
A preliminary version of this paper appears in the proceedings of ESORICS 2014. This is the full version.

Even more practical secure logging:
Tree-based Seekable Sequential Key Generators

Giorgia Azzurra Marson1 and Bertram Poettering2

1 CASED & TU Darmstadt
2 Information Security Group at Royal Holloway, University of London

Abstract. Computer log files constitute a precious resource for system administrators for discov-
ering and comprehending security breaches. A prerequisite of any meaningful log analysis is that
attempts of intruders to cover their traces by modifying log entries are thwarted by storing them
in a tamper-resistant manner. Some solutions employ cryptographic authentication when storing
log entries locally, and let the authentication scheme’s property of forward security ensure that the
cryptographic keys in place at the time of intrusion cannot be used to manipulate past log entries
without detection. This strong notion of security is typically achieved through frequent updates
of the authentication keys via hash chains. However, as security demands that key updates take
place rather often (ideally, at a resolution of milliseconds), in many settings this method quickly
reaches the limits of practicality. Indeed, a log auditor aiming at verifying a specific log record
might have to compute millions of hash iterations before recovering the correct verification key.
This problem was addressed only recently by the introduction of seekable sequential key genera-
tors (SSKG). Every instance of this cryptographic primitive produces a forward-secure sequence
of symmetric (authentication) keys, but also offers an explicit fast-forward functionality. The only
currently known SSKG construction replaces traditional hash chains by the iterated evaluation of
a shortcut one-way permutation, a factoring-based and hence in practice not too efficient building
block. In this paper we revisit the challenge of marrying forward-secure key generation with seek-
ability and show that symmetric primitives like PRGs, block ciphers, and hash functions suffice
for obtaining secure SSKGs. Our scheme is not only considerably more efficient than the prior
number-theoretic construction, but also extends the seeking functionality in a way that we believe
is important in practice. Our construction is provably (forward-)secure in the standard model.

Keywords: secured logging, forward security, seekability, pseudorandom generators

1 Introduction

Computer log files can be configured to record a large variety of system events that occur on network
hosts and communication systems, including users logging on or off, memory resources reaching their
capacity, malfunctioning of disk drives, etc. Therefore, log files represent one of the most essential sources
of information that support system administrators in understanding the activity of systems and keeping
them fully functional. Not less important is the role that log files play in computer forensics: events like
login failures and software crashes serve as standard indicators for (attempted) intrusions. Unfortunately,
as log files are often recorded locally (i.e., on the monitored machine itself), in many practical cases
intruders can a posteriori manipulate the log entries related to their attacks.

Online logging and its disadvantages. In a network environment, one obvious strategy to prevent adver-
sarial tampering of audit logs is to forward log messages immediately after their creation to a remote log
sink—in the hope that the attacker cannot also corrupt the latter. Necessary in such a setting is that the
log sink is continuously available, as every otherwise required local buffering of log records would increase
the risk that their delivery is suppressed by the adversary. However, in many cases it has to be assumed
that the reachability of the log sink can be artificially restrained by the intruder, e.g., by confusing rout-
ing protocols with false ARP messages, by sabotaging TCP connections with injected reset packets, by
jamming wireless connections, or by directing application-level denial-of-service attacks against the log
sink. Independently of these issues, it is inherently difficult to choose an appropriate logging granularity:
while the creation of individual records for each established TCP connection, file deletion, or subprocess
invocation might be desirable from the point of view of computer forensics, network links and log sinks
might quickly reach their capacities if events are routinely reported with such a high resolution. This
holds in particular if log sinks serve multiple monitored hosts simultaneously.



Forward-secure cryptography for log file protection. A solution for tamper-resistant log-entry storage that
does not require a remote log sink but offers integrity protection via cryptographic means is secured local
logging. Here, each log entry is stored together with a specific authentication tag that is generated and
verified using a secret key. Note that regular message authentication codes (MACs) by themselves seem
not to constitute a secure solution, as corresponding tags will be forgeable by intruders that succeed
in extracting the secret key from the attacked device. Rather, the forward-secure variant of a MAC is
required, as elaborated next.

In a nutshell, a cryptosystem provides forward security (FS) if it continues to give meaningful security
guarantees after the adversary got a copy of the used keys. A standard example is key exchange: here, all
recent security models require established session keys to remain safe when the adversary obtains access
to the involved long-term private keys [17,6]. Likely less known is that the notion of forward security also
extends to non-interactive primitives. For instance, in forward-secure public key encryption [5] messages
are encrypted in respect to a combination (pk, t), where pk is a public key and t ∈ N identifies one out
of a set of consecutive time epochs; for each such epoch t, knowledge of a specific decryption key skt is
necessary for decrypting corresponding ciphertexts. In addition, while by design it is efficiently possible
to perform updates skt 7→ skt+1, forward security requires that the reverse mapping be inefficient, i.e., it
shall be infeasible to ‘go backwards in time’. More precisely, forward security guarantees that plaintexts
encrypted for ‘expired’ epochs remain confidential even if the decryption keys of all later epochs are
revealed.

Analogously to the described setting, signatures and authentication tags of the forward-secure variants
of signature schemes and MACs, respectively, remain unforgeable for past epochs if only current and
future keys are disclosed to the adversary [2,4]. One possible way to obtain such a MAC is to combine a
(forward-secure) sequential key generator (SKG) with a regular MAC [11,4], where the former can be seen
as a stateful pseudorandom generator (PRG) that, once initialized with a random seed, deterministically
outputs a pseudorandom sequence of fixed-length keys. These keys are then used together with a MAC
to ensure unforgeability of messages within the epochs.

The challenge of seekability. Forward-secure SKGs are typically constructed by deterministically evolving
an initially random state using a hash chain, i.e., by regularly replacing a ‘current’ key Kt by Kt+1 =
H(Kt), where H is a cryptographic hash function [11,4]. Although hash chains, in principle, lead to
(forward-)secure local logging, they also come with an efficiency penalty on the side of the log auditor:
the latter, in order to verify a log record of a certain epoch t, first needs to recover the corresponding
key Kt; however, as a high level of security requires a high key update rate, this might involve millions
of hash function evaluations. This problem was addressed only recently: in [15], efficient forward-secure
local logging is achieved via a seekable sequential key generator (SSKG).

We give a rough overview over the ideas in [15]. Essentially, the authors propose a generic construc-
tion of an SSKG from a shortcut one-way permutation (SCP), a primitive that implements a one-way
permutation π : D → D, for a domain D, with a dedicated shortcut algorithm allowing the computation
of the k-fold composition πk in sublinear time. The concrete SCP considered in [15] is given by the
squaring operation modulo a Blum integer N , where applying the shortcut corresponds to reducing a
certain exponent modulo ϕ(N). Given an SCP, an SSKG can be obtained by letting its state consist
of a single element in D, performing state updates by applying π to this element, and deriving keys
by hashing it (more precisely, by applying a random oracle). While it is instructive to observe how the
forward security of the SSKG corresponds with the one-wayness of the SCP, and how its seekability is
based on the SCP’s shortcut property, a notable technical artifact of the squaring-based SCP is that
seekability requires knowledge of ϕ(N) while forward security requires this value to be unknown. This
dilemma is side-stepped in [15] by giving only the owners of a seeking key the ability to fast-forward
through the SSKG output sequence.

