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Abstract

A two-to-one recoding (TOR) scheme is a new cryptographic primitive, proposed in the recent work
of Gorbunov, Vaikuntanathan, and Wee (GVW), as a means to construct attribute-based encryption
(ABE) schemes for all boolean circuits. GVW show that TOR schemes can be constructed assuming
the hardness of the learning-with-errors (LWE) problem.

We propose a slightly weaker variant of TOR schemes called correlation-relaxed two-to-one recod-
ing (CR-TOR). Unlike the TOR schemes, our weaker variant does not require an encoding function to
be pseudorandom on correlated inputs. We instead replace it with an indistinguishability property that
states a ciphertext is hard to decrypt without access to a certain encoding. The primary benefit of this
relaxation is that it allows the construction of ABE for circuits using the TOR paradigm from a broader
class of cryptographic assumptions.

We show how to construct a CR-TOR scheme from the noisy cryptographic multilinear maps of
Garg, Gentry, and Halevi as well as those of Coron, Lepoint, and Tibouchi. Our framework leads to an
instantiation of ABE for circuits that is conceptually different from the existing constructions.

1 Introduction

Encrypting data using traditional public-key encryption results in a very coarse-grained access to the data,
since only those who possess an appropriate secret-key can decrypt the resulting ciphertext. Attribute-based
encryption (ABE), introduced by Sahai and Waters [26] is an emerging class of cryptosystems which al-
low for significantly more fine-grained access to data. There are two variants of ABE cryptosystems [16]:
Key-Policy ABE and Ciphertext-Policy ABE. In Key-Policy ABE, the secret-keys SKf have an associated
boolean-function f called the policy. The messages are encrypted under an assignment x of boolean vari-
ables called the attributes. A secret-key SKf can decrypt a message M encrypted under assignment x if
and only if f(x) = 1. In Ciphertext-Policy ABE, these roles are reversed: secret-keys are associated with
assignments x and ciphertexts are associated with policies f .

Recently, two independent works due to Garg, Gentry, Halevi, Sahai, and Waters [13], and Gorbunov,
Vaikuntanathan, and Wee [15] showed how to construct ABE schemes for general circuits. More specifically,
these works show how to realize the class of access policies f that can be expressed as a boolean circuit of
depth d and input length n; both d and n are fixed at the system setup and can be polynomial in the security
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parameter; the size of ciphertexts and public-parameters is at most polynomial in d and n but independent
of the size of the circuits in the class. The construction of [13] uses noisy cryptographic multilinear maps of
Garg, Gentry, and Halevi [12], and is based on a new assumption in ideal lattices. The construction of [15] is
based on the (standard) learning-with-errors assumption [23]. Prior to these works, the construction of [16]
supported the largest class of access policies until now; namely the policies corresponding to polynomial
sized boolean formulas, or equivalently circuits in the complexity class NC1.

Two-to-one recoding schemes. The work of GVW on attribute-based encryption introduces an interesting
new framework called two-to-one recoding (TOR) schemes. Roughly speaking, a TOR scheme resembles
a proxy re-encryption scheme [4]: it has an “encoding” mechanism with the following functionality. Given
the encodings of a message m under two different public-keys pk1 and pk2, and an appropriate trapdoor t, it
is possible to obtain the encoding ofm under a third public-key pk3. The trapdoor t, called the recoding key,
can be generated using any one of the secret-keys corresponding to pk1 or pk2. GVW show that if such a
primitive satisfies several additional simulatability and indistinguishability properties (described later), then
circuit ABE can be constructed in a black box manner.

TOR schemes are intriguing primitive that we find interesting at least for two reasons. First, because it
immediately yields a (black-box) construction of circuit ABE. And second, how it yields ABE construction.
Roughly speaking, the TOR encodings and recoding-keys are used imitate the circuit-computation along the
lines of garbled-circuits [29]. This ability to execute a circuit computation “securely and in a tamper-proof
manner” makes TOR a powerful primitive.

Relaxing the requirements of TOR schemes. In this work, we take a closer look at TOR as an indepen-
dent primitive. In particular, we investigate the possibility of building TOR schemes from assumptions that
are different from LWE.

Our focal point is the correlated pseudorandomness property [24] which states that “the output of the
encoding function on several correlated inputs looks pseudorandom.’ While this property follows naturally
from the LWE construction of GVW, it proves to be significantly more difficult to achieve in other contexts.
For instance, we found that it was possible to achieve TOR in generic multilinear maps using a natural
generalization of the “matrix DDH” assumption [21]. However, this assumption assumption is actually false
in the framework of GGH [12]. In addition, while it remains plausible in the framework of CLT [11], the
resulting construction encumbers significant additional overhead to the existing multilinear construction of
Garg, Gentry, Halevi, Sahai, and Waters [13]. Ideally, we would like an abstraction that both leads to circuit
ABE from a broader range of assumptions and one which naturally leads to competitive constructions.

With this goal in mind we reexamine how correlated pseudorandomness was used in the GVW construc-
tion. In the GVW Circuit ABE construction multiple TOR primitives for each input gate for each interior
gate in a private key circuit for f . However, in their proof the correlated randomness property is actually not
needed or used at any of these gates except the final output gate. This follows from the fact that in the circuit
ABE construction there is no real reason to hide from an attacker that two encodings are generated from the
same randomness — the attacker naturally knows this anyway for a well formed ciphertext. The correlated
randomness property is used in combination with a one time encryption property at the output gate to show
that if an attacker cannot derive the encoding, then he cannot decrypt a message.

Our goal is to present a relaxed formulation of two-to-one reencoding that more directly meets this
intuitive security goal. We aim to replace correlated pseudorandomness with a security goal that more
tightly meets what is needed to construct Circuit ABE systems.
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Our contributions. We first present a relaxed formulation called correlation-relaxed two-to-one recoding
(CR-TOR) schemes. In this framework the encodings are not required to be pseudorandom on correlated
inputs. Rather, we capture the corresponding security requirement by an indistinguishability game which
specifies only that there exists an encryption function producing an indistinguishable ciphertexts which can
be decrypted by “appropriately computed” encodings. In terms of circuit ABE, an “appropriately computed”
encoding will be the recoding corresponding to the output of the circuit. After presenting our formulation
of CR-TOR, we show that it is sufficient to build circuit ABE in a black-box manner.

Next, we consider the question of constructing CR-TOR and TOR schemes from assumptions different
from LWE. For this purpose, we turn to the framework of idealized multilinear maps [6, 12, 11, 13], and
show how to construct a:

• CR-TOR scheme based on a natural generalization of the DDH assumption;

• TOR scheme based on the “matrix DDH” assumption (in groups with multilinear maps)

We note that the construction of CR-TOR is much more efficient compared to the corresponding construction
of TOR (which requires us to use matrix DDH assumption). This indicates that correlated pseudorandom-
ness property of TOR comes at a price in efficiency.

As of today, no constructions of idealized multilinear maps are known. However, the breakthrough work
of Garg, Gentry, and Halevi [12], as well as the recent followup work of Coron, Lepoint, and Tibouchi [11],
constructs randomized encoding schemes which can be seen as candidate constructions for “approximate”
multilinear maps. These constructions are based on new cryptographic assumptions on ideal lattices.

