
An Efficient Cloud-based Revocable
Identity-based Proxy Re-encryption Scheme for

Public Clouds Data Sharing

Kaitai Liang1, Joseph K. Liu2, Duncan S. Wong1, Willy Susilo3

Department of Computer Science, City University of Hong Kong1,
Institute for Infocomm Research, A*STAR, Singapore2,

School of Computer Science and Software Engineering, University of Wollongong3

kliang4-c@my.cityu.edu.hk, ksliu9@gmail.com, duncan@cityu.edu.hk,
wsusilo@uow.edu.au

Abstract. Identity-based encryption (IBE) eliminates the necessity of
having a costly certificate verification process. However, revocation re-
mains as a daunting task in terms of ciphertext update and key update
phases as due to the lack of a certificate revocation list in this infrastruc-
ture. In this paper, we provide an affirmative solution to solve the effi-
ciency problem incurred by revocation. We propose the first cloud-based
revocable identity-based proxy re-encryption (CR-IB-PRE) scheme that
supports user revocation but also delegation of decryption rights. No
matter a user is revoked or not, at the end of a given time period the
cloud acting as a proxy will re-encrypt all ciphertexts of the user under
the current time period to the next time period. If the user is revoked in
the forthcoming time period, he cannot decrypt the ciphertexts by using
the expired private key anymore. We state that this primitive is applica-
ble to many practical network applications, such as subscription-based
cloud storage services. Comparing to some naive solutions which require
a private key generator (PKG) to interact with non-revoked users in
each time period, the new scheme provides definite advantages in terms
of communication and computation efficiency. Our scheme only requires
the PKG to publish a constant-size public string for each time period
and meanwhile, the workload of ciphertexts update is off-loaded to the
cloud server. More importantly, the scheme can be proven secure in the
standard model.

Key words: Revocable identity-based encryption, cloud-based revoca-
ble identity-based proxy re-encryption, standard model

1 Introduction

In a traditional public-key infrastructure (PKI), user revocation can be
conducted via a certificate mechanism. If a user is revoked, his/her cer-
tificate will be added to a certificate revocation list (CRL) by certificate

authority. Anyone who wants to encrypt a message for this user has to
check the certificate of the user against the CRL. If the certificate is on
the list, the sender knows that this user has been revoked and therefore,
will not further share any sensitive information with him/her. Different
from PKI, there is no certificate in identity-based encryption (IBE) cryp-
tosystem. Therefore user revocation remains an elusive open problem in
this paradigm.

To solve this problem, Boneh and Franklin [1] proposed a naive but
inefficient solution (the first revocable IBE scheme) such that the com-
putation and communication complexity of private key generator (PKG)
are both linearly in the total number N of non-revocable system users,
i.e. O(N). Although their work is further studied by different scholars in
the following decade, most of the existing revocable IBE systems (e.g. [2])
have not considered how to relieve the cost spent on key and ciphertext
updated processes. Therefore, this motivates our work.

1.1 Motivation

Ciphertexts Update. To date cloud-based technology gives birth to the
next generation of computing system. With the assistance of cloud server,
many costly computations can be performed with ease. For example, in
a revocable IBE system, a data sender can encrypt the data under an
identity and a time period for a specified receiver such that the receiver
can gain access to the data by using his decryption key corresponding to
the time period. When the key is expired and the receiver is not on the
revocation list, a PKG will issue a new key/token for the next time period
to the receiver and the corresponding ciphertext will be updated to the
next period as well. Suppose the ciphertext of the data is stored in a public
cloud, then for each ciphertext update process the sender has to deal with
the download-decrypt-then-re-encrypt process. Although the ciphertext
might be stored locally (without loss of confidentiality), the sender should
execute decrypt-then-re-encrypt mode. This may consume a great amount
of computational resources while there is a great amount of data to be
dealt with. Therefore, the sender might not afford the consumption upon
using some resource-limited devices.

To off-load the computational workload to the cloud, we might allow
the cloud server to handle ciphertext update process. A naive solution is
to enable the cloud to gain access to the data. This, nevertheless, vio-
lates the confidentiality of data. A better solution is to enable the cloud
to re-encrypt an original ciphertext under an old time period to another
ciphertext under a new time period without leaking knowledge of either

the decryption key or the underlying plaintext. In CRYPTO 2012 Sahai,
Seyalioglu and Waters [3] proposed a non-re-encryption methodology to
enable a server, given some public information, to fulfill ciphertext up-
date process in the attribute-based encryption setting. In this paper we
leverage the technology of proxy re-encryption (PRE) into ciphertext up-
date process to tackle the same problem in the context of revocable IBE.
Later, we will show that our system enjoys better efficiency compared
to [3]. Using PRE, a ciphertext stored in the cloud can be re-encrypted
to another ciphertext by the cloud server acting as a semi-trusted proxy.
No information related to the data, however, leaks to the proxy. Accord-
ingly, the update process can be executed effectively and efficiently on
the side of cloud server such that the workload of data sender is lessen.

Key Update. Using the technology of identity-based PRE (IB-PRE),
ciphertext update for user revocation can be somehow offloaded to the
cloud as well. If a user is revoked, all ciphertexts stored in the cloud server
will be re-encrypted to another “identity”. For instance, ciphertexts for
a user with identity Alice are re-encrypted to ciphertexts for another
“identity” Alice-1 such that the decryption key associated with Alice

is not applicable to the decryption of the newly ciphertexts. Nonethe-
less, there is an undesirable trade-off by simply leveraging IB-PRE. The
user needs to update a new identity upon entering to the new time pe-
riod (corresponding to Alice-1). This does not lead to any problem if
the revocation of the user is due to the departure from the organization.
However, if the revocation is due to key compromise, that might be a
potential risk as the user is able to retain original identity even the cor-
responding decryption key is comprised. A change in identity (e.g. from
Alice to Alice-1) might bring inconvenience to the user who needs to
tell all data senders to use the new identity for the further encryption.
That already violates the original idea of using identity-based encryption
in which the sender only needs to know some simple information, e.g.,
name, email address of the user, but not other frequently changeable (or
periodical updated) information.

In the ideal case, it is desirable to have a cloud-based encryption
scheme with the following features:

1. Efficient Revocation: It should support both user and decryption
key revocation. User revocation guarantees that if a user has left the
organization, he/she will be withdrawn from the right of accessing
the information (with respect to his/her identity) in clouds. Decryp-
tion key revocation ensures that when the decryption key of a user is
stolen or compromised by an adversary, the user may have an oppor-

tunity to update the key so as to decrypt updated ciphertexts. With
these properties, only a legitimate user is allowed to continually ac-
cess the data under the encryption (e.g. being issued a new private
key by PKG) but not the adversary with a compromised key. More
importantly, the complexity of revocation should not be linearly in
the number of non-revocable system users (i.e. O(N)).

2. Efficient Ciphertext Update: Ciphertext update process can be
off-loaded to cloud server such that a data sender enjoys less compu-
tational cost while there is a great deal of ciphertexts to be updated.

3. Consistency of Identity after Revocation: If the decryption key
of a user is compromised (that is the case of decryption key revo-
cation), the user should retain his/her original identity (i.e. keeping
identity consistent). No additional information will be added to the
identity or identification string.

1.2 A Naive Solution

Using any existing IB-PRE system (e.g. [4]), a naive solution can be
achieved with the above features. We denote by “Name | Time Period”
the “identity” of a system user. That is, the time period is concatenated
to the original identity of the user. For example, the identity of Alice at
January 2014 is represented as Alice | JAN 2014. Any data sender can
use this string as public key to encrypt the data for Alice in January
2014. In the upcoming month, the identity will be changed to Alice

| FEB 2014. Before the beginning of March, the server will re-encrypt
all ciphertexts of Alice stored in the cloud to Alice | Mar 2014 such
that Alice cannot access the data unless she is granted a new key for
March 2014. On the other side, if the key (for February 2014) is stolen by
adversary, the same action can be taken. However, in this case the user
is required to be given the decryption key for the next time period (i.e.
March 2014) in advance.

