⃗6 ,k∗tag∗) = 1}

VII := {(tag∗,k∗tag∗) ∈ V | t5, t6 ∈ Z∗p, e(gt5d⃗5+t6d⃗6 ,k∗tag∗) ̸= 1}

V := {(tag∗,k∗tag∗) | s1, s2 ∈ Z∗p, e(gs1d⃗1+s1tag
∗d⃗2+s2d⃗3+s2tag∗d⃗4 ,k∗tag∗) = gs1T }.

Set V is a set of keys that passes the verification algorithm. A Type I and II forgery can be seen as
a normal and simulation key, respectively and it holds V = VI ∪ VII and VI ∩ VII ̸= ∅.

To show that our scheme satisfies unforgeability, we introduce the following games. We con-
sider game Game-i where the mark oracle generates semi-functional keys for the first i ∈ [qM]
queries and normal keys for the remaining (qM − i) queries. Note that the marking oracle does
not give unmarked function indices. It generates function indices, embeds marks to them, and
gives marked indices. Let Advforge-Ni (resp. Advforge-Si ) denote the advantage of the adversary in
Game-(i) for outputting a Type I (resp. Type II) forgery key for a non-given tag.
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1. In Game-(0), the challenge oracles return normal keys. First, We can show Lemma 4.8: If
A outputs a Type II forgery key, then we can construct algorithm B1 (simulator for A) that
solves the subspace problem

2. Next, we consider Game-(i). We can show Lemma 4.9: If A detects the change of an-
swers by the mark oracle (from normal key answer to semi-functional key answer), we can
construct algorithm B (simulator for A) which solves the subspace problem.

3. Last, we consider Game-(qM), where all answers of the mark oracle toA are semi-functional
keys. We can show Lemma 4.10: If adversary A outputs a Type I forgery key, then we can
construct algorithm B2 which solves the subspace problem.

By Lemma 4.8, 4.9, and 4.10, we can show the following:

AdvForgeA (λ) = Advforge-N0 + Advforge-S0

< Advforge-N0 + AdvdssB1

< Advforge-NqM
+ qMAdvdssB + AdvdssB1

< AdvdssB2 + qMAdvdssB + AdvdssB1

This proof strategy is based on the dual system encryption methodology by Waters [Wat09] or the
dual form signature methodology by Gerbush, Lewko, O’neill, and Waters [GLOW12].

Lemma 4.8 We assume the same format assumption. If A outputs a marked index that include
Type II forgery key in Game-(0), then we can construct an algorithm that break the subspace
assumption with k = 2 and n = 8.

Lemma 4.9 We assume the same format assumption. If there existsA that distinguishes Game-(i− 1)
from Game-(i), then we can construct an algorithm that break the subspace assumption with k = 2
and n = 8.

Lemma 4.10 We assume the same format assumption. If A outputs a marked index that include
Type I forgery key in Game-(qM), then we can construct an algorithm that break the subspace
assumption with k = 1 and n = 8.

The theorem follows from these lemmas (the DLIN assumption implies the subspace assumption).
First, we give a proof of Lemma 4.8.

Proof of lemma. IfA outputs ek∗ where Vrfy(pp, ek∗)→ 1, then we construct algorithm B which
solves the subspace problem k = 2 and n = 8. B is given Γ,D = (gb⃗1 , . . . , gb⃗4 , gb⃗7 , gb⃗8 , gηb⃗

∗
1 , gη⃗b

∗
2 ,

gβb⃗
∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , . . . , gb⃗

∗
8 , U1 = gµ1b⃗1+µ2b⃗3+µ3b⃗5 , U2 = gµ1b⃗2+µ2b⃗4+µ3b⃗6 , µ3), and Qb where Qb is
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(V1, V2) = (gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4) or (W1,W2) = (gτ1η⃗b

∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6).

