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Abstract

We introduce a notion of watermarking for cryptographic functions and propose a concrete scheme for
watermarking cryptographic functions. Informally speaking, a digital watermarking scheme for cryptographic
functions embeds information, called a mark, into functions such as one-way functions and decryption functions
of public-key encryption. There are two basic requirements for watermarking schemes.

1. A mark-embedded function must be functionally equivalent to the original function.
2. It must be difficult for adversaries to remove the embedded mark without damaging the original functionality.

In spite of its importance and usefulness, there have only been a few theoretical works on watermarking for
functions (or programs). Furthermore, we do not have rigorous definitions of watermarking for cryptographic
functions and concrete constructions.

To solve the above problem, we introduce a notion of watermarking for cryptographic functions and define its
security. Furthermore, we present a lossy trapdoor function (LTF) based on the decisional linear (DLIN) problem
and a watermarking scheme for the LTF. Our watermarking scheme is secure under the DLIN assumption in the
standard model. We use techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct
our watermarking scheme. This is a new application of DPVS.
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1 Introduction
1.1 Background
Digital watermarking is a technology that enables us to embed information, called a “mark”, into digital objects
such as images, movies, and audio files. Such marks should be detected by using some procedure. There are two
main properties of digital watermarking. The first is that the appearance (or functionality) of marked objects is
almost the same as that of the original objects The second is that removing embedded marks without destroying the
object is difficult. A main application of watermarking is protecting copyright. We can trace and identify owners of
digital content by detecting watermarks. For example, if we find a potentially guilty user and illegally copied digital
content, we can detect a watermark and identify the owner who distributed the illegal copy.

Most watermarking methods have been designed for perceptual objects, such as images. Only a few studies
have focused on watermarking for non-perceptual objects (e.g., software or programs). Software is quite common
digital content and can be easily copied. Software piracy is a serious problem today. If illegally copied software is
distributed, profits of software companies decrease. Watermarking for programs is one of tools to solve the problem
and has very useful, attractive, and practical applications. However, they are little understood. We briefly explain
related studies on program watermarking below.

Naccache, Shamir, and Stern introduced the notion of copyrighted functions and proposed a method for tracking
different copies of functionally equivalent algorithms containing a sort of “marks” [NSS99]. A copyrighted function
is drawn from a keyed function family (this key plays a role of marks). The security of the protocol guarantees that
no adversary can output a functionally equivalent function with a new key even if many keyed functions are given.
This is related to watermarking schemes for programs (functions), but their security definition is a bit weak and not
sufficient for program watermarking because copyrighted functions do not guarantee that embedded marks are not
removed.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, andYang considered the notion of software watermarking
(program watermarking) from a cryptographic point of view in their seminal work [BGI+01, BGI+12]. They
proposed a formalization of software watermarking and its security definition. The definition is simulation-based
security and strong. They gave an impossibility result for general-purpose program watermarking by using
impossibility results of general-purpose program obfuscation [BGI+01, BGI+12]. “General-purpose” means that
program watermarking and obfuscation can be applied to any program. Their security requirements cannot be
achieved, so they leave positive theoretical results about watermarking (achieving concrete constructions for specific
function families by using a game-based security definition) as an open problem.

Yoshida and Fujiwara introduced the notion of watermarking for cryptographic data and a concrete scheme for
signatures [YF11]. Their idea is very exciting, but they did not propose a formal security definition of watermarking
for cryptographic data and their scheme is not provably secure. They claim that the security of their scheme is based
on the vector decomposition (VD) problem, which was introduced by Yoshida, Mitsunari, and Fujiwara [YMF10],
but their proof is heuristic, that is, they did not show a reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-based) definition of security
for watermarking schemes. Their definition seems to be very useful, but they focused on watermarking for only
perceptual objects [HMW07]. They gave no concrete construction that satisfies their security definition.

1.2 Motivations and Applications
As explained in the previous section, there is no watermarking scheme for (cryptographic) functions1 that is provably
secure in a complexity-theoretic definition of security. Copyrighted functions by Naccache et al. are provably
secure based on the factoring assumption, but their definition of security is weaker than that of watermarking,
and their construction can only embed a bounded number of distinct marks [NSS99]. Before we introduce our
contribution, we present several applications of watermarking to explain motivations.

Traceable cryptographic primitives. One application of watermarking for cryptographic functions (we often
call it cryptographic watermarking) is constructing various traceable cryptographic primitives. If we have a
watermarking scheme for cryptographic functions, for example, trapdoor one-way functions, collision-resistant
hash functions (CRHF), and decryption functions, we can construct a variety of traceable primitives or copyrighted
cryptographic primitives since private-key encryption, public-key encryption (PKE), digital signatures, and so on
are constructed from trapdoor one-way functions and often use CRHFs in their algorithms.

1We consider functions as a kind of program.
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As pointed out by Naccache et al. , watermarked functions have the following applications [NSS99]:

• We can produce software or programs that generates ciphertexts of the Feistel cipher based on a one-way
function [LR88], signatures of Rompel’s signature scheme [Rom90], or decrypted values of ciphertexts under
PKE schemes based on a trapdoor one-way function. By watermarking the underlying one-way function, if a
malicious user illegally generate copies of such software and distributes them, then a company that sold the
software can trace them and identify the guilty users.

• A company can sell MAC-functions based on watermarked one-way functions to users for a log-in system
on the Internet. The company records user IDs and marked functions in a database. Users can use the
MAC-functions to log-in to a member web site without revealing their identity since all marked functions are
functionally equivalent. However, if a malicious user distributes an illegal copy and it is discovered, then the
company can identify the guilty user identity by detecting an embedded mark.

Black-box traitor tracing. Kiayias and Yung proposed a method of constructing black-box traitors tracing
schemes from copyrighted PKE functions [KY02]. When we broadcast digital content to a set of legitimate
subscribers, we can use broadcast encryption schemes. If some of the subscribers leak partial information about
their decryption keys to a pirate, who is a malicious user in broadcast encryption systems, then the pirate may be able
to construct a pirate-decoder. That is, the pirate may access to the content though s/he is not a subscriber. Traitor
tracing enables us to identify such malicious subscribers called traitor [CFN94]. Our cryptographic watermarking
scheme can be seen as a generalized notion of copyrighted functions and our construction is based on identity-based
encryption (IBE) schemes whose private keys for identities are marked (these are copyrighted decryption functions
of PKE), so our construction technique can be used to construct black-box traitor tracing schemes and it has a quite
powerful application.

Theoretical treatment of watermarking. There are many heuristic methods for software watermarking but there
have only been a few studies that theoretically and rigorously treat the problem in spite of its importance. Functions
can be seen as a kind of software (and program) and a large amount of software uses cryptographic functions,
especially in a broadcast system, users must use software with decryption functions to view content. We believe
that our scheme for watermarking for cryptographic functions is an important step toward constructing practical
software watermarking.

1.3 Our Contributions and Construction Ideas
To solve problems explained in Section 1.1, we introduce the notion of watermarking for cryptographic functions,
define a game-based security definition of them, and propose a concrete construction. Our watermarking scheme
is provably secure under the decisional linear (DLIN) assumption. To the best of our knowledge, this is the first
provably secure watermarking scheme for functions (programs) in terms of theoretical cryptography and solves the
open problem proposed by Barak et al. [BGI+01, BGI+12].

Our security notion is based on the notion of strong watermarking introduced by Hopper et al. [HMW07], but
details are different since we focus on the definition for cryptographic functions. Their definition takes into account
only perceptual objects and they modeled the notion of similarity by a perceptual metric space on objects that
measures the distance between objects. Therefore, to construct watermarking schemes for cryptographic functions,
we need to modify their definition. We define the similarity by preserving functionality. If, for some inputs, a
marked function outputs the same outputs as those of an original function for the inputs, then we say that the
marked function is similar to the original function. Watermarking schemes should guarantee that no adversary can
generate a function which is similar to a marked function for some inputs but unmarked. That is, no adversary can
remove embedded marks without destroying underlying functionality. This is a primary difference from copyrighted
functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs) [PW08]. LTFs are powerful
cryptographic functions. They imply standard trapdoor one-way functions, oblivious transfers, CRHFs, and secure
PKE schemes against adaptive chosen ciphertext attacks (CCA) [PW08]. The watermarking scheme consists of
four algorithms, key generation, mark, detect, and remove algorithms. Marked function indices are functionally
equivalent to the original ones, that is, for any input, outputs of marked functions are the same as those of the
original function. We call this perfect functionality preserving property. The construction can be used to construct
an IBE scheme that can generate marked private keys for identities and marked signatures since our LTFs are based
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on IBE schemes, as explained in the next paragraph. That is, we can construct decryption algorithms in which
watermarks can be embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based on the dual pairing vector
space (DPVS) proposed by Okamoto and Takashima [OT09, OT10, OT12]. We can use the IBE scheme of Okamoto
and Takashima [OT12] (which is a special case of their inner-product predicate encryption (IPE) scheme) and that of
Lewko [Lew12] to construct LTFs. Loosely speaking, LTFs are constructed from homomorphic encryption schemes,
and the IBE schemes of Okamoto-Takashima and Lewko are homomorphic. There are many other homomorphic
encryption schemes but we selected Okamoto-Takashima and Lewko IBE schemes because they are constructed
by DPVS and the dual system encryption methodology introduced by Waters [Wat09]. The methodology is a key
technique to achieve a watermarking scheme. In this paper, we write only about the Lewko IBE scheme.

