
Cryptographic Agents: Towards a Unified Theory of

Computing on Encrypted Data

Shashank Agrawal ∗ Shweta Agrawal † Manoj Prabhakaran ‡

Abstract

We provide a new framework of cryptographic agents that unifies various modern “cryp-
tographic objects” — identity-based encryption, fully-homomorphic encryption, functional
encryption, and various forms of obfuscation – similar to how the Universal Composition
framework unifies various multi-party computation tasks like commitment, coin-tossing
and zero-knowledge proofs. These cryptographic objects can all be cleanly modeled as
“schemata” in our framework.

Highlights of our framework include the following:

• We use a new indistinguishability preserving (IND-PRE) definition of security that in-
terpolates indistinguishability and simulation style definitions, which (often) sidesteps
the known impossibilities for the latter. IND-PRE-security is parameterized by the
choice of the “test” family, such that by choosing different test families, one can
obtain different levels of security for the same primitive (including various standard
definitions in the literature).

• We present a notion of reduction from one schema to another and a powerful
composition theorem with respect to IND-PRE security. We show that obfuscation is
a “complete” schema under this notion, under standard cryptographic assumptions.
We also provide a stricter notion of reduction (∆-reduction) that composes even
when security is only with respect to certain restricted test families of importance.

• Last but not the least, our framework can be used to model abstractions like the
generic group model and the random oracle model, letting one translate a general
class of constructions in these heuristic models to constructions based on standard
model assumptions.

We also illustrate how our framework can be applied to specific primitives like obfus-
cation and functional encryption. We relate our definitions to existing definitions and also
give new constructions and reductions between different primitives.

∗University of Illinois, Urbana-Champaign. Email: sagrawl2@illinois.edu.
†Indian Institute of Technology, Delhi. Email: shweta.a@gmail.com.
‡University of Illinois, Urbana-Champaign. Email: mmp@illinois.edu.

Contents

1 Introduction 3

2 Preliminaries 8

3 Defining Cryptographic Agents 10

4 Reductions and Compositions 12

5 Restricted Test Families: ∆, ∆∗ and ∆det 14

6 Generic Group Schema 16

7 Obfuscation Schema 18

8 Functional Encryption 19

8.1 Functional Encryption without Function Hiding 19

8.2 Function-Hiding Functional Encryption . 21

9 Fully Homomorphic Encryption 21

10 On Bypassing Impossibilities 22

11 Conclusions and Open Problems 23

A Related Work 29

B Composition and Reduction for ∆ family 31

C Obfuscation Schema is Complete 32

C.1 Construction for Non-Interactive Agents . 33

C.2 General Construction for Interactive Agents 34

D Obfuscation 36

D.1 Indistinguishability and Differing Inputs Obfuscation 36

D.2 Relation to existing notions of Obfuscation 37

D.3 Adaptive Differing Inputs Obfuscation . 39

D.4 Impossibility of IND-PRE obfuscation for general functionalities 40

E Functional Encryption 41

1

E.1 Traditional Definition of Functional Encryption 41

E.2 ∆-reduction from Functional Encryption to Obfuscation 42

E.3 Indistinguishability Secure FE vs. Secure Schemes for FE Schema 43

E.4 Constructions for Function Hiding FE . 44

E.4.1 Function Hiding FE for Inner-Product from Generic Group Schema . 44

E.4.2 General Construction from Obfuscation 45

F Fully Homomorphic Encryption 47

G Property Preserving Encryption 47

G.1 Definitions . 47

G.2 PPE as a schema . 48

G.3 Equivalence . 49

2

1 Introduction

Over the last decade or so, thanks to remarkable breakthroughs in cryptographic techniques, a
wave of “cryptographic objects” — identity-based encryption, fully-homomorphic encryption,
functional encryption, and most recently, various forms of obfuscation — have opened up
exciting new possibilities for computing on encrypted data. Initial foundational results on this
front consisted of strong impossibility results. Breakthrough constructions, as they emerged,
often used specialized security definitions which avoided such impossibility results. However,
as these objects and their constructions have become numerous and complex, often building
on each other, the connections among these disparate cryptographic objects — and among
their disparate security definitions — have become increasingly confusing.

A case in point is functional encryption (FE) [23]. FE comes in numerous flavors — public
key or symmetric [23, 3], with or without function hiding [34, 56], public or private index
[19], bounded or unbounded key [31, 73, 86]. Each flavor has several candidate security
definitions — indistinguishability based [28, 23], adaptive simulation based [19], non-adaptive
simulation [42], unbounded simulation [61], fully-adaptive security [6], black-box/non black-
box simulation [53] to name a few. In addition, FE can be constructed from obfuscation
[10] and can be used to construct property preserving encryption [47], each of which have
numerous security definitions of their own [2, 29, 70]. It is unclear how these definitions relate,
particularly as primitives are composed, resulting in a landscape cluttered with similar yet
different definitions, of different yet similar primitives.

The goal of this work is to provide a clean and unifying framework for diverse cryptographic
objects and their various security definitions, equipped with powerful reductions and composi-
tion theorems. In our framework, security is parametrized by a family of “test” functions —
by choosing the appropriate family, we are able to place known security definitions for a given
object on the same canvas, enabling comparative analysis. Our framework is general enough
to model abstractions like the generic group model, letting one translate a general class of
constructions in these heuristic models to constructions based on standard model assumptions.

Why A Framework? A unifying framework like ours has significant potential for affecting
the future course of development of the theory and practice of cryptographic objects. The
most obvious impact is on the definitional aspects – both positive and negative results crucially
hinge on the specifics of the definition. Our framework allows one to systematically explore
different definitions obtained by instantiating each component in the framework differently.
We can not only “rediscover” existing definitions in this way, but also discover new definitions,
both stronger and weaker than the ones in the literature. As an example, we obtain a new
notion of “adaptive differing-inputs obfuscation” that leads to significant simplifications in
constructions using “differing-inputs obfuscation”.

The framework offers a means to identify what is common to a variety of objects, to
compare them against each other by reducing one to another, to build one from the other by
using our composition theorems. In addition, one may more easily identify intermediate objects
of appropriate functionality and security that can be used as part of a larger construction.
Another important contribution of the framework is the ability to model computational
assumptions suitable for these constructions at an appropriate level of abstraction 1.