However, this solution leads to an undesirable trade-off where it brings
unnecessary workload for PKG. The solution requires the PKG to issue a
decryption key to every user at the beginning of each time period. Most
of key generation/update algorithms of revocable IBE systems fulfill the
issue of updated decryption key (resp. corresponding updated informa-
tion) by establishing a secure channel from the PKG to a user. The cost
brought by building up the secure channel for each user is acceptable for
a new user joining the system at the first time. But if the PKG and the
user need to repeat this at every time period, it might not be practical. It
not only brings inconvenience to (non-revocable) system users, but also

incurs undesirable workload for the PKG as the complexity grows linearly
with the number of (non-revocable) users at each time period. Thus this
naive solution is not scalable and not practical at all.

1.3 Our Contributions

In this paper we present the following contributions.

• We define the notion of cloud-based revocable identity-based proxy
re-encryption (CR-IB-PRE) and its corresponding security model.
• We propose an efficient and concrete system achieving the notion we

propose above. It is worth mentioning that the present system is the
first to support user revocation but also delegation of decryption rights
in the identity-based cryptographic setting.
• Our scheme achieving the features mentioned in the previous section

only requires the PKG to publish a constant-size public string at
the beginning of each time period. The PKG does not need to interact
with each user by establishing an individual secure channel such that
the complexity of the PKG is reduced to O(1). This public string only
allows non-revoked users (but not the revoked users) to fulfill the key
update phase. Without this key updating process, the revoked users
can not decrypt the ciphertexts stored in the cloud any more as the
original ciphertexts are already re-encrypted to the next time period
when the users are revoked.
• We prove our new scheme to be secure against chosen-plaintext attack

(CPA) and collusion resistant in the standard model.

1.4 System Architecture

Fig. 1 and Fig. 2 show the architecture of a CR-IB-PRE system. Fig. 1
mainly depicts re-encryption and decryption phases of the system. Like
a revocable IBE system, a PKG first issues a private key skAlice associ-
ated with an identity, say Alice, to the user Alice. When a time period,
say T5, has come, the PKG delivers a token τT5 to Alice such that Alice
can update her private key to a new decryption key skAlice|T5 to de-
crypt any ciphertext encrypted under Alice and time period T5. When a
new time period is approaching, Alice may construct a re-encryption key
rkAlice|T5→T6 under her identity from T5 to T6, and then send the key to
a cloud server whom will update a ciphertext under Alice and T5 to a new
ciphertext under Alice and T6. However, Alice here cannot immediately
decrypt the new ciphertext as a token τT6 is not issued by PKG yet. Af-
ter the token is issued, Alice can update her decryption key to skAlice|T6

accordingly so as to recover the underlying plaintext. Fig. 2 illustrates
the key update phase. The PKG only publishes a public token associated
with T5 such that any user excluded in the revocation list can leverage
this token to update his/her decryption key. This makes key update (for
N non-revocable users) reduce to constant cost.

Fig. 1. Re-Encryption and Decryption Phases in a CR-IB-PRE System

One might doubt that the system cannot be seen as a type of IB-
PRE because an IB-PRE scheme usually re-encrypts a ciphertext under
an identity to another ciphertext under a new identity. Actually, our
system does not contradict the notion of IB-PRE by regarding (Alice, T5)
and (Alice, T6) as two different identities. One might further question
that ciphertext update process may be suspended by a dishonest user
if the user refuses to deliver the corresponding re-encryption key to the
server. To address this problem, we propose a solution right after our
basic construction in Section 5.2.

1.5 Related Work

The first revocable IBE is proposed by Boneh and Franklin [1], in which
a ciphertext is encrypted under an identity id and a time period T , and
a non-revoked user is issued a private key skid,T by a PKG such that
the user can access the data in T . However, this does not scale well as

Fig. 2. Key Update Phase in a CR-IB-PRE System

the complexity of the PKG is linearly in the number N of non-revocable
users. Subsequently, Boldyreva, Goyal and Kumar [2] proposed the se-
curity notion for revocable IBE, and constructed an efficient revocable
IBE scheme from a fuzzy IBE scheme [5] with binary tree structure. To
achieve adaptive security, Libert and Vergnaud [6] proposed a revocable
IBE scheme based on the variant of Waters IBE [7] and Gentry IBE [8].
Recently, Seo and Emura [9] formalized a revised notion for revocable
IBE, and proposed a concrete scheme based on [6]. Since its introduction,
there are many variants of revocable IBE. For example, several revoca-
ble IBE schemes [10,11,12] leverage a semi-trusted authority to enable
users to fulfill valid decryption. There are also some functional encryp-
tion schemes [13,14,15,3] considering the property of revocation. Inspired
by [9] we will build the first CR-IB-PRE scheme in the standard model.

Decryption rights delegation is introduced in [16]. Blaze, Bleumer and
Strauss [17] formally defined the notion of PRE. PRE can be classified as:
unidirectional and bidirectional PRE, and single-hop and multi-hop PRE,
where the definitions are given in [18]. This present work deals with the
multi-hop unidirectional case. Many PRE systems have been proposed in
the literature, such as [18,19,20,21,22].

To employ PRE in the IBE setting, Green and Ateniese [4] defined
the notion of identity-based PRE (IB-PRE), and proposed two construc-
tions in the random oracle model. Later on, Tang, Hartel and Jonker [23]
proposed a CPA-secure IB-PRE scheme in the random oracle model, in
which delegator and delegatee can belong to different domains. Chu and
Tzeng [24] proposed an IB-PRE scheme without random oracles against

replayable chosen-ciphertext attacks (RCCA) [25]. The aforementioned
schemes, however, enable proxy to compromise the entire private key of
delegator by colluding with delegatee. To tackle the problem, the fol-
lowing systems are proposed. Two CPA-secure IB-PRE schemes without
random oracles were proposed by Matsuo [26]. Wang et al. [27,28] pro-
posed two IB-PRE schemes in the random oracle model. Minzuno and
Doi [29] constructed an IB-PRE scheme in the standard model with CPA
security. Two CPA-secure IB-PRE schemes without random oracles were
proposed in [30]. Shao and Cao [31] proposed a generic construction for
CCA-secure IB-PRE in the standard model. Recently, Liang et al. [32]
proposed the first CCA-secure unidirectional single-hop IB-PRE in the
standard model supporting conditional re-encryption.

2 Definitions and Security Models

Below we define the notion of CR-IB-PRE. Unless stated otherwise, by
a CR-IB-PRE we mean a CR-IB-PRE with unidirectional and multi-hop
properties. Note please refer to [18] for more details of these properties.

2.1 Definition of CR-IB-PRE

Definition 1. A Cloud-Based Revocable Identity-Based Proxy Re-Encry-
ption (CR-IB-PRE) scheme consists of the following algorithms. Below
we let I, T ,M be identity space, time space and message space, respec-
tively.

1. Setup: the setup algorithm intakes a security parameter k and a max-
imal number of users N , and outputs the public parameters mpk, the
master secret key msk, the initial state st and an empty revocation
list RL. For simplicity, we assume the following algorithms include
mpk implicitly.

2. KeyGen: the private key generation algorithm intakes msk, and a
user’s identity id ∈ I, and outputs a private key skid for the user id
and an updated state st.

3. TokenUp: the token update algorithm intakes msk, an identity id, a
token update time period Ti ∈ T , the current revocation list RL and
st, and outputs a token τi, where i ∈ [1, poly(1k)].

4. DeKeyGen: the decryption key generation algorithm intakes skid, τi,
and outputs a decryption key skid|i for the user id under the time

period Ti or ⊥ if id has been revoked, where i ∈ [1, poly(1k)].

5. ReKeyGen: the re-encryption key generation algorithm intakes skid|i,
msk, Ti and Ti′, and generates the re-encryption key as follows, where
1 ≤ i < i′.

(a) ReKeyToken: the re-encryption key token generation algorithm
intakes msk, Ti and Ti′, outputs a re-encryption key token ϕi→i′.

(b) ReKey: the re-encryption key algorithm intakes skid|i and ϕi→i′,
outputs a re-encryption key rkid|i→i′ which can be used to trans-
form a ciphertext under (id, Ti) to another ciphertext under (id, Ti′).

6. Enc: the encryption algorithm intakes id, Ti, and a message m ∈
M, and outputs an original ciphertext C under (id, Ti) which can be
further re-encrypted.

7. ReEnc: the re-encryption algorithm intakes rkid|i→i′, and a ciphertext
C under (id, Ti), and outputs either a re-encrypted ciphertext C under
(id, Ti′) or a symbol ⊥ indicating C is invalid, where 1 ≤ i < i′.