First, we explain how we use the dual system encryption methodology to construct watermarking schemes. We
apply the dual system encryption technique to not only security proofs but also constructions of cryptographic
primitives. In the dual system encryption, there are two types for ciphertexts and private-keys respectively. The
first type is called normal ciphertext and key and the second type is called semi-functional ciphertext and key,
respectively. They have the following properties. Semi-functional ciphertexts can be decrypted using normal keys
and normal ciphertext can be decrypted using semi-functional keys. However, semi-functional ciphertexts cannot
be decrypted using semi-functional keys. Normal ciphertext and key are computationally indistinguishable from
semi-functional ciphertext and key, respectively. In most cases, function indices of LTFs consist of ciphertexts
of homomorphic encryption [FGK+10, HO12, PW08], so, intuitively speaking, if we can construct a function
index by using not only (normal) ciphertexts but also semi-functional keys, then the function index is functionally
equivalent to a function index generated by (normal ciphertexts and) normal keys as long as normal ciphertexts are
used. Moreover, if we use semi-functional ciphertexts, we can determine whether a function index is generated
by semi-functional keys or not since semi-functional ciphertexts cannot be decrypted using a semi-functional key.
Thus, a function index that consists of semi-functional keys can be seen as a marked index and semi-functional
ciphertexts can be used in a detection algorithm of a watermarking scheme. This is the main idea. Note that our
construction technique can be used to construct an IBE scheme whose private keys can be marked because our
LTFs are based on such an IBE scheme.

Next, we explain how we construct watermarking scheme by using DPVS. DPVS is linear space defined over
bilinear groups and a vector consists of group elements [OT09, OT10]. One of key features of DPVS is that if we
conceal (i.e., do not publish) some basis of a subspace then we can set a hidden linear subspace. A pair of dual
orthonormal bases over groups are denoted byB andB∗. They are generated by a random linear transformation
matrix that consists of elements in a finite field. We use a hidden linear subspace spanned by a subset ofB andB∗
for semi-functional ciphertext and key as Okamoto-Takashima and Lewko IBE schemes [Lew12, OT10, OT12].
We denote the subset by B̂ ⊂ B, B̂

∗
⊂ B∗, respectively. A hidden linear subspace for semi-functional ciphertext

and key can be used as a detect key and a mark key of our watermarking scheme, respectively. Thus, we can
embed “marks” into the hidden linear subspace and they are indistinguishable from non-marked objects because the
decisional subspace problem is believed to be hard [OT08, OT10]. Informally speaking, the decisional subspace
problem is determining whether a given vector is spanned byB (resp,B∗) orB \ B̂ (resp,B∗ \ B̂∗).

Okamoto and Takashima introduced complexity problems based on the DLIN problem to prove the security of
their scheme [OT10, OT12] and these problems are deeply related to the VD problem [YMF10] and the decisional
subspace problem. The VD problem says that it is difficult to decompose a vector in DPVS into a vector spanned
by bases of a subspace. Lewko also introduced the subspace assumption [Lew12], which is implied by the DLIN
assumption and highly related to the decisional subspace assumption introduced by Okamoto and Takashima [OT08]
and the VD problem. All assumptions introduced by Okamoto-Takashima [OT10, OT12] and Lewko [Lew12] are
implied by the standard DLIN assumption.

If we can decompose a vector in DPVS into each linearly independent vector, then we can convert semi-functional
ciphertext and key into normal ciphertext and key by eliminating elements in hidden linear subspaces, that is, we
can remove an embedded mark from a marked function index. Galbraith and Verheul and Yoshida, Mitsunari, and
Fujiwara argued that the VD problem is related to computational Diffie-Hellman problem [GV08, YMF10]. It is
believed that the VD problem is hard. Therefore, no adversary can remove marks of our watermarking scheme (this
is a just intuition). However, we do not directly use the VD problem but the DLIN problem to prove the security of
our scheme. On the other hand, if we have a linear transformation matrix behind dual orthonormal bases of DPVS,
then we can easily solve the VD problem [OT08, OT10], that is, we can remove a mark if we have the matrix. Such
an algorithm was proposed by Okamoto and Takashima [OT08].
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Our construction is a new application of DPVS. DPVS has been used to construct fully secure functional
encryption, IPE, IBE and attribute-based signature [Lew12, LOS+10, OT09, OT10, OT11, OT12], but to the best
of our knowledge, a linear transformation matrix for dual orthonormal bases in DPVS has never been explicitly used
for algorithms of cryptographic schemes. This is of independent interest.

On the Impossibility of Watermarking. Barak et al. showed that if there exists indistinguishability obfuscation
(iO), then there is no program watermarking with perfect functionality preserving property [BGI+01, BGI+12].
Roughly speaking, if we apply iO to a marked program, then we can remove the mark since if we still detect
the mark from the obfuscated marked program, then we can use it to distinguish an obfuscated marked program
from an obfuscated unmarked program (indistinguishability holds for functionally equivalent programs). We
use a different definition from that of Barak et al. , but the impossibility result holds in our setting since our
watermarking scheme has perfect functionality preserving property. This does not contradict to our results
because we restrict adversaries in a security game. The restriction forces adversaries to output a function in a
specified format to win the security game. Adversaries cannot use iO under this restriction. Someone might
think the restriction is strong, but we can say our construction is an alternative approach to achieve watermarking
since Cohen, Holmgren, Nishimaki, Vaikuntanathan, and Wichs [CHN+16] proposed program watermarking
based on iO. Candidate constructions of iO are known [GGH+13b, GMM+16, FRS16], but not only their
underlying cryptographic tool called multilinear maps [GGH13a, CLT13, GGH15] but also iO constructions were
attacked [CHL+15, CGH+15, CFL+16, HJ16, CLLT16a, MSZ16, CLLT16b, ADGM16, CGH16]. Thus, our
construction that does not assume iO is still meaningful. See discussion in Section 3 for more details.

1.4 Organization of This Paper
In Section 2, we introduce some notations and known cryptographic definitions, tools, and techniques. In Section
3, we introduce our definition of watermarking for cryptographic functions. In Section 4, we propose a concrete
instantiation of watermarking schemes for lossy trapdoor functions. In Section 5, we list a few concluding remarks
and open issues.

2 Preliminaries
Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is a random variable
or distribution, y ← D denote that y is randomly selected from D according to its distribution. If S is a set, then
x← S denotes that x is uniformly selected from S. Let y := z denote that y is set, defined or substituted by z. We
say that function f : N→ R is negligible in λ ∈ N if f(λ) = λ−ω(1). Hereafter, we use f ≤ negl(λ) to mean that
f is negligible in λ. Bold face small and capital letters denote a vector and matrix element over Zp or a group
G, e.g., x andX denote (x1, . . . , xn) ∈ Znp (or ∈ Gn) and (xi,j)i,j∈[n] ∈ Zn×np (or ∈ Gn×n). For two vectors
x and v, 〈x,v〉 denotes the inner-product

∑n
i=1 xivi. The transpose of matrixX is denoted byXT. We denote

probabilistic polynomial-time by PPT.
Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by λ ∈ N. The

statistical distance between two random variables X and Y over a countable set S is defined as ∆(X,Y ) :=
1
2
∑
α∈S |Pr[X = α]− Pr[Y = α]|.

Definition 2.1. We say that X and Y are statistically indistinguishable (We write X
s
≈ Y to denote this) if

∆(Xλ, Yλ) ≤ negl(λ).

Definition 2.2. We say that X and Y are computationally indistinguishable (We write X
c
≈ Y to denote this) if for

all non-uniform PPT algorithm D,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ negl(λ).

2.1 Cryptographic Bilinear Maps (or Pairings)
Weconsider cyclic groupsG1,G2, andGT of prime order p. A bilinearmap is an efficientmapping e : G1×G2 = GT
satisfying the following properties.
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Bilinearity: For all g ∈ G1, ĝ ∈ G2 and a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab.