For dual orthonormal bases (D,D∗), we first consider dual orthonormal bases (F,F∗) as follows:

f⃗1 := η⃗b∗1 f⃗2 := η⃗b∗2 f⃗3 := βb⃗∗3 f⃗4 := βb⃗∗4 f⃗5 := b⃗∗5 f⃗6 := b⃗∗6 f⃗7 := b⃗∗7 f⃗8 := b⃗∗8

f⃗∗1 := η−1⃗b1 f⃗∗2 := η−1⃗b2 f⃗∗3 := β−1⃗b3 f⃗∗4 := β−1⃗b4 f⃗∗5 := b⃗5 f⃗∗6 := b⃗6 f⃗∗7 := b⃗7 f⃗∗8 := b⃗8.

B chooses random matrix A ∈ Z2×2
p , which is invertible except negligible probability. Matrix

A ∈ Z2×2
p and (A−1)

⊤ are applied to f⃗5, f⃗6 and f⃗∗5 , f⃗
∗
6 as changes of basis matrix, respectively.

That is, B sets d⃗i = f⃗i and d⃗∗i = f⃗∗i for i = 1, . . . , 4, 7, 8 and it implicitly sets D = FA, D∗ = F∗A.
By Lemma 2.5, (D,D∗) are correct dual orthonormal bases.

In order to set θ := θ′η, σ := σ′β implicitly, B chooses α, θ′, σ′ U← Zp, and computes D̂ :=

(e(g, g)αθd⃗1·d⃗
∗
1 , gd⃗1 , . . . , gd⃗4) := (e(gb⃗1 , gηb⃗

∗
1)αθ

′
, gηb⃗

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4) and sk = (gαθd⃗

∗
1 , gθd⃗

∗
1 , gθd⃗

∗
2 ,

gσd⃗
∗
3 , gσd⃗

∗
4) := (gαθ

′⃗b1 , gθ
′⃗b1 , gθ

′⃗b2 , gσ
′⃗b3 , gσ

′⃗b4) since it has (gηb⃗
∗
1 , gη⃗b

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4), (gb⃗1 , . . . , gb⃗4),

θ′, and σ′. B has dk = (gu7g
d⃗7+u8gd⃗8 ), which is calculated by A and (gb⃗

∗
7 , gb⃗

∗
8) and mark key

mk = (gd⃗
∗
7 , gd⃗

∗
8), which is calculated by A and (gb⃗7 , gb⃗8) and can simulate the mark oracle since it

has (gb⃗7 , gb⃗8) and (gb⃗
∗
7 , gb⃗

∗
8). Note that B does not have gd⃗

∗
5 and gd⃗

∗
6 since gb⃗5 and gb⃗6 are not given.

In order to simulate the mark oracle, for tag, B chooses r1, r2, t7, t8, tag
U← Zp and computes

k̃tag := g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4+t7d⃗∗7+t8d⃗∗8 . This is a valid marked index. Let Qb =

(T1, T2). If A outputs a valid ek∗ = (U∗,V ∗,k∗tag∗ , tag
∗) which include a Type II forgery key

k∗tag∗ where k∗tag∗ ∈ VII , that is, for s1, s2, t5, t6
U← Z∗p

e(gs1d⃗1+s1tag
∗d⃗2+s2d⃗3+s2tag∗d⃗4 ,k∗tag∗) = gs1T ∧ e(g

t5d⃗5+t6d⃗6 ,k∗tag∗) ̸= 1,

then computes C0 := e(T1, g
b⃗1)θ

′α = e(g, g)αθτ1d⃗1·d⃗
∗
1 , C := T1(T2)

tag∗ , and ∆ := e(C,ktag∗).
In this game, we assume thatA outputs an index that includes a Type II forgery key, so coefficients
of d⃗∗5, d⃗

∗
6 in ktag∗ are not 0.