1cf. in secure multi-party computation, the existence of a semi-honest OT protocol is a more appropriate
assumption that the existence of an enhanced trapdoor one-way permutation

3

Why A New Framework? One might wonder if an existing framework for secure multi-
party computation (MPC) — like the Universal Composition (UC) framework — cannot be
used, or repurposed, to handle cryptographic objects as well. While certain elements of these
frameworks (like the real/ideal paradigm) are indeed relevant beyond MPC, there are several
differences between MPC and cryptographic objects which complicates this approach (which
indeed was the starting point for our framework). Firstly, there is a strict syntactic requirement
on schemes implementing cryptographic objects — namely, that they are non-interactive —
which is absent for MPC protocols; indeed, MPC frameworks typically do not impose any
constraints on the number of rounds, let alone rule out interaction. Secondly, and more
importantly, the security definition in general-purpose MPC frameworks typically follow a
simulation paradigm2. Unfortunately, such a strong security requirement is well-known to be
unrealizable — e.g., the “virtual black-box” definition of obfuscation is unrealizable [29]. To
be relevant, it is very important that a framework for modeling obfuscation and other objects
admits weaker security definitions.

Finally, a simple framework for cryptographic objects need not model various subtleties of
protocol execution in a network that the MPC frameworks model. These considerations lead us
to a bare-bones framework, which can model the basic security requirements of cryptographic
objects (but little else).

Cryptographic Agents Framework. Our unifying framework, called the Cryptographic
Agents framework models one or more (possibly randomized, stateful) objects that interact
with each other, so that a user with access to their codes can only learn what it can learn
from the output of these objects. As a running example, functional encryption schemes could
be considered as consisting of “message agents” and “key agents.”

To formalize the security requirement, we use a real-ideal paradigm, but at the same time
rely on an indistinguishability notion (rather than a simulation-based security notion). We
informally describe the framework below.

B

Test
Ideal
User

O E

Test
Ideal
User

Honest Real User

Figure 1: The ideal world (on the left) and the real world with an honest user.

• Ideal Execution. The ideal world consists of two (adversarially designed) entities —
a User and a Test — who can freely interact with each other. (See the left-hand side
of Figure 1.) User is given access, via handles, to a collection of “agents” (interactive
Turing Machines), maintained by B (a “blackbox”). User and Test are both allowed to

2One exception to this is the “input-indistinguishable computation” framework of Micali, Pass and Rosen
for secure function evaluation of deterministic functions [43]. Unfortunately, this framework heavily relies on
interactivity of protocols (an “implicit input” is defined by a transcript; but when a party interacts with an
object it received, there is no well-defined transcript), and is unsuitable for modeling cryptographic objects.

4

add agents to the collection maintained by B, but the class of agents that they can add
are restricted by a schema.3 The User can feed inputs to these agents, and also allow a
set of them to interact with each other, in a “session.” At the end of this interaction,
the user obtains all the outputs from the session, and also additional handles to the
agents with updated states.

Example: In a schema capturing public-key functional encryption, there are two kinds
of agents – “message agents” and “key agents.” A message agent simply sends out (i.e.,
copies into its communication tape) an inbuilt message, every time it is invoked. A
key agent reads a message from its incoming communication tape, applies an inbuilt
function to it, and copies the result to its output tape. The user can add only message
agents to the collection maintained by B; Test can add key agents as well. Note that
the outputs that the user receives from a session involving a message agent and a key
agent is the output produced by the key agent (the message agent produces no output;
it only communicates its message to the key agent). 4

• Real Execution. The real execution also consists of two entities, the (real-world) user
(or an adversary Adv) and Test. The latter is in fact the same as in the ideal world. But
in the real world, when Test requests adding an agent to the collection of agents, the
user is handed a cryptographically generated object – a “cryptographic agent” – instead
of a handle to this agent. The correctness requirement is that an honest user should be
able to perform all the operations any User can in the ideal world (i.e., add new agents
to the collection, and execute a session of agents, and thereby update their states) using
an “execution” operation applied to the cryptographic agents. In Figure 1, O indicates
the algorithm for encoding, and E indicates a procedure that applies an algorithm for
session executions, as requested by the User. (However, an adversarial user Adv in the
real world may analyze the cryptographic agents in anyway it wants.)

• Security Definition. We define IND-PRE (for indistinguishability preserving) security,
which requires that if a Test is such that a certain piece of information about it (modeled
as an input bit) remains hidden from every user in the ideal world, then that information
should stay hidden from every user that interacts with Test in the real world as well.
Note that we do not require that the view in the real world can be simulated in the
ideal world.

In the real world we require all entities to be computationally bounded. But in the
ideal world, we may consider users that are computationally bounded or unbounded
(possibly with a limit on the number of sessions it can invoke). Another variable in our
definition is the family of tests: by default, we consider Tests that are PPT; but we may
consider Tests from a family Γ, in which case the resulting security definition is termed
Γ-IND-PRE security. These choices allow us to model different levels of security, which
translate to various natural notions of security for specific schemata.

Our Contributions. Our main contribution is a new model of cryptographic computation,
that unifies and extends primitives for computing on encrypted data such as obfuscation,

3Here, a schema is analogous to a functionality in UC security. Thus different primitives like functional
encryption and fully-homomorphic encryption are specified by different schemata.

4For functional encryption, neither inputs to agents nor their states are relevant, as the message and
key agents have all the relevant information built in. However, obfuscation is most directly modeled by
non-interactive agents that take an input, and modeling fully homomorphic encryption requires agents that
maintain state.

5

functional encryption, fully homomorphic encryption, property preserving encryption, and
such others. One can consider our framework analogous to the now-standard approach
in secure multi-party computation (MPC) (e.g., following [76, 49]) that uses a common
paradigm to abstract the security guarantees in a variety of different tasks like commitments,
zero-knowledge proofs, coin-flipping, oblivious-transfer, etc. While we anticipate several
refinements and extensions to the framework presented here, we consider that, thanks to its
simplicity, the current model already provides important insight about the “right” security
notions for the primitives we capture, and opens up a wealth of new questions and connections
for further investigation.

The list of technical results in this paper could be viewed in two parts: contributions to
the foundational aspects of cryptographic objects, and contributions to specific objects of
interest (mainly, obfuscation, functional encryption and assumptions related to (bi/multi-
linear) groups). Some of our specific contributions to the foundational aspects of this area are
as follows.