We show that our construction of CR-TOR scheme can be easily adapted to work in the framework of
both GGH [12] and CLT [11]. Moreover, the performance of the resulting constructions is roughly on par
with the GGHSW constructions [13].

However, our construction of the TOR scheme can only work with the framework of CLT. This is because
the matrix DDH assumption does not hold in the GGH setting; but it remains plausible in the CLT setting.
Furthermore, the overhead is significantly increased compared to the CR-TOR systems. The additional
overhead can be directly attributed to achieving the stronger (and unused) correlation resistance property.

Finally, we note that since CR-TOR suffices to obtain circuit ABE in a black-box manner, we obtain a
new construction of circuit ABE that is distinct from both GVW[15] and GGHSW [13]. At a conceptual
level, this construction resembles the GVW construction since it is obtained from CR-TOR; on the other
hand, it uses multilinear maps as its internal mechanism for computation, resulting in the same underlying
assumption as the GGHSW construction. We remark that the construction of circuit ABE in all of these
works, including ours, are in the selective-security model [5, 16].

Goals and Non-Goals. One of our main objectives in this work is to understand which properties of TOR
are crucial to build circuit-ABE and eliminate the unnecessary ones. Specifically, we have investigated
the correlated pseudorandomness property and find that it might be unwarranted for circuit-ABE, resulting
in unnecessary inefficiencies. This argument is supported by constructing a circuit-ABE scheme which
compares favourably to existing schemes [13, 15] in terms of efficiency. However, building a new and
more efficient circuit-ABE scheme is not a goal of this paper. We do so only to demonstrate that correlated
pseudorandomness property is not required for circuit-ABE; relaxed-TOR is sufficient and enables a better
construction.

Related works. After the introduction of ABE, while limited progress was made on expanding the class
of access policies f , significant progress was made in many directions on ABE. New proof techniques were
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developed in [27, 18, 22, 8, 1, 3, 20, 2] to diversify the underlying security assumptions based on both bilin-
ear pairings as well as lattices. New constructions for decentralizing trust in the key-issuing authority were
proposed in [9, 10, 19]. In addition, schemes supporting policies of different flavors were also developed
such as: inner-product policy [17], regular languages [28], branching programs [7], and more expressive
schemes in the (much weaker) “bounded collusion” model [25, 14].

Paper organization. We will start by recalling the setting of idealized multilinear maps and attribute-
based encryption in Section 2. We provide a definition of our correlation-relaxed TOR in the next section
3, followed by a black-box construction of ABE from CR-TOR in Section 4. We conclude by presenting a
construction of our CR-TOR in Section 5. Due to space constraints, the construction of the original TOR
(with strong correlation-psuedorandomness property) is given in appendix A. Finally, in Appendix B we
describe how to translate our construction in the framework of graded encoding schemes of GGH.

2 Preliminaries

In this section we recall the setting of multilinear maps, hardness assumptions, and definitions for circuit
ABE. We follow the conventions established in [15, 13].

2.1 Multilinear maps

We first recall the setting of ideal multilinear maps. Following [13], we assume the existence of a group
generator G, which takes as input a security parameter λ and a positive integer d to indicate the number of
allowed pairing operations. G(1λ, d) outputs a sequence of groups ~G = (G1, . . . ,Gd) each of large prime
order p > 2λ. Let gi be a canonical generator ofGi publicly known from group’s description, and let g = g1.

We assume the existence of a set of efficiently computable bilinear maps {ei,j : Gi×Gj → Gi+j |i, j ≥
1; i+ j ≤ d}. The map ei,j satisfies the following relation:

ei,j(gai , g
b
j) = gabi+j : ∀a, b ∈ Zp.

A consequence of this is that ei,j(gi, gj) = gi+j . When the context is obvious, we will sometimes abuse
notation and drop the subscripts i, j. For example, we may simply write:

e(gai , g
b
j) = gabi+j .

Assumption 1. (d-Multilinear Decisional Diffie-Hellman (d-MDDH) assumption) Suppose that a chal-
lenger runs G(1λ, d) and generates groups (G1, . . . ,Gd) of prime order p with generators (g1, . . . , gd).
Then, the d-MDDH assumption states that the advantage AdvA(λ) of every polynomial time adversary A,
defined below, is at most negligible in λ:

|Pr[A(g, gs, gc1 , . . . , gcd , gsc1...cdd ) = 1]− Pr[A(g, gs, gc1 , . . . , gcd , gud ) = 1]|

where s, c1, . . . , ck and u are uniformly distributed in Zp.

This is a natural generalization of the DDH assumption in the multilinear setting. Intuitively, this as-
sumption is plausible because there are d + 1 element multiplications in the exponent, which cannot be
computed using a d-linear map.

We will describe our constructions in this ideal setting first. However, later we will show how to adapt
them to the noisy settings of GGH and CLT [12, 11].
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2.2 Attribute Based Encryption

The definition of ABE provided here is for the key-policy variant of ABE, where the secret-keys are gen-
erated for a circuit C, and the ciphertexts are encrypted under a “set of attributes” denoted by an index
ind ∈ {0, 1}l.

ABE for circuits. An ABE scheme for a class of circuits C is a tuple of algorithms
ABE = (Setup,Enc,KeyGen,Dec) where:

• Setup(1λ, l, n) The setup algorithm takes as input the security parameter λ, the length l of the index
ind, and a bound n on circuit depth; it outputs public parameters pp and the master key msk.

• Enc(pp, ind ∈ {0, 1}l,m) The encryption algorithm takes as input the public parameters pp, a bit
string ind ∈ {0, 1}l representing the assignment of boolean variables (a.k.a. “attributes”), and a
message m. It outputs a ciphertext ct.

• KeyGen(msk,C) The key generation algorithm takes as input the master keymsk and the description
of a circuit C of maximum depth n. It outputs a secret-key skC .

• Decrypt(skC , ct). The decryption algorithm takes as input a secret key skC and ciphertext ct. The
algorithm attempts to decrypt and outputs a message m if successful; otherwise it outputs a special
symbol ⊥.

Correctness. It is required that for all pp and msk produced by algorithm Setup, for all ind ∈ 0, 1l,
all messages m, for all appropriate circuits C such that C(ind) = 1, if KeyGen(msk,C) → skC and
Enc(pp, ind,m)→ ct then: Dec(skC , ct) = m.

Selective security game for ABE. The selective-security game [16, 13, 5] for ABE proceeds in following
stages between an adversary A and a challenger:

• INIT The adversary declares an index ind∗

• SETUP The challenger runs the Setup algorithm and gives the public-parameters to the adversary.

• PHASE 1 The adversary adaptively makes secret-key queries for several circuitCj such thatCj(ind∗) =
0 for every j. The challenger answers each query by running the KeyGen algorithm using the master
secret-key.

• CHALLENGE The adversary submits two challenge messages m0 and m1 of equal length. The chal-
lenger flips a bit b and sends an encryption of mb under the index ind∗ to the adversary.

• PHASE 2 Phase 1 is repeated.

• GUESS The adversary outputs a guess b′.