• If T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 = gτ1d⃗1+τ2d⃗3 and T2 = gτ1ηb⃗

∗
2+τ2βb⃗

∗
4 = gτ1d⃗2+τ2d⃗4 , then it holds

that C = gτ1d⃗1+τ1tagd⃗2+τ2d⃗3+τ2tagd⃗4 and ∆ := e(C,k∗tag∗) = e(g, g)αθτ1d⃗1·d⃗
∗
1 due to the

verification condition. We can consider τ1 as s1.

• If T1 = gτ1η⃗b
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 = gτ1d⃗1+τ2d⃗3+τ3b⃗

∗
5 and T2 = gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 = gτ2d⃗1+τ2d⃗4+τ3b⃗

∗
6 ,

thenC = gτ1d⃗1+τ1tagd⃗2+τ2d⃗3+τ2tagd⃗4+τ3b⃗
∗
5+τ3tag⃗b

∗
6 and ∆ := e(C,k∗tag∗) = e(g, g)αθτ1d⃗1·d⃗

∗
1+γ

∗

where γ∗ ̸= 0 due to the verification condition.

In the latter case, the coefficient vector of (⃗b∗5, b⃗
∗
6) is (τ3, tagτ3), thus the coefficient vector of

(d⃗5, d⃗6) is τ3A−1(1, tag∗)
⊤ and γ = (t∗5, t

∗
6)τ3A

−1(1, tag∗)⊤. These coefficients are uniformly
random since B chose uniformly random A. If ∆/C0 = 1, then B outputs 0 (b = 0). Else if
∆/C0 ̸= 1, then it outputs 1. Thus, B can break the assumption. ■
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Next, we prove Lemma 4.9.

Proof of lemma. IfA outputs ek∗ where Vrfy(pp, ek∗)→ 1, then we construct algorithm B which
solves the subspace problem k = 2 and n = 8. B is given Γ,D = (gb⃗1 , . . . , gb⃗4 , gb⃗7 , gb⃗8 , gηb⃗

∗
1 , gη⃗b

∗
2 ,

gβb⃗
∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , . . . , gb⃗

∗
8 , U1 = gµ1b⃗1+µ2b⃗3+µ3b⃗5 , U2 = gµ1b⃗2+µ2b⃗4+µ3b⃗6 , µ3), and Qb where Qb is

(V1, V2) = (gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4) or (W1,W2) = (gτ1η⃗b

∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6).

For dual orthonormal bases (D,D∗), we set

d⃗1 := b⃗1 d⃗2 := b⃗2 d⃗3 := b⃗3 d⃗4 := b⃗4 d⃗7 := b⃗7 d⃗8 := b⃗8

d⃗∗1 := b⃗∗1 d⃗∗2 := b⃗∗2 d⃗∗3 := b⃗∗3 d⃗∗4 := b⃗∗4 d⃗∗7 := b⃗∗7 d⃗∗8 := b⃗∗8

B chooses random matrix A ∈ Z2×2
p , which is invertible except negligible probability. Matrix A

and (A−1)
⊤ are applied as changes of basis matrix to f⃗5, f⃗6 and f⃗∗5 , f⃗

∗
6 , respectively, that is, it

implicitly holds that D := BA and D∗ := B∗A and they are correct distribution and reveal no
information about A by Lemma 2.5. In order to set θ := η and σ := β implicitly, B chooses α U←
Zp and compute e(g, g)αθd⃗1·d⃗

∗
1 := e(gb⃗1 , gη⃗b

∗
1)α. Here it holds that gθd⃗

∗
1 = gη⃗b

∗
1 and gσd⃗

∗
3 = gβb⃗

∗
3 .

B can generate D̂ := (e(g, g)αθd⃗1·d⃗
∗
1 , gd⃗1 , . . . , gd⃗4) := (gb⃗1 , . . . , gb⃗4) and sk = (gαθd⃗

∗
1 , gθd⃗

∗
1 , gθd⃗

∗
2 ,

gσd⃗
∗
3 , gσd⃗

∗
4) := ((gη⃗b

∗
1)α, gηb⃗

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4). B has mk = (gd⃗

∗
7 , gd⃗

∗
8), which is calculated by A

and (gb⃗
∗
7 , gb⃗

∗
8) and dk = (gu7g

d⃗7+u8gd⃗8 ), which is calculated byA and ((gb⃗7 , gb⃗8)) and can simulate
the mark oracle since it has (gb⃗

∗
7 , gb⃗

∗
8), (gb⃗7 , gb⃗8), and α.