• We first define a general framework of cryptographic agents that can be instantiated for
different primitives using different schemata. The resulting security definition, called
Γ-IND-PRE-security is parameterized by a test family Γ.

For natural choices of Γ, these definitions tend to be not only stronger than standard
definitions, but also easier to work with in larger constructions (see next). For some
schemata, like obfuscation and functional encryption, choosing Γ to be the family of
all PPT tests can lead to definitions that are known to be impossible to realize. But
more restricted test families can be used to capture existing definitions (with candidate
constructions) exactly: we identify ∆, ∆det and ∆∗ (defined later) as important test
families that do this for obfuscation and/or functional encryption.

∆-IND-PRE-security is of particular interest, because for each of the example primitives
we consider in this paper — obfuscation, functional encryption, fully-homomorphic
encryption and property-preserving encryption — ∆-IND-PRE-security for the corre-
sponding schema implies the standard security definitions (that are not known to be
impossible to realize) in the literature, and yet, is not known to be impossible to realize.

• We present a notion of reduction from one schema to another5, and a composition
theorem. This provides a modular means to build and analyze secure schemes for a
complicated schema based on those for simpler schemata. Further, reduction provides a
way to study, in abstract, relative complexity of different schemata: e.g., general purpose
obfuscation turns out to be a “complete” schema under this notion.

• The notion of reduction mentioned above composes for Γppt-IND-PRE-security where Γppt

is the class of all probabilistic polynomial time (PPT) tests. Unfortunately, obfuscation
(and hence, any other complete schema) can be shown to be unrealizable under this
definition. Hence, we present a more structured notion of reduction, called ∆-reduction,
that composes with respect to ∆-IND-PRE-security as well.

These basic results have several important implications to specific primitives of interest.

5Our reduction uses a simulation-based security requirement. Thus, among other things, it also provides a
means for capturing simulation-based security definition: we say that a scheme Π is a Γ-SIM-secure scheme for
a schema Σ if Π reduces Σ to the null-schema.

6

In this paper, we initiate the study of a few such primitives in our framework (and leave
others to future work).

• Functional Encryption. Our framework provides a unified method to capture all
variants of FE using just a few basic schemata by employing different test families. For
concreteness, below we focus on public-key FE.

– Defining FE With and Without Function-Hiding. Function-hiding (public-key) FE
had proved difficult to define satisfactorily [34, 35, 56]. The IND-PRE framework
provides a way to obtain a natural and general definition of this primitive. We
present a simple schema Σfh-fe to capture the security guarantees of function-hiding
FE; a similar schema Σfe captures FE without function-hiding.

– Hierarchy of Security Requirements. By using different test families, we ob-
tain a hierarchy of security notions for FE (with and without function-hiding),
∆det-IND-PRE ⇐ ∆-IND-PRE ⇐ IND-PRE ⇐ SIM (see Footnote 5). Of these,
∆det-IND-PRE security for FE without function-hiding is equivalent to the standard
notion of security used currently [28, 23]. The strongest one, SIM security, is
impossible for general function families [19, 53, 61].

– Constructions. We present new constructions for ∆-IND-PRE secure FE (both with
and without function hiding) for all polynomial-time computable functions. We also
present an IND-PRE secure FE for the inner product functionality. Two of these
constructions are in the form of reductions (a ∆-reduction to an obfuscation schema,
and a (standard) reduction to a “bilinear generic group” schema, which are described
below). Also, the first two constructions crucially rely on ∆-IND-PRE-security
of obfuscation (i.e., adaptive differing-inputs obfuscation), thereby considerably
simplifying the constructions and the analysis compared to those in recent work
[44, 20] which use (non-adaptive) differing-inputs obfuscation.

• Obfuscation. We study in detail, the various notions of obfuscation in the literature,
and relate them to Γ-IND-PRE-security for various test families Γ. Our strongest
definition of this form, which considers the family of all PPT tests, turns out to be
impossible. Our definition is conceptually “weaker” than the virtual black-box simulation
definition (in that it does not require a simulator), but the impossibility result of Barak et
al. [29] continues to apply to this definition. To circumvent the impossibility, we identify
three test families, ∆, ∆∗ and ∆det, such that ∆det-IND-PRE-security is equivalent to
indistinguishability obfuscation, ∆∗-IND-PRE-security is equivalent to differing inputs
obfuscation, and ∆-IND-PRE-security implies both the above. We state a new definition
for the security of obfuscation – adaptive differing-inputs obfuscation – which is equivalent
∆-IND-PRE-security. Informally, it is the same as differing inputs obfuscation, but an
adversary is allowed to interact with the “sampler” (which samples two circuits one of
which will be obfuscated and presented to the adversary as a challenge), even after it
receives the obfuscation. Such a notion was independently introduced in [27].

• Using the Generic Group in the Standard Model. One can model random oracles
and the generic group model as schemata. An assumption that such a schema has
an IND-PRE-secure scheme is a standard model assumption, and to the best of our
knowledge, not ruled out by the techniques in the literature. This is because, IND-PRE-
security captures only certain indistinguishability guarantees of the generic group model,

7

albeit in a broad manner (by considering arbitrary tests). Indeed, for random oracles,
such an assumption is implied by (for instance) virtual black-box secure obfuscation of
point-functions, a primitive that has plausible candidates in the literature.

The generic group schema (as well as its bilinear version) is a highly versatile resource
used in several constructions, including that of cryptographic objects that can be modeled
as schemata. Such constructions can be considered as reductions to the generic group
schema. Combined with our composition theorem, this creates a recipe for standard
model constructions under a strong, but simple to state, computational assumption.

We give such an example for obtaining a standard model function-hiding public-key FE
scheme for inner-product predicates (for which a satisfactory general security definition
has also been lacking).

• Other Primitives. Our model is extremely flexible, and can easily capture most
cryptographic objects for which an indistinguishability security notion is required. This
includes witness encryption, functional witness encryption, fully homomorphic encryption
(FHE), property-preserving encryption (PPE) etc. We discuss a couple of them – FHE
and PPE – to illustrate this. We can model FHE using (stateful) cryptographic agents.
The resulting security definition, even with the test family ∆det, implies the standard
definition in the literature, with the additional requirement that a ciphertext does not
reveal how it was formed, even given the decryption key. For PPE, we show that an
∆det-IND-PRE secure scheme for the PPE schema is in fact equivalent to a scheme that
satisfies the standard definition of security for PPE.