The advantage of the adversaryA in the selective-security game is defined as
∣∣Pr [b′ = b]− 1

2

∣∣. We say that
an ABE scheme is selectively-secure if the advantage of every polynomial time adversary A in the above
game is at most negligible.
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3 Correlation-relaxed Two-to-one Recoding Schemes

In this section we will define our relaxation of the original TOR scheme of [15]. Let us first recall some
salient features of the scheme. A TOR scheme defines a probabilistic algorithm Encode(·, ·) whose first
input is a public key, and whose second input is a tag, from some tag set S. Additionally there is a “two-to-
one” recoding algorithm with the following property: for any tuple of public keys (pk0, pk1, pktgt) and any
s ∈ S, there exists a recoding key rk such that the recoding algorithm performs the following transformation

(Encode(pk0, s),Encode(pk1, s))
rk→ Encode(pktgt, s)

There is an algorithm to generate the recoding key using either sk0 or sk1, such that the key has the same
distribution in either case. Additionally there is an algorithm to simulate a fake recoding key/public key pair
for any input keys pk0 and pk1. The fake pair (rk, pktgt) should be indistinguishable from that generated
honestly by the recode key generation algorithm for a random pktgt. Finally “correlated pseudorandomness”
states that given polynomially many encodings of tag s under distinct public keys, an encoding under a fresh
public key is indistinguishable from random.

Our relaxation. We now describe the core features of our relaxation. Firstly we remove the requirement
for “correlated pseudorandomness”, paving the way for construction of secure ABE from new assumptions.
In doing so we introduce a message encryption function whose random input is precisely the tag s, i.e. the
function is deterministic once s is picked. Additionally our scheme also generates encodings deterministi-
cally.

Looking ahead to our ABE scheme in the next section, we will see that the encryption function only uses
randomness when sampling a tag. Therefore ABE from correlation relaxed TOR can use a reduced entropy
pool, which is useful when encryption is performed on embedded systems. However one consequence is
that our key generation algorithm must generate “levelled” public keys. Intuitively the reason is that in the
original TOR scheme, encodings under distinct public keys are unnrelated, whereas in the relaxed scheme
encodings at given level are all re-randomized versions of a specific encoding.

Finally, we capture security of correlation relaxed TOR by an indistinguishability experiment; indistin-
guishability of encoding derived ciphertexts (IND-EDC). The game specifies that the encrypted messages
are indistinguishable given polynomially many encodings of the tag.

The definition. A correlation-relaxed two-to-one recoding (CR-TOR) scheme over an input space S =
Sλ is a tuple of eight polynomial time algorithms (Params, Keygen, Encode, ReKeyGen, SimReKeyGen,
Recode, Encrypt, Decrypt). The first three algorithms define a mechanism for encoding the input as follows:

• Params(1λ, d) is a probabilistic algorithm that takes as input the security parameter λ and an upper
bound d on the number of recoding operations; it outputs the global public parameters pp.

• Keygen(pp, i) is a probabilistic algorithm that takes as input the public parameters pp, an index i
called the level index; it outputs a public/secret key pair (pk, sk). When i = d only, the algorithm is
deterministic and outputs a unique public/secret key pair.

• Encode(pk, s) is a deterministic algorithm that takes as input a public-key pk and an input s ∈ Sλ to
be encoded; it outputs ψ which is called an encoding of s. Input s is sometimes referred to as the tag
or the secret.
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The next three algorithms provide two different mechanisms to generate recoding-keys, and a recoding
mechanism as follows:

• ReKeyGen(pp, i, pk0, pk1, sk0, pktgt) is a probabilistic algorithm that takes as input the public param-
eters pp, a level index i, a key pair (pk0, sk0), another public key pk1, and a “target” public key pktgt;
it outputs a trapdoor rk called the recoding key.

• SimReKeyGen(pp, i, pk0, pk1) is a probabilistic algorithm that takes as input public parameters pp,
a level index i, and two public-keys pk0, pk1; it outputs a recoding-key rk together with a “target”
public key pktgt.

• Recode(rk, ψ0, ψ1) is a deterministic algorithm that takes as input a recoding key rk, and two encod-
ings ψ0, ψ1; it outputs an encoding ψtgt.

Finally, the last two algorithms define a symmetric encryption scheme with the following properties:

• Encrypt(pp,m; s) is a probabilistic algorithm which takes as input the public parameters pp, a mes-
sage m (from a well-defined message space M) and a tag s ∈ S as random coins; it outputs a
ciphertext τ .

• Decrypt(pp, ψout, τ) is a deterministic algorithm which takes as input the public parameters pp, an
encoding ψout, and a ciphertext τ ; it produces a message m ∈M.

In addition, the following requirements must be satisfied.

Correctness. At a high level, correctness states that each properly generated recoding-key works correctly
for input encodings ψ0, ψ1. Since encodings are generated under public-keys, and public-keys are generated
for a given level-index i,1 stating this requirement is somewhat notation-heavy. In addition, we will have the
correctness requirement on the encrypt and decrypt algorithms.

Formally, the first requirement is stated as follows. For every λ, d, every pp← Params(1λ, d), and every
pk generated for index i < d (i.e. (pk, sk) ← Keygen(pp, i)), and every tag s ∈ S there exists a set Ψpk,s

satisfying the following condition. Suppose that (pk0, sk0) and (pk1, sk1) are generated by Keygen(pp, i)
for index i, and (pktgt, sktgt) by Keygen(pp, i+1) for the index i+1. Then, for all ψ0 ∈ Ψpk0,s, ψ1 ∈ Ψpk1,s

and rk ← ReKeyGen(pp, i, pk0, pk1, sk0, pktgt), it holds that Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s.
The second requirement is as follows. Let (pkout, skout) ← Keygen(pp, i = d). Then, for all m ∈ M,

s ∈ S, ψout ∈ Ψpkout,s, it holds that Decrypt (pp, ψout,Encrypt(pp,m; s)) = m.

Key indistinguishability. Let i < d, and (pkb, skb)← Keygen(pp, i), and (pktgt, sktgt)← Keygen(pp, i+
1). Then, the following two ensembles must be statistically close:2[

Aux,ReKeyGen(pp, i, pk0, pk1, sk0, pktgt)
]
≡s[

Aux,ReKeyGen(pp, i, pk0, pk1, sk1, pktgt)
]

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)).

1This is another minor deviation in our definition from original TOR; it can be seen as an additional weakening. We will avoid
subscripting each pk with its level index i when clear from the context.

2Computational indistinguishability may also be sufficient.
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Recoding Simulation. Let i < d. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1. Then the following two
ensembles are statistically close:[

Aux, pktgt, rk : (pktgt, sktgt)← Keygen(pp, i+ 1), rk ← ReKeyGen(pp, i, pk0, pk1, sk0, pktgt)
]
≡s[

Aux, pktgt, rk : (pktgt, rk)← SimReKeyGen(pp, i, pk0, pk1)
]

where Aux = ((pk0, sk0), (pk1, sk1)).

The above two properties are statistical properties and identical to the properties of original TOR scheme.
We now describe the third property called indistinguishability of encoding derived ciphertexts or IND-EDC.
This is a computational property; recall that the original TOR formulation had correlated pseudorandomness
which is stronger than IND-EDC.