1.1 Contributions and organization

The central contribution of this paper is the design of a new seekable sequential key generator. In contrast
to the prior SSKG from [15], our scheme relies on just symmetric building blocks; in particular we propose
instantiations that exclusively use either PRGs, block ciphers, or hash functions. By consequence, our
implementation beats the one from [15] by 1–3 orders of magnitude, on current CPUs. In addition to
this efficiency gain, we also identify new and appealing functionality features of our SSKG. In particular,

2



getting rid of the discussed seeking limitations of [15], our scheme allows every user to efficiently advance
any state by an arbitrary number of epochs. Our SSKG is supported by a security proof in the standard
model.

This paper is organized as follows. After starting with preliminaries in Section 2, we formally specify
the functionality, syntax, and security requirements of SSKGs in Section 3; this includes both a com-
parison with the (different) formalizations in [15] and a concrete proposal on how SSKGs can be used
to protect audit logs in practice. In Section 4 we describe our new PRG-based SSKG, including its gen-
eralized seekability notion and some possible time-memory trade-offs. Finally, in Section 5, we discuss
implementational aspects and efficiency results from our implementation.

1.2 Related work

The first published work that highlights the importance of seekability as a desirable property of sequential
key generators in the context of secured local logging is [15]. An extensive comparison of the corresponding
results with the ones of the current paper can be found in the preceding paragraphs and in Section 3. In
the following we discuss further publications and proposed protocols targeting the topics of sequential
key generation and cryptographic audit log protection. We observe that all considered protocols either
are forward-secure or offer seekability, but not both simultaneously.

An early approach towards secured local logging originates from Bellare and Yee [3]; they study the
role of forward security in authentication, develop the security notion of forward integrity, and realize a
corresponding primitive via a PRF chain. Later, the same authors provide the first systematic analysis
of forward security in the symmetric setting [4], covering forward-secure variants of pseudorandom gen-
erators, symmetric encryption, and message authentication codes, and also providing constructions and
formal proofs of security for these primitives.

Shortly after [3], an independent cryptographic scheme specifically targeted at protecting log files was
described by Kelsey and Schneier [11,12,16]. Their scheme draws its (forward) security from frequent key
updates via iterated hashing, but is unfortunately not supported by a formal security analysis. A couple
of implementations exist, notably the one by Chong, Peng, and Hartel in tamper-resistant hardware [7],
the construction of Stathopoulos, Kotzanikolaou, and Magkos [18], who investigate the role of secure
logging in public communication networks, and the logcrypt system by Holt [9]. The latter improves
on [11] by paving the way towards provable security, but also adds new functionality and concepts. Most
notable is the suggestion to embed regular metronome entries into log files to thwart truncation attacks
where the adversary cuts off the most recent set of log entries. Similar work is due to Accorsi [1] who
presents BBox, a hash-chain-based framework for protecting the integrity and confidentiality of log files
in distributed systems.

Ma and Tsudik consider the concept of forward-secure sequential aggregate authentication for protect-
ing the integrity of system logs [13,14]. Their constructions build on compact constant-size authenticators
with all-or-nothing security (i.e., adversarial deletion of any single log message is detected), naturally
defend against truncation attacks, and enjoy provable security.

The proposals by Yavuz and Ning [19], and Yavuz, Ning, and Reiter [20], specifically aim at secured
logging on constraint devices and support a shift of computation workload from the monitored host to the
log auditor. Notably, their key update procedure and the computation of authentication tags takes only
a few hash function evaluations and finite field multiplications. In common with the schemes discussed
above, their authentication systems are not seekable.

Kelsey, Callas, and Clemm [10] introduced secured logging into the standardization process at IETF.
However, their proposal of signed syslog messages focuses on remote logging instead of on local logging.
Precisely, their extension to the standard UNIX syslog facility authenticates log entries via signatures
before sending them to a log sink over the network. While this proposal naturally offers seekability, it is
bound to the full-time availability of an online log sink. Indeed, periods where the latter is not reachable
are not securely covered, as the scheme is not forward-secure.

2 Preliminaries

We recall basic notions and facts from cryptography, graph theory, and data structures that we require in
the course of this paper. Notably, in the section on trees, we define what we understand by the ‘co-path’
of a node. If not explicitly specified differently, all logarithms are understood to be taken to base 2.

3



2.1 Pseudorandom generators

A pseudorandom generator (PRG) is a function that maps a random string (‘seed ’) to a longer ‘random-
looking’ string. The security property of pseudorandomness requires that it be infeasible to distinguish
the output of a PRG from random:

Definition 1 (Pseudorandom generator). For security parameter λ and a polynomial c : N→ N≥1,
an efficiently computable function G : {0, 1}λ → {0, 1}λ+c(λ) is a pseudorandom generator if for all
efficient distinguishers D the following advantage function is negligible, where the probabilities are taken
over the random choices of s and y, and over D’s randomness:

AdvPRG
G,D(λ) =

∣∣∣Pr
[
D(G(s)) = 1 : s←R {0, 1}λ

]
− Pr

[
D(y) = 1 : y ←R {0, 1}λ+c(λ)

]∣∣∣ .
As we discuss in Section 5, in practice PRGs can be obtained from appropriate block ciphers, stream

ciphers, or hash functions.

2.2 Binary and d-ary trees

A tree is a simple, undirected, connected graph without cycles. We particularly consider rooted trees,
i.e., trees with a distinguished root node. The nodes adjacent to the root node are called its children;
each child can be considered, in turn, the root of a subtree. The level L of a node indicates its distance to
the root, where we assign level L = 1 to the latter. Children of the same node are siblings of each other.
We will assume that the children of each node are ordered, i.e., can be identified by a number 1 ≤ i ≤ d,
where d is the number of children. For two siblings with indices i and j, respectively, in case i < j we
say that node i is left of node j and that node j is right of node i. In binary trees we may also refer to
the children as left and right directly. Nodes that have no children are called leaves, all other nodes are
called internal. A tree is d-regular (or d-ary, or binary in case d = 2) if every internal node has exactly
d children.

In this paper we focus on d-ary trees of constant height H, i.e., where all leaves have the same
level L = H. If µd(L) denotes the number of nodes at level L, then for such trees we have µd(1) = 1 and
µd(L) = d · µd(L− 1) = dL−1 for all L > 1. For the total number of nodes νd(H) we hence obtain

νd(H) =

H∑
L=1

µd(L) =

H∑
L=1

dL−1 = (dH − 1)/(d− 1) ,

by the geometric summation formula. As a special case, for binary trees the total number of nodes is
ν2(H) = 2H − 1.

We finally define the notion of co-path of a node. Let v denote an arbitrary node of a tree. Intuitively
speaking, the (right) co-path of v is the list of the right siblings of the nodes on the (unique) path
connecting the root node with v; if for individual nodes on this path there are multiple right siblings,
all of them appear in the co-path. For a formal definition, let L denote the level of v = vL and let
(v1, . . . , vL) denote the path that connects the root (denoted here with v1) with vL. For each 1 ≤ i ≤ L
let V→i be the list of right siblings of node vi, in left-to-right order (some of these lists might be empty,
and particularly V→1 always is). We define the co-path of vL to be the list V→L ‖ . . . ‖ V→1 obtained by
combining these lists into a single one using concatenation.