Related Work. Recently, there has been a tremendous amount of work on objects we model,
including FE and obfuscation. We discuss some of it in Appendix A and also at appropriate
points in the rest of this paper.

2 Preliminaries

To formalize the model of cryptographic agents, we shall use the standard notion of probabilistic
interactive Turing Machines (ITM) with some modifications (see below). To avoid cumbersome
formalism, we keep the description somewhat informal, but it is straightforward to fully
formalize our model. We shall also not attempt to define the model in its most generality, for
the sake of clarity.

In our case an ITM has separate tapes for input, output, incoming communication,
outgoing communication, randomness and work-space.

Definition 1 (Agents and Family of Agents). An agent is an interactive Turing Machine,
with the following modifications:

• There is a special read-only parameter tape, which always consists of a security parameter
κ, and possibly other parameters.

• There is an a priori restriction on the size of all the tapes other than the randomness
tape (including input, communication and work tapes), as a function of the security
parameter.

8

• There is a special blocking state such that if the machine enters such a state, it remains
there if the input tape is empty. Similarly, there are blocking states which let the machine
block if any combination of the communication tape and the input tape is empty.

An agent family is a maximal set of agents with the same program (i.e., state space and
transition functions), but possibly different contents in their parameter tapes. We also allow
an agent family to be the empty set ∅.

We can allow non-uniform agents by allowing an additional advice tape. Our framework
and basic results work in the uniform and non-uniform model equally well.

Note that an agent who enters a blocking state can move out of it if its configuration is
changed by adding a message to its input tape and/or communication tape. However, if the
agent enters a halting state, it will not move out of that state. An agent who never enters
a blocking state is called a non-reactive agent. An agent who never reads or writes from a
communication tape is called a non-interactive agent.

Definition 2 (Session). A session maps a finite ordered set of agents, their configurations
and inputs, to outputs and (updated) configurations of the same agents, as follows. The agents
are initialized with the given inputs on their input tapes, and then executed together until they
are deadlocked.6 The result of applying the session is defined as the collection of outputs and
configurations of the agents when the session terminates (if it terminates; if not, the result is
left undefined).

We shall be restricting ourselves to collections of agents such that sessions involving them
are guaranteed to terminate. Note that we have defined a session to have only an initial set
of inputs, so that the outcome of a session is well-defined (without the need to specify how
further inputs would be chosen).

Next we define an important notion in our framework, namely that of an ideal agent
schema, or simply, a schema. A schema plays the same role as a functionality does in the
Universal Composition framework for secure multi-party computation. That is, it specifies
what is legitimate for a user to do in a system. A schema defines the families of agents that a
“user” and a “test” (or authority) are allowed to create.

Definition 3 (Ideal Agent Schema). A (well-behaved) ideal agent schema Σ = (Pauth,Puser)
(or simply schema) is a pair of agent families, such that there is a polynomial poly such that
for any session of agents belonging to Pauth ∪ Puser (with any inputs and any configurations,
with the same security parameter κ), the session terminates within poly(κ, t) steps, where t is
the number of agents in the session.

Other Notation. If X and Y are a family of binary random variables (one for each value of
κ), we write X ≈ Y if there is a negligible function negl such that |Pr[X = 1]− Pr[Y = 1]| ≤
negl(κ). For two systems M and M ′, we say M uM ′ if the two systems are indistinguishable
to an interactive PPT distinguisher.

6More precisely, the first agent is executed till it enters a blocking or halting state, and then the second and
so forth, in a round-robin fashion, until all the agents remain in blocking or halting states for a full round.
After each execution of an agent, the contents of its outgoing communication tape are interpreted as an ordered
sequence of messages to each of the other agents in the session (some or all of them possibly being empty
messages), and copied over to the respective agents’ incoming communication tapes.

9

3 Defining Cryptographic Agents

In this section we define what it means for a cryptographic agent scheme to securely implement
a given ideal agent schema. Intuitively, the security notion is of indistinguishability preservation:
if two executions using an ideal schema are indistinguishable, we require them to remain
indistinguishable when implemented using a cryptographic agent scheme. While it consists of
several standard elements of security definitions, indistinguishability preservation as defined
here is novel, and potentially of broader interest.

Ideal World. The ideal system for a schema Σ consists of two parties Test and User and
a fixed third party B[Σ] (for “black-box”). All three parties are probabilistic polynomial
time (PPT) ITMs, and have a security parameter κ built-in. We shall explicitly refer to their
random-tapes as r, s and t. Test receives a “secret bit” b as input and User produces an output
bit b′. The interaction between User, Test and B[Σ] can be summarized as follows:

• Uploading agents. Let Σ = (Pauth,Puser) where we associate Ptest := Pauth ∪Puser with
Test and Puser with User. Test and User can, at any point, choose an agent from its
agent family and send it to B[Σ]. More precisely, User can send a string to B[Σ], and
B[Σ] will instantiate an agent Puser, with the given string (along with its own security
parameter) as the contents of the parameter tape, and all other tapes being empty.
Similarly, Test can send a string and a bit indicating whether it is a parameter for Pauth
or Puser, and it is used to instantiate an agent Pauth or Puser, accordingly 7. Whenever
an agent is instantiated, B[Σ] sends a unique handle (a serial number) for that agent to
User; the handle also indicates whether the agent belongs to Pauth or Puser.

• Request for Session Execution. At any point in time, User may request an execution
of a session, by sending an ordered tuple of handles (h1, . . . , ht) (from among all the
handles obtained thus far from B[Σ]) to specify the configurations of the agents in
the session, along with their inputs. B[Σ] reports back the outputs from the session,
and also gives new handles corresponding to the configurations of the agents when the
session terminated.8 If an agent halts in a session, no new handle is given for that agent.

Observe that only User receives any output from B[Σ]; the communication between Test and
B[Σ] is one-way. (See Figure 1.)

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output of User in an
execution of the above system, when Test gets b as input. We write ideal〈Test | Σ | User〉 in
the case when the input to Test is a uniformly random bit. We also define Time〈Test | Σ | User〉
as the maximum number of steps taken by Test (with a random input), B[Σ] and User in
total.