8. Dec: the decryption algorithm intakes skid|i, and a ciphertext C under
(id, Ti), and outputs either a message m or a symbol ⊥ indicating C
is invalid.

9. Revoke: the revocation algorithm intakes an identity to be revoked id,
a revocation time period Ti, the current revocation list RL, and a state
st, and outputs an updated RL.

Remarks. Definition 1 is for our basic construction. In this paper we also
present extensions for the basic construction. For the extended system,
we reuse the above definition except that TokenUp takes msk, ID, Ti,
RL and st as input, and outputs a token τi for a set ID of non-revocable
users.

Correctness: For any (mpk,msk) output by Setup, any time period Ti ∈
T (where i ∈ [1, poly(1k)]), any message m ∈ M, and all possible states
st and revocation list RL, if skid is output by KeyGen(msk, id), τi ←
TokenUp(msk, id, Ti, RL, st), skid|i ← DeKeyGen(skid, τi), rkid|i→j ←
ReKeyGen(skid|i, msk, Ti, Tj) (note for simplicity we set j = i+1 here),
we have

if id is not revoked by T1 : Dec(skid|1, Enc(id, T1,m)) = m;

if id is not revoked by Ti :

Dec(skid|i, ReEnc(rkid|i−1→i, ..., ReEnc(rkid|1→2, Enc(id, T1,m)))...) = m.

2.2 Revocation Procedure

The revocation procedure is described based on different cases as follows.

1. Decryption Key Compromised. When the decryption key skid|i of
a user id for time period Ti is compromised by an adversary, the user id
reports this issue to a PKG. The PKG then immediately returns a re-
encryption key token ϕi→j to the user, where j 6= i such that the user
can generate a re-encryption key rkid|i→j . The user id further sends
the re-encryption key to the proxy, and next requests it to re-encrypt
all ciphertexts under (id, Ti) to the ones under (id, Tj). Besides, the
PKG issues a token τj related to a new time period Tj to the user id.
After receiving the token, the user id updates his/her decryption key
from skid|i to skid|j , and then uses the newly key to access the data.
Note Tj is the time period satisfying i < j such that the user id will
update his key for decryption.

2. Identity Expired. When the identity of a user is expired (e.g. the
resignation of a registered user) at time period Ti, our system notifies
the corresponding identity and time period to a PKG. The PKG then
generates a re-encryption key rkid|i→j , and requests the proxy to re-
encrypt all ciphertexts under (id, Ti) to the ciphertexts under (id, Tj).
Here j must satisfy i < j such that the user id cannot reuse his/her
decryption keys skid|z (where z ≤ i) to decrypt the re-encrypted ci-
phertexts. The PKG finally adds this user to the revocation list, that
is, a re-encryption token and a token related to a new time period will
not be issued to this user (after time period i).

2.3 Security Models

Below we define the CPA (IND-CPA) security notion for CR-IB-PRE
systems. Before proceeding, we first define some notations used in our
definition.

1. Delegation chain. Suppose in a CR-IB-PRE scheme there is a re-
encryption key set RK = {rkid|i1→i2 , ..., rkid|il−1→il} (l ≥ 2), for any
re-encryption key rkid|ij→ij+1

in RK, ij 6= ij+1. We say that there
exists a delegation chain under an identity id from time period Ti1 to
time period Til , denoted as (id, Ti1 →, ..., → Til).

2. Honest Delegation Chain. Suppose there is a delegation chain
under an identity id from time period Ti to time period Tj (i.e.
(id, Ti →, ...,→ Tj)). If there is no skid|z being compromised by an
adversary, then it is an honest delegation chain, where z ∈ {i, ..., j}.
Otherwise, it is a corrupted one.

Definition 2. A CR-IB-PRE scheme is IND-CPA secure if no proba-
bilistic polynomial time (PPT) adversary A can win the game below with

non-negligible advantage. In the game, B is the challenger, k is the secu-
rity parameter, and N is a maximal number of users.

1. Setup. B runs Setup(1k, N), and next sends mpk to A.
2. Phase 1.

(a) Private key oracle Osk(id): on input an identity id, B runs skid ←
KeyGen(msk, id) and returns skid to A.

(b) TokenUpdate oracle Otu(id, Ti): on input an identity id and a time
period Ti, B runs τi ← TokenUp(msk, id, Ti, RL, st) and returns
τi to A.

(c) DeKeyGen oracle Oku(id, Ti): on input an identity id and a time
period Ti, B returns skid|i ← DeKeyGen(skid, τi) to A, where
skid ← KeyGen(msk, id), and τi ← TokenUp(msk, id, Ti, RL, st).

(d) Re-encryption key oracle Ork(id, Ti, Ti′): on input id, Ti and Ti′,
B returns rkid|i→i′ ← ReKey(skid|i, ϕi→i′) to A, where skid|i ←
DeKeyGen(skid, τi), τi ← TokenUp(msk, id, Ti, RL, st), skid ←
KeyGen(msk, id), ϕi→i′ ← ReKeyToken(msk, Ti, Ti′), and 1 ≤
i < i′.

(e) Revocation oracle Orv(id, Ti): on input id and Ti, it returns the
updated revocation list RL, where RL← Revoke(id, Ti, RL, st).

3. Challenge. A outputs two equal-length messages m0 and m1, a chal-
lenge identity id∗, and a challenge time period Ti∗ to B. B returns
C∗ = Enc(id∗, Ti∗, mb) to A, where b ∈R {0, 1}.

4. Phase 2. A continues making queries as in Phase 1.
5. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

The following queries are forbidden to issue in the game.

1. Otu(id, Ti) and Orv(id, Ti), where Ti is less than the time of all previ-
ous queries; or

2. Orv(id, Ti), where (id, Ti) was already issued to Otu; or
3. If id∗ was already issued to Osk, Orv(id∗, Ti), where Ti ≥ Ti∗; or
4. (id, Ti) is issued to Oku before Otu is queried on Ti.
5. Osk(id∗) and Otu(id∗, Ti∗); or
6. Oku(id∗, Ti∗); or
7. Osk(id∗) and Otu(id∗, Tj), if id∗ is in a delegation chain including Ti∗

and Tj (i∗ < j); or
8. Oku(id∗, Tj), if id∗ is in a delegation chain including Ti∗ and Tj (i∗ <

j).

Note A is allowed to request the challenger B to construct many delegation
chains. However, a challenge identity id∗ and a challenge time period Ti∗

must be chosen from an honest delegation chain. The advantage of A is
defined as AdvIND-CPA

CR-IB-PRE,A(1k, N) = |Pr[b′ = b]− 1
2 |.

We next define the collusion resistance notion for CR-IB-PRE systems.
Here collusion resistance guarantees that given a re-encryption key rkid|i→i′
a proxy cannot compromise the entire decryption key skid|i of a user id
associated with time period Ti even compromising a decryption key skid|i′
of the same user associated with time period Ti′ , where i < i′. We state
that our notion here, to a large extent, is identical to that of traditional
proxy re-encryption. We can regard (id, Ti) as an identity A, and (id, Ti′)
as another identity B such that the decryption keys of A and B are skid|i
and skid|i′ , respectively. Accordingly, our collusion resistance implies that
even colluding with B the proxy cannot compromise the key of A, which
is exact the notion of collusion resistance defined in the traditional proxy
re-encryption setting.

Definition 3. A CR-IB-PRE scheme is collusion resistant if the advan-
tage AdvCRA (1k, N) is negligible for any PPT adversary A in the following
experiment. Let O = {Osk,Oku,Otu,Ork,Orv}.

AdvCRA (1k, N) = Pr[skid|i ∈ Ω : (mpk,msk, st, RL)← Setup(1k, N);

skid|i ← AO(mpk)]

where k is the security parameter, N is a maximal number of users, skid|i
must be uncorrupted decryption key for an identity id under time period
Ti, Ω is the valid decryption key space, Osk, Otu, Oku, Ork and Orv are
the oracles defined in Definition 2, but there is no constraint for querying
the oracles except for the followings:

1. Otu(id, Tj) and Orv(id, Tj), where Tj is less than the time of all pre-
vious queries; or

2. Orv(id, Tj), where (id, Tj) was already issued to Otu; or
3. (id, Tj) cannot be issued to Oku before Otu was queried on Tj.
4. Oku(id, Ti) cannot be issued; or
5. Osk(id) and Otu(id, Ti) cannot be issued simultaneously.