B can generate normal keys by using sk and mk, so it returns normal keys for j-th query
where i < j. It can also compute semi-functional keys since it has (gb⃗

∗
5 , gb⃗

∗
6) and can com-

pute random linear combination of them, that is, gt5b⃗
∗
5+t6b⃗

∗
6 . It is equivalent to a vector spanned

by gd⃗
∗
5 and gd⃗

∗
6 . Thus, B returns semi-functional keys for j-th query where j < i. Let Qb =

(T1, T2). In order to simulate i-th query, B chooses t7, t8, tagi,
U← Zp and computes k̃tagi :=

(gη⃗b
∗
1)αT

tagi
1 (T2)

−1gt7d⃗
∗
7+t8d⃗

∗
8 . Here, we can consider as r1 := τ1, r2 := τ2.

• If T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 and T2 = gτ1η⃗b

∗
2+τ2βb⃗

∗
4 , then

k̃tagi = g(α+τ1tagi)θd⃗
∗
1−τ1θd⃗∗2+τ2σtagid⃗∗3−τ2σd⃗∗4+t7d⃗∗7+t8d⃗∗8 .

This is exactly Game-(i− 1).

• If T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 and T2 = gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 , then

k̃tagi = g(α+τ1tagi)θd⃗
∗
1−τ1θd⃗∗2+τ2σtagid⃗∗3−τ2σd⃗∗4+tagiτ3b⃗

∗
5−τ3b⃗∗6+t7d⃗∗7+t8d⃗∗8 .

This is exactly Game-(i).

In the latter case, the coefficient vector of b⃗∗5 and b⃗∗6 is X⃗ := (tagiτ3,−τ3). If A outputs valid
ek∗ = (U∗,V ∗,k∗tag∗) where k∗tag∗ ∈ V (maybe k∗tag∗ includes gd⃗

∗
5 or gd⃗

∗
6 ), then B computes
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C := U1(U2)
tag∗ = gµ1d⃗1+µ1tag

∗d⃗2+µ2d⃗3+µ2tag∗d⃗4+µ3b⃗5+µ3tag∗b⃗6 and C0 := (e(gη⃗b
∗
1 , U1))

α =

(e(g, g)αθd⃗1·d⃗
∗
1)µ1 . The coefficient vector of (⃗b5, b⃗6) is Y⃗ := (µ3, tag

∗µ3). The adversary output
a function index whose tag is new, so tag∗ is different from all tagi which are given from the
mark oracle. The coefficient vector of (d⃗∗5, d⃗

∗
6) and (d⃗5, d⃗6) are X⃗ ′ := τ3A

⊤(tagi,−1)
⊤ and

Y⃗ ′ := µ3A
−1(1, tag∗), respectively. The distribution of all values except k̃tagi and (C0, C) is

independent of transformation matrix A and tag∗ ̸= tagi, so coefficient X⃗ ′ and Y⃗ ′ are uniformly
random by Lemma 2.5. B computes ∆ := e(C,ktag∗).

If k∗tag∗ ∈ VI and ∆/C0 = 1 holds due to the verification condition, then B outputs 0. Note

that gb⃗5 and gb⃗6 in C does not affect this condition since k∗tag∗ ∈ VI .
If k∗tag∗ ∈ VII and ∆/C0 ̸= 1 holds, then B outputs 1.
Thus, if A detects the change, that is, if there is non-negligible difference between that A out-

puts a normal conversion key and a semi-functional conversion key, then B can break the subspace
assumption. ■
Last, we prove Lemma 4.10.