Non-degeneracy: If g and ĝ generate G1 and G2 respectively, then e(g, ĝ) 6= 1.

If G1 = G2 = G, that is, both groups are the same, we call (p,G,GT , e, g) symmetric pairing groups. Let Gbmp
be a standard parameter generation algorithm that takes as input a security parameter λ and outputs parameters
(p,G,GT , e, g).

Bracket Notations. For ease of notation, we borrow a bracket notation introcuded by Lin and Vaikuntanathan
[LV16] (and in many other papers). For a, b, α ∈ Zp, v = (v1, . . . , vn) ∈ Znp , we let

[a] := ga, [b]T := e(g, g)b,
[v] := ([v1], · · · , [vn]),

[v]⊕ [w] := [v +w] = ([v1 + w1], . . . , [vn + wn]),
[v]	 [w] := [v −w] = ([v1 − w1], . . . , [vn − wn]),
α� [v] := [v]α := [αv] = ([αv1], . . . , [αvn]),

e([v], [w]) :=
n⊕
i=1

e([vi], [wi]) = [〈v,w〉]T .

2.2 Function Family of Lossy Trapdoor Functions
Definition 2.3 (Lossy Trapdoor Functions [PW11]). A lossy trapdoor function LTF with domain D consists of
four polynomial-time algorithms having the following properties.

Injective Key Generation: LTF.IGen outputs (ek, ik) where ek and ik are an evaluation and an inversion key,
respectively.

Evaluation: For X ∈ D, LTF.Evalek(X) outputs an image Y = fek(X).

Inversion: LTF.Invertik(Y ) outputs a pre-image X = f−1
ik (Y ).

Lossy Key Generation: LTF.LGen outputs (ek′,⊥) where ek′ is an evaluation key.

Correctness: For all (ek, ik)← LTF.IGen(1λ), and X ∈ D, we have f−1
ik (fek(X)) = X .

Indistinguishability: Let λ be a security parameter. For all PPT A,

Advind
ltf,A(λ) :=

∣∣Pr[A(1λ, {LTF.IGen(1λ)}1)]− Pr[A(1λ, {LTF.LGen(1λ)}1)]
∣∣ < negl(λ),

where {A}1 is the first output of algorithm A.

Lossiness: We say that LTF is `-lossy if for all ek′ ← LTF.LGen(1λ), the image set fek′(D) is of size at most
|D| /2`.

We define a function family of LTF, LTFλ := {LTF.Evalek(·)|(ek, ik)← LTF.Gen(1λ, b), b ∈ {0, 1}} where
LTF.Gen(1λ, 0) := LTF.IGen(1λ) and LTF.Gen(1λ, 1) := LTF.LGen(1λ).

2.3 Dual Pairing Vector Space
The concept of dual pairing vector space is proposed by Okamoto and Takashima [OT09, OT10].

Definition 2.4. “Dual pairing vector spaces (DPVS)” (p,V,GT ,A, e) is constructed from a direct product of
symmetric pairing groups (p,G,GT , e, g) as follows.

Vector space V: A vector space consists of N groups, i.e., V :=
N︷ ︸︸ ︷

G× · · · ×G, whose element is expressed by
N -dimensional vector [x] := ([x1], . . . , [xN ]) where xi ∈ Zp for all i ∈ [N ].

Canonical basis A: There is canonical basis A := ([a1], . . . , [aN ]) of V, where a1 := (1, 0, . . . , 0),a2 :=
(0, 1, 0, . . . , 0), . . . ,aN := (0, . . . , 0, 1).
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Pairing operation: A pairing function e : V × V → GT is defined by e([x], [y]) :=
⊕N

i=1 e([xi], [yi]) ∈ GT
where x := (x1, . . . , xN ) ∈ ZNp and y := (y1, . . . , yN ) ∈ ZNp . This is non-degenerate bilinear, i.e.,
e(s � [x], t � [y]) = st � e(x,y) and if e([x], [y]) = 1 for all [y] ∈ V, then x = 0. For all i and j,
e([ai], [aj ]) = [δi,j ]T where δi,j = 1 if i = j, and 0 otherwise.

DPVS also have linear transformations φi,j on V s.t. φi,j([aj ]) = [ai] and φi,j([ak]) = [0] if k 6= j, which can be

easily achieved by φi,j([x]) := (
i−1︷ ︸︸ ︷

[0], . . . , [0], [xj ],
N−i︷ ︸︸ ︷

[0], . . . , [0]) where x := (x1, . . . , xN ). We call φi,j canonical
maps.

Dual orthonormal bases. Let Dual(Znp ) an algorithm for generating dual orthonormal bases as follows.

Dual(Znp ) : chooses bi, b∗j ∈ Znp , ψ ← Z∗p such that

〈bi, b∗j 〉 = 0 mod p for i 6= j,

〈bi, b∗i 〉 = ψ mod p for all i ∈ [n]
outputsB := (b1, . . . , bn) andB∗ := (b∗1, . . . , b

∗
n).

We describe a parameter generation algorithm Gdpvs(1λ, n) for DPVS.

Gdpvs(1λ, n) : generates (p,G,GT , e, g)← Gbmp(1λ),

paramsV := (p,V,GT , e, g)
(B,B∗)← Dual(Znp ),
[B] := ([b1], . . . , [bn]),
[B∗] := ([b∗1], . . . , [b∗n]),

returns (paramsV, [B], [B∗]).

Parameters (paramsV, [B], [B∗]) defines a DPVS over a bilinear group. We consider Dual(Znp ) implicitly outputs
ψ ∈ Z∗p though we omit it.

We briefly explain some important properties of a DPVS.

Intractable problem: A decisional problem in this approach is the decisional subspace problem [OT08]. It is
to tell [v] = [vN2+1bN2+1 + · · ·+, vN1bN1 ] from [u] = [v1b1 + · · ·+ vN1bN1 ] when an element in V (N1
dimension) is given, where (v1, . . . vN1)← ZN1

p and N2 + 1 < N1.

Trapdoor: If we have trapdoor [t∗] ∈ span
〈
[b∗1], . . . , [b∗N2

]
〉
, then we can efficiently solve the decisional subspace

problem. Given [v] = [vN2+1bN2+1 + · · ·+, vN1bN1 ] or [u] = [v1b1 + · · ·+ vN1bN1 ], we can tell [v] from
[u] using [t∗] since e([v], [t∗]) = 1 and e([u], [t∗]) 6= 1 with high probability.

Advantage of this approach: For canonical basis, it is easy to decompose [xiai] = ([1], . . . , [1], [xi], [1], . . . , [1])
from [x] := [x1a1]⊕ · · · ⊕ [xNaN ] = ([x1], . . . , [xN ]). In contrast, the DPVS approach employs basis [B],
which is linearly transformed from A using a secret random matrixB ∈ Zn×np . It seems hard to decompose
[xibi] from ([x1b1 + · · ·+ xNbN ]) (and the decisional subspace problem seems intractable). In addition, the
secret matrixB (and the dual orthonormal basisB∗ of V) can be used as trapdoors for the decomposability
(and distinguishability for the decisional subspace problem through the pairing operation over [B] and [B∗]).

Parameter Hiding. Letm ≤ n be a fixed positive integer andA ∈ Zm×mp be an invertible matrix. Let Sm ⊆ [n]
be a subset of sizem. Lewko proposed how to obtain new dual orthonormal bases (BA,B

∗
A) from (B,B∗). If

Bm is an n×m matrix over Zp whose columns are vectors bi ∈ B such that i ∈ Sm, thenBmA is also an n×m
matrix. Let BA := (x1, . . . ,xn) where xi := bi for all i /∈ Sm and xi := (BmA)` for i ∈ Sm, i is the `-th
element of Sm and (BmA)` denotes the `-th column ofBmA. IfB∗m is n×m matrix over Zp whose columns
are vectors b∗i ∈ B

∗ such that i ∈ Sm, then Bm(A−1)T is also n×m matrix. Let B∗A := (x∗1, . . . ,x∗n) where
x∗i := b∗i for all i /∈ Sm and a∗i := (B∗m(A−1)T)` for i ∈ Sm, i is the `-th element of Sm and (Bm(A−1)T)`
denotes the `-th column ofBm(A−1)T. Lewko showed that these newly generated bases are also dual orthonormal
bases.
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Lemma 2.5 ([Lew12]). For any fixed positive integersm ≤ n, any fixed invertibleA ∈ Zm×mp and set Sm ⊆ [n]
of sizem, if (B,B∗)← Dual(Znp ), then (BA,B

∗
A) is also distributed as a random sample from Dual(Znp ) and its

distribution is independent ofA.