2.3 Stacks and their operations

A stack is a standard data structure for the storage of objects. Stacks follow the last-in first-out principle:
the last element stored in a stack is the first element to be read back (and removed). The following
procedures can be used to operate on stacks for storing, reading, and deleting elements. By Init(S)
we denote the initialization of a fresh and empty stack S. To add an element x ‘on top of’ stack S,
operation Push(S, x) is used. We write x ← Pop(S) for reading and removing the top element of
stack S. Finally, with x ← Peekk(S) the k-th element of stack S can be read without deleting it;
here, elements are counted from the top, i.e., Peek1(S) reads the top-most element. When using these
notations, operations Init, Push, and Pop are understood to modify their argument S in place, while
Peekk leaves it unchanged.

4



3 Seekable sequential key generators

The main contribution of this paper is a new construction of a seekable sequential key generator (SSKG).
This cryptographic primitive can be seen as a stateful PRG that outputs a sequence of fixed-length
keys—one per invocation. The specific property of seekability ensures that it is possible to jump directly
to any position in the output sequence. At the same time, the security goal of forward security ensures
that keys remain indistinguishable from random even upon corruption of the primitive’s state. We next
recall the syntactical definition and security properties, (mainly) following the notation from [15]. We
defer the exposition of our new scheme to Section 4.

3.1 Functionality and syntax

Generally speaking, a seekable sequential key generator consists of four algorithms: GenSSKG generates
an initial state st0, the update procedure Evolve maps each state sti to its successor state sti+1, GetKey
derives from any state sti a corresponding (symmetric) key Ki, and Seek permits to compute any state sti
directly from initial state st0 and index i. We consider each state associated with a specific period of time,
called epoch, where the switch from epoch to epoch is carried out precisely with the Evolve algorithm.
This setting is illustrated in Figure 1 and formalized in Definition 2.

GetKey GetKey GetKey GetKey

GenSSKG Evolve Evolve Evolve

Seek

st0 st1 sti−1 sti sti+1

K0 K1 Ki Ki+1

i

Fig. 1: Illustration of the interplay of the different SSKG algorithms.

Definition 2 (Syntax of SSKG). Let ` : N→ N be a polynomial. A seekable sequential key generator
with key length ` is a tuple SSKG = {GenSSKG,Evolve,GetKey,Seek} of efficient algorithms as follows:

– GenSSKG. On input of security parameter 1λ and total number N ∈ N of supported epochs, this
probabilistic algorithm outputs an initial state st0.

– Evolve. On input of a state sti, this deterministic algorithm outputs the ‘next’ state sti+1. For conve-
nience, for k ∈ N, by Evolvek we denote the k-fold composition of Evolve, i.e., Evolvek(sti) = sti+k.

– GetKey. On input of state sti, this deterministic algorithm outputs a key Ki ∈ {0, 1}`(λ). For k ∈ N,
we write GetKeyk(sti) for GetKey(Evolvek(sti)).

– Seek. On input of initial state st0 and k ∈ N, this deterministic algorithm returns state stk.

Implicit in Definition 2 is the following natural consistency requirement on the interplay of Evolve
and Seek algorithms:

Definition 3 (Correctness of SSKG). A seekable sequential key generator SSKG is correct if, for all
security parameters λ, all N ∈ N, all st0 ←R GenSSKG(1λ, N), and all k ∈ N we have

0 ≤ k < N =⇒ Evolvek(st0) = Seek(st0, k) .

5



Remark 1 (Epochs outside of supported range). Note that the correctness requirement leaves unspecified
the effect of Evolve and Seek algorithms when invoked in the context of unsupported epoch numbers
k ≥ N . Clearly, if the application demands it, an SSKG can always be implemented such that Evolve,
Seek, and GetKey output an error symbol for such epochs, simply by including an epoch counter in the
state. We abstain from formally requiring such a behavior as our construction in Section 4 in many cases
does guarantee security for a larger number of epochs than requested and there seems to be no reason
to generally disregard systems that offer this extra service.

Remark 2 (Comparison with the definition from [15]). The syntax specified in Definition 2 does slightly
deviate from the one in [15, Definition 3]: firstly, the SSKG setup routine of [15] has a secret ‘seeking key’
as additional output; it is required as auxiliary input for the Seek algorithm. The necessity of this extra
key should be considered an artifact of the number-theory-based construction from [15] (see Section 3.4
for details): the seeking key contains the factorization of the RSA modulus underlying the scheme. As
the proposed Evolve algorithm is one-way only if this factorization is not known, the Seek algorithm is
available exclusively to those who know the seeking key as a ‘trapdoor’. In contrast to that, our syntax for
Seek is not only more natural, we also allow everybody to use the Seek algorithm to fast-forward efficiently
to future epochs. Secondly, in [15] the number of supported epochs does not have to be specified at the
time of SSKG initialization; instead, an infinite number of epochs is supported by every instance. We
had to introduce this restriction for technical reasons that become clear in Section 4; however, we believe
that the requirement of specifying the number of epochs in advance does not constrain the practical
usability of our scheme too much: indeed, regarding our scheme from Section 4, instantiations with, say,
N = 230 supported epochs are perfectly practical.

3.2 Security requirements

As the security property of SSKGs we demand indistinguishability of generated keys from random strings
of the same length. This is modeled in [15] via an experiment involving an adversary A who first gets
adaptive access to a set of (real) keys Ki of her choosing, and is then challenged with a string Kb

n that
is either the real key Kn or a random string of the same length; the adversary has to distinguish these
two cases. This shall model the intuition that keys Kn ‘look random’ even if the adversary is given (all)
other keys Ki, for i 6= n. Below we formalize a stronger security notion that also incorporates forward
security, i.e., additionally lets the adversary corrupt any state that comes after the challenged epoch.

Definition 4 (IND-FS security of SSKG [15]). A seekable sequential key generator SSKG is indis-
tinguishable with forward security against adaptive adversaries (IND-FS) if, for all efficient adversaries
A = (A1,A2) that interact in experiments ExptIND-FS,b from Figure 2 and all N ∈ N bounded by a
polynomial in λ, the following advantage function is negligible, where the probabilities are taken over the
random coins of the experiment (including over A’s randomness):

AdvIND-FS
SSKG,N,A(λ) =

∣∣∣Pr
[
ExptIND-FS,1

SSKG,N,A(1λ) = 1
]
− Pr

[
ExptIND-FS,0

SSKG,N,A(1λ) = 1
]∣∣∣ .

3.3 Application of SSKGs: protecting locally stored log files

Given the definitions from Sections 3.1 and 3.2, the role of SSKGs in the context of secure logging is
now immediate: in every epoch i, corresponding key Ki is used to instantiate a message authentication
code (MAC) that equips all occurring log messages with an authentication tag. In addition, the Evolve
algorithm is regularly invoked to advance from one epoch to the next, burying for all times the previously
used keys. In such a setting, an auxiliary copy of initial state st0 is made available to the log auditor who
can use the Seek algorithm to check the integrity of log entries in any order. Clearly, the goal of forward
security can be achieved only if the secure erasure of old states is an inherent part of the transition
between epochs—for instance using the methods developed in [8].

3.4 Prior SSKG constructions

While general sequential key generators have been considered in a variety of publications [11,16,4,9], the
importance of seekability to obtain practical secure logging was only identified very recently [15]. By
consequence, we are aware of only a single SSKG that precedes our current work.