Proof of lemma. IfA outputs ek∗ where Vrfy(pp, ek∗)→ 1, then we construct algorithm B which
solves Subspace problem k = 1 and n = 8. B is given Γ,D = (gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗8 , gη⃗b

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 ,

. . . , gb⃗
∗
8 , U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , µ3), andQb whereQb is V1 = gτ1ηb⃗

∗
1+τ2βb⃗

∗
2 orW1 = gτ1η⃗b

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

For dual orthonormal bases (D,D∗), we set

d⃗1 := b⃗∗3 d⃗2 := b⃗∗4 d⃗3 := b⃗∗5 d⃗4 := b⃗∗6 d⃗5 := b⃗∗1 d⃗6 := b⃗∗2 d⃗7 := b⃗∗7 d⃗8 := b⃗∗8

d⃗∗1 := b⃗3 d⃗∗2 := b⃗4 d⃗∗3 := b⃗5 d⃗∗4 := b⃗6 d⃗∗5 := b⃗1 d⃗∗6 := b⃗2 d⃗∗7 := b⃗7 d⃗∗8 := b⃗8.

B chooses θ, α′, σ U← Zp, and can compute D̂ := (e(g, g)αθd⃗1·d⃗
∗
1 , gd⃗1 , . . . , gd⃗4) := (e(gb⃗

∗
4 , gb⃗4)α

′µ3θ,

gb⃗
∗
3 , gb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6) where α := α′µ3, dk = (gu7g

d⃗7+u8gd⃗8 ) := (gu7g
b⃗∗7+u8g

b⃗∗8 ) for u7, u8
U← Z∗p

and mk = (gd⃗
∗
7 , gd⃗

∗
8) := (gb⃗7 , gb⃗8) (i.e., can simulate the mark algorithm), but does not have

gd⃗
∗
1 since gb⃗3 is not given. That is, it has incomplete sk = (gαθd⃗

∗
1 , gθd⃗

∗
1 , gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4) :=

(⊥,⊥, gθ⃗b4 , gσb⃗5 , gσb⃗6). B also has (gd⃗
∗
5 , gd⃗

∗
6) = (gb⃗1 , gb⃗2). Here, U1 = gµ1d⃗

∗
5+µ2d⃗

∗
6+µ3d⃗

∗
1 and we

use it to simulate keys (ktag) without the complete secret key. In order to simulate the mark oracle,
B chooses r′1, r2, t

′
5, t
′
6, t7, t8, tag

U← Zp and computes

k̃tag := (U1)
(α′−r′1tag)θg−r

′
1µ3θd⃗

∗
2+r2tagσd⃗

∗
3−r2σd⃗∗4+t′5d⃗∗5+t′6d⃗∗6+t7d⃗∗7+t8d⃗∗8

= g(α+r1tag)θd⃗
∗
1−r1θd⃗∗2+r2tagσd⃗∗3−r2σd⃗∗4+(t′5−θ(α′+r′1tag)µ1)d⃗

∗
5+(t′6−θ(α′+r′1tag)µ2)d⃗

∗
6+t7d⃗

∗
7+t8d⃗

∗
8 .

It implicitly holds r1 := µ3r
′
1. This is a valid marked semi-functional key. IfA outputs normal key

ek∗ = (U∗,V ∗,k∗tag∗ , tag
∗) where

k∗tag∗ ∈ VI ,

thenB chooses s1, s2
U← Zp and computesC := gs1d⃗1+s1tag

∗d⃗2+s2d⃗3+s2tag∗d⃗4 ,C0 := e(g, g)s1αθ⃗b4 ·⃗b
∗
4 ,

and ∆ := e(C · Qb,k
∗
tag∗). If Qb = gτ1ηb⃗

∗
1+τ2βb⃗

∗
2 = gτ1ηd⃗5+τ2βd⃗6 , then ∆/C0 = 1 due to the
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verification condition and k∗tag∗ ∈ VI . If Qb = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 = gτ1ηd⃗5+τ2βd⃗6+τ3d⃗1 , then