Vector decomposition problem. The VD problem was originally introduced by Yoshida, Mitsunari, and
Fujiwara [YMF10]. We present the definition of a higher dimensional version by Okamoto and Takashima [OT08]
to fit the VD problem into DPVS.

Definition 2.6 (CVDP: (`1, `2)-Computational Vector Decomposition Problem). Let λ be a security parameter
and Gdpvs be an algorithm that outputs a description of a `1-dimensional DPVS (p,V,GT , e, g) and `1 > `2. LetA
be a PPT machine. For all λ ∈ N, we define the advantage of A in (`1, `2)-computational vector decomposition
problem CVDP(`1,`2) as

Advcvdp
A,(`1,`2)(λ) := Pr

[ω] =
`2∑
i=1

(xi � [b]i)

∣∣∣∣∣∣∣∣
(paramsV, [B], [B∗])← Gdpvs(1λ, `1),
(x1, . . . , x`1)← (Zp)`1 ,

[v] :=
∑`1
i=1(xi � [bi]),

[ω]← A(1λ, paramsV, [B], [v])

 .
The CVDP(`1,`2) assumption: For any PPT adversary A, Advcvdp

A,(`1,`2)(λ) < negl(λ).

A specific class of the CVDP instances that are specified over canonical basis A are tractable.

Lemma 2.7 (Easy Basis [OT08]). Let A be a canonical basis of V, and CVDPA
(`1,`2) be a specific class of

CVDP(`1,`2) in which B is replaced by A. The canonical maps φi,j on V can solve CVDPA
(`1,`2) in polynomial

time.

Trapdoor. If we have a trapdoor, linear transformationmatrixB (orB∗), thenwe can efficiently decompose vectors
in DPVS, i.e., solve CVDP(`1,`2) by using the efficient algorithm Decomp given by Okamoto and Takashima [OT08].

The input is ([v], ([b]1, . . . , [b]`2),B) such that [v] :=
∑`1
i=1(yi � [bi]) is a target vector for decomposition,

([b1], . . . , [b`2 ]) is a subspace to be decomposed into, andB is a trapdoor (matrix).

Decomp([v], ([b]1, . . . , [b]`2),B) : outputs [u] :=
`1∑
i=1

`2∑
j=1

`1∑
κ=1

(τi,jχj,κ � φκ,i([v]))

where φ is the canonical map in Definition 2.4
(χi,j) = B, (τi,j) := (B)−1.

Lemma 2.8 ([OT08]). Algorithm Decomp solves CVDP(`1,`2) by usingB := (χi,j) such that [bi] :=
∑`1
j=1(χi,j�

[aj ]).

2.4 Complexity Assumptions
Definition 2.9 (DLINAssumption). TheDLINproblem is to guessβ ∈ {0, 1}, given (Γ, [1], [a], [b], [ax], [by], Qβ)←
Gdlin
β (1λ), where

Gdlin
β (1λ) : generates Γ := (p,G,GT , e, g)← Gbmp(1λ),

a, b, x, y ← Zp,
Q0 := [x+ y], Q1 ← G,

returns I := (Γ, [1], [a], [b], [ax], [by], Qβ).

This advantage Advdlin
A (λ) is defined as follows.

Advdlin
A (λ) :=

∣∣Pr
[
A(I) = 1 | I ← Gdlin

0 (1λ)
]
− Pr

[
A(I) = 1 | I ← Gdlin

1 (1λ)
]∣∣ .

We say that the DLIN assumption holds if for all PPT adversary A, Advdlin
A (λ) ≤ negl(λ).
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Definition 2.10 (Subspace Assumption). First, we define an instance generation algorithm of the subspace problem
as follow.

Gdss
b (1λ) : generates Γ← Gbmp(1λ), (B,B∗)← Dual(Znp ),

η, β, τ1, τ2, τ3, µ1, µ2, µ3 ← Zp,
for i ∈ [k], Ui := [µ1bi + µ2bk+i + µ3b2k+i],

Vi := [τ1ηb
∗
i + τ2βb

∗
k+i],

Wi := [τ1ηb
∗
i + τ2βb

∗
k+i + τ3b

∗
2k+i],

Q0 := (V1, . . . , Vk), Q1 := (W1, . . . ,Wk),
D := ([b1], . . . , [b2k], [b3k+1], . . . , [bn], [ηb∗1], . . . , [ηb∗k], [βb∗k+1], . . . , [βb∗2k],

[b∗2k+1], . . . , [b∗n], U1, . . . , Uk, µ3),
returns I := (Γ, D,Qb).

The subspace problem is to guess b ∈ {0, 1}, given (Γ, D,Qb). This advantage Advdss
A (λ) is defined as follows.

Advdss
A (λ) :=

∣∣Pr
[
A(I) = 1 | I ← Gdss

0 (1λ)
]
− Pr

[
A(I) = 1 | I ← Gdss

1 (1λ)
]∣∣

We say that the subspace assumption holds if for all PPT adversary A, Advdss
A (λ) ≤ negl(λ).

Theorem 2.11 ([Lew12]). The DLIN assumption implies the subspace assumption.

Definition 2.12 (DBDH assumption). The DBDH problem is to guess β ∈ {0, 1}, given (Γ, [1], [a], [b], [c], Qβ)←
Gdbdh
β (1λ), where Gdbdh

β (1λ): Γ := (p,G,GT , e, g)← Gbmp(1λ), a, b, c← Zp, Q0 := [abc]T , Q1 ← GT , return
(Γ, [1], [a], [b], [c], Qβ). This advantage Advdbdh

A (λ) is defined as follows.

Advdbdh
A (λ) :=

∣∣ Pr
[
A(I) = 1

∣∣ I ← Gdbdh
0 (1λ)

]
− Pr

[
A(I) = 1

∣∣ I ← Gdbdh
1 (1λ)

] ∣∣
We say that the DBDH assumption holds if for all PPT adversary A, Advdbdh

A (λ) < negl(λ).

Boyen and Waters pointed out that the following theorem trivially holds [BW06], but for confirmation we write
a proof2.

Theorem 2.13. For any PPT adversary A, there exists PPT algorithm B such that Advdbdh
A ≤ Advdlin

B .

Proof. Given DLIN instance (Γ, [1], [a], [b], [xa], [yb], Q), adversary B for the DLIN problem gives adversaryA for
the DBDH problem tuple (Γ, [1], [a], [b], Q, T := e([xa], [b])�e([yb], [a])) as a DBDH instance. T = [ab(x+y)]T ,
so if Q = [x + y], then the tuple is the same as Gdbdh

0 . It implicitly holds that a′ = a, b′ = b, c′ = x + y,
a′b′c′ = ab(x+ y). If Q = [z] is a uniformly random element in G, then T = [ba(x+ y)]T is a uniformly random
element in GT and the tuple is the same as Gdbdh

1 since x and y are uniformly random and independent of z, a, and
b.

3 Definitions of Cryptographic Watermarking
Wedefinewatermarking schemes for cryptographic functions (one-way functions, hash functions, etc.). Our definition
of watermarking schemes can be extended to treat cryptographic data introduced by Yoshida and Fujiwara [YF11].
In this paper, we focus on a family of functions F := {Fλ}λ. For example, LTFs are cryptographic functions.
Function F is sampled from family LTFλ := {LTF.Evalek(·)|(ek, ik) R← LTF.Gen(1λ, b), b ∈ {0, 1}}.

A watermarking key generation algorithm for a family F takes as inputs security parameter λ and outputs secret
key sk, marking keymk, detection key dk, and removing key rk. Our watermarking schemes are public detection
watermarking schemes, that is, dk is public. The secret key is used in a sampling algorithm SampF , which outputs
a function F R← Fλ (The sampling algorithm takes sk as an input). Note that the description of SampF does not
include sk. Our cryptographic watermarking schemes for cryptographic functions F use secret key sk to choose
a function F R← Fλ from the function family. It seems to be a restriction because adversaries cannot generate
functions in the family by themselves and use them for attacks. Function families where we can publicly sample a
function is more general. However, it is very reasonable in our setting due to the following reason.

2This proof is based on personal communication with Keita Xagawa
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• In a realistic setting, only authorized entities can generate marked functions from an original non-marked
function which is privately generated. They do not distribute non-marked functions.

A marking key allows us to embed a mark in function F . A marked function F ′ must be similar to original function
F . A detection and removing key allow us to detect and remove a mark in marked function F ′, respectively. We
sometimes use notationM(F ) to denote a marked function of F .
Definition 3.1 (Watermarking Scheme for Functions). A watermarking scheme for family F is a tuple of
algorithms CWMF := {WMGen,SampF ,Mark,Detect,Remove} as follows.
WMGen: The key generation algorithm takes as an input security parameter λ and outputs secret key sk, marking

keymk, detection key dk, and removing key rk. That is, (sk,mk, dk, rk) R←WMGen(1λ).