Indistinguishability of Encoding Derived Ciphertexts (IND-EDC). We require that the advantage of
every polynomial time adversary A in the IND-EDC game is at most negligible where the IND-EDC game
proceeds as follows and the advantage of A is defined as

∣∣Pr [b′ = b]− 1
2

∣∣ (see below):

• The challenger sends (pp, pk1, . . . , pk`) to the adversary where: pp ← Params(1λ, d), (pkj , skj) ←
Keygen(pp, 1) for j = 1, . . . , ` = poly(λ)

• Adversary sends two equal length messages m0,m1.

• Challenger samples a random bit b and secret tag s ∈ S . It sends (ψ1, . . . , ψ`, τb) where ψj ←
Encode(pkj , s) for every j ∈ [`], and τb ← Encrypt(pp,mb; s).

• Adversary outputs a bit b′ and halts.

4 Circuit ABE from correlation-relaxed TOR

In this section we construct ABE for circuits from correlation-relaxed TOR. The construction is very similar
to the GVW construction of ABE from TOR [15] except that in proving security, instead of using correlation
pseudorandomness, we will use IND-EDC property.

Circuits are described using the same convention as in [15], which as follows. Without loss of generality,
we consider the class of circuits C = {Cλ}λ∈N where each circuit C ∈ Cλ is a layered circuit consisting
of input wires, gates, internal wires, and a single output wire. Recall that in a layered circuits gates are
arranged in layers where every gate at a given layer has a pre-specified depth. The lowest row has depth 1
and depth increases by one as we go up. A gate at depth i receives both of its inputs from wires at depth
i− 1. The circuit has l = l(λ) input wires, numbered from 1 to l. The size of the circuit is denoted by |C|,
and all internal wires are indexed from l + 1, . . . , |C| − 1; the output wire has index |C|. Every gate is a
boolean-gate with exactly two input wires and one output wire.

Our construction of ABE from a CR-TOR scheme follows.

The construction. Suppose that the algorithms of the given CR-TOR scheme are: (Params, Keygen,
Encode, ReKeyGen, SimReKeyGen, Recode, Encrypt, Decrypt). The algorithms of our ABE scheme
ABE = (Setup,Enc,KeyGen,Dec) are as follows.
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• Setup(1λ, l, d): The setup algorithm for ABE first runs the parameter generation algorithm of CR-
TOR to obtain global public-parameters: pp ← Params(1λ, d). Then, for each input wire i ∈ [l], it
generates two fresh public and secret key pairs, and an additional pair for the output wire:

(pki,b, ski,b)← Keygen(pp, 1) for i ∈ [l], b ∈ {0, 1}
(pkout, skout)← Keygen(pp, d)

It outputs the master public-key and master secret-key pair (mpk,msk) as follows (note that secret-
key skout is not used):

mpk := pp, pkout, {pki,b}i∈[l],b∈{0,1} ,msk := {ski,b}i∈[l],b∈{0,1} .

• Enc(mpk, ind,m) : Let ind = (ind1, . . . , indl) =∈ {0, 1}l. The algorithm chooses a uniform

s
$← S, encodes it under the public-keys specified by the bits of ind, and finally encrypts m under pp

and s. That is,

ψi ← Encode(pki,indi , s), ∀i ∈ [l], and τ ← Encrypt(pp,m; s),

The algorithm outputs ctind = (ind, ψ1, . . . , ψl, τ) as the ciphertext.

• KeyGen(msk,C): The algorithm proceeds in two steps:

1. For every non-input wire w ∈ {l + 1, . . . , |C|} of the circuit C, it generates two public-secret
key pairs denoting two possible values b ∈ {0, 1} for this wire. However, the public-key corre-
sponding to the circuit-output 1 is (always) set to pkout. That is, for every w ∈ {l + 1, . . . , |C|}
and every b ∈ {0, 1} such that (w, b) 6= (|C|, 1), generate: (pkw,b, skw,b) ← Keygen(pp, i),
where i is the depth of wire w; then set pk|C|,1 = pkout.

2. For every gate g := (u, v, w) at level i—where (u, v) are two incoming wires of g and w is its
outgoing wire—compute four recoding-keys rkwb,c for wire w as follows:

rkwb,c ← ReKeyGen(pp, i, pku,b, pkv,c, sku,b, pkw,gw(b,c))

where gw(b, c) denotes the output of g on input (b, c).

The algorithm outputs the secret key skC which is a collection of all 4(|C| − l) recoding keys it has
computed (along with the circuit C).

skC := C,
(
rkwb,c : w ∈ [l + 1, |C|], b ∈ {0, 1}, c ∈ {0, 1}

)
.

• Dec(skC , ctind) : If C(ind) = 0, algorithm outputs ⊥. Otherwise, C(ind) = 1 defines a computa-
tion of the circuit where each wire carries a well defined value in {0, 1}. In particular, an input wire
w ∈ {1, . . . , l} carries the bit indw, and every other wirew ∈ {l+1, . . . , |C|} carries a bit as follows.
Suppose w is the outgoing wire of (uniquely defined) gate g := (u, v, w), and wires u and v carry
values b∗ and c∗ respectively; then w carries the value d∗ = gw(b∗, c∗). For every wire, the decryption
algorithm computes:

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
using appropriate values from the ciphertext ctind and the key skC . Note that since C(ind) = 1, the
algorithm must have also computed an encoding ψout ∈ Ψpkout,s corresponding to the output wire. The
decrypted message is: m← Decrypt(pp, ψout, τ).
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Theorem 1. Scheme ABE described above is a selectively-secure ABE scheme for all polynomial size
circuits as per the definition in section 2.

Proof. To prove the theorem, we show that if there exists a PPT adversary A breaking the selective security
of ABE with noticeable advantage, then there exists a PPT B winning the IND-EDC game with noticeable
advantage (against the underlying CR-TOR scheme ). The construction of B, called the simulator, proceeds
as follows.

Simulator B. The simulator participates in the IND-EDC game with an outside challenger. At the same
time, internally, it plays the selective-security game with A as follows. B runs A answering its queries in
various stages as follows.

INIT. It receives an index ind∗ from A.

SETUP. In this phase, first the simulatorB asks the challenger of IND-EDC game to send (pp, pk1, . . . , pkl, pkout).
Then, it prepares the parameters for A as follows. It defines pki,ind∗i = pki, and generates the remaining
keys as: (pki,1−ind∗i , ski,1−ind∗i )← Keygen(pp, 1). It sends mpk to A where:

mpk := pp, pkout, {pki,b}i∈[l],b∈{0,1} .

Note that the mpk is well defined and distributed identically to the output of the actual setup algorithm of
ABE .

PHASE 1. In this phase A submits polynomially many secret-key queries for various circuits. Let C be one
such query, then by definition of the game, C(ind∗) = 0. The computation C(ind∗) defines a unique value
carried by each wire of C. B generates the simulated-key for C as follows.

• For each wire w ∈ [l + 1, |C| − 1] generate (pkw,1−b∗ , skw,1−b∗) ← Keygen(pp, i), where i is the
depth of w and b∗ is the bit it carries in computation C(ind∗). Define pk|C|,1 = pkout.

• For every gate g = (u, v, w) do the following (here i is the depth of g, and b∗, c∗ are the bits carried
by its incoming wires u, v in computation C(ind∗)):

1. pkw,g(b∗,c∗), rkwb∗,c∗ ← SimReKeyGen(pp, i, pku,b∗ , pkv,c∗). Note that at this point, two public-
keys for each wire in C have been fixed including the output wire.3 This step also fixes one
recode-key for each wire corresponding to the computation C(ind∗). The remaining 3 recode-
keys for each wire are sampled in the next step.