3 Preliminaries

Bilinear Maps. Let BSetup denote an algorithm that, on input the
security parameter 1k, outputs the parameters for a bilinear map as
(q, g,G,GT , e), where G and GT are two multiplicative cyclic groups with
prime order q ∈ Θ(2k) and g is a generator of G. The efficient mapping
e : G × G → GT has three properties: (1) Bilinearity : for all g ∈ G and
a, b ∈R Z∗q , e(ga, gb) = e(g, g)ab; (2) Non-degeneracy : e(g, g) 6= 1GT , where
1GT is the unit of GT ; (3) Computability : e can be efficiently computed.

Definition 4. Computational Diffie-Hellman (CDH) Assumption.
Given a group G of prime order q with generator g and elements ga, gb ∈
G, the CDH problem in G is to compute gab, where a, b ∈R Z∗q. We say
that the CDH assumption holds in G if no PPT algorithm A can solve
the CDH problem with non-negligible probability.

Target Collision Resistant Hash Function. TCR hash function was
introduced by Cramer and Shoup [33]. A TCR hash function H guaran-
tees that given a random element x which is from the valid domain of
H, a PPT adversary A cannot find y 6= x such that H(x) = H(y). We
let AdvTCRH,A = Pr[(x, y) ← A(1k) : H(x) = H(y), x 6= y, x, y ∈ DH] be
the advantage of A in successfully finding collisions from a TCR hash
function H, where DH is the valid input domain of H, k is the security
parameter. If a hash function is chosen from a TCR hash function family,
AdvTCRH,A is negligible.
One-time Symmetric Encryption. A one-time symmetric encryp-
tion [33] consists of the following algorithms. Note let KD be the key

space {0, 1}poly(1k), and SYM be a symmetric encryption scheme. The
encryption algorithm SYM.Enc intakes a key K ∈ KD and a message
M , outputs a ciphertext C. The decryption algorithm SYM.Dec intakes
K and C, outputs M or a symbol ⊥. The CCA security model for SYM
systems is given in [20], we hence omit the details.

4 A New CPA-Secure CR-IB-PRE

4.1 A Basic Construction

To clearly show the technical roadmap of our scheme, we only propose
our basic construction for CR-IB-PRE systems in this section. In this
construction, a PKG will suffer from O(N) computational complexity
for key update phase. But we will present performance improvements
for this basic construction in Section 5 such that the complexity of the
PKG will reduce to O(1). Below we assume any identity id ∈ {0, 1}n
and any time period Ti ∈ Z∗q . Some revocable IBE systems, such as [6],
leverage KUNode algorithm [2] for efficient revocation. For simplicity, in
our construction we do not focus on which data structure we choose to
use to reduce the cost of key update. Instead, we concentrate on the
combination of recoverability and re-encryption functionalities. We let
state st be an unspecified data structure DS, and this state depends on
which structure we use. For example, if using KUNode algorithm, we set
st to be a binary tree.

1. Setup(1k, N). The setup algorithm runs (q, g,G,GT , e) ← G(1k),
where q is the order of group G. It chooses α, β ∈R Z∗q , group ele-
ments g2, g3, v1, v2 ∈R G, a random n-length set U = {uj |0 ≤ j ≤ n},
and a TCR hash function TCR1 : G → Z∗q , where uj ∈R G. The
public parameter is mpk = (g, g1, g2, g3, v1, v2, U, TCR1), the master

secret key is msk = (gα2 , g
β
3), RL = ∅ and st = DB, where g1 = gα.

2. KeyGen(msk, id). PKG chooses rid ∈R Z∗q , sets the partial private
key skid as

skid1 = gβ3 · (u0
∏
j∈Vid

uj)
rid , skid2 = grid ,

where Vid is the set of all j for which the j-th bit (of id) is equal to 1.

3. TokenUp(msk, id, Ti, RL, st). PKG executes the token update algo-
rithm works as follows. Choose rTi ∈R Z∗q , and set the token τi as

τi,1 = (gα2 /g
β
3) · (v1 · vTi2)rTi , τi,2 = grTi ,

where i is the index for the time period.

4. DeKeyGen(skid, τi). A user id runs the algorithm as follows.

(a) Choose r̃ ∈R Z∗q , and randomize the token as

τi,1 = τi,1 · (v1 · vTi2)r̃, τi,2 = τi,2 · gr̃.

(b) Choose r1, r2 ∈R Z∗q , and set the updated secret key skid|i for
identity id and time period Ti as

skid|i,1 = skid1 · τi,1 · (u0
∏
j∈Vid

uj)
r1 · (v1 · vTi2)r2

= gα2 · (u0
∏
j∈Vid

uj)
r̂1 · (v1 · vTi2)r̂2 ,

skid|i,2 = skid2 · gr1 = gr̂1 , skid|i,3 = τi,2 · gr2 = gr̂2 ,

where r̂1 = rid + r1, r̂2 = rTi + r̃ + r2. Note the user will share
r1, r2, r̃ with the PKG (suppose it is fully trusted) such that the
PKG can store (id|i, r̂1, r̂2) in a list Listskid|i for further use.

5. ReKeyGen(skid|i,msk, Ti, Ti′). The re-encryption key rkid|i→i′ is gen-
erated as follows.

(a) ReKeyToken(msk, Ti, Ti′): If a user id holding skid|i is allowed to
update his key to another time period Ti′ , PKG first generates the
re-encryption key token ϕi→i′ as

ϕ
(1)
i→i′ = (v1 · v

Ti′
2)TCR1(ξ)/(v1 · vTi2)r̂2 ,

ϕ
(2)
i→i′ = (Ĉ0, Ĉ1, Ĉ2, Ĉ3)← Enc(id, Ti′ , ξ),

where ξ ∈R GT , r̂2 is recovered from (id|i′, r̂1, r̂2) which is stored
the Listskid|i .

(b) ReKey(skid|i, ϕi→i′): After receiving ϕi→i′ from PKG, the user id
generates the re-encryption key as follows.
i. Choose ρ ∈R Z∗q , and set

rk1 = skid|i,1·ϕ
(1)
i→i′ ·(u0

∏
j∈Vid

uj)
ρ, rk2 = skid|i,2·gρ, rk3 = ϕ

(2)
i→i′ .

ii. Output the re-encryption key rkid|i→i′ = (rk1, rk2, rk3).
6. Enc(id, Ti,m). Given an identity id, a time period Ti, and a message
m ∈ GT , the encryption algorithm chooses t ∈R Z∗q , and sets the
original ciphertext C as

C0 = m · e(g1, g2)t, C1 = gt, C2 = (u0
∏
j∈Vid

uj)
t, C3 = (v1 · vTi2)t.

We assume that the identity id and the time period Ti are implicitly
included in the ciphertext.

7. ReEnc(rkid|i→i′ , C). Parse the ciphertext C under (id, Ti) as (C0,
C1, C2, C3), and the re-encryption key rkid|i→i′ as (rk1, rk2, rk3).

The re-encryption algorithm computes C4 = e(C1,rk1)
e(C2,rk2)

= e(gt, gα2 ·
(v1 · v

Ti′
2)TCR1(ξ)), and next sets the re-encrypted ciphertext C un-

der (id, Ti′) as (C0, C1, C4, rk3). Note if C under (id, Ti′) needs to
be further re-encrypted to the time period Ti′′ , then the proxy parses
rk3 as (Ĉ0, Ĉ1, Ĉ2, Ĉ3). Given a re-encryption key rkid|i′→i′′ = (rk′1,

rk′2, rk
′
3), the proxy computes C ′4 =

e(Ĉ1,rk′1)

e(Ĉ2,rk′2)
, and sets the ciphertext

C under (id, Ti′′) as (C0, C1, C4, Ĉ0, Ĉ1, C
′
4, rk

′
3).

8. Dec(skid|i, C). Given a ciphertext C under (id, Ti), the decryption
algorithm works as follows.
(a) For the original ciphertext C = (C0, C1, C2, C3), the decryptor

computes
e(C1,skid|i,1)

e(C2,skid|i,2)e(C3,skid|i,3)
= e(g1, g2)

t, and outputs the mes-

sage C0/e(g1, g2)
t = m · e(g1, g2)t/e(g1, g2)t = m.