SampF : The sampling algorithm takes as an input sk and outputs a function in the family F .

Mark: The marking algorithm takes as inputsmk and unmarked function F and outputs marked function F̃ . That
is, F̃ R← Mark(mk,F ).

Detect: The detection algorithm takes as inputs dk and function F ′ and outputs marked (detect a mark) or
unmarked (no mark), that is, Detect(dk, F ′) = marked/unmarked.

Remove: The removing algorithm takes as inputs rk and marked function F̃ and outputs unmarked function
F := Remove(rk, F̃ ).

As Hopper et al. noted [HMW07], we do not allow any online communication between the Detect and Mark
procedures.

We define the security of cryptographic watermarking based on the definition of strong watermarking with
respect to the metric space proposed by Hopper et al. [HMW07] and software watermarking proposed by Barak
et al. [BGI+01, BGI+12]. We borrow some terms from these studies [HMW07, BGI+01, BGI+12]. Hopper et al.
defined a metric space equipped with distance function d and say that objectO1 andO2 are similar if d(O1, O2) ≤ δ
for some δ. However, we do not directly use it since we focus on function families (not perceptual objects).

Basically, the following properties should be satisfied. Most objects F ∈ Fλ sampled by the sampling algorithm
must be unmarked. We define similarity by ε-approximation. That is, if for randomly chosen input x, output F (x)
is equal to F ′(x) with probability ε, then we say F ′ ε-approximates F . Given marked function F ′, an adversary
should not be able to construct a new function F ∗, which ε-approximates F ′ but is unmarked without removing key
rk.

Our definition of the non-removability below is a game-based definition and based on the notion of strong
watermarking by Hopper et al. [HMW07]. Our definitions are specialized to focus on cryptographic functions (do
not use metric spaces). The non-removability states that even if the adversary is given marked functions, it cannot
find a function that is similar to a marked function but does not contain any mark. This is based on the security
against removal introduced by Hopper et al. [HMW07].

Before we introduce our definitions, we introduce the notion of ε-approximation of functions.
Definition 3.2 (ε-Approximating a Function). A function f ′ is said to ε-approximate a function f : {0, 1}n →
{0, 1}∗, denoted by f ′ ∼=ε f , if Prx←{0,1}n [f ′(x) = f(x)] ≥ ε.
Definition 3.3 (Secure Watermarking for Functions). A watermarking scheme for function family F is secure if
it satisfies the following properties.

Meaningfulness: For any (sk,mk, dk, rk) R←WMGen(1λ) andF R← SampF (sk), it holds thatDetect(dk, F ) =
unmarked.

Correctness: For any (sk,mk, dk, rk) R← WMGen(1λ), F R← SampF (sk), andM(F ) R← Mark(mk,F ), it
holds that Detect(dk,M(F )) = marked and Detect(dk,Remove(rk,M(F ))) = unmarked.

Preserving Functionality: For any input x ∈ {0, 1}n and F ∈ Fλ, it holds thatM(F )(x) = F (x). If function
F ′ preserves the functionality of function F , then we write F ≡ F ′.

Polynomial Blowup: There exists a polynomial p such that for any F ∈ Fλ, |M(F )| ≤ p(|F |+ |mk|).

Non-Removability: We say that a watermarking scheme satisfies non-removability (or is non-removable) if it holds
that Advnrmv

F,A(1λ, ε) := Pr[Expnrmv
F,A(λ, ε) = win] ≤ negl(λ) where ε is a parameter for ε-approximation of

functions. Experiment Expnrmv
F,A(λ, ε) is shown in Figure 1.
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Experiment Expnrmv
F,A(λ, ε):

(sk,mk, dk, rk) R←WMGen(1λ); CList := ∅;
F ∗

R← AMO,CO(1λ, dk);
Detect(dk, F ∗) = b; IdealDtc(F ∗) = B′;
If b = unmarked and B′ = {marked}; then return win else return lose

OracleMO(F )

F ′
R← Mark(mk,F );

return F ′;

Oracle COFλ()

F
R← SampF (sk);

F ′
R← Mark(mk,F );

CList := CList ∪ {F ′};
return F ′

Procedure IdealDtc(F ∗)
if (∃F ′ ∈ CList : F ∗ ∼=ε F

′); then return {marked}
else return {unmarked}

Figure 1: Experiment for non-removability

On the security experiments. In our construction, the detection key dk is public and given to A. Thus, we need
not consider an oracle that receives a function F ′ and returns Detect(dk, F ′). Such an oracle is called the detect
oracle and denoted by DO. If we consider private-detection-key setting, adversaries are given access to DO.

The adversary tries to find a function such that the outputs of the actual detection algorithm and the ideal
detection procedure are different. The ideal detection procedure searches a database and outputs a decision by using
online communication to the marking algorithm. The parameter ε is called the approximation factor. The adversary
has access to oracles, i.e., the mark and challenge oracles. The mark oracle returns a marked function for a queried
non-marked function. The challenge oracle generates a new (non-marked) function, embeds a mark in the new
function, and returns the marked function (the original non-marked function is hidden).

Eventually, the adversary outputs function F . It means that the adversary claims that it succeeded in removing a
mark from some marked function F ′ without the remove key. The function F should be similar to (ε-approximate)
the function F ′.3 This is for security against removal.

In the ideal detection procedure, we need check functionF ε-approximatesF ′. We can achieve this by comparing
outputs of F and F ′ for uniformly random input x in many times. We can use Chernoff bound to analyze it. This
algorithm is very standard one and similar analyses were shown in many papers. In this paper, we refer to the
analysis by Nishimaki and Wichs [NW15]. The check algorithm is in Figure 2. See the work by Nishimaki and
Wichs [NW15] for the detail of the analysis.

Theorem 3.4 ([NW15]). If F ε-approximates F ′, then the algorithm Test(F, F ′) outputs 1 except with negligible
probability.

As Hopper et al. explained [HMW07], we must introduce the challenge oracle because if it does not exist, then
we cannot define a meaningful security experiment for non-removability. Adversaries should try to remove a mark
in a marked function whose original unmarked function is unknown to adversaries. Thus, we need an entity that
gives adversaries freshly sampled unmarked-functions.

We can consider the following trivial attack scenario, but it is not a valid attack. If the adversary samples an
unmarked function F ∈ Fλ, queries it to the mark oracle, and finally outputs them as solutions. The actual detect
algorithm apparently returns unmarked for F and the ideal detect procedure does not return {marked} for F since
an equivalent function is not recorded in CList. Thus, the adversary cannot win by this strategy.

Discussion on the definition. We require that legal marked functions output by the marking algorithm satisfy
the preserving functionality. As we introduced in the introduction, it is impossible to construct watermarking

3In the previous version of this paper, we used the pefect functionality preserving condition for the adversary. However, we revised the
definition based on the definition by Nishimaki and Wichs [NW15] since we cannot check the perfect functionality preserving condition in
polynomial time.
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Inputs: Two functions f0 and f1.

Parameters: 0 < ε < 1.

Set cnt := 0 and R := 8λ(1/ε)2. For i = 1, . . . , R, do

1. Choose zi ← D where D is the domain of functions.
2. If f0(zi) = f1(zi) then set cnt := cnt + 1

Let ε̂ := cnt/R ∈ [0, 1] be the fraction of trials in which f0(zi) = f1(zi).
If ε̂ < 3

4ε, then output 0, else 1.

Figure 2: Test algorithm Test for approximation of functions

schemes that satisfies the preserving functionality if we assume the existence of iO [BGI+12]. To avoid the
impossibility result by Barak et al. , we restrict adversaries in the non-removability game. When we prove
the security of our watermarking scheme, adversaries must output a function that follows a specified format in
function family F to win the security game. More concretely, in our scheme, a function consists of `2 group
elements in GT , 8(` + 1) group elements in G, and one integer in Zp where ` is the input length of a function
and adversaries must output `2 elements in GT , 8(`+ 1) elements in G, and one integer in Zp as a non-marked
function to win the security game. Thus, we can avoid the impossibility results. We call this restricted game
non-removability under the same format restriction in this paper. If arbitrary strategies are allowed, adversaries can
use iO to attack our watermarking scheme since obfuscation plays a role of a mark-remover [BGI+01, BGI+12]
as we explained in Section 1.3. However, they can not use it in the security game of non-removability under the
same format restriction since obfuscated functions by the candidate constructions of iO do not consist of group
elements [GGH+13b, BR14, BGK+14, AGIS14, AB15, Zim15]. Even if obfuscated circuits are encoded into
group elements (ex. using only [0] and [1] for bits 0 and 1, respectively), the number of group elements does not
match that of an original format.