2. For (b, c) ∈ {0, 1}2\(b∗, c∗), sample:

rkwb,c ← ReKeyGen(pp, i, sk∗, pku,b, pkv,c, pkw,g(b,c)),

where sk∗ is any one of the two secret-keys sku,b or skv,c; note that at least one of them is
always known.

• Output skC =:
(
rkwb,c : w ∈ [l + 1, |C|], b ∈ {0, 1}, c ∈ {0, 1}

)
.

3While pk|C|,0 is obtained in this step, the key pk|C|,1 = pkout, always (and hence never sampled once pkout is fixed).
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Observe that this indeed fixes all recode keys as desired, and that the distribution of skC is statistically close
to the output of KeyGen of ABE due to the statistical properties of recoding simulation and key indistin-
guishability.

CHALLENGE. WhenA sends (m0,m1), the simulator forwards them to the outside challenger, and recieves
(ψ1, . . . , ψl, τb) where ψi = Encode(pki, s) : i ∈ [l] and τb = Encrypt(pp,mb; s) for a random bit b. The
simulator forwards this response to A.
PHASE 2. B answers the queries of A as in phase 1.

GUESS. A outputs a guess bit b′. The simulator also outputs b′ and halts.

By construction (ψ1, . . . , ψl, τb) is a correctly distributed ABE encryption of mb. Therefore B wins the
IND-EDC game if A wins the selective security game.

5 Correlation-relaxed TOR from multilinear maps

In this section we provide an instantiation of our CR-TOR scheme. For convenience we first describe our
construction using idealized multilinear maps under the d-MDDH assumption (see Section 2). We will then
describe how to adapt this construction to the noisy multilinear maps of GGH in appendix B.

5.1 Overview

At a high level our construction works as follows. Let ~G = (G1, . . . ,Gd) be a tuple of groups equipped with
a multilinear map e (Section 2). Let h1, . . . , hd be random elements inG1, which will be public parameters.

A public key at level i < d is formed by powering hi to a random exponent z $← Zq. The corresponding
public key/secret key pair is (hzi , z). The unique public key at level i = d is simply hd and we take the
corresponding secret key4 to be z = 1. Let y1 = h1 and define recursively yi+1 = e(yi, hi+1) for i < d.
Note that yi is an element in Gi for all i ≥ 1.

Encoding and Recoding. We take S = Zq to be the set of tags. Let pk = hzi be a level i public key. Then
the set of encodings of a tag s under pk is simply the singleton set Ψpk,s = {yzsi }. Generating a recode key
for a pair of public keys (hz0i , h

z1
i ) to a target public key hztgt

i+1 consists of constructing a pair of elements
(ρ0, ρ1) such that ρz00 · ρ

z1
1 = h

ztgt
i+1. Given encodings ψ0 = yz0si , ψ1 = yz1si , one recodes by computing

e(ψ0, ρ0) · e(ψ1, ρ1) = ψtgt; this calculation is detailed below.
The encoding produced under the output public key is indistinguishable from random if d-MDDH as-

sumption holds. Therefore, we can use it encrypt/blind a message. These are the core ideas, the full scheme
follows.

5.2 Construction

• Params(1λ, d): Output a description of a tuple of groups ~G = (G1, . . . ,Gd) together with a multi-
linear map e(Gi,G1) → Gi+1 for i < d. Each group has prime order q. Let g = g1 be a canonical

generator of G1. Choose h1, . . . , hd
$← G1. Let y1 = h1 and define yi+1 = e(yi, hi+1) for i < d.

4Recall from the definition of correlation relaxed TOR that the secret key at level i = d plays no role in the actual computation.
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• Keygen(pp, i): If i < d choose z $← Zq, let pk = hzi and let sk = z. If i = d, let pk = hd and let
sk = 1. Output the pair (pk, sk).

• Encode(pk, s): Let pk = hz1 be a level one public key. Compute ψ = (hz1)s = hzs1 .

• ReKeyGen(pp, i, sk0, pk0, pk1, pktgt): Let pk0 = hz0i , pk1 = hz1i , sk0 = z0. Compute rk = (ρ0, ρ1)
as follows:

1. Choose r1
$← Zq and let ρ1 = hr1i .

2. Compute ρ0 = (pktgt/(pk1)r1)z
−1
0 .

Note that the above samples (ρ0, ρ1) according to the relation ρz00 · ρ
z1
1 = h

ztgt
i+1, but does so knowing

only secret key z0.

• Recode(rktgt
0,1, ψ0, ψ1) = e(ψ0, ρ0) · e(ψ1, ρ1) = e(yz0si , ρ0) · e(yz1si , ρ1)

= e(ysi , ρ
z0
0 ) · e(ysi , ρ

z1
0 ) = e(ysi , ρ

z0
0 · ρ

z1
1 )

= e(ysi , pktgt) = e(ysi , h
ztgt
i+1)

= e(yi, hi+1)ztgts = y
ztgts
i+1 = ψ

tgt
i+1.

• SimReKeyGen(pp, i, pk0, pk1): Let pk0 = hz0i , pk1 = hz1i .

1. Choose r0, r1
$← Zq, set ρ0 = hr0i and ρ1 = hr1i . Output recode key rk = (ρ0, ρ1).

2. Let pktgt = (pk0)r0 · (pk1)r1 . Output pktgt.

• Encrypt(pp,m; s): We have pp = (h1, . . . , hd). Output τ = m · e(. . . e(e(h1, h2), h3) . . . , hd)s =
m · ysd.

• Decrypt(pp, ψout, τ): Compute m = τ/ψout.

The correctness properties are easy to verify. We now show that other properties hold as well if the
d-MDDH assumption holds.

Key indistinguishability. Let (pkb, skb)← Keygen(pp, i) for b = 0, 1 and (pktgt, sktgt)← Keygen(pp, i+
1). Let pkb = hzb

i , skb = zb and pktgt = h
ztgt
i+1. The distributions

(ρ0, ρ1) : ρ0 = hr0i , ρ1 = (pktgt/(pk0)r0)z
−1
1 , r0

$← Zq

(ρ0, ρ1) : ρ1 = hr1i , ρ0 = (pktgt/(pk1)r1)z
−1
0 , r1

$← Zq

are statistically indstinguishable since both experiments sample uniformly from the set Sz0,z1,pktgt = {(ρ0, ρ1) :
ρz00 · ρ

z1
1 = pktgt}.

Recoding simulation. Let (pkb, skb) ← Keygen(pp, i) for b = 0, 1. Let pkb = hzb
i , skb = zb. The

distributions:

pktgt, (ρ0, ρ1) : pktgt = h
ztgt
i+1, ρ0 = hr0i , ρ1 = (pktgt/(pk0)r0)z

−1
1 , ztgt, r0, r1

$← Zq

pktgt, (ρ0, ρ1) : pktgt = (pk0)r0 · (pk1)r1 , ρ0 = hr0i , ρ1 = hr1i , r0, r1
$← Zq

are statistically indistinguishable since in both experiments pktgt is uniform over G1 and (ρ0, ρ1) sampled
uniformly from the set Sz0,z1,ytgt defined above.
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Indistinguishability of Encoding Derived Ciphertexts. We prove the following claim.