(b) For the re-encrypted ciphertext C:

i. If the re-encrypted ciphertext is re-encrypted only once, i.e.
C=(C0, C1, C4, rk3 = (Ĉ0, Ĉ1, Ĉ2, Ĉ3)), then the decryptor

computes
Ĉ0e(Ĉ2,skid|i,2)e(Ĉ3,skid|i,3)

e(Ĉ1,skid|i,1)
= ξ. Accordingly, the de-

cryptor can finally computer C0
e(C1,(v1v

Ti
2)TCR1(ξ))
C4

= m.
ii. If the ciphertext under id is re-encrypted l times from time

period T1 to Tl+1, we denote the re-encrypted ciphertext as

C(l+1)=(C
(1)
0 , C

(1)
1 , C

(1)
4 , ..., C

(l)
0 , C

(l)
1 , C

(l)
4 , rk

(l+1)
3), where

C
(1)
0 and C

(1)
1 are the components of original ciphertext under

(id, T1), and rk
(i+1)
3 = (C

(i+1)
0 , C

(i+1)
1 , C

(i+1)
2 , C

(i+1)
3) is the

ciphertext under (id, Ti+1), i ∈ [1, l]. We recover the message
m as follows.

First set:
C

(l+1)
0 e(C

(l+1)
2 , skid|l+1,2)e(C

(l+1)
3 , skid|l+1,3)

e(C
(l+1)
1 , skid|l+1,1)

= ξ(l),

from i = 2 to l set : C
(i)
0

e(C
(i)
1 , (v1v

Ti+1

2)TCR1(ξ(i)))

C
(i)
4

= ξ(i−1),

finally compute : C
(1)
0

e(C
(1)
1 , (v1v

T2
2)TCR1(ξ(1)))

C
(1)
4

= m.

9. Revoke(id, Ti, RL, st). Update the revocation list by RL ← RL ∪
{id, Ti} and return the updated revocation list.

4.2 Security Analysis

Theorem 1. Suppose the underlying Waters IBE scheme is IND-CPA
secure, TCR1 is the TCR hash function, our CR-IB-PRE scheme is IND-
CPA secure in the standard model.

Due to limited space, we provide the security proof for Theorem 1 in
Appendix 9.1.

Theorem 2. Suppose the CDH assumption holds, our CR-IB-PRE scheme
is collusion resistant.

Due to limited space, we provide the security proof for Theorem 2 in
Appendix 9.2.

5 Performance Improvement

5.1 Reduce the complexity of key update

In our basic construction the complexity of the key update phase (in
terms of communication and computation) is linearly in the number (say
N) of users whom are excluded in the revocation list, i.e. O(N). We
use the following method to reduce the complexity O(N) to O(1). From
the algorithm TokenUp, we can see that the identity id does not take
part in the generation of the token τi. This gives us a possibility to
broadcast this token for time period Ti to all non-revocable users. Be-
low we only employ a broadcast encryption in our basic construction.
We choose Phan et al. broadcast encryption system [34] as a building
block. Note system implementors may choose an appropriate broadcast
encryption for different purposes, e.g., efficiency and security. We let
SYM = (SYM.Enc, SYM.Dec) denote a one-time symmetric encryp-
tion system in which encryption algorithm SYM.Enc intakes a message
m and a symmetric key K ∈ {0, 1}poly(1k) and outputs a ciphertext, and
decryption algorithm SYM.Dec intakes a ciphertext and a symmetric
key K and outputs a message m. We only show the modification for our
basic system as follows.

1. Setup(1k, N). The setup algorithm additionally chooses γ, α̂ ∈R Z∗q ,
a TCR hash function TCR2 : GT → {0, 1}poly(1

k), and adds v0 = gγ

and TCR2 to the public parameter mpk, and (γ, α̂) to the master
secret key msk.

2. KeyGen(msk, id). PKG generates a new key component skid3 =
gγz , and sets additional public parameters gz = gα̂

z
, gz+1 = gα̂

z+1
,

gλ+1−z = gα̂
λ+1−z

, gλ+1+z = gα̂
λ+1+z

for user id, where z is the index
for identity id, and λ− 1 = N .

3. TokenUp(msk, ID, Ti, RL, st). Note ID now is a set of identities.
After constructing the token τi = (τi,1, τi,2), PKG works as follows.

(a) Choose t̂ ∈R Z∗q , K ∈R GT , and set an encryption C
(1)
τi as

ID, T1 = K · e(gλ+1, g)t̂, T2 = gt̂, T3 = (v0 ·
∏
w∈ID

gλ+1−w)t̂.

(b) Run C
(2)
τi ← SYM.Enc(TCR2(K), τi,1||τi,1), and next upload the

token τi = (C
(1)
τi , C

(2)
τi) for a set ID of identities to the cloud server.

4. DeKeyGen(skid, τi). Before constructing a decryption key as in the
algorithm DeKeyGen of our basic scheme, a user id (where id ∈ ID)
first recovers the token as follows. The user computes

K = T1e(T3, gi)/e(skid3
∏

w∈ID\{z}

gλ+1−w+z, T2)

= Ke(gλ+1, g)t̂e((gγ
∏
w∈ID

gλ+1−w)t̂, gz)/e(g
γ
z

∏
w∈ID\{z}

gλ+1−w+z, g
t̂)

and runs σi = τi,1||τi,1 ← SYM.Dec(TCR2(K), C
(2)
τi).

Note the rest of the algorithms are the same as that of our basic scheme.

5.2 Reduce size of re-encrypted ciphertext and decryption
complexity

Our basic construction suffers from a drawback that the size of re-encrypted
ciphertext and the complexity of decryption expand linearly in the num-
ber of time periods. If there are t available time periods for a system
user, the re-encrypted ciphertext size at time period Tt increases from
O(1) up to O(t) as well as the corresponding decryption complexity for
this re-encrypted ciphertext. To reduce the complexity to be constant, we
leverage the following idea.

We can delegate the generation of re-encryption key to PKG as PKG
has knowledge of private keys of all system users and tokens of all time
periods. Here system users can only focus on decryption key generation,
message encryption and decryption, i.e. the universal cost of using a re-
vocable IBE system, such that the re-encryption functionality and its
corresponding workload are transparent in the view of the users.

Being granted the rights of re-encryption key generation, PKG works
as follows. Suppose the decryption keys of a user id associated with time
periods Ti and Tj are skid|i = (skid|i,1, skid|i,2, skid|i,3) and skid|j =
(skid|j,1, skid|j,2, skid|j,3), and the corresponding tuples stored in the list

Listskid|z are (id|i, r̂i,1, r̂i,2) and (id|j, r̂i,1, r̂i,2), where i < j (for simplic-
ity we may set j = i + 1). PKG then constructs the re-encryption key
rkid|i→j as

rk1 = (v1·v
Tj
2)−r̂j,2 ·(v1·vTi2)r̂i,2 ·(v1·vT12)γ , rk2 = sk−1id|j,3·skid|i,3 = gr̂i,2−r̂j,2 ·gγ ,

where γ ∈R Z∗q .

For simplicity, we suppose a user id has l available time periods (in
which T1 is the first time period, and Tl is the last one). Given rkid|1→2 =
(rk1→2,1, rk1→2,2), the re-encryption algorithm ReEnc computes

C
(1)
4 =

e(C3, rk1→2,2)

e(C1, rk1→2,1)

=
e((v1v

T1
2)t, gr̂1,2−r̂2,2gγ)

e(gt, (v1v
T2
2)−r̂2,2(v1v

T1
2)r̂1,2(v1v

T1
2)γ)

=
e((v1v

T1
2)t, g−r̂2,2)

e(gt, (v1v
T2
2)−r̂2,2)

,

and next sets the re-encrypted ciphertext C under (id, T2) as (C0, C1,

C2, C3, C
(1)
4), where an original ciphertext C under (id, T1) is C0 =

m·e(g1, g2)t, C1 = gt, C2 = (u0
∏
j∈Vid uj)

t, C3 = (v1·vT12)t. At time period

Tl, the re-encrypted ciphertext C under (id, Tl) is (C0, C1, C2, C3, C
(l−1)
4),

in which

C
(l−1)
4 = C

(l−2)
4 ·

e(C3, rkl−1→l,2)

e(C1, rkl−1→l,1)

=
e((v1 · vT12)t, g−r̂l−1,2)

e(gt, (v1 · v
Tl−1

2)−r̂l−1,2)
· e((v1 · vT12)t, gr̂l−1,2−r̂l,2 · gγ)

e(gt, (v1 · vTl2)−r̂l,2 · (v1 · v
Tl−1

2)r̂l−1,2 · (v1 · vT12)γ)

=
e((v1 · vT12)t, g−r̂l,2)

e(gt, (v1 · vTl2)−r̂l,2)
,

and C
(l−2)
4 is a component of ciphertext C under (id, Tl−1).