Definition 4. We say that Test is hiding w.r.t. Σ if ∀ PPT party User,

ideal〈Test(0) | Σ | User〉 ≈ ideal〈Test(1) | Σ | User〉.
7In fact, for convenience, we allow Test and User to specify multiple agents in a single message to B[Σ].
8Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it is interpreted as multiple

agents with the same configuration (but possibly different inputs). Also note that after a session, the old
handles for the agents are not invalidated; so a User can access a configuration of an agent any number of
times, by using the same handle.

10

When the schema is understood, we shall refer to the property of being hiding w.r.t. a
schema as simply being ideal-hiding.

Real World. A cryptographic scheme (or simply scheme) consists of a pair of (possibly
stateful and randomized) programs (O, E), where O is an encoding procedure for agents in
Ptest and E is an execution procedure. The real world execution for a scheme (O, E) consists
of Test, a user that we shall generally denote as Adv and the encoder O. (E features as part
of an honest user in the real world execution: see Figure 1.) Test remains the same as in the
ideal world, except that instead of sending an agent to B[Σ], it sends it to the encoder O. In
turn, O encodes this agent and sends the resulting cryptographic agent to Adv.

We define the random variable real〈Test(b) | O | Adv〉 to be the output of Adv in an
execution of the above system, when Test gets b as input; as before, we omit b from the
notation to indicate a random bit. Also, as before, Time〈Test | O | User〉 is the maximum
number of steps taken by Test (with a random input), O and User in total.

Definition 5. We say that Test is hiding w.r.t. O if ∀ PPT party Adv,

real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉.

Note that real〈Test | O | Adv〉 = real〈Test ◦ O | ∅ | Adv〉 where ∅ stands for the null
implementation. Thus, instead of saying Test is hiding w.r.t. O, we shall sometimes say
Test ◦ O is hiding (w.r.t. ∅). Also, when O is understood, we may simply say that Test is
real-hiding.

Syntactic Requirements on (O, E). (O, E) may or may not use a “setup” phase. In
the latter case we call it a setup-free cryptographic agent scheme, and O is required to be a
memory-less program that takes an agent P ∈ Ptest as input and outputs a cryptographic agent
that is sent to Adv. If the scheme has a setup phase, O consists of a triplet of memory-less
programs (Osetup,Oauth,Ouser): in the real world execution, first Osetup is run to generate a
secret-public key pair (MSK,MPK);9 MPK is sent to Adv. Subsequently, when O receives an
agent P ∈ Pauth it will invoke Oauth(P,MSK), and when it receives an agent P ∈ Puser, it will
invoke Ouser(P,MPK), to obtain a cryptographic agent that is then sent to Adv.

E is required to be memoryless as well, except that when it gives a handle to a User, it can
record a string against that handle, and later when User requests a session execution, E can
access the string recorded for each handle in the session. There is a compactness requirement
that the size of this string is a priori bounded (note that the state space of the ideal agents
are also a priori bounded). If there is a setup phase, E can also access MPK each time it is
invoked.

IND-PRE Security. Now we are ready to present the security definition of a cryptographic
agent scheme (O, E) implementing a schema Σ. Below, the honest real-world user, correspond-
ing to an ideal-world user User, is defined as the composite program E ◦ User as shown in
Figure 1.

Definition 6. A cryptographic agent scheme Π = (O, E) is said to be a Γ-IND-PRE-secure
scheme for a schema Σ if the following conditions hold.

• Correctness. ∀ PPT User and ∀ Test ∈ Γ, ideal〈Test | Σ | User〉 ≈ real〈Test | O | E ◦
User〉. If equality holds, (O, E) is said to have perfect correctness.

9For “master” secret and public-keys, following the terminology in some of our examples.

11

B[Σ]

Test Adv

S

(a)

B[Σ∗]

O E

Test
Ideal
User

Honest Real User

(b)

O∗ E∗

O E

Test
Ideal
User

Honest Real User

(c)

Figure 2: (O, E) in (b) is a reduction from schema Σ to Σ∗. The security requirement is that
no adversary Adv in the system (a) can distinguish that execution from an execution of the
system in (b) (with Adv taking the place of honest real user). The correctness requirement is
that the ideal User in (b) behaves the same as the ideal User interacting directly with B[Σ]
(as in Figure 1(a)). (c) shows the composition of the hybrid scheme (O, E)Σ

∗
with a scheme

(O∗, E∗) that IND-PRE-securely implements Σ∗.

• Efficiency. There exists a polynomial poly such that, ∀ PPT User, ∀Test ∈ Γ,

Time〈Test | O | E ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).

• Indistinguishability Preservation. ∀Test ∈ Γ,

Test is hiding w.r.t. Σ⇒ Test is hiding w.r.t. O.

When Γ is the family of all PPT tests – denoted by Γppt, we simply say that Π is an IND-PRE-
secure scheme for Σ.

4 Reductions and Compositions

A fundamental question regarding (secure) computational models is that of reduction: which
tasks can be reduced to which others. In the context of cryptographic agents, we ask which
schemata can be reduced to which other schemata. We shall use a strong simulation-based
notion of reduction. While a simulation-based security notion for general cryptographic agents
or even just obfuscations (i.e., virtual black-box obfuscation) is too strong to exist, it is indeed
possible to meet a simulation-based notion for reductions between schemata. This is analogous
to the situation in Universally Composable security, where sweeping impossibility results exist
for UC secure realizations in the plain model, but there is a rich structure of UC secure
reductions among functionalities.

A hybrid scheme (O, E)Σ
∗

is a cryptographic agent scheme in which O and E have access
to B[Σ∗], as shown in Figure 2 (in the middle), where Σ∗ = (P∗auth,P∗user). If O has a
setup phase, we require that Ouser uploads agents only in P∗user (but Oauth can upload any
agent in P∗auth ∪ P∗user). In general, the honest user would be replaced by an adversarial user
Adv. Note that the output bit of Adv in such a system is given by the random variable
ideal〈Test ◦ O | Σ∗ | Adv〉, where Test ◦ O denotes the combination of Test and O as in
Figure 2.

12

Definition 7 (Reduction). We say that a (hybrid) cryptographic agent scheme Π = (O, E)
reduces Σ to Σ∗ with respect to Γ, if there exists a PPT simulator S such that ∀ PPT User,

1. Correctness: ∀Test ∈ Γppt, ideal〈Test | Σ | User〉 ≈ ideal〈Test ◦ O | Σ∗ | E ◦ User〉.

2. Simulation: ∀Test ∈ Γ, ideal〈Test | Σ | S ◦ User〉 ≈ ideal〈Test ◦ O | Σ∗ | User〉.

If Γ = Γppt, we simply say Π reduces Σ to Σ∗. If there exists a scheme that reduces Σ to Σ∗,
then we say Σ reduces to Σ∗. (Note that correctness is required for all PPT Test, and not just
in Γ.)