6



ExptIND-FS,b
SSKG,N,A(1λ):

1 KList← ∅
2 st0 ←R GenSSKG(1λ, N)

3 (state, n,m)←R A
OKey

1 (1λ, N)
4 Abort if not 0 ≤ n < m < N
5 K0

n ←R {0, 1}`(λ)
6 K1

n ← GetKeyn(st0)
7 stm ← Evolvem(st0)

8 b′ ←R A
OKey

2 (state, stm,K
b
n)

9 Abort if n ∈ KList
10 Return b′

If A queries OKey(i):

1 Abort if not 0 ≤ i < N
2 KList← KList ∪ {i}
3 Ki ← GetKeyi(st0)
4 Answer A with Ki

Fig. 2: Security experiments for indistinguishability with forward security. The abort operation lets the experi-
ment return 0, disregarding any output of the adversary.

Intuitively speaking, the SSKG construction from [15] follows the permute-then-hash paradigm. In
more detail, the authors consider so-called shortcut one-way permutations π : D → D that allow the
evaluation of the k-fold composition πk in less than O(k) time. Given such a primitive, state st0 consists
of a random element x0 ∈ D, and keys Ki are computed as Ki = H(πi(x0)), where H is a hash function
modeled as a random oracle. The authors propose a number-theory-based shortcut permutation where
π implements precisely the squaring operation modulo a Blum integer N ; in this case, πi(x) = x2

i

=

x2
i mod ϕ(N) can be evaluated quite efficiently if the factorization of N is known.

4 SSKGs from pseudorandom generators

We propose a novel construction of a seekable sequential key generator that assumes only symmetric
building blocks. Unlike the scheme in [15] which draws security from shortcut one-way permutations in
the random oracle model, our new SSKG assumes just the existence of PRGs, i.e., it relies on a minimal
cryptographic assumption. In a nutshell, similarly to the works in [2] and [5] that achieve forward-secure
signing and forward-secure public key encryption, respectively, we identify time epochs with the nodes
of specially formed trees and let the progression of time correspond to a pre-order visit of these nodes.
We will start with the exposition of our scheme in the case of binary trees, and then extend the results
to the more general case.

4.1 Sequential key generators from binary trees

From Section 2.2 we know that for any fixed H ∈ N≥1 the binary tree of constant height H has exactly
N = ν2(H) = 2H − 1 nodes. In our SSKG we identify time epochs with the nodes of such a tree. More
precisely, given the pre-order depth-first enumeration w0, . . . , wN−1 of the nodes (first visit the root,
then recursively the left subtree, then recursively the right subtree; cf. Figure 3), we let time epoch i and
node wi correspond.

The idea is to assign to each node wi a (secret) seed si ∈ {0, 1}λ from which the corresponding epoch’s
key Ki and the seeds of all subordinate nodes can be deterministically derived via PRG invocations. Here,
exclusively the secret of the root node is assigned at random. Intuitively, the pseudorandomness of the
PRG ensures that all keys and seeds look random to the adversary.

Fig. 3: A binary tree with height H = 4 and
N = 24 − 1 = 15 nodes. The latter are num-
bered according to a pre-order depth-first search,
as partially indicated by the arrow from the root
node w0 to node w6.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

7



We proceed with specifying which information the states associated with the epochs shall record.
Recall that from each state sti, 0 ≤ i < N , two pieces of information have to be derivable: the epoch-
specific key Ki and the successor state sti+1 (and, by induction, also all following states and keys).
Clearly, in our construction, the notions of seed and state do not coincide; for instance, in the tree of
Figure 3 key K9 cannot be computed from just seed s4. However, if state st4 contained (s4, s5, s8), then
for all 4 ≤ i < N the keys Ki could be computed from this state. Inspired by this observation, our SSKG
stores in each state sti a collection of seeds, namely the seeds of the roots of the ‘remaining subtrees’. The
latter set of nodes is precisely what we called in Section 2.2 the co-path of node wi. Intuitively speaking,
this construction is forward-secure as each state stores only the minimal information required to compute
all succeeding states. In particular, as each node precedes all vertices on its co-path (in the sense of a
pre-order visit of the tree), the corresponding key remains secure even if any subsequent epoch’s seed is
leaked to the adversary.

4.2 Our SSKG construction

We present next the algorithms of our SSKG construction. Particularly interesting, we believe, are the
details on how the required pre-order depth-first search is implicitly performed by help of a stack data
structure.

Construction 1 (TreeSSKG) Fix a polynomial ` : N → N and a PRG G : {0, 1}λ → {0, 1}2λ+`(λ). For
all s ∈ {0, 1}λ write G(s) as

G(s) = GL(s)‖GR(s)‖GK(s) where GL(s), GR(s) ∈ {0, 1}λ and GK(s) ∈ {0, 1}`(λ) .

Assuming the notation for stacks from Section 2.3, the algorithms TreeSSKG = {GenSSKG,Evolve,
GetKey,Seek} of our SSKG are defined by Algorithms 1–4 in Figure 4.

Algorithm 1: GenSSKG

Input: 1λ, integer N
Output: initial state st0

1 Init(S)

2 s←R {0, 1}λ
3 h← dlog2(N + 1)e
4 Push(S, (s, h))
5 return S as st0

Algorithm 2: GetKey

Input: state sti as S
Output: key Ki

1 (s, h)← Peek1(S)
2 K ← GK(s)
3 return K as Ki

Algorithm 3: Evolve

Input: state sti as S
Output: next state sti+1

1 (s, h)← Pop(S)
2 if h > 1 then
3 Push(S, (GR(s), h− 1))
4 Push(S, (GL(s), h− 1))

5 return S as sti+1

Algorithm 4: Seek

Input: state st0 as S,
integer k

Output: state stk
1 δ ← k
2 (s, h)← Pop(S)
3 while δ > 0 do
4 h← h− 1

5 if δ < 2h then
6 Push(S, (GR(s), h))
7 s← GL(s)
8 δ ← δ − 1

9 else
10 s← GR(s)

11 δ ← δ − 2h

12 Push(S, (s, h))
13 return S as stk

Fig. 4: Algorithms of TreeSSKG for binary trees. As building blocks we assume a PRG and a stack (cf. Section 2).
For the meaning of symbols GL, GR, GK see Construction 1. Observe that the number of supported epochs is
potentially greater than N due to the rounding operation in line 3 of GenSSKG.

Let us discuss the algorithms of TreeSSKG in greater detail.

GenSSKG. Besides picking a random seed s = s0 for the root node, Algorithm 1 computes the minimum
number h ∈ N such that the binary tree of constant height h consists of at least N nodes (cf. Section 2.2).
Observe that this tree might have more than N nodes, i.e., more epochs are supported than required.
The algorithm stores in state st0 a stack S that contains only a single element: the pair (s, h). Here and
in the following such pairs should be understood as ‘seed s shall generate a subtree of height h’.