The decryption algorithmDec works as follows. Given skid|i = (skid|i,1,

skid|i,2, skid|i,3) and a re-encrypted ciphertext (C0, C1, C2, C3, C
(i−1)
4) un-

der (id, i), set

C0 · C(i−1)
4 ·

e(skid|i,3, C3) · e(C2, skid|i,2)

e(skid|i,1, C1)

= m · e(g1, g2)t ·
e((v1 · vT12)t, g−r̂i,2)

e(gt, (v1 · vTi2)−r̂i,2)
·
e(gr̂i,2 , (v1 · vT12)t) · e((u0

∏
j∈Vid uj)

t, gr̂i,1)

e(gα2 · (u0
∏
j∈Vid uj)

r̂i,1 · (v1 · vTi2)r̂i,2 , gt)

=
m · e(g1, g2)t

e(gα2 , g
t)

= m.

6 Comparison

In this section we compare our improved version with an ABE system sup-
porting revocability [3] and the most efficient revocable IBE scheme [9]

in terms of security, functionality and efficiency. Table 1 illustrates the
comparison of security and functionality, Table 2 depicts the comparison
of computational cost, and Table 3 shows the comparison of communica-
tion complexity. Note we do not compare our scheme with the existing
IB-PRE schemes here as we pay more attention in the functionality of
revocability.

To define the notations and parameters used in the Tables, we let |G|
denote the bit-length of an element in G, and |GT | denote the bit-length
of an element in GT , |U | denote the number of attributes used in the
system, |f | denote the size of an access formula, |S| denote the size of an
attribute set, n denote the bit-length of an identity, cp, ce, c

T
e denote the

computation cost of a bilinear pairing, an exponentiation in G and in GT ,
respectively. Suppose [3], [9] and our scheme share the same number (N)
of non-revocable system users. It can be seen that [3] only presents generic
constructions for the revocable ABE systems. To bring convenience for
the comparison, we use Waters ABE scheme [35] to implement one of
the generic constructions of [3]. The implementation yields a revocable
CP-ABE system.

Table 1. Security and Functionality Comparison

Schemes Security Complexity Delegation of
Assumption Decryption Rights

[3] CPA decisional q-parallel-BDHE #

[9] CPA decisional BDH #

Ours CPA, Collusion Resistance decisional BDH and CDH !

From Table 1, we see that our scheme supports not only revocability
but also re-encryption with CPA security and collusion resistance under
the decisional Bilinear Diffie-Hellman (BDH) assumption and CDH as-
sumption, respectively. [3] is CPA secure under the decisional q-parallel
Bilinear Diffie-Hellman Exponent (BDHE) assumption (suppose it is built
on Waters ABE) but only supporting revocability, whereas ours addition-
ally enjoys the delegation of decryption rights. Compared to [9], support-
ing revocability with CPA security under the decisional BDH assumption,
ours offers additional property without degrading security level. Note [9]
and our scheme are secure under simple complexity assumptions, while [3]
relies on a complex assumption.

Table 2. Computation Cost Comparison

Schemes
Computation Cost

Encryption Decryption Key Update Info. (N Users) PKG

[3]O(|f |)ce +O(1)cTe O(|S|)(cp + cTe) O(|S|)ce ε1 = O(N · |S|)ce O(N)ε1
[9] O(1)ce +O(1)cTe O(1)cp O(1)ce ε2 = O(N)ce O(N)ε2

Ours O(1)ce +O(1)cTe O(1)cp O(1)ce ε3 = O(1)ce +O(1)cTe O(1)ε3

From Table 2, we see that [3] suffers from the largest complexity in
each merit, and the PKG of [9] suffers from O(N) computational com-
plexity in updating key information for each time period. Besides, both
[3] and [9] require secure communication channel from PKG to each non-
revocable user (for issuing update key information), while our system can
eliminate the cost spent on this. Compared with [3,9], ours enjoys con-
stant complexity in each merit. To achieve the re-encryption property, we
need O(1)ce and O(1)cp additional cost in generating re-encryption key
and re-encrypted ciphertext, respectively. However, when comparing with
the linear complexity of [3], we state that the above additional cost for
re-encryption purpose is acceptable.

Table 3. Communication Cost Comparison

Schemes
Communication Cost

Private Key Size Ciphertext Size Update Info. Size (N Users)

[3] O(|S|)|G| O(|f |)|G|+O(1)|GT | O(N · |S|)|G|
[9] O(1)|G| O(1)|G|+O(1)|GT | O(N)|G|

Ours O(1)|G| O(1)|G|+O(1)|GT | O(1)|G|+O(1)|GT |

Table 3 shows that [9] and our scheme achieve the least complex-
ity, while [3] still suffers from linear cost in each merit. Although our
scheme requires additional cost O(1)|G| in delivering re-encryption key,
it is worth mentioning that our scheme enjoys constant communication
cost in updating key information for each time period but [3,9] suffers
from O(N) complexity. As N increases, our scheme has better efficiency
in communication.

7 Conclusions

In this paper we proposed the first efficient CR-IB-PRE scheme support-
ing revocability. We also proved our scheme secure against CPA and col-
lusion attacks in the standard model. Without knowledge of key update
information, no revoked system users can decrypt the ciphertexts stored
in the cloud (due to the revocable functionality). When compared with
the naive solution of converting any IB-PRE system to achieve revocable
capability, our scheme only requires PKG to publish constant-size key
update information for all non-revocable users once at the beginning of
each time period such that the computational complexity of the PKG in
generating key update information and the cost of building communica-
tion channel between the PKG and each user are both reduced to O(1).
In addition, our scheme offers more flexible data sharing mechanism to
system users by supporting the property of re-encryption compared to
the traditional revocable IBE systems.

This paper motivates some interesting open problems, for example,
how to construct a CCA-secure CR-IB-PRE scheme in the standard
model.

8 Acknowledgements

This work is supported by A*STAR funded project SecDC-112172014.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
CRYPTO ’01. Volume 2139 of LNCS., Springer (2001) 213–229

2. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In Ning, P., Syverson, P.F., Jha, S., eds.: ACM Conference on Computer
and Communications Security, ACM (2008) 417–426

3. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In Safavi-Naini, R., Canetti, R., eds.:
CRYPTO. Volume 7417 of Lecture Notes in Computer Science., Springer (2012)
199–217

4. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: ACNS ’07. Volume
4512 of LNCS., Springer (2007) 288–306

5. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In Cramer, R., ed.: Ad-
vances in Cryptology EUROCRYPT 2005. Volume 3494 of LNCS. Springer Berlin
Heidelberg (2005) 457–473

6. Libert, B., Vergnaud, D.: Adaptive-id secure revocable identity-based encryption.
In Fischlin, M., ed.: CT-RSA. Volume 5473 of Lecture Notes in Computer Science.,
Springer (2009) 1–15

7. Waters, B.: Efficient identity-based encryption without random oracles. In Cramer,
R., ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science.,
Springer (2005) 114–127

8. Gentry, C.: Practical identity-based encryption without random oracles. In: EU-
ROCRYPT ’06. Volume 4004 of LNCS. Springer (2006) 445–464

9. Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation func-
tionalities in identity-based encryption. In Dawson, E., ed.: CT-RSA. Volume 7779
of Lecture Notes in Computer Science., Springer (2013) 343–358

10. Baek, J., Zheng, Y.: Identity-based threshold decryption. In Bao, F., Deng, R.H.,
Zhou, J., eds.: Public Key Cryptography. Volume 2947 of Lecture Notes in Com-
puter Science., Springer (2004) 262–276

11. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated rsa.
In Joye, M., ed.: CT-RSA. Volume 2612 of Lecture Notes in Computer Science.,
Springer (2003) 193–210

12. Libert, B., Quisquater, J.J.: Efficient revocation and threshold pairing based cryp-
tosystems. In Borowsky, E., Rajsbaum, S., eds.: PODC, ACM (2003) 163–171

13. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In Parker, M.G., ed.: IMA Int. Conf. Volume 5921 of Lecture
Notes in Computer Science., Springer (2009) 278–300

14. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryp-
tion. In Shacham, H., Waters, B., eds.: Pairing. Volume 5671 of Lecture Notes in
Computer Science., Springer (2009) 248–265

15. Nieto, J.M.G., Manulis, M., Sun, D.: Fully private revocable predicate encryption.
In Susilo, W., Mu, Y., Seberry, J., eds.: ACISP. Volume 7372 of Lecture Notes in
Computer Science., Springer (2012) 350–363

16. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to de-
crypt ciphertexts. IEICE Transactions E80-A(1) (1997) 54–63

17. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In Nyberg, K., ed.: EUROCRYPT. Volume 1403 of LNCS., Springer
(1998) 127–144

18. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1) (2006) 1–30

19. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In
Ning, P., di Vimercati, S.D.C., Syverson, P.F., eds.: ACM Conference on Computer
and Communications Security, ACM (2007) 185–194

20. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger secu-
rity model extended from ct-rsa2012. In: CT-RSA 2012. Volume 7779 of LNCS.,
Springer (2013) 277–292

21. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In Cramer, R., ed.: Public Key Cryptography. Volume 4939 of LNCS.,
Springer (2008) 360–379

22. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao,
Y.: Generic construction of chosen ciphertext secure proxy re-encryption. In
Dunkelman, O., ed.: Topics in Cryptology - CT-RSA 2012. Volume 7178 of LNCS.
Springer Berlin Heidelberg (2012) 349–364

23. Tang, Q., Hartel, P.H., Jonker, W.: Inter-domain identity-based proxy re-
encryption. In Yung, M., Liu, P., Lin, D., eds.: Inscrypt. Volume 5487 of Lecture
Notes in Computer Science., Springer (2008) 332–347

24. Chu, C.K., Tzeng, W.G.: Identity-based proxy re-encryption without random
oracles. In Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R., eds.: ISC. Volume
4779 of LNCS., Springer (2007) 189–202

25. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In
Boneh, D., ed.: CRYPTO. Volume 2729 of LNCS., Springer (2003) 565–582

26. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Pairing
’07. Volume 4575 of LNCS., Springer (2007) 247–267

27. Wang, L., Wang, L., Mambo, M., Okamoto, E.: Identity-based proxy cryptosystems
with revocability and hierarchical confidentialities. IEICE Transactions 95-A(1)
(2012) 70–88

28. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In Joye, M., Miyaji, A., Otsuka,
A., eds.: Pairing. Volume 6487 of Lecture Notes in Computer Science., Springer
(2010) 327–346

29. Mizuno, T., Doi, H.: Secure and efficient IBE-PKE proxy re-encryption. IEICE
Transactions E94-A(1) (2011) 36–44

30. Luo, S., Shen, Q., Chen, Z.: Fully secure unidirectional identity-based proxy re-
encryption. In Kim, H., ed.: ICISC. Volume 7259 of LNCS., Springer, Heidelberg
(2011) 109–126

31. Shao, J., Cao, Z.: Multi-use unidirectional identity-based proxy re-encryption from
hierarchical identity-based encryption. Information Sciences 206(0) (2012) 83 –
95

32. Liang, K., Liu, Z., Tan, X., Wong, D.S., Tang, C.: A cca-secure identity-based
conditional proxy re-encryption without random oracles. In Kwon, T., Lee, M.K.,
Kwon, D., eds.: ICISC. Volume 7839 of LNCS., Springer (2012) 231–246

33. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1)
(January 2004) 167–226

34. Phan, D.H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive cca broad-
cast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Sec.
12(4) (2013) 251–265

35. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A., eds.: Public Key Cryptography. Volume 6571 of LNCS., Springer (2011) 53–70

9 Appendix

9.1 Proof for Theorem 1

Proof. Suppose there exists a PPT algorithm A who can break our sys-
tem, we then construct a reduction algorithm B to break the IND-CPA
security of Waters IBE scheme by using A. B plays the following game
with A by accessing the challenger CIBE and the private key extraction
oracle OIBE of the Waters IBE scheme.

Setup. CIBE sends the public parameter ppIBE = (g, g1, g2, u0, u1,
..., un) of Waters IBE scheme to B. B then chooses a TCR hash function
TCR1 as in the real scheme, g3 ∈R G, β, γ1, γ2 ∈R Z∗q and sets v0 = gγ ,

v1 = g
−Ti∗
1 gγ2 and v2 = g1g

γ1 , where B has to guess the challenge time
period Ti∗ ∈ T , and T is the space of time period. Finally, B outputs the
public parameter mpk = (ppIBE , g3, v1, v2, TCR1) to A. In the view of
A, the distribution of pp is identical to that of the real scheme.

B also maintains the following lists.

1. Listsk stores the tuples (id, skid) which are generated in Osk.
2. Listτ stores the tuples (id, Ti, τi) which are generated in Otu.

3. Listku stores the tuples (id, Ti, skid|i) which are generated in Oku.

4. Listrk stores the tuples (id, Ti, Ti′ , rkid|i→i′ , tag1, tag2) which are gen-
erated in Ork, where tag1 is used to denote whether the re-encryption
key is randomly constructed or not, and tag2 is used to denote whether
the re-encryption key is valid or not.

Phase 1.

1. Private key queries Osk(id) : A issues id to B, B responds the private
key as follows.

(a) If id∗ = id, B sets skid1 = gβ3 · (u0
∏
j∈Vid uj)

rid and skid2 = grid ,
where rid ∈R Z∗q .

(b) Otherwise, B issues id to the private key extraction oracle OIBE ,
and receives the key skIBEid = (skIBEid1

, skIBEid2
). B then sets skid1 =

gβ3 · skIBEid1
and skid2 = skIBEid2

.

Finally, B returns the key to A and adds the tuple (id, skid) to the
list Listsk.

2. Token update queries Otu(id, Ti): A issues (id, Ti) to B, B constructs
the updated token for the time period Ti as follows.

(a) If id∗ = id and Ti∗ = Ti, B outputs ⊥.

(b) If id∗ = id and Ti∗ 6= Ti, B the token τi as

τi,1 = g−β3 · g
−γ2−γ1·Ti∗
Ti−Ti∗

2 · (gTi−Ti∗1 gγ2+γ1·Ti∗)
r′Ti , τi,2 = g

−1
Ti−Ti∗
2 g

r′Ti ,

where r′Ti ∈R Z∗q . One can check the validity of the above token by
implicitly setting rTi = r′Ti −

κ
Ti−Ti∗

and g2 = gκ. Then we have

τi,1 = g−β3 · g
−γ2−γ1·Ti∗
Ti−Ti∗

2 · (gTi−Ti∗1 gγ2+γ1·Ti∗)
r′Ti

= g−β3 · gα2 · g−α2 · g
−γ2−γ1·Ti∗
Ti−Ti∗

2 · (gTi−Ti∗1 gγ2+γ1·Ti∗)
r′Ti

= g−β3 · gα2 · g−ακ · g
(−γ2−γ1·Ti∗)·κ

Ti−Ti∗ · (gTi−Ti∗1 gγ2+γ1·Ti∗)
r′Ti

= g−β3 · gα2 · (g
Ti−Ti∗
1 gγ2+γ1·Ti∗)

r′Ti · (gTi−Ti∗1 gγ2+γ1·Ti∗)
−κ

Ti−Ti∗

= g−β3 · gα2 · (g
Ti−Ti∗
1 gγ2+γ1·Ti∗)rTi

= g−β3 · gα2 · (v1 · v
Ti
2)rTi ,

and τi,2 = g
−1

Ti−Ti∗
2 g

r′Ti = g
r′Ti
− κ
Ti−Ti∗ = grTi .