The restriction on adversaries is too strong, but our watermarking scheme is still meaningful. First, all current
candidate constructions of iO are based on graded encoding schemes [GGH13a, CLT13, GGH15]. Several serious
attacks on not only graded encoding schemes but also iO were found in some candidate constructions [CHL+15,
CGH+15, HJ16, CFL+16, MSZ16, ADGM16, CLLT16b, CGH16]. Of course, a few iO constructions are not
attacked so far [GMM+16, FRS16], but the security of graded encoding schemes and iO have not been well-studied
yet. Constructing watermarking schemes under the assumption that there is no iO is meaningful though it may be a
bad news. Cohen, Holmgren, Nishimaki, Vaikuntanathan, and Wichs proposed watermarking schemes against
arbitrary strategies under the assumption that there exists iO (and one-way function). Thus, we can say that our
watermarking scheme is an alternative construction in the case that there is no iO. Second, in realistic scenarios,
potentially illegal users may be required to reveal illegal copy of marked functions and if they reveal functions whose
format is different from that of original functions, then we can decide that they are suspicious users. Of course,
in this case, we cannot achieve the black-box type tracing, but it is still meaningful. Lastly, our construction of
watermarking scheme itself is interesting because hidden subspaces of DPVS can be used to achieve watermarking.

4 Proposed Watermarking Scheme based on Lewko’s scheme
We present LTFs and watermarking schemes for the LTFs that are secure under the DLIN assumption in this section.

Generally speaking, LTFs can be constructed from homomorphic encryption schemes as observed in many
papers [FGK+10, HO12, PW11]. Lewko and Okamoto-Takashima proposed an IBE and IPE scheme based on
DPVS which is homomorphic and secure under the DLIN assumption, respectively (See Appendix A for descriptions
of their schemes). We can easily construct a LTF from the IBE scheme by applying the matrix encryption technique
introduced by Peikert and Waters [PW11]. Note that IBE schemes are obtained from IPE schemes where the
predicate is the equality test.

In this section, we present a scheme based on the Lewko IBE scheme. Basically, previous works used
homomorphic PKE schemes to construct LTFs. However, we use homomorphic IBE schemes to achieve a
watermarking scheme because we would like to use the dual system encryption technique. We assign a tag for each
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function index and use the tag as an identity of IBE. To construct LTFs based on IBE schemes, we use not only
ciphertexts under some identity but also a private key for the identity. If there is no private key for identities, then
we cannot obtain valid outputs that can be inverted by an inversion key of the LTF. Note that the private key for an
identity of IBE is not a trapdoor inversion key for the LTF.

4.1 LTF based on Lewko’s IBE scheme
Our LTF LTF based on the Lewko IBE is as follows.

LTF.IGen(1λ) : It generates (D,D∗) ← Dual(Z8
p), chooses α, θ, σ ← Zp, ψ := (ψ1, . . . , ψ`) ← Z`p, and sets

gT := [αθd1 · d∗1]T and gTj := ψj � gT = [ψjαθd1 · d∗1]T for all j ∈ [`] where ` is the input length of
functions. It chooses an arbitrary tag ∈ Zp and s1,i, s2,i ← Zp for all i ∈ [`] and generates

ui,j := (s1,i � gTj )⊕ (mi,j � gT )
= [(s1,iψj +mi,j)αθd1 · d∗1]T ,

vi := [s1,id1 + s1,itagd2 + s2,id3 + s2,itagd4],

for all i, j ∈ [`] wheremi,i = 1 andmi,j = 0 (if i 6= j). It defines a matrixM := {mi,j}i,j = I . It chooses
r1, r2 ← Zp and generates

ktag := [(α+ r1tag)θd∗1 − r1θd
∗
2 + r2tagσd∗3 − r2σd

∗
4].

It returns ek := (U ,V ,ktag, tag) := ({ui,j}`i,j=1 , {vi}
`
i=1 ,ktag, tag), ik := ψ. Hereafter, {ui,j} and

{vi} denote {ui,j}`i,j=1 and {vi}`i=1, respectively if it is clear from the context.

LTF.LGen(1λ) : This is the same as LTF.IGen except that for all i, j ∈ [`], mi,j = 0 and ik := ⊥. (Matrix
M = 0.)

LTF.Eval(ek,x): First, it parses ek = ({ui,j} , {vi} ,ktag, tag). For input x ∈ {0, 1}`, it computes

yj :=
∑
i

(xi � ui,j) =
∑
i

(xis1,i � gTj )⊕ (ximi,j � gT )

= (〈x, s1〉 � gTj )⊕ (xjmj,j � gT )

y`+1 :=
∑
i

(xi � vi) =
∑
i

[xis1,id1 + xis1,itagd2 + xis2,id3 + xis2,itagd4]

= [〈x, s1〉d1 + 〈x, s1〉tagd2 + 〈x, s2〉d3 + 〈x, s2〉tagd4]

where s1 := (s1,1, . . . , s1,`), s2 := (s2,1, . . . , s2,`), and y′`+1 := e(y`+1,ktag) = [αθd1 · d∗1〈x, s1〉]T =
〈x, s1〉 � gT and returns output y := (y1, . . . , y`, y

′
`+1).

LTF.Invert(ik,y): For input y, it computes

x′j := yj 	 (ψj � y′`+1)
= (〈x, s1〉 � gTj )⊕ (xj � gT )	 (〈x, s1〉ψj � gT )
= xj � gT

and let xj ∈ {0, 1} be such that x′j = xj � gT . It returns x = (x1, . . . , x`).

Theorem 4.1. LTFmult is a lossy trapdoor function if the DBDH assumption holds.

Lemma 4.2 (Lossiness of LTFmult). LTFmult is (`− log p)-lossy.

Proof. We compute lossiness `′. For a lossy function index generated by LTF.LGen, an output is y = (s′1ψ �
gT , [s′1]T ) = (s′1 � gT1 , . . . , s

′
1 � gT` , [s′1]T ) where s′1 = 〈x, s1〉 ∈ Zp since xj,j = 0 in the lossy mode. Here,

secret trapdoor ψ is fixed by the function index. This means that for any given image y, there are at most p possible
values for 〈x, s1〉 and pre-images. Therefore, equation |D| /2`′ = p holds by the definition of the lossiness. By this
equation, we can derive equation `′ = `− log p since |D| = 2`.
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We introduce some notations before we show the indistinguishability. We borrow the notation introduced by
Peikert and Waters [PW11]. For matrix Y = (yi,j) ∈ Zh×wp , we define [Y ]T = ([yi,j ]T ) ∈ Gh×wT . Algorithm
GenConceal(h,w) which was introduced by Peikert and Waters is as follows.

1. Choose ζ := (ζ1, . . . , ζh)← Zhp and ψ := (ψ1, . . . , ψw, 1)← Zwp × {1}.

2. Let V := ζ ⊗ψ = ζTψ ∈ Zh×(w+1)
p be the outer product of ζ and ψ.

3. Output C := [V ]T ∈ Gh×(w+1)
T as the concealer matrix and ψ as the trapdoor.

The original concealer matrix by Peikert and Waters is over Gh×w, but we use a matrix over GT since we use
bilinear maps.

Lemma 4.3 (Indistinguishability of LTFmult). If the DBDH assumption holds, then LTFmult satisfies indistin-
guishability.

Proof. Letα0 ← Zp and gT := [α0]T . Forψ = (ψ1, . . . , ψ`, 1), [α0ζψ]T denotes ([α0ζψ1]T , . . . , [α0ζψ`]T , [α0ζ]T ).
We need three steps to show the lemma.

First, we will show that if the DBDH assumption holds, then ([α0ψ]T ,γ = [α0ζψ]T ) is computationally
indistinguishable from ([α0ψ]T ,γ = [α0t]T ) where ζ ← Zp, ψ ← Z`p × {1}, and t ← Z`+1

p . Note that the
(`+ 1)-th element of ψ is fixed to 1. To show the indistinguishability, we define hybrid distribution

Hybj: Wechoosesα0, ζ ← Zp andψ ← Z`p×{1} and setsγ := ([α0ζψ1]T , . . . , [α0ζψj ]T , [α0yj+1]T , . . . , [α0y`]T , [α0ζ]T )
where yk ← Zp for k > j. That is, [α0yk]T is uniformly random element for k > j. The output is ([α0ψ],γ).