8



Evolve. The stack S stored in state sti generally contains two types of information: the top element is
a pair (s, h) associated with the current node wi, and the remaining elements are associated with the
corresponding pairs of the nodes on wi’s co-path. After taking the current entry (s, h) off the stack, in
order to implement the depth-first search idea from Section 4.1, Algorithm 3 distinguishes two cases:
if node wi is an internal node (i.e., h > 1), the update step computes the seeds of its two child nodes
using PRG G, starting with the right seed as it needs to be prepended to the current co-path. The new
seeds GL(s) and GR(s) can be considered roots of subtrees of one level less than wi; they are hence
pushed onto the stack with decreased h-value. In the second case, if the current node wi is a leaf (i.e.,
h = 1), no further action has to be taken: the next required seed is the ‘left-most’ node on wi’s co-path,
which resides on the stack’s top position already.

GetKey. Algorithm 2 is particularly simple as it requires only a single evaluation of PRG G. Observe
that the Peek1 operation leaves its argument unchanged.

Seek. Deriving state stk from the initial state st0 via iteratively evoking k times the Evolve procedure
is equivalent to visiting all nodes of the tree according to a pre-order traversal until reaching node wk.
However, there is an appealing way to obtain seed sk more directly, without passing through all the
intermediate vertices. The idea is to just walk down the path connecting the root node with wk. Taking
this shortcut decreases the seeking cost to only O(logN), as opposed to O(N). This is the intuition
behind the design of our algorithm Seek from Figure 4.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

target

Fig. 5: A visualization of the procedure Seek when computing state st6. As indicated by the arrows, the algorithm
walks down the path from the root node w0 to the target node w6 (blue, thick nodes); simultaneously, it records
the nodes of w6’s co-path, i.e., (w7, w8) (red, dashed nodes).

Recall that Seek is required to output the whole state stk, and not just seed sk. In other words, the
execution of the algorithm needs to comprehend the construction of the co-path of node wk. We provide
details on how Algorithm 4 fulfills this task. Our strategy, illustrated in Figure 5, is to walk down the
path from the root to node wk, recording the right siblings of the visited nodes on a stack. During this
process, with a variable δ we keep track of the remaining number of epochs that needs to be skipped.
This counter is particularly helpful for deciding whether, in the path towards wk, the left or the right
child node have to be taken. Indeed, the number of nodes covered by the left and right subtrees is 2h− 1
each; if δ ≤ 2h − 1 then the left child is the next to consider, but the right child has to be recorded for
the co-path. On the other hand, if δ ≥ 2h, then the left child can be ignored, the co-path doesn’t have to
be extended, and the walk towards wk is continued via the right child. The procedure terminates when
for the number of remaining epochs we have δ = 0, which means that we arrived at target node wk.

Security of tree-based SSKGs. We next formally assess the security of Construction 1. For better legibility,
in the following theorem we restrict attention to the setting N = 2H − 1, i.e., where log(N + 1) is an
integer; the extension to the general case is straightforward. We will also shorten the notation for some
of the concepts from Definitions 2 and 4 (e.g., we denote `(λ) simply by `, etc.).

Theorem 1 (Security of TreeSSKG). Assuming a secure PRG is used, our tree-based SSKG from
Construction 1 provides indistinguishability with forward security (IND-FS). More precisely, for any

9



efficient adversary A against the TreeSSKG scheme there exist efficient distinguishers Di against the
underlying PRG such that

AdvIND-FS
N,A ≤ 2(N − 1)

log(N+1)∑
i=1

AdvPRG
Di

.

Proof. The security argument for our scheme reflects the intuition that every SSKG key Ki, for being
(part of) the output of a PRG invocation, looks like a random string to any efficient adversary as long
as the seed used to compute it remains hidden. In the IND-FS experiment, in addition to state stm,
the adversary gets a challenge Kb

n, which is the real key Kn in case b = 1, or is a random string of
length ` otherwise; here, n and m are adversarially chosen conditioned on n < m. The state stm reveals
seed sm and possibly some subsequent seeds. However, by construction, from these seeds none of the
preceding states can be computed. Thus, corrupting state stm should be of no help to the adversary in
distinguishing keys prior to epoch m. In particular, key Kn can be expected to stay secure. We formalize
this intuition in the following.

We make use of game hops which progressively transform the IND-FS experiment, denoted here by
G0,b, into one for which every adversary has advantage exactly zero. The first hop changes the experiment
in that we let the challenger guess the epoch n corresponding to the challenge key Kb

n and abort the
simulation if the guess is wrong. More precisely, experiment G1,b is like G0,b but, before running A1,
the challenger also chooses a random integer n? such that 0 ≤ n? < N − 1. Then, when A1 discloses
(state, n,m), the challenger checks whether its guess was correct: if it was, i.e., if n? = n, it proceeds as
in G0,b; otherwise, it returns 0 and halts. We obtain

Pr
[
G1,bN,A(1λ) = 1

]
= Pr

[
n? = n ∧ G0,bN,A(1λ) = 1

]
=

1

N − 1
· Pr

[
ExptIND-FS,b

N,A (1λ) = 1
]
,

or, equivalently,

AdvIND-FS
N,A (λ) = (N − 1) ·

∣∣∣Pr
[
G1,1N,A(1λ) = 1

]
− Pr

[
G1,0N,A(1λ) = 1

]∣∣∣ . (1)

Regarding the analysis of game G1,b, observe that key K1
n is not just computed as the output of a

PRG on input a random seed; rather, it is computed by iterating a PRG up to log(N + 1) times, where
only the first input (seed s0) is truly random. We hence proceed via a hybrid argument, by considering
intermediate experiments H0,b,H1,b, . . . ,HL,b, where we set H0,b = G1,b and let L ≤ log(N + 1) denote
the level of challenge node wn in the tree. The idea is to let each transition Hi−1,b → Hi,b replace the
output of the PRG associated with the i-th node on the path from the root node w0 to node wn by a
random value. Then, in HL,b the challenge key Kb

n will be random independently of bit b: in case b = 1
due to the argument just given, and in case b = 0 by the definition of ExptIND-FS,0. In particular, every
adversary A playing in HL,b will have zero advantage.

More precisely, let L be the level of node wn and let (v1, . . . , vL) denote the path from the root
v1 = w0 to node vL = wn. For every i = 1, . . . , L, derive Hi,b from Hi−1,b by replacing the output
of G(sk) by a random string in {0, 1}2λ+`, where k is the epoch number corresponding to node vi.

Observe that, except for H0,b, as we follow the path top-to-bottom, seed sk was replaced by a random
value in the hybrid before, i.e., in Hi−1,b. By consequence, for every A there exists a distinguisher Di
that allows bounding the difference between Hi−1,b and Hi,b as follows:∣∣∣Pr

[
Hi−1,bN,A (1λ) = 1

]
− Pr

[
Hi,bN,A(1λ) = 1

]∣∣∣ ≤ AdvPRG
Di

(λ) . (2)

As already stated, the challenge key Kb
n in hybrid HL,b is uniformly random, independently of bit b. In

other words, HL,0 and HL,1 are the very same experiment, and we have, even for unbounded distinguish-
ers, ∣∣∣Pr

[
HL,1N,A(1λ) = 1

]
− Pr

[
HL,0N,A(1λ) = 1

]∣∣∣ = 0 . (3)

Using an induction argument and the triangle inequality, we can combine (2) and (3) into∣∣∣Pr
[
G1,1N,A(1λ) = 1

]
− Pr

[
G1,0N,A(1λ) = 1

]∣∣∣ ≤ 2

L∑
i=1

AdvPRG
Di

(λ) . (4)

By combining equations (1) and (4) we obtain the bound indicated in the theorem statement. ut

10



4.3 Extending our scheme towards d-ary trees

We show how to extend our binary-tree-based construction towards the general case of d-ary trees, for
arbitrary d ≥ 2. Recall that a d-ary tree of constant height H has νd(H) = (dH − 1)/(d − 1) nodes.
The intuition behind our design is mainly the same as in the binary case: we consider an enumeration
w0, . . . , wN−1 of the tree’s nodes according to a pre-order depth-first search (first visit the root, then,
from left to right, recursively the subtrees) and associate with every node wi a seed si from which epoch’s
key Ki and, where applicable, the seeds of its children are derived using a PRG. It is clear that this PRG
must have a larger expansion than in Section 4.2: every PRG invocation has to yield one (sub)string of
length `(λ) for the key, and d-many (sub)strings of length λ for the subordinate seeds. We construct the
corresponding algorithms as follows.