Claim 1. The above scheme is IND-EDC if the d-Multilinear Decisional Diffie-Hellman assumption holds.

Proof. Suppose there exists an IND-EDC adversary A against the above scheme with advantage ε. Then
there exists an adversary B which breaks the d-MDDH problem with the same advantage. B is passed an
instance (gs, gc1 , . . . , gcd , T ) and runs as follows:

1. Generates x1, . . . xl
$← Zq. Lets pp = (gc1 , . . . , gcd). Lets pkj = gxj for j ∈ [l]. Lets ψj = (gs)xj

for j ∈ [l]
2. Sends (pp, pk1, . . . , pkl) to A.
3. Receives (m0,m1) from A.

4. Chooses b $← 0, 1 and sends (ψ1, . . . , ψl, τb = mb · T ) to A.
5. Receives guess b′ from A.
6. Outputs 1 if b′ = b.

LetET be the event that T is a multilinear Diffie-Hellman element, whileEF be the event that T is a random
element of Gd. Note that xj

$← Zq has the same distribution as c1 · zj : zj
$← Zq, thus pkj are simulated

correctly. If ET occurs, then τb is exactly equivalent to the output of Encrypt(pp,mb; s), thus b′ = b holds
exactly when A wins the IND-EDC game. But if EF occurs, then τb is statistically independent of b, thus
b′ = b with probability 1/2. So B has advantage |Pr[b′ = b|ET ]−Pr[b′ = b|EF ]| = 1/2+ε−1/2 = ε.

Corollary 1. Assume the existence of multilinear maps and the validity of d-MDDH assumption. Then,
there exists a selectively-secure ABE scheme for all polynomial-size circuits of depth at most d− 1.
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A Construction of TOR

In this section we construct a TOR recoding [15] which is secure under the matrix d-linear assumption
[21]. The construction is described in the ideal multilinear setting. By following the description in the next
section, this construction is easily adapted to the setting of noisy multilinear maps of both GGH and CLT.

An important remark is that the matrix d-linear assumption cannot hold in the GGH framework [12].
Nevertheless, it remains plausible in the framework of CLT [11]. Therefore, the resulting instantiation of
TOR scheme only makes sense in the CLT framework.

Notation For matrices M = (mij) ∈ Za×bq , N = (nij) ∈ Zb×cq define gM ⊗N = (
∏n
k=1(gmik)nkj )ij =

(
∏n
k=1 g

miknkj )ij = gMN and M ⊗ gN = (
∏n
k=1(gnkj )mik) = (

∏n
k=1 g

miknkj )ij = gMN .

Assumption 2 (Matrix d-linear assumption [21]). For any integers a and b, and for any d ≤ i < j ≤
min(a, b) the ensembles (g, gR) : R $← Rki(Za×bq ) and (g, gR) : R $← Rkj(Za×bq ) are computationally
indistinguishable.

A.1 Definition of TOR [15]

A TOR scheme over an input space S = {Sλ} consists of six polynomial time algorithms (Params, Keygen,
Encode, ReKeyGen, SimReKeyGen, Recode) and a symmetric-key encryption scheme (E,D) with the fol-
lowing properties:

• Params(1λ, dmax) is a probabilistic algorithm that takes as input security parameter λ and an upper
bound dmax on the number of nested recoding operations, outputs public parameters pp.

• Keygen(pp) is a probabilistic algorithm that outputs a public/secret key pair (pk, sk).

• Encode(pk, s) is a probabilistic algorithm that takes pk and an input s ∈ S , and outputs an encoding
ψ.
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• ReKeyGen(pk0, pk1, sk0, sk1) is a probabilistic algorithm that takes a key pair (pk0, sk0), another
public key pk1, a target public key pktgt and outputs a recoding key rk.

• SimReKeyGen(pk0, pk1) is a probabilistic algorithm that tkaes two public keys pk0, pk1 and outputs
a recoding key rk together with a target public key pktgt.

• Recode(rk, ψ0, ψ1) is a deterministic algorithm that takes the recoding key rk, two encodings ψ0 and
ψ1, and outputs an encoding ψtgt.

Correctness For every pk and s ∈ S there exists a family of sets Ψpk,s,j , j = 0, 1, . . . , dmax:

• Pr[Encode(pk, s) ∈ Ψpk,s,0] = 1, where the probability is taken over the coin tosses of Encode;
• Ψpk,s,0 ⊆ Ψpk,s,1 ⊆ . . . ⊆ Ψpk,s,dmax .
• for all ψ,ψ′ ∈ Ψpk,s,dmax and all m ∈M,D(ψ′,E(ψ,m)) = m.

Additionally for any triple of key pairs (pk0, sk0), (pk1, sk1), (pktgt, sktgt) and any encodings ψ0 ∈
Ψpk0,s,j0 and ψ1 ∈ Ψpk1,s,j1 ,

Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s,max(j0,j1)+1

Key Indistinguishablity Let (pkb, skb) ← Keygen(pp) for b = 0, 1 and (pktgt, sktgt) ← Keygen(pp).
The following two ensembles must be statistically indistinguishable:

[Aux,ReKeyGen(pk0, pk1, sk0, pktgt)] ≡s
[Aux,ReKeyGen(pk1, pk0, sk1, pktgt)]

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)).

Recoding Simulation Let (pkb, skb) ← Keygen(pp) for b = 0, 1. Then the following two ways of sam-
pling the tuple [(pk0, sk0), (pk1, sk1), pktgt, rk] must be statistically indistinguishable:

[(pk0, sk0), (pk1, sk1), pktgt, rktgt : (pktgt, sktgt)← Keygen(pp); rk← ReKeyGen(pk0, pk1, sk0, pktgt)] ≡s
[(pk0, sk0), (pk1, sk1), pktgt, rktgt : (pktgt, rk)← SimReKeyGen(pp); ]

One-time Semantic Security For all m0,m1 ∈ M, the following two distributions must be statistically
indistinguishable:

[E(ψ,m0) : ψ $← K] ≡s [E(ψ,m1) : ψ $← K]

Correlated Pseudorandomness For every polynomial l = l(λ), let (pki, ski) ← Keygen(pp) for i ∈
[l+ 1]. Let s $← S, and let ψi ← Encode(pki, s) for i ∈ [l+ 1]. Then the following two ensembles must be
computationally indistinguishable: [

(pki, ψi)i∈[l], pkl+1, ψl+1

]
≡c[

(pki, ψi)i∈[l], pkl+1, ψ : ψ $← K
]
.
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A.2 TOR from matrix decision linear assumption.

We now describe our construction. Recall that in the (original) TOR scheme, instead of IND-EDC game,
one requires correlated pseudorandomness property. All other properties and algorithms remain the same as
in the definition of CR-TOR (see section 3). The algorithms of the TOR scheme are as follows.

• Params(1λ, d): Output a description of a tuple of groups ~G = (G1, . . . ,Gd) together with a multilin-
ear map e(Gi,G1)→ Gi+1 for i < d. Each group has prime order q. Let gi be a canonical generator
of Gi and let g = g1.

• Keygen(pp): Sample A $← Zd×dq . Set pk = gA.

• Encode(pk,~s) = pk ⊗ ~s = (gA)~s = gA~s.