(c) Otherwise (i.e. id∗ 6= id), B sets τi,1 = g−β3 · (v1 · vTi2)rTi and
τi,2 = grTi , where rTi ∈R Z∗q .
Finally, B returns the token to A and adds the tuple (id, Ti, τi) to
the list Listτ .

3. Decryption key queries Oku: A issues a tuple (id, Ti) to B, B con-
structs the updated key skid|i by using Osk and Otu. If id∗ = id, B
outputs ⊥. Finally, B returns the updated key to A and adds the tuple
(id, Ti, skid|i) to the list Listku.

4. Re-encryption key queries Ork: A issues a tuple (id, Ti, Ti′) to B, B
constructs the re-encryption key as follows.
(a) If id∗ 6= id, B issues id to the private key extraction oracle OIBE

and receives skid = (skid1 , skid2). B chooses ξ ∈R GT , ρ ∈R Z∗q ,
and then sets rk1 = skid1 · (v1 · v

Ti′
2)TCR1(ξ) · (u0

∏
j∈Vid uj)

ρ, rk2 =
skid2 · gρ and rk3 = Enc(id, Ti′ , ξ). Finally, B returns the re-
encryption key to A and adds the tuple (id, Ti, Ti′ , rkid|i→i′ , 0, 1)

to the list Listrk.
(b) Otherwise (i.e. id∗ is in a honest delegation chain including Ti∗),

B sets rk1 = (u0
∏
j∈Vid uj)

r̂1 · (v1 · v
Ti′
2)TCR1(ξ) · (u0

∏
j∈Vid uj)

ρ,

rk2 = gr̂1 · gρ and rk3 = Enc(id, Ti′ , ξ), where ξ ∈R GT , ρ, r̂1 ∈R
Z∗q . Finally, B returns the re-encryption key to A and adds the

tuple (id, Ti, Ti′ , rkid|i→i′ , 1, 0) to the list Listrk.

Challenge. A outputs two messages m0,m1, a challenge identity id∗

and a challenge time period Ti∗ to B. B then issues the tuple (id∗,m0,m1)
to CIBE , and receives C∗0 , C

∗
1 , C

∗
2 . B next sets C∗3 = (C∗1)γ2+γ1·Ti∗ . Finally,

B returns the challenge ciphertext C∗ = (C∗0 , C
∗
1 , C

∗
2 , C

∗
3) under (id∗, Ti∗)

to A.
Phase 2. A continually makes queries as in Phase 1.
Guess. A outputs a bit b′ to B, B then forwards to CIBE .
This completes the simulations of the game. We next present the prob-

ability analysis as follows.

AdvWaters IBE
A (1k)

= |Pr[b′ = b ∧ b = 1]− Pr[b′ 6= b ∧ b = 0]|
= |Pr[b′ = b|b = 1] · Pr[b = 1]− Pr[b′ 6= b|b = 0] · Pr[b = 0]|

= |Pr[b′ = b|b = 1] · 1

2
− Pr[b′ 6= b|b = 0] · 1

2
|

= |Pr[b′ = b|b = 1] · 1

2
− (1− Pr[b′ = b|b = 0]) · 1

2
|

= |Pr[b′ = b]− 1

2
| ≥ AdvIND-CPA

CR-IB-PRE,A(1k, N),

where Pr[b = 0] = Pr[b = 1] = 1
2 . We let AdvTCRB be the advantage of

B in breaking the security of TCR hash function (i.e. finding a collision
in the TCR hash function). From the above we summarize that the suc-
cess probability of B in breaking the underlying CPA-secure Waters IBE
scheme is bounded as follows:

AdvWaters IBE
A (1k) ≥ AdvIND-CPA

CR-IB-PRE,A(1k, N)−AdvTCRB .

It can be seen from our simulation that B has to guess the challenge time
period with probability 1

|T | such that our reduction loss in the proof is

|T |. Thus we have

AdvWaters IBE
A (1k) · 1

|T |
≥ AdvIND-CPA

CR-IB-PRE,A(1k, N)−AdvTCRB .

This completes the proof of Theorem 1. 2

9.2 Proof for Theorem 2

Proof. Suppose there exists a PPT algorithm A who can break the collu-
sion resistance of our system, we then construct a reduction algorithm B
to break the CDH assumption by using A. B is given the problem instance
(g,A = ga, B = gb).

Setup. B sets g1 = A, g2 = B, chooses v1, v2, g3 ∈R G, β ∈R Z∗q and a
TCR hash function TCR1 as in the real scheme. B then choose the (n+1)

vector U so as to set u0
∏
j∈Vid uj = gJ(id) ·BF (id) for some integer-valued

functions F, J : {0, 1}n → Z chosen by B according to Waters’ proof
technique [7]. Finally, B outputs mpk = (g, g1, g2, g3, v1, v2, U, TCR1) to

A. Note B does not know gα2 = gab but it can compute gβ3 . In the view of
A, the distribution of pp is identical to that of the real scheme.

Queries. A issues the following queries to B.

1. Private key queries Osk(id) : A issues id to B, B responds the private

key skid = (skid1 , skid2) = (gβ3 · A
−J(id)
F (id) · (u0

∏
j∈Vid uj)

r, A
−1
F (id) · gr),

where r ∈R Z∗q .

2. Token update queries Otu(id, Ti): A issues (id, Ti) to B, B constructs

the updated token for the time period Ti as τi = (τi,1, τi,2) = (g−β3 ·
(v1 · vTi2)rTi , grTi), where rTi ∈R Z∗q .

3. Decryption key queriesOku:A issues a tuple (id, Ti) to B, B constructs
the updated key skid|i by using Osk and Otu.

4. Re-encryption key queries Ork: A issues a tuple (id, Ti, Ti′) to B, B
constructs the re-encryption key as follows. B then chooses ξ ∈R GT ,

ρ ∈R Z∗q , and sets rk1 = A
−J(id)
F (id) · (u0

∏
j∈Vid uj)

ρ′ · (v1 · v
Ti′
2)TCR1(ξ) ·

(u0
∏
j∈Vid uj)

r̂1 , rk2 = gr̂1 · A
−1
F (id) · gρ′ and rk3 = Enc(id, Ti′ , ξ),

where ρ′, r̂1 ∈R Z∗q .

Output.A outputs the decryption key skid|i = (skid|i,1, skid|i,2, skid|i,3)
for an honest identity id under time period Ti. If this is a valid key, then
B can compute

σ1 =
skid|i,1

rk1
=
gα2 · (u0

∏
j∈Vid uj)

r̂1 · (v1 · v
Ti′
2)TCR1(ξ) · (u0

∏
j∈Vid uj)

ρ

gα2 · (u0
∏
j∈Vid uj)

r̂1 · (v1 · vTi2)r̂2

=
(v1 · v

Ti′
2)TCR1(ξ) · (u0

∏
j∈Vid uj)

ρ

(v1 · vTi2)r̂2
,

where skid|i = (skid|i,1, skid|i,2, skid|i,3), rkid|i→i′ = (rk1, rk2, rk3) and sup-
pose skid|i′ is corrupted by A.

Since B knows ξ and r̂2 = rTi + r̃ + r2 (all chosen by itself in the
similation of the game), B then computes

σ2 =
σ1 · (v1 · v

Ti′
2)−TCR1(ξ)

(v1 · vTi2)−r̂2

=
(v1 · v

Ti′
2)TCR1(ξ) · (u0

∏
j∈Vid uj)

ρ · (v1 · v
Ti′
2)−TCR1(ξ)

(v1 · vTi2)r̂2 · (v1 · vTi2)−r̂2

= (u0
∏
j∈Vid

uj)
ρ.

Since ρ = ρ′ − a/F (id), then B has

σ3 = (σ2 · (gJ(id) ·BF (id))−ρ
′ ·AJ(id)/F (id))−1

= ((gJ(id) ·BF (id))ρ
′−a/F (id) · (gJ(id) ·BF (id))−ρ

′ ·AJ(id)/F (id))−1

= Ba = gab.

Therefore B can solve the CDH problem.
This completes the proof of Theorem 2. 2

	An Efficient Cloud-based Revocable Identity-based Proxy Re-encryption Scheme for Public Clouds Data Sharing
	Kaitai Liang1, Joseph K. Liu2, Duncan S. Wong1, Willy Susilo3