Construction 2 (TreeSSKG for d-ary trees) Fix a polynomial ` : N → N, an integer d ∈ N≥2, and a
PRG G : {0, 1}λ → {0, 1}dλ+`(λ). For all s ∈ {0, 1}λ write G(s) as

G(s) = G1(s)‖ . . .‖Gd(s)‖GK(s) where ∀j : Gj(s) ∈ {0, 1}λ and GK(s) ∈ {0, 1}`(λ) .

Assuming the notation for stacks from Section 2.3, our SSKG based on d-ary trees TreeSSKGd =
{GenSSKGd,Evolved,GetKey,Seekd} is defined by Algorithm 2 in Figure 4, and Algorithms 5, 6, and 7
in Figure 6.

Algorithm 5: GenSSKGd

Input: 1λ, integer N
Output: initial state st0

1 Init(S)

2 s←R {0, 1}λ
3 h← dlogd(N + 1)e
4 Push(S, (s, h))
5 return S as st0

Algorithm 6: Evolved
Input: state sti as S
Output: next state sti+1

1 (s, h)← Pop(S)
2 if h > 1 then
3 for j = d downto 1 do
4 Push(S, (Gj(s), h− 1))

5 return S as sti+1

Algorithm 7: Seekd
Input: state st0 as S, integer k
Output: state stk

1 δ ← k
2 (s, h)← Pop(S)
3 while δ > 0 do
4 h← h− 1
5 ν ← νd(h)
6 c← b(δ − 1)/νc+ 1
7 for j = d downto c+ 1 do
8 Push(S, (Gj(s), h))

9 s← Gc(s)
10 δ ← δ − (1 + (c− 1)ν)

11 Push(S, (s, h))
12 return S as stk

Fig. 6: Algorithms of TreeSSKGd (for d-ary trees). As building blocks we assume a PRG and a stack (cf. Section 2).
For the meaning of symbol Gj see Construction 2. Observe that the number of supported epochs is potentially
greater than N due to the rounding operation in line 3 of GenSSKGd.

Observe that the proposed GetKey algorithm is identical with the one from the binary case, and that
the only modification in GenSSKGd is the basis to which the logarithm is taken for computing h. More
interesting is the new Evolved algorithm. Here, whenever an internal node needs to be expanded, all d
direct successor seeds are computed; the left-most seed will be associated with the next state (i.e., sti+1),
and its right siblings become part of the new co-path, i.e., are pushed in the correct order onto the stack.
We point out two differences in the Seekd algorithm. Firstly, in line 6, with c we calculate the number
1 ≤ c ≤ d of current node’s child that is on the path from the root to target node wk (consequently,
only the siblings with numbers c+ 1, . . . , d need to be recorded for the co-path). Secondly, in line 10, the
number δ of epochs that still need to be skipped is decreased by (c− 1)ν in one shot, where ν indicates
the number of nodes of the subtree generated by the respectively considered seed s.

11



We give the following security statement for our generalized construction. The proof is essentially
identical with the one for Theorem 1.

Theorem 2 (Security of TreeSSKGd). Assuming a secure PRG is used, our generalized tree-based
SSKG from Construction 2 provides IND-FS security. More precisely, for any efficient adversary A
against the TreeSSKGd scheme there exist efficient distinguishers Di against the underlying PRG such
that

AdvIND-FS
N,A ≤ 2(N − 1)

logd(N+1)∑
i=1

AdvPRG
Di

.

Remark 3 (Degenerate trees). In the above definitions we insisted on fixing d such that d ≥ 2. This choice
guarantees that the time it takes to seek to an arbitrary target node is O(logN). Observe however, that
also for d = 1 our scheme is correct and secure, but falls back to linear seeking time. It is interesting to
observe that this degenerate case corresponds exactly with the hash chain approach of early SKGs (e.g.,
from [11,16,4]).

4.4 An enhanced seeking procedure

As required by Definition 2, our Seek algorithm allows computing any state stk given the initial state st0.
Observe, however, that in many applications this initial state might not be accessible; indeed, forward
security can be attained only if states of expired epochs are securely erased. From a practical perspective
it is hence appealing to generalize the functionality of Seek to allow efficient computation of sti+k from
any state sti, and not just from st0.3 We correspondingly extend the notion of SSKG by introducing a
new algorithm, SuperSeek, which realizes the Evolvek functionality for arbitrary starting points; when
invoked on input st0, the new procedure behaves exactly as Seek.

Definition 5 (SSKG with SuperSeek). A seekable sequential key generator SSKG supports SuperSeek
if it has an auxiliary algorithm as follows:

– SuperSeek. On input of a state sti and k ∈ N, this deterministic algorithm returns state sti+k.

For correctness we require that for all N ∈ N, all st0 ←R GenSSKG(1λ, N), all i, k ∈ N, and sti =
Evolvei(st0) we have

0 ≤ i ≤ i+ k < N =⇒ Evolvek(sti) = SuperSeek(sti, k) .

Assume a TreeSSKG instance is in state sti and an application requests it to seek to position sti+k,
for arbitrary 0 ≤ i ≤ i + k < N . Recall from the discussions in Sections 4.1 and 4.2 that state sti
encodes both the seed si and the co-path of node wi. Recall also that, as a property of the employed
pre-order visit of the tree, for each state stj , j > i, the co-path of node wi contains an ancestor w of wj .
Following these observations, our SuperSeek construction consists of two consecutive phases. For seeking
to state sti+k, in the first phase the algorithm considers all nodes on the co-path of wi until it finds the
ancestor w of wi+k. The second phase is then a descent from that node to node wi+k, similarly to what
we had in the regular Seek algorithms. In both phases care has to be taken that the co-path of target
node wi+k is correctly assembled as part of sti+k. The working principle of our new seeking method is
also illustrated in Figure 7.

We present explicit instructions for implementing SuperSeek in Figure 8, separately for the binary
and d-ary case. In both cases the first while loop identifies the ancestor w of target node wi+k on wi’s
co-path by comparing δ (i.e., the remaining number of epochs to be skipped) with the number of nodes
ν(h) in the subtree where w is the root. The second loop is equivalent to the one from Algorithms 4
and 7.

3 Our reason to require in Definition 2 that st0 be input to the Seek algorithm was to maintain consistency with
prior work [15], where generalized seekability was not possible for technical reasons (cf. Remark 2).