Figure 2 illustrates a reduction. It also shows how such a reduction can be composed with
an IND-PRE-secure scheme for Σ∗. Below, we shall use (O′, E ′) = (O ◦ O∗, E∗ ◦ E) to denote
the composed scheme in Figure 2(c).10

Theorem 1 (Composition). For any two schemata, Σ and Σ∗, if (O, E) reduces Σ to Σ∗

and (O∗, E∗) is an IND-PRE secure scheme for Σ∗, then (O◦O∗, E∗ ◦E) is an IND-PRE secure
scheme for Σ.

Proof sketch: Let (O′, E ′) = (O ◦ O∗, E∗ ◦ E). Also, let Test′ = Test ◦ O and User′ = E ◦ User.
To show correctness, note that for any User, we have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)
≈ ideal〈Test′ | Σ∗ | User′〉
= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)
≈ ideal〈Test | Σ | User〉

where (a) follows from the correctness guarantee of IND-PRE security of (O∗, E∗), and (b)
follows from the correctness guarantee of (O, E) being a reduction of Σ to Σ∗. (The other
equalities are by regrouping the components in the system.)

It remains to prove that for all PPT Test, if Test is hiding w.r.t. Σ then Test is hiding w.r.t. O′.
Firstly, we argue that Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗. Suppose Test′ is

not hiding w.r.t. Σ∗. This implies that there is some User such that ideal〈Test′(0) | Σ∗ | User〉
6≈ ideal〈Test′(1) | Σ∗ | User〉. But, by security of the reduction (O, E) of Σ to Σ∗,
ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) | Σ | S◦User〉, for b = 0, 1. Then, ideal〈Test(0) | Σ | S◦
User〉 6≈ ideal〈Test(1) | Σ | S ◦User〉, showing that Test is not hiding w.r.t. Σ. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗

⇒ Test is hiding w.r.t. O′,

where the second implication is due to the fact that (O∗, E∗) is an IND-PRE secure imple-
mentation of Σ∗, and the last implication follows by observing that for any Adv, we have
real〈Test′ | O∗ | Adv〉 = real〈Test | O′ | Adv〉 (by regrouping the components). �

10If (O, E) and (O∗, E∗) have a setup phase, then it is implied that O′auth = Oauth ◦ O∗auth, O′user = Ouser ◦ O∗user;
invoking O′setup invokes both Osetup and O∗setup, and may in addition invoke O∗auth or O∗user.

13

Note that in the above proof, we invoked the security guarantee of (O∗, E∗) only with
respect to tests of the form Test ◦ O. Let Γ ◦ O = {Test ◦ O|Test ∈ Γ}. Then we have the
following generalization.

Theorem 2 (Generalized Composition). For any two schemata, Σ and Σ∗, if (O, E) reduces
Σ to Σ∗ and (O∗, E∗) is a (Γ ◦ O)-IND-PRE secure scheme for Σ∗, then (O ◦ O∗, E∗ ◦ E) is a
Γ-IND-PRE secure scheme for Σ.

Theorem 3 (Transitivity of Reduction). For any three schemata, Σ1,Σ2,Σ3, if Σ1 reduces
to Σ2 and Σ2 reduces to Σ3, then Σ1 reduces to Σ3.

Proof sketch: If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out the reduction of
Σ1 to Σ2 and that of Σ2 to Σ3, respectively, we claim that the scheme Π = (O1 ◦ O2, E2 ◦ E1)
is a reduction of Σ1 to Σ3. The correctness of this reduction follows from the correctness
of the given reductions. Further, if S1 and S2 are the simulators associated with the two
reductions, we can define a simulator S for the composed reduction as S2 ◦ S1. �

5 Restricted Test Families: ∆, ∆∗ and ∆det

In order to capture various notions of security, we define various corresponding families of test
functions. For some schemata of interest, such as obfuscation, there exist no IND-PRE secure
schemes (see Appendix D.4 for details). Restricted test families are also useful to bypass these
impossibilities.

We remark that one could define test families specifically adapted to the existing security
definitions of various primitives, but our goal is to provide general test families that apply
meaningfully to all primitives, and also, would support a composable notion of reduction.
Towards this we propose the following sub-class of PPT tests, called ∆. Intuitively ∆ is a set
of tests that reveal everything about the agents it sends to the user except for one bit b. This
exactly captures indistinguishability style definitions such as indistinguishability obfuscation,
differing inputs obfuscation, indistinguishability style FE and such others.

We formalize this intuition as follows: for Test ∈ ∆, each time Test sends an agent to
B[Σ], it picks two agents (P0, P1). Both the agents are sent to User, and Pb is sent to B[Σ]
(where b is the secret bit input to Test). Except for selecting the agent to be sent to B[Σ],
Test is oblivious to the bit b. It will be convenient to represent Test(b) (for b ∈ {0, 1}) as
D ◦ c ◦ s(b), where D is a PPT party which communicates with User, and outputs pairs of the
form (P0, P1) to c; c sends both the agents to User, and also forwards them to s; s(b) forwards
Pb to B[Σ] (and sends nothing to User).

As we shall see, for both obfuscation and functional encryption, ∆-IND-PRE-security is
indeed stronger than all the standard indistinguishability based security definitions in the
literature.

But a drawback of restricting to a strict subset of all PPT tests is that the composition
theorems (Theorem 1 and Theorem 3) do not hold any more. This is because, these composition
theorems crucially relied on being able to define Test′ = Test ◦ O as a member of the test
family, where O was defined by the reduction (see Theorem 2). Nevertheless, as we shall see,
analogous composition theorems do exist for ∆, if we enhance the definition of a reduction.

14

B

O

s

c

D

Adv

(a)

B

s

H

c

D

Adv

(b)

B

s

H

c

D

K

Adv

(c)

B

s

c

H

c

D

Adv

(d)

Figure 3: Illustration of ∆ and the extra requirements on ∆-reduction. (a) illustrates the
structure of a test in ∆; the double-arrows indicate messages consisting of a pair of agents.
The first condition on H is that (a) and (b) are indistinguishable to Adv: i.e., H can mimic
the message from O without knowing the input bit to s. The second condition is that (c) and
(d) are indistinguishable: i.e., K should be able to simulate the pairs of agents produced by H,
based only on the input to H (copied by c to Adv) and the messages from H to Adv.