∆/C0 = e(g, g)τ3(α+r
∗
1tag

∗)θd⃗1·d⃗∗1 ̸= 1. Thus, B can break the subspace assumption. ■

Thus, we finished the proof of Theorem 4.7 2

5 Concluding Remarks

We introduced the notion of cryptographic watermarking schemes, defined its security notion, and
proposed a concrete construction by using DPVS. It is secure under the DLIN assumption and
same format assumption in the standard model. This gives us the first positive result about provably
secure watermarking schemes. We can construct a similar scheme by using Okamoto-Takashima
IPE scheme. We list a few remarks.

Constructions Based on the Symmetric External Diffie-Hellman Assumption. Chen, Lim,
Ling, Wang, and Wee proposed an IBE scheme by using the subspace assumption based on the
symmetric external Diffie-Hellman (SXDH) assumption, where the decisional Diffie-Hellman as-
sumption holds in both groups of an asymmetric pairing group [CLL+12]. Their IBE scheme is
similar to Lewko’s scheme and we can apply our technique to their scheme. Thus, we can construct
a more efficient watermarking scheme based on the SXDH assumption.

Constructions Based on Composite-Order Pairing Groups. We use the canceling property of
DPVS and sub-group decision type assumption to prove the security. Composite-order pairing
groups also have such properties [LW10, LOS+10]. Therefore, we can construct watermarking
schemes based on composite-order pairing groups. However, we do not give concrete constructions
in this paper since, generally speaking, schemes based on composite-order groups are less efficient
than schemes based on prime-order groups due to large composites. One may think that we do not
have remove algorithms if we use composite-order groups since we do not have trapdoor matrices
of DPVS and the decomposition algorithm by Okamoto and Takashima. However, we note that if
we use prime factors of composites as trapdoors, then we can also achieve remove algorithms in
the composite-order group setting.

Open Issues. Our watermarking schemes are called the detection-type watermarking scheme, in
which we can verify just one-bit information, embedded or not. We can consider a stronger variant
called the extraction-type watermarking scheme, in which we can embed a message as a mark
and extract it. In fact, our schemes can be modified into extraction-type schemes by adding extra
(2µ− 2)-dimension to our schemes for µ-bit messages since we can embed a one-bit message for
each 2-dimension. However, this is quite inefficient. Thus, it is an open problem to construct more
efficient extraction-type watermarking schemes.
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A Lewko IBE Scheme

We present Lewko IBE scheme and Okamoto-Takashima IPE scheme for reference.

A.1 Identity-Based Encryption

We review Lewko IBE scheme, IBEL [Lew12] in this section.

Setup(1λ): It generates Λ := (p,G,GT , e, g)
R← Gbmp(1

λ) and (D,D∗)
U← Dual(Z6

p), chooses

α, θ, σ
U← Zp, and sets pk := (Λ, e(g, g)αθd⃗1·d⃗

∗
1 , gd⃗1 , . . . , gd⃗4),msk := (gθd⃗

∗
1 , gαd⃗

∗
1 , gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4).

It outputs (pk,msk).
Gen(msk, ID): It chooses r1, r2

U← Zp and generates skID := g(α+r1ID)θd⃗∗1−r1θd⃗∗2+r2IDσd⃗∗3−r2σd⃗∗4 .
Enc(pk, ID,M): It chooses s1, s2

U← Zp and generates C0 :=M · (e(g, g)αθd⃗1·d⃗∗1)s1 and
C := gs1d⃗1+s1IDd⃗2+s2d⃗3+s2IDd⃗4 . It outputs ciphertext ct := (C0, C).
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Dec(skID, ct): It outputs M := C0/e(skID, C).

Theorem A.1 ([Lew12]) If the DLIN assumption holds, then IBEL is adaptively secure against
chosen plaintext attacks.
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