We note that Hyb0 = ([α0ψ]T , [α0t]T ) and Hyb` = ([α0ψ]T , [α0ζψ]T ). We show that for each j ∈ [`], Hybj and
Hybj−1 are computationally indistinguishable under the DBDH assumption.

We construct PPT algorithm B that solves the DBDH problem by using distinguisher D for Hybj and
Hybj−1. B is given input (paramG, [1], [a], [b], [c], Q) and computes (τ ,γ) ∈ G`+1

T × G`+1
T as follows. B sets

τ`+1 := gT := [α0]T for α0 ← Zp, y`+1 := α0 � e([1], [c]) = c� gT . It implicitly holds ζ := c.

• For k ∈ [j − 1], B chooses ψk and sets τk := ψk � gT , γk := α0ψk � e([1], [c]) = cψk � gT .

• For k = j + 1, . . . , `, B chooses ψk and sets τk := ψk � gT , γk := yk � gT where yk ← Zp.

Finally, B embeds the instance, that is, sets τj := α0 � e([a], [b]) = ab� gT , γj := α0 �Q (implicitly ψj := ab).
If Q = [abc]T , then γj = ψjζ � gT and (τ ,γ) = Hybj . If Q ← GT , then γj := yj � gT where yj ← Zp
(Q = [yj ]T ) and (τ ,γ) = Hybj−1. Therefore, Hybj

c
≈ Hybj−1. As a corollary, Hyb0

c
≈ Hyb`.

Second, We define new hybrid distributions Hyb′0, . . . ,Hyb′`′ over matrices C ∈ G`
′×(`+1)
T . In Hyb′i, elements

in the first i rows of C are computed as in GenConceal. On the other hand, elements in the last (`′ − i) rows
are uniformly random over G`+1

T . Hyb′`′ is the same as GenConceal and Hyb′0 is the uniform distribution over
G`
′×(`+1)
T . We show that for each i ∈ [`′], Hyb′i

c
≈ Hyb′i−1 if the DBDH assumption holds. We construct PPT

algorithmD that distinguishes Hyb0 from Hyb` by using distinguisherD′ for Hyb′i and Hyb′i−1. D is given instance
([α0ψ]T ,γ ∈ G`+1

T ), D generates matrix C as follows.

• For each k ≤ (i− 1), chooses ζk ← Zp and set the k-th row of C be ck := ζk � ([α0ψ]T ) = [α0ζkψ]T .

• For k = i, sets the i-th row of C be ci := γ. That is, D embeds the instance.

• For the other rows, sets uniformly random elements over G(`+1)
T .

If γ = [α0ζψ]T , then the distribution is the same as Hyb′i, else if γ is uniformly random, then the distribution is
the same as Hyb′i−1. That is, we show that Hyb0

c
≈ Hyb0

` implies Hyb′i−1
c
≈ Hyb′i. Therefore, Hyb′0

c
≈ Hyb′` if the

DBDH assumption holds.
Finally, we prove the lemma. Our final goal is to show ({ui,j} , {vi} ,ktag, tag) forM = I is indistinguishable

from ({ui,j} , {vi} ,ktag, tag) forM = 0. In the above simulation, we only consider {ui,j} and ζ � gT instead
of {ui,j}, {vi = [s1,id1 + s1,itagd2 + s2,id3 + s2,itagd4]}, ktag, and tag. The key point is that we can replace
(`+ 1)-th column element ζ� gT inC with [ζd1 + ζtagd2 + s2d3 + s2tagd4] where (D,D∗)← Dual(Z8

p) in the
above simulation since the simulator can generate bases (D,D∗) and choose tag← Zp by itself. We must simulate
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V = [ζd1 + ζtagd2 + s2d3 + s2tagd4] and ktag = [(α + r1tag)θd∗1 − r1θd
∗
2r2tagσd∗3 − r2σd

∗
4] for s2 ← Zp.

If we have [ζ] = [c] and matrixD = (d1, . . . ,d8), then we can compute [ζd1 + ζtagd2] = (d1 + tagd2)� [ζ]
without knowing ζ since simulator B generates (D,D∗) ← Dual(Z8

p) by itself. B can also generate ktag
since it has D∗. Therefore, in the above simulation we can replace (` + 1)-th column element ζ � gT with
[ζd1 + ζtagd2 + s2d3 + s2tagd4] and add ktag = [(α+ r1tag)θd∗1 − r1θd

∗
2 + r2tagσd∗3 − r2σd

∗
4] (We can set

α0 := αθd1 · d∗1). Therefore, LTFmult satisfies indistinguishability.

4.2 Watermarking Scheme for Our LTF
LTFmult In this section, we present our watermarking scheme. First, we give an overview of our construction.

We added extra two dimensions of DPVS to the original Lewko IBE scheme since we use the extra dimensions
to embed watermarks. Even if we add a vector spanned by d∗7 and d∗8 to an element ktag in a function index,
which is spanned by d∗1, . . . ,d

∗
4, it is indistinguishable from the original one since vectors d7,d8,d

∗
7,d
∗
8 are hidden.

Moreover, the marked index works as the original non-marked index since elements in function index V are spanned
by d1, . . . ,d4 and components d∗7,d

∗
8 are canceled. However, if we have a vector which is spanned by d7,d8,

then we can detect the mark which is generated by d∗7,d
∗
8. If we have complete dual orthonormal bases (D,D∗),

then we can use the vector decomposition algorithm introduced in Section 2.3 and eliminate the vector spanned by
d∗7,d

∗
8, i.e., watermarks.

Our watermarking scheme CWMmult for LTFmult is as follows:

WMGen(1λ): It generates (D,D∗) ← Dual(Z8
p), chooses α, θ, σ ← Zp and u7, u8 ← Z∗p, and sets gT :=

[αθd1 · d∗1]T , pp := D̂ := (paramV, gT , [d1], . . . , [d4]), sk := (D̂, [αθd∗1], [θd∗1], [θd∗2], [σd∗3], [σd∗4]),
mk := ([d∗7], [d∗8]), dk := (D̂, c := [u7d7 + u8d8]), and rk := (D,D∗). Keys sk, mk, and rk are secret.
Parameter pp and key dk are public.

Samp(sk): The sampling algorithm chooses tag ∈ Zp and ψ ← Z`p, s1, s2 ← Z`p, and generates (ek, ik) :=
((U ,V ,ktag, tag),ψ) as LTF.IGen. It computes ktag := [(α+ r1tag)θd∗1 − r1θd

∗
2 + r2σtagd∗3 − r2σd

∗
4].

Mark(mk, ek): It parses ek = (U ,V ,ktag, tag) ∈ G`2

T × G8` × G8 × Zp, chooses t7, t8 ← Zp, and com-
putes k̃tag := ktag · [t7d∗7 + t8d

∗
8] by using [d∗7] and [d∗8]. It outputs marked function indexM(ek) =

(U ,V , k̃tag, tag).

Detect(dk, ẽk): It parses ẽk = (U ,V , k̃tag, tag) and dk = (D̂, c). Next, it computes ∆ := e(c, k̃tag). If the
following condition holds, then it outputs marked, otherwise outputs unmarked.

• ∆ = e(c, k̃tag) 6= 1

Remove(rk, ẽk): It parses rk = (D,D∗) and ẽk = (U ,V , k̃tag, tag), runs the decomposition algorithm.
That is, it computes

∑m
j=1[zjd∗j ] = Decomp(k̃tag, ([d∗1], . . . , [d∗m]),D∗, ([d1], . . . , [d8])) for all m < 8,

where zj ∈ Zp and obtains [zjd∗j ] for j = 1, . . . , 8. It holds k̃tag = [z1d
∗
1 + · · · + z8d

∗
8]. It computes

k′tag := k̃tag 	 [z7d
∗
7 + z8d

∗
8] and outputs (U ,V ,k′tag, tag) as an unmarked index.

We can easily verify that meaningfulness, correctness, and polynomial blowup hold. Note that the sampling
algorithm uses sk to sample a function index and sk does not include ([d∗7], [d∗8]). Thus, meaningfulness hold with
probability 1.

Preserving functionality holds since elements in U and V do not include vectors [d7] and [d8] and vector
[t1d∗7 + t2d

∗
8] does not interfere the computation of LTF.Eval. Note that if we do not have secret key ([d∗1], . . . , [d∗4]),

then we cannot compute a complete function index, that is, we cannot compute an element ktag. This seems to
be a restriction, but in the scenario of watermarking schemes, this is acceptable by following reasons. We use
watermarking schemes to authorize objects and such objects are privately generated by authors. For example, movies,
music files, and software are generated by some companies and they do not distribute unauthorized (unmarked)
objects. Moreover, in the experiment on security, the adversary is given a oracle which gives marked function
indices. Thus, it is reasonable that unauthorized parties cannot efficiently sample functions by themselves.
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4.3 Security Proof
Definition 4.4 (Non-removability under the same format restriction).We say that a watermarking scheme
satisfies non-removability under the same format restriction if it is non-removable against adversaries in the
experiment Expnrmv

F,A(λ, ε) for CWMmult that must output `2 elements inGT , 8(`+ 1) elements inG, and one integer
in Zp as a non-marked function to win the game.