• ReKeyGen(pk0, pk1, skb, pktgt): Let pk0 = gA0 , pk1 = gA1 , pktgt = gAtgt , so skb = Ab. Compute
rk = (ρ0, ρ1) = (gR0 , gR1) as follows:

1. Sample R1−b
$← Zd×dq and let ρ1−b = gR1−b .

2. Compute ρb = (gAtgt/(ρ1−b ⊗A1−b))⊗A−1
b .

• Recode(rktgt0,1, ψ0, ψ1) = e(ρ0, g
A0~s
i )× e(ρ1, g

A1~s
i ) = gR0A0~s

i+1 × gR1A1~s
i+1 = g

(R0A0+R1A1)~s
i+1 = gRt~s

i+1 =
ψtgt.

• SimReKeyGen(pk0, pk1): Let pk0 = gA0 and pk1 = gA1

1. Sample R0, R1
$← Zd×dq , set ρ0 = gR0 , ρ1 = gR1 output rk = (ρ0, ρ1).

2. Let pk = R0 ⊗ gA0 ×R1 ⊗ gA1 = g(R0A0+R1A1).

The correctness properties of our scheme are easy to verify. We show that it satisfies all other properties
of TOR as well.

Key indistinguishability. We require that for all (pk0 = gA0 , pk1 = gA1 , pktgt = gAt) the following
distributions are indistinguishable:

• Choose R0
$← Gd×d1 , compute ρ0 = gR0 and compute ρ1 = (gAt/(R0 ⊗ gA0)) ⊗ A−1

1 . Output
(ρ0, ρ1).

• Choose R1
$← Gd×d1 , compute ρ1 = gR1 and compute ρ0 = (gAt/(R1 ⊗ gA1)) ⊗ A−1

0 . Output
(ρ0, ρ1).

However this follows from the fact that f : Zd×dq → Zd×dq satisfying f(X) = (gAt/(X ⊗ gA0))⊗A−1
1

is injective.

Recoding simulation. This follows from the fact that (pktgt = R0 ⊗ gA0 × R1 ⊗ gA1 , gR0 , gR1) :

A0
$← Zd×dq , A1

$← Zd×dq , R0
$← Zd×dq , R1

$← Zd×dq is statistically close to (gAtgt , gR0 , gR1) : Atgt
$←

Zd×dq , R0
$← Zd×dq , R1

$← Zd×dq .
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Correlated pseudorandomness. We prove the following lemma.

Lemma 1. The TOR construction achieves correlated pseudorandomness (Section 4.1 [15]) if the matrix
d-linear assumption [21] holds.

Proof. It suffices to prove that the following distributions are indistinguishable:[
(g, gA1 , . . . , gAl+1 , gA1~s, . . . , gAl+1~s) : Ai

$← Zd×dq , ~s
$← Zdq

]
≡c[

(g, gA1 , . . . , gAl+1 , gA1~s, . . . , gAl~s, g~u) : Ai
$← Zd×dq , ~s

$← Zdq , ~u
$← Zdq

]
.

Suppose the simulator is given a tuple (g,W = gA, x = gA~s, Y = gB, z = g~u) where A,B $← Zq
d×d

and ~u is either equal to B~s or is random in Zdq . Observe that with overwhelming probability, the matrix
[AB] has rank d in which case the matrix [[W x]; [Y z]] defines a random 2d× (d+1) matrix of rank either
d or d + 1. Thus the tuple is an instance of the matrix d-Linear assumption. Then the simulator chooses

C1, . . . , Cl
$← Zd×dq and outputs Ci ⊗W = gCiA and Ci ⊗ x = gCiA~s for i = 1, . . . , l. Taking Ai = CiA

and Al+1 = B, one obtains an instance of (g, gA1 , . . . , gAl+1 , gA1~s, . . . , gAl~s, g~u) where ~u is either equal to
Al+1~s or is random in Zdq . The claim follows.

One-time semantic security. LetM = Gdd, define

E(ψ, ~µ) = ψ � ~µ

where � denotes the component-wise product. One-time semantic security follows from the fact that ψ is
computationally indistinguishable from a vector of random group elements.

B Mapping our constructions to graded encoding systems

In this section we describe how to translate our constructions using multilinear maps to the graded encoding
system of Garg et al. [12]. For simplicity we focus on mapping our construction of CR-TOR from generic
multilinear maps in Section 5.

B.1 Graded encoding systems

In the framework of Garg et al. [12] an element gαi in a mutlinear group family is an encoding of α at
level i. The encoding permits the following operations: equality testing, addition and a bounded number
of multiplications. At a high level a d-graded encoding system is a ring R and system of sets S = S

(α)
i ⊂

{0, 1}∗ : α ∈ R, 0 ≤ i ≤ d such that for every i, the sets {S(α)
i : α ∈ R} are disjoint and form a partition

of Si = ∪αS(α)
i . The GGH system is equipped with the following additional procedures for manipulating

encodings:

• Instance Generation: InstGen(1λ, 1d) takes as inputs the parameters λ, d and outputs (params,pzt)
where params is a description of a d-Graded Encoding System and pzt is a zero-test parameter for
level d.
• Ring Sampler: samp(params) is a randomized algorithm which outputs a level zero encoding a ∈
S

(α)
0 for nearly uniform element α $← R. The encoding a is not necessarily uniform in S(α)

0 .

18



• Encoding: enc(params, i, a) takes a level zero encoding a ∈ S(α)
0 for some α ∈ R and index i ≤ d

and outputs level-i encoding u ∈ S(α)
i for the same α.

• Addition and subtraction: For u1 ∈ S(α1)
i , u2 ∈ S(α2)

i , we have add(params, i, u1, u2) = u1 +u2 ∈
S

(α1+α2)
i and neg(params, i, u1) = −u1 ∈ S(−α1)

i .
• Multiplication: For u1 ∈ S(α1

i1
, u2 ∈ S(α2)

i2
such that i1 + i2 ≤ d, we have

mul(params, i1, u1, i2, u2) = u1 × u2 ∈ S(α1·α2)
i1+i2

.

• Re-randomization: For u ∈ S
(α)
i , algorithm reRand(params, i, u) outputs another encoding u′ ∈

S
(α)
i . For any two u1, u2 ∈ S(α)

i , the distributions of reRand(params, i, u1) and reRand(params, i, u2)
are nearly the same.
• Zero-test: isZero(params, u) outputs 1 if u ∈ S(0)

d and 0 otherwise. In conjuction with neg, one can
test if u1, u2 ∈ Sd encoding the same element α ∈ R.
• Extraction: ext(params,pzt, u) outputs s ∈ {0, 1}λ such that

1. For any α ∈ R and u1, u2 ∈ S(α)
d , ext(params,pzt, u1) = ext(params,pzt, u2)

2. The distribution : {ext(params,pzt, u1) : α $← R, u ∈ S(α)
d } is nearly uniform over {0, 1}λ.

In practice with some negligible probability the zero-test may produce false positives or the extraction
may produce differing outputs for encodings of the same element.

B.1.1 Graded Multilinear Decisonal Diffie Hellman assumption

We will require the following analogue of the d-Multilinear Decision Diffie Hellman assumption for d-
graded encoding systems.