At a high-level, we shall require O to have some natural additional properties that would let
us convert Test ◦ O back to a test in ∆, if Test itself belongs to ∆.

Combining Machines: Some Notation. Before defining ∆-reduction and proving the
related composition theorems, it will be convenient to introduce some additional notation.
Note that the machines c and s above, as well as the program O, have three communication
ports (in addition to the secret bit that s receives): in terms of Figure 3, there is an input
port below, an output port above and another output port on the right, to communicate
with User. (D is also similar, except that it has no input port below, and on the right, it can
interact with User by sending and receiving messages.) For such machines, we use M1 ◦M2

to denote connecting the output port above M1 to the input port of M2. The message from
M1 ◦M2 to User is defined to consist of the pair of messages from M1 and M2 (formatted into
a single message).

We shall also consider adding machines to the right of such a machine. Specifically, we
use M / K to denote modifying M using a machine K that takes as input the messages
output by M to User (i.e., to its right), and to each such message may append an additional
message of its own. Recall that for two systems M and M ′, we say M u M ′ if the two
systems are indistinguishable to an interactive PPT distinguisher. Using this notation, we
define ∆-reduction.

Definition 8 (∆-Reduction). We say that a (hybrid) obfuscated agent scheme Π = (O, E)
∆-reduces Σ to Σ∗ if

1. Π reduces Σ to Σ∗ with respect to ∆ (as in Definition 7), and

2. there exists PPT H and K such that

(a) for all D such that D ◦ c ◦ s is hiding w.r.t. Σ, D ◦ c ◦ s(b) ◦ O u D ◦ c ◦H ◦ s(b), for
b ∈ {0, 1};

(b) c ◦ H ◦ c u c ◦ H / K.

If there exists a scheme that ∆-reduces Σ to Σ∗, then we say Σ ∆-reduces to Σ∗.

15

Informally, condition (a) allows us to move O “below” s(b): note that H will need to
send any messages O used to send to User, without knowing b. Condition (b) requires that
sending a copy of the pairs of agents output by H (by adding c “above” H) is “safe”: it can be
simulated by K, which only sees the pair of agents that are given as input to H. ∆-reduction
allows us to extend the composition theorem to ∆-IND-PRE security. We prove the following
theorems in Appendix B.

Theorem 4 (∆-Composition). For any two schemata, Σ and Σ∗, if (O, E) ∆-reduces Σ to
Σ∗ and (O∗, E∗) is a ∆-IND-PRE secure implementation of Σ∗, then (O ◦ O∗, E∗ ◦ E) is a
∆-IND-PRE secure implementation of Σ.

Theorem 5 (Transitivity of ∆-Reduction). For any three schemata, Σ1, Σ2, Σ3, if Σ1

∆-reduces to Σ2 and Σ2 ∆-reduces to Σ3, then Σ1 ∆-reduces to Σ3.

Other Restricted Test Families. We define two more restricted test families, ∆∗ and
∆det, which are of great interest for the obfuscation and functional encryption schemata. Both
of these are subsets of ∆.

The family ∆det simply consists of all deterministic tests in ∆. Equivalently, ∆det is the
class of all tests of the form D ◦ c ◦ s, where D is a deterministic polynomial time party which
communicates with User, and outputs pairs of the form (P0, P1) to c.

The family ∆∗ consists of all tests in ∆ which do not read any messages from User.
Equivalently, ∆∗ is the class of all tests of the form D◦c◦s, where D is a PPT party which may
send messages to User but does not accept any messages from User, and outputs pairs of the
form (P0, P1) to c. As described in Appendix B, the composition theorem for ∆, Theorem 4,
extends to ∆∗ as well.

6 Generic Group Schema

Our framework provides a method to convert a certain class of constructions — i.e., secure
schemes for primitives that can be modeled as schemata — that are proven secure in heuristic
models like the random oracle model [54] or the (bilinear) generic group model [16, 40], into
secure constructions in the standard model.

To be concrete, we consider the case of the generic group model. There are two important
observations we make:

• Proving that a cryptographic scheme for a given schema Σ is secure in the generic group
model typically amounts to a reduction from Σ to a “generic group schema” Σgg.

• The assumption that there is an IND-PRE-secure scheme Πgg for Σgg is a standard-model
assumption (that does not appear to be ruled out by known results or techniques).

Combined using the composition theorem (Theorem 1), these two observations yield a standard
model construction for an IND-PRE-secure scheme for Σ.

Above, the generic group schema Σgg is defined in a natural way: the agents (all in Puser,
with Pauth = ∅) are parametrized by elements of a large (say cyclic) group, and interact with
each other to carry out group operations; the only output the agents produce for a user is the
result of checking equality with another agent.

16

We formally state the assumption mentioned above:

Assumption 1 (Γ-Generic Group Agent Assumption). There exists a Γ-IND-PRE-secure
scheme for the generic group schema Σgg.

Similarly, we put forward the Γ-Bilinear Generic Group Agent Assumption, where Σgg is
replaced by Σbgg which has three groups (two source groups and a target group), and allows
the bilinear pairing operation as well.

The most useful form of these assumptions (required by the composition theorem when
used with the standard reduction) is when Γ is the set of all PPT tests. However, weaker
forms of this assumption (like ∆-GGA assumption, or ∆∗-GGA assumption) are also useful,
if a given construction could be viewed as a stronger form of reduction (like ∆-reduction).

While this assumption may appear too strong at first sight – given the impossibility results
surrounding the generic group model – we argue that it is plausible. Firstly, observe that
primitives that can be captured as schemata are somewhat restricted: primitives like zero
knowledge that involve simulation based security, CCA secure encryption or non-committing
encryption and such others do not have an interpretation as a secure schema. Secondly,
IND-PRE security is weaker than simulation based security, and its achievability is not easily
ruled out (see discussion in Section 10). Also we note that such an assumption already exists in
the context of another popular idealized model: the random oracle model (ROM). Specifically,
consider a natural definition of the random oracle schema, Σro, in which the agents encode
elements in a large set and interact with each other to carry out equality checks. Then, a
∆det-IND-PRE-secure scheme for Σro is equivalent to a point obfuscation scheme, which hides
everything about the input except the output. The assumption that such a scheme exists is
widely considered plausible, and has been the subject of prior research [48, 64, 1, 58]. This
fits into a broader theme of research that attempts to capture several features of the random
oracle using standard model assumptions (e.g., [75, 52]). The GGA assumption above can
be seen as a similar approach to the generic group model, that captures only some of the
security guarantees of the generic group model so that it becomes a plausible assumption in
the standard model, yet is general enough to be of use in a broad class of applications.