Definition 4.5 (Secure watermarking under the same format restriction). We say that a watermarking scheme
is secure under the same format restriction if it is a secure watermarking scheme that satisfies non-removability
under the same format restriction instead of standard non-removability.

Theorem 4.6. Our watermarking scheme CWMmult for ε = 1/poly(λ) is secure with same format under the DLIN.

We prove the theorem by proving Theorems 4.7.

Theorem 4.7 (Non-Removability under the same format restriction). Our scheme CWMmult satisfies non-
removability with same format under the subspace assumption.

Proof. If A outputs ek∗, where Detect(dk, ek∗) = unmarked and IdealDtc(ek∗) = marked, then we con-
struct algorithm B, which solves the subspace problem with k = 1 and n = 8. B is given Γ, D =
([b1], [b2], [b4], . . . , [b8], [ηb∗1], [βb∗2], [b∗3], . . . , [b∗8], U1 = [µ1b1 + µ2b2 + µ3b3], µ3), and Qb where Qb is
V1 = [τ1ηb

∗
1 + τ2βb

∗
2] orW1 = [τ1ηb

∗
1 + τ2βb

∗
2 + τ3b

∗
3]. B chooses θ, α′, σ ← Zp, sets

d1 := b∗3 d2 := b∗4 d3 := b∗5 d4 := b∗6 d5 := b∗7 d6 := b∗8 d7 := b∗1 d8 := b∗2

d∗1 := b3 d∗2 := b4 d∗3 := b5 d∗4 := b6 d∗5 := b7 d∗6 := b8 d∗7 := b1 d∗8 := b2,

and can generate ([αθd1·d∗1]T , [d1], . . . , [d4]) := α′µ3θ�e([b∗4], [b4]), [b∗3], [b∗4], [b∗5], [b∗6]) andmk = ([d7], [d8]) :=
([b1], [b2]). B can compute a detection key since [ηb∗1], [βb∗2] are given and B can compute ([ηb∗1])u′1([βb∗2])u′2 . B
has ([d∗2], . . . , [d∗8]) but does not have [d∗1] since [b3] is not given. That is, B has the mark key and perfectly simulates
the mark oracle. On the other hand, the secret key is incomplete as follows, sk = (⊥,⊥, [θd∗2], [σd∗3], [σd∗4])
:= (⊥,⊥, [θb4], [σb5], [σb6]).

It implicitly holds α = α′µ3. To simulate the challenge oracle without the complete sk, for tag, B chooses
r′1, r2, t7, t8 ← Zp and computes

k̃tag := ((α′ + r′1tag)θ � U1)⊕ [−r′1µ3θd
∗
2 + r2tagσd∗3 − r2σd

∗
4 + t7d

∗
7 + t8d

∗
8]

= [(α+ r1tag)θd∗1 − r1θd
∗
2 + r2tagσd∗3 − r2σd

∗
4 + (t7 − θ(α′ + r′1tag)µ1)d∗7 + (t8 − θ(α′ + r′1tag)µ2)d∗8].

We set r1 := µ3r
′
1. This is a valid marked index. IfA outputs valid unmarked index ek∗ = (U∗,V ∗,k∗tag∗ , tag∗) ∈

G`2

T ×G8` ×G8 × Zp , then B computes ∆ := e(Qb,k
∗
tag∗).

There is a possibility thatk∗tag∗ does not include [d∗1], that is, for some s1 ∈ Zp, it may not hold e([s1d1],k∗tag∗) =
gs1
T . However, this case does not happen with non-negligible probability due to the ε-approximation condition and
the property of algorithm Test. Correctly computing (`+ 1)-th element of the output of the function for random
input ~x is equivalent to that for some s1 it holds e([s1d1 + s1tag∗d2 + s2d3 + s2tag∗d4],k∗tag∗) = s1 � gT where
gT = [αθd1 · d∗1]T .

For randomly chosen x, it holds that y`+1 :=
∑
i xi � (v∗i ) =

∑
i[xis∗1,id1 + xis

∗
1,itagd2 + xis

∗
2,id3 +

xis
∗
2,itagd4] and e(y`+1,k

∗
tag∗) = [αθd1 · d∗1〈x, s∗1〉]T for some s∗1, s∗2 ∈ Z`p with probability ε. We can consider

〈x, s∗1〉 = s1.
If ∆ = 1, then B outputs 0 (b = 0), otherwise, it outputs 1. B can output correct b. Analysis is as follows.

• IfQ0 = [τ1ηb
∗
1 + τ2βb

∗
2] = [τ1ηd7 + τ2βd8] is given, then ∆ = 1 sinceA succeeds removing the mark and

k∗tag∗ does not include vectors d
∗
7 and d∗8.

• If Q1 = [τ1ηb
∗
1 + τ2βb

∗
2 + τ3b

∗
3] = [τ1ηd7 + τ2βd8 + τ3d1] is given, then ∆ 6= 1 since k∗tag∗ includes [d∗1]

with non-negligible probability due to the ε-approximation condition.

Thus, B breaks the problem.
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5 Concluding Remarks
We introduced the notion of cryptographic watermarking schemes, defined its security notion, and proposed a
concrete construction by using DPVS. It is secure with same format, which is a restriced security model, under the
DLIN assumption. This gives us the first positive result about provably secure watermarking schemes. We can
construct a similar scheme by using Okamoto-Takashima IPE scheme. We list a few remarks.

Constructions Based on the Symmetric External Diffie-Hellman Assumption. Chen, Lim, Ling, Wang, and
Wee proposed an IBE scheme by using the subspace assumption based on the symmetric external Diffie-Hellman
(SXDH) assumption, where the decisional Diffie-Hellman assumption holds in both groups of an asymmetric
pairing group [CLL+13]. Their IBE scheme is similar to Lewko’s scheme and we can apply our technique to their
scheme. Thus, we can construct a more efficient watermarking scheme based on the SXDH assumption.

Constructions Based on Composite-Order Pairing Groups. We use the canceling property of DPVS and
sub-group decision type assumption to prove the security. Composite-order pairing groups also have such
properties [LW10, LOS+10]. Therefore, we can construct watermarking schemes based on composite-order pairing
groups. However, we do not give concrete constructions in this paper since, generally speaking, schemes based on
composite-order groups are less efficient than schemes based on prime-order groups due to large composites. One
may think that we do not have remove algorithms if we use composite-order groups since we do not have trapdoor
matrices of DPVS and the decomposition algorithm by Okamoto and Takashima. However, we note that if we use
prime factors of composites as trapdoors, then we can also achieve remove algorithms in the composite-order group
setting.

Open Issues. Our watermarking schemes are called the detection-type watermarking scheme, in which we can
verify just one-bit information, embedded or not. We can consider a stronger variant called the extraction-type
watermarking scheme, in which we can embed a message as a mark and extract it. In fact, our schemes can be
modified into extraction-type schemes by adding extra (2µ − 2)-dimension to our schemes for µ-bit messages
since we can embed a one-bit message for each 2-dimension. However, this is quite inefficient. Thus, it is an open
problem to construct more efficient extraction-type watermarking schemes.
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A Lewko IBE Scheme
We review Lewko IBE scheme, IBEL [Lew12] in this section.

Setup(1λ): It generates Λ := (p,G,GT , e, g) R← Gbmp(1λ) and (D,D∗) U← Dual(Z6
p), chooses α, θ, σ

U← Zp,
and sets pk := (Λ, [αθd1 · d∗1]T , [d1], . . . , [d4]), msk := ([θd∗1], [αd∗1], [θd∗2], [σd∗3], [σd∗4]). It outputs
(pk,msk).

Gen(msk, id): It chooses r1, r2
U← Zp and generates skid := [(α+ r1id)θd∗1 − r1θd

∗
2 + r2idσd∗3 − r2σd

∗
4].

Enc(pk, id,M): It chooses s1, s2
U← Zp and generates C0 := M ⊕ ([αθd1 · d∗1]T )s1 and

C := [s1d1 + s1idd2 + s2d3 + s2idd4]. It outputs ciphertext ct := (C0, C).
Dec(skid, ct): It outputsM := C0/e(skid, C).

Theorem A.1 ([Lew12]). If the DLIN assumption holds, then IBEL is adaptively secure against chosen plaintext
attacks.
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