Assumption 3. (d-Graded Multilinear Decisional Diffie-Hellman (d-GMDDH) assumption) Suppose that
a challenger runs InstGen(1λ, 1d) generating (params,pzt). Let s, c1, . . . cd ← samp(params). Define
s̃ = cenc1(params, 1, s), c̃1 = cenc1(params, 1, c1), . . . , c̃d = cenc1(params, 1, cd). Then, the d-GMDDH
assumption states that the advantage AdvA(λ) of every polynomial time adversary A, defined below, is at
most negligible in λ:

|Pr[A(s̃, c̃1, . . . , c̃d, v) = 1]− Pr[A(s̃, c̃1, . . . , c̃d, w) = 1]|

where v = cenc1(params, d, s · c1 . . . cd) and w = cenc1(params, d, samp(params)).

B.2 Our correlation-relaxed TOR using graded encodings

The canonicalizing algorithm cencl(params, i,u) defined in Remark 2 [12] takes an encoding u and pro-
duces another encoding u′ which is equivalent to l re-randomizations of u. For our purposes l will always
be a small constant. For convenience we suppress the params argument when making repeated calls to samp
and cencl.

• Params(1λ, d): Run InstGen(1λ, 1d) to generate (params,pzt) where params is a description of a d-
Graded Encoding System S = (S1, . . . , Sd). Let c1, . . . , cd ← samp(). Let h1 = cenc1(1, c1), . . . , hd =
cenc1(1, cd). Define yi =

∏i
i=1 hi ∈ Si for i = 1 . . . d.

• Keygen(pp, i): If i < d sample z ← samp(), let pk = cenc2(1, hi · z) and let sk = z. If i = d, let
pk = hd and sk = 1. Output the pair (pk, sk).
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• Encode(pk, s): Let pk = cenc2(1, h1 · z) be a level one public key. Compute ψ = cenc3(1, pk · s).

• ReKeyGen(pp, i, sk0, pk0, pk1, pktgt): Let pk0 = cenc2(1, hi · z0), pk1 = cenc2(1, hi · z1), sk0 = z0.
Compute rk = (ρ0, ρ1) as follows:

1. Sample r1 ← samp() and let ρ1 = cenc3(1, hi · r1).

2. Compute ρ0 = cenc3(1, (pktgt − pk1 · r1) · z−1
0 ) where z−1

0 is computed over Rq.

Note that the above samples (ρ0, ρ1) according to the relation ρ0 · z0 + ρ1 · z1 = hi+1 · ztgt, but does
so knowing only secret key z0.

• Recode(rktgt0,1, ψ0, ψ1) = ψ0 · ρ0 + ψ1 · ρ1 = (yi · (z0 · s)) · ρ0 + (yi · (z1 · s)) · ρ1

= (yi · s) · ρ0 · z0 + (yi · s) · ρ0 · z1 = (yi · s) · (ρ0 · z0 + ρ1 · z1)
= (yi · s) · pktgt = (yi · s) · (hi+1 · ztgt)
= (yi · hi+1) · (ztgt · s) = yi+1 · (ztgt · s) = ψtgti+1.

• SimReKeyGen(pp, i, pk0, pk1): Let pk0 = cenc2(1, hi · z0), pk1 = cenc2(1, hi · z1).

1. Sample r0, r1 ← samp(), set ρ0 = cenc3(1, hi · r0) and ρ1 = cenc3(1, hi · r1). Output recode
key rk = (ρ0, ρ1).

2. Let pktgt = cenc3(1, pk0 · r0 + pk1 · r1). Output pktgt.

• Encrypt(pp,m; s): We have pp = (h1, . . . , hd). Let P = ext(pzt, s ·
∏d
i=1 hi). Output τ = m⊕ P .

• Decrypt(pp, ψout, τ): Compute m = τ ⊕ ext(pzt, ψout).

Once again, correctness follows easily. We prove the other properties now.

Key indistinguishability. Let (pkb, skb)← Keygen(pp, i) for b = 0, 1 and (pktgt, sktgt)← Keygen(pp, i+
1). Let pkb = cenc2(1, hi · zb), skb = zb and pktgt = cenc2(1, hi+1 · ztgt). The distributions

(ρ0, ρ1) : ρ0 = cenc3(1, hi · r0), ρ1 = cenc3(1, (pktgt − pk0 · r0) · z−1
1 ), r0 ← samp()

(ρ0, ρ1) : ρ1 = cenc3(1, hi · r1), ρ0 = cenc3(1, (pktgt − pk1 · r1) · z−1
0 ), r1 ← samp()

are statistically indstinguishable since both experiments sample uniformly from the set Sz0,z1,pktgt = {(ρ0, ρ1) :
ρ0 · z0 + ρ1 · z1 = pktgt}.

Recoding simulation. Let (pkb, skb)← Keygen(pp, i) for b = 0, 1. Let pkb = cenc2(1, hi ·zb), skb = zb.
The distributions:

pktgt, (ρ0, ρ1) :pktgt = cenc3(1, hi+1 · ztgt)), ρ0 = cenc3(1, hi · r0),

ρ1 = cenc3(1, (pktgt − (pk0) · r0) · z−1
1 ), ztgt, r0, r1 ← samp()

pktgt, (ρ0, ρ1) :pktgt = cenc3(1, (pk0) · r0 + (pk1) · r1), ρ0 = cenc3(1, hi · r0),
ρ1 = cenc3(1, hi · r1), r0, r1 ← samp()

are statistically indistinguishable since in both experiments pktgt is nearly uniform over S1 and (ρ0, ρ1)
sampled uniformly from the set Sz0,z1,pktgt defined above.
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Indistinguishability of Encoding Derived Ciphertexts. We prove the following claim.

Claim 2. The above scheme is IND-EDC if the d-GMDDH assumption holds.

Proof. Suppose there exists an IND-EDC adversary A against the above scheme with advantage ε. Then
there exists an adversary B which breaks the d-GMDDH problem with the same advantage. B is passed an
instance (s̃ = cenc1(1, s), c̃1 = cenc1(1, c1), . . . , c̃d = cenc1(1, cd), T ) and runs as follows:

1. Samples x1, . . . xl ← samp(). Lets pp = s̃, c̃1, . . . , c̃d. Lets pkj = cenc2(1, xj) for j ∈ [l]. Lets
ψj = cenc3(1, s̃ · xj) for j ∈ [l].

2. Sends (pp, pk1, . . . , pkl) to A.
3. Receives (m0,m1) from A.

4. Chooses b $← 0, 1 and sends (ψ1, . . . , ψl, τb = Mb · T ) to A.
5. Receives guess b′ from A.
6. Outputs 1 if b′ = b.

Let ET be the event that T is a multilinear Graded Diffie-Hellman element, while EF be the event that T is
a random element of Sd. Note that cenc2(1, xj) : xj ← samp() has the same distribution as cenc2(1, c̃1 ·
zj) : zj ← samp(), thus pkj are simulated correctly. If ET occurs, then τb is exactly equivalent to the
output of Encrypt(pp,mb; s), thus b′ = b holds exactly when A wins the IND-EDC game. But if EF
occurs, then τb is statistically independent of b, thus b′ = b with probability 1/2. So B has advantage
|Pr[b′ = b|ET ]− Pr[b′ = b|EF ]| = 1/2 + ε− 1/2 = ε.
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