12



0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

start target

Fig. 7: A visualization of the procedure SuperSeek jumping from epoch 3 to 11. As indicated by the arrows, the
algorithm first finds the intersection, here w8, between the co-path of node w3 (red, dashed nodes) and the path
that connects the root with the target node w11 (blue, thick nodes); from there it proceeds downwards until it
reaches target node w11.

Algorithm 8: SuperSeek

Input: state sti as S, integer k
Output: state sti+k

1 δ ← k
2 (s, h)← Pop(S)

3 while δ ≥ 2h − 1 do

4 δ ← δ − (2h − 1)
5 (s, h)← Pop(S)

6 while δ > 0 do
7 h← h− 1

8 if δ < 2h then
9 Push(S, (GR(s), h))

10 s← GL(s)
11 δ ← δ − 1

12 else
13 s← GR(s)

14 δ ← δ − 2h

15 Push(S, (s, h))
16 return S as sti+k

Algorithm 9: SuperSeekd
Input: state sti as S, integer k
Output: state sti+k

1 δ ← k
2 (s, h)← Pop(S)
3 ν ← νd(h)
4 while δ ≥ ν do
5 δ ← δ − ν
6 (s, h)← Pop(S)
7 ν ← νd(h)

8 while δ > 0 do
9 h← h− 1

10 ν ← νd(h)
11 c← b(δ − 1)/νc+ 1
12 for j = d downto c+ 1 do
13 Push(S, (Gj(s), h))

14 s← Gc(s)
15 δ ← δ − (1 + (c− 1)ν)

16 Push(S, (s, h))
17 return S as sti+k

Fig. 8: Algorithm SuperSeek for binary and d-ary trees.

4.5 Evolving beyond the supported number of epochs

We showed that our TreeSSKG scheme (with or without the modifications from Sections 4.3 and 4.4) is
secure and correct. Note, however, that the latter property only holds for up to N epochs—a number
that currently needs to be fixed once and forever when initializing the SSKG. As deployed systems often
run much longer than anticipated, practical implementations might require built-in precautions for the
case that, after all, more than N epochs are required, i.e., that the SSKG state needs to be evolved
beyond the well-defined range.

To achieve a certain level of graceful degradation, we propose, possibly as an amendment to Remark 1,
two ways to deal with the a posteriori increase of the number of required epochs. Firstly, the algorithms
from Figures 4, 6, and 8 could be adapted such that when the bound N is reached they switch to
computing and outputting keys according to a simple hash chain (or, even better, a PRG chain; see
also Section 1). This modification would yield a sound SSKG with an unlimited number of supported
epochs—however with only linear seeking time for the retroactively added epochs. Alternatively, in fact
as a generalization of the first approach, the key KN−1 computed for the last ‘regular’ epoch could
be used as initial seed for an otherwise independent TreeSSKG instance. Note that this would imply a

13



somewhat non-uniform average seeking time, but the latter would nevertheless remain in the logarithmic
domain.

5 Practical aspects

In the preceding sections we left open how PRGs can be instantiated in practice; indeed, the well-
known recommendations and standards related to symmetric key cryptography exclusively consider block
ciphers, stream ciphers, and hash functions. Fortunately, secure PRG instantiations can be boot-strapped
from all three named primitives. For instance, a block cipher operated in counter mode can be seen as a
PRG where the block cipher’s key acts as the PRG’s seed4. Similar counter-based constructions derived
from hash functions or PRFs (e.g., HMAC) are possible.

A specific property of PRGs that are constructed by combining a symmetric primitive with a counter
is particularly advantageous for efficiently implementing our TreeSSKG schemes. Recall that the PRGs
used in Constructions 1 and 2 are effectively evaluated in a blockwise fashion. More precisely, while
the PRGs are formally defined to output strings of length dλ + `(λ), in our TreeSSKG algorithms it is
sufficient to compute only a considerably shorter substring per invocation. This property is perfectly
matched by the ‘iterated PRGs’ proposed above, as the latter allow exactly this kind of evaluation very
efficiently.

Implementational details. We implemented our TreeSSKG scheme both in the setting of binary trees and
of d-ary trees. In particular we have C code for Algorithms 1–9, and we claim that the level of optimization
is sufficient for practical deployment. Our code relies on the OpenSSL library [21] for random number
generation and the required cryptographic primitives. We consider a total of four PRG instantiations,
using the AES128 and AES256 block ciphers and the MD55 and SHA256 hash functions as described.
That is, we have two instantiations at the λ = 128 security level, and two at the λ = 256 level.

We experimentally evaluated the performance of our implementation, using the following setup. We
generated SSKG instances with parameters (d,H) = (2, 20), i.e., instances that supportN = 220−1 ≈ 106

epochs. We iterated through all epochs in linear order, determining both the average and the worst-case
time consumed by the Evolve algorithm. Similarly we measured the average and worst-case time it takes
for the Seek algorithm to recover states stk, ranging over all values k ∈ [0, N −1]. Concerning SuperSeek,
we picked random pairs i, j ∈ [0, N −1], i < j, and measured the time required by the algorithm to jump
from sti to stj . Finally, we performed analogous measurements for GenSSKG and GetKey (here, average
and worst-case coincide). The results of our analysis are summarized in Table 1.

For comparison we also include the corresponding timing values of our competitor, the (factoring-
based) SSKG from [15]6, for security levels roughly equivalent to ours. We point out that the analogue
of GenSSKG from [15] in fact consists of two separate algorithms: one that produces public parameters
and an associated ‘seeking key’, and one that generates the actual initial SSKG state. As any fixed
combination of public parameters and corresponding seeking key can be used for many SSKG instances
without security compromises, for fairness we decided not to count the generation costs of the former
when indicating the GenSSKG performance in Table 1. Instead, we report the results of our timing analysis
here as follows: for the costs of parameters and seeking key generation with 2048 bit and 3072 bit RSA
moduli we measured 400ms and 2300ms, respectively.

It might be instructive to also study the required state sizes for both our TreeSSKG scheme and the
scheme from [15]. In our implementation, for fixed parameter d, the (maximum) state size scales roughly
linearly in both H and the seed length of the used PRG. Concretely, for (d,H) = (2, 20) and 128 bit
keys (e.g., for AES128- and MD5-based PRGs) the state requires 350 bytes, while for 256 bit security

4 Observe that in this construction only very few enciphering operations need to be performed per key. By
consequence, block ciphers with high key agility seem to be the preferable choice over ciphers with expensive
key setup, as the latter cannot be amortized over time.

5 We considered MD5 in our tests because it is fast and ubiquitously available; the well-known attacks against
its collision resistance do no seem to affect the hash function’s strength in the PRG context. Nevertheless,
our choice was made for reasons of comparability and should not be misunderstood as a suggestion to use an
MD5-based PRG in practice.

6 The reference implementation from [15] can be found at http://cgit.freedesktop.org/systemd/systemd/

tree/src/journal/fsprg.c.

14

http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c


a total of 670 bytes of storage are necessary. In the scheme from [15] the space in the state variable is
taken by an RSA modulus N , a value x ∈ Z×N , a 64 bit epoch counter, and a small header. Precisely, for
2048 and 3072 bit RSA moduli this results in 522 and 778 bytes of state, respectively.

AES128 MD5 [15]/2048 bit AES256 SHA256 [15]/3072 bit
[average] [max] [average] [max] [average] [max] [average] [max]

GenSSKG 22µs 22µs 27µs 22µs 22µs 38µs
Evolve 0.2µs 0.5µs 0.2µs 0.4µs 8µs 0.5µs 1µs 0.4µs 0.8µs 13µs
Seek 7µs 9µs 6µs 7µs 4.9ms 14µs 18µs 11µs 15µs 12.6ms
SuperSeek 6µs 9µs 5µs 7µs – 13µs 18µs 8µs 15µs –
GetKey 0.2µs 0.2µs 12µs 0.4µs 0.4µs 13µs

Table 1: Results of efficiency measurements of our TreeSSKG algorithms when instantiated with different PRGs,
and a comparison with the algorithms from [15]. All experiments were performed on an Intel Core i7-3517U CPU
clocked at 1.90GHz. We used OpenSSL version 0.9.8 for the implementation of our TreeSSKG routines, while for
the compilation of the reference code from [15] we used the gcrypt library in version 1.5.0.

Results and discussion. We discuss the results from Table 1 as follows, beginning with those of our
tree-based SSKG (i.e., columns AES128, MD5, AES256, and SHA256). Our first observation is that
the GenSSKG time is independent of the respectively used PRG. This is not surprising as the former
algorithm never invokes the latter, but spends its time with memory allocation and requesting the
random starting seed from OpenSSL’s core routines. The timings for Evolve indicate that, as expected,
128-bit cryptographic primitives are faster than 256-bit primitives, and that for a fixed security level
the hash-function-based constructions are (slightly) preferable. The hypothesis that the time spent by
the individual algorithms is dominated by the internal PRG executions is supported by the observation
that the running time of Evolve (on average) and GetKey coincide, and that the worst-case running
time of Evolve is twice that value; to see this, recall that Evolve executions perform either two internal
PRG invocations or none, and that the average number of invocations is one. We understand that the
SuperSeek timings are generally better than the Seek values as the first while loop in Algorithm 8 does
not comprise a PRG invocation, whereas the second while loop requires less iterations on average than
the corresponding loop in Algorithm 4.

The routines from [15] are clearly outperformed by the ones from our SSKG. Firstly, for the Evolve
algorithm our timing values are about 30 times better than those for [15] (recall that the latter’s state
update involves a modular squaring operation). Similar results show our tree-based GetKey algorithm
to be faster, by a factor between 30 and 60, depending on the considered security level. This might
be surprising at first sight, as the algorithm from [15] consists of just hashing the corresponding state
variable, but presumably the explication for this difference is that [15] operates with considerably larger
state sizes than we do. Finally, the superiority of our tree-based construction in terms of efficiency is
made even more evident by studying the performance of the seek Seek algorithms, where we can report
our routines to be 700–1000 times faster than those from [15], again depending on the security level.

Conclusion

The recently introduced concept of seekable sequential key generator (SSKG) combines the forward-
secure generation of sequences of cryptographic keys with an explicit fast-forward functionality. While
prior constructions of this primitive require specific number-theoretic building blocks, we show that
symmetric tools like block ciphers or hash functions suffice for obtaining secure SSKGs; this leads to
impressive performance improvements in practice, by factors of 30–1000, depending on the considered
algorithms. In addition to the performance gain, our scheme enhances the functionality of SSKGs by
generalizing the notion of seekability, making it more natural and concise, an improvement that we
believe is very relevant for applications. Our scheme enjoys provable security in the standard model.

15



Acknowledgments

The authors thank all anonymous reviewers for their valuable comments. Giorgia Azzurra Marson was
supported by CASED and Bertram Poettering by EPSRC Leadership Fellowship EP/H005455/1.

References

1. R. Accorsi. BBox: A distributed secure log architecture. In J. Camenisch and C. Lambrinoudakis, editors,
EuroPKI, volume 6711 of Lecture Notes in Computer Science, pages 109–124. Springer, 2010.

2. M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In M. J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 431–448, Santa Barbara, CA, USA, Aug. 15–19, 1999. Springer, Berlin, Germany.

3. M. Bellare and B. S. Yee. Forward integrity for secure audit logs. Technical report, 1997.
4. M. Bellare and B. S. Yee. Forward-security in private-key cryptography. In M. Joye, editor, CT-RSA 2003,

volume 2612 of LNCS, pages 1–18, San Francisco, CA, USA, Apr. 13–17, 2003. Springer, Berlin, Germany.
5. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. Journal of Cryptology,

20(3):265–294, July 2007.
6. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels.

In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474, Innsbruck, Austria,
May 6–10, 2001. Springer, Berlin, Germany.

7. C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with tamper-resistant hardware. In D. Gritzalis,
S. D. C. di Vimercati, P. Samarati, and S. K. Katsikas, editors, SEC, volume 250 of IFIP Conference
Proceedings, pages 73–84. Kluwer, 2003.

8. P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In Proceedings of the Sixth
USENIX Security Symposium, San Jose, CA, volume 14, 1996.

9. J. E. Holt. Logcrypt: forward security and public verification for secure audit logs. In R. Buyya, T. Ma,
R. Safavi-Naini, C. Steketee, and W. Susilo, editors, ACSW Frontiers, volume 54 of CRPIT, pages 203–211.
Australian Computer Society, 2006.

10. J. Kelsey, J. Callas, and A. Clemm. Signed Syslog Messages. RFC 5848 (Proposed Standard), May 2010.
11. J. Kelsey and B. Schneier. Cryptographic support for secure logs on untrusted machines. In Proceedings of

the 7th USENIX Security Symposium, 1998.
12. J. Kelsey and B. Schneier. Minimizing bandwidth for remote access to cryptographically protected audit

logs. In Recent Advances in Intrusion Detection, 1999.
13. D. Ma and G. Tsudik. Extended abstract: Forward-secure sequential aggregate authentication. In 2007

IEEE Symposium on Security and Privacy, pages 86–91, Oakland, California, USA, May 20–23, 2007. IEEE
Computer Society Press.

14. D. Ma and G. Tsudik. A new approach to secure logging. Trans. Storage, 5(1):2:1–2:21, Mar. 2009.
15. G. A. Marson and B. Poettering. Practical secure logging: Seekable sequential key generators. In J. Crampton,

S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 111–128, Egham, UK,
Sept. 9–13, 2013. Springer, Berlin, Germany.

16. B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Trans. Inf. Syst. Secur.,
2(2):159–176, 1999.

17. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM, 1999.
18. V. Stathopoulos, P. Kotzanikolaou, and E. Magkos. A framework for secure and verifiable logging in public

communication networks. In J. López, editor, CRITIS, volume 4347 of Lecture Notes in Computer Science,
pages 273–284. Springer, 2006.

19. A. A. Yavuz and P. Ning. BAF: An efficient publicly verifiable secure audit logging scheme for distributed
systems. In ACSAC, pages 219–228. IEEE Computer Society, 2009.

20. A. A. Yavuz, P. Ning, and M. K. Reiter. BAF and FI-BAF: Efficient and publicly verifiable cryptographic
schemes for secure logging in resource-constrained systems. ACM Trans. Inf. Syst. Secur., 15(2):9, 2012.

21. E. Young and T. Hudson. OpenSSL: The Open Source Toolkit for SSL/TLS. http://www.openssl.org.

16

http://www.openssl.org

	Even more practical secure logging:Tree-based Seekable Sequential Key Generators