One may wonder if we could use an even stronger assumption, by replacing the (bilinear)
generic group schema Σgg or Σbgg by a multi-linear generic group schema Σmgg, which permits
black box computation of multilinear map operations [32, 7]. Interestingly, this assumption is
provably false if we consider Γ to be Γppt, since there exists a reduction of obfuscation schema
Σobf to Σmgg [79, 18], and we have seen that there is no IND-PRE-secure scheme for Σobf.
On the other hand, for Γ being ∆ or ∆∗, say, it remains a plausible assumption. Indeed, as
mentioned earlier, Pass et al. introduced a computational assumption on multi-linear maps
– called “semantic security” – and showed that the security of candidate constructions for
indistinguishability obfuscation (aftersome modifications) can be based on semantically secure
multi-linear groups [4]. We note that their assumption can be stated similar to Assumption 1,
but using a multi-linear map schema and an appropriate test-family.

Falsifiability. Note that the above assumption as stated is not necessarily falsifiable, since
there is no easy way to check that a given PPT test is hiding. However, it becomes falsifiable
if instead of IND-PRE security, we used a modified notion of security IND-PRE′, which requires
that every test which is efficiently provably ideal-hiding is real-hiding. We note that IND-PRE′

security suffices for all practical purposes as a security guarantee, and also suffices for the
composition theorem. With this notion, to falsify the assumption, the adversary can (and

17

must) provide a proof that a test is ideal-hiding and also exhibit a real world adversary who
breaks its hiding when using the scheme.

7 Obfuscation Schema

In this section we define and study the obfuscation schema Σobf. In the obfuscation schema,
agents are deterministic, non-interactive and non-reactive: such an agent behaves as a simple
Turing machine, that reads an input, produces an output and halts.

Definition. Below, we formally define the obfuscation schema. If F is a family of determin-

istic, non-interactive and non-reactive agents, we define

Σobf(F) := (∅,F).

That is, in the ideal execution User obtains handles for computing F . We shall consider
setup-free, IND-PRE secure implementations (O, E) of Σobf(F).

A special case of Σobf(F) corresponds to the case when F is the class of all functions that
can be computed within a certain amount of time. More precisely, we can define the agent
family Us (for universal computation) to consist of agents of the following form: the parameter
tape, which is at most s(κ) bits long is taken to contain (in addition to κ) the description
of an arbitrary binary circuit C; on input x, Us will compute and output C(x) (padding or
truncating x as necessary). We define the “general” obfuscation schema

Σobf := (∅,Pobf
user) := Σobf(Us),

for a given polynomial s. Here we have omitted s from the notation Σobf and Pobf
user for

simplicity, but it is to be understood that whenever we refer to Σobf some polynomial s is
implied.

Completeness of Obfuscation. We show that Σobf is a complete schema with respect to

schematic reduction (Definition 7). That is, every schema (including possibly randomized,
interactive, and stateful agents) can be reduced to Σobf. We stress that this does not yield an
IND-PRE-secure scheme for every schema (using composition), since there does not exist an
IND-PRE-secure scheme for Σobf, as described in Appendix D.4. However, if there is, say, a
hardware-based IND-PRE secure implementation of Σobf, then this implementation can be
used in a modular way to build an IND-PRE secure schema for any general functionality.

The reduction uses only standard cryptographic primitives: CCA secure public-key
encryption and digital signatures. We present the full construction and proof in [55].

Relation to existing notions of Obfuscation. By using the test-families ∆det and ∆∗

in our framework, we can recover the notions of indistinguishability obfuscation and differing
inputs obfuscation [29, 30] exactly. We prove the following in Appendix D.2.

Lemma 1. A set-up free ∆det-IND-PRE-secure scheme for Σobf (with perfect correctness)
exists if and only if there exists an indistinguishability obfuscator.

Lemma 2. A set-up free ∆∗-IND-PRE-secure scheme for Σobf (with perfect correctness) exists
if and only if there exists a differing-inputs obfuscator.

18

A ∆-IND-PRE secure scheme for Σobf is a stronger notion than the above two notions
of obfuscations (because ∆ is a superset of ∆det as well as ∆∗). One can give a definition
of obfuscation in the traditional style, which exactly corresponds to this stronger notion.
In Appendix D.3 we do exactly this, and term this adaptive differing inputs obfuscation.
Independently, in [87] an equivalent definition appeared under the name of strong differing
inputs obfuscation. Also, we note that we can model Virtual Grey-Box Obfuscation [69] in our
framework, using an appropriate test-family and a statistical notion of hiding in Definition 4.
This relies on an equivalence proven in [70] who give an indistinguishability based security
definition for VGB security.

8 Functional Encryption

In this section, we present a schema Σfe for Functional Encryption. Although all variants
of FE can 11 be captured as schemata secure against different families of test programs,
we focus on adaptive secure, indistinguishability-based, public-key FE (with and without
function-hiding). In Section 8.1 we introduce the schema Σfe for FE without function-hiding,
and in Section 8.2 we introduce the schema Σfh-fe for function-hiding FE.

8.1 Functional Encryption without Function Hiding

Public-key FE without function-hiding is the most well-studied variant of FE. Definition. For

a circuit family C = {Cκ} and a message space X = {Xκ}, we define the schema Σfe =
(Pfe

auth,Pfe
user) as follows:

• Pfe
user: An agent Px ∈ Pfe

user simply sends x to the first agent in the session, where x ∈ X
is a parameter of the agent, and halts. We will often refer to such an agent as a message
agent.

• Pfe
auth: An agent PC ∈ Pfe

auth, when invoked with input 0, outputs C (where C ∈ C is a
parameter of the agent) and halts. If invoked with input 1, it reads a message x̃ from
its incoming communication tape, writes C(x̃) on its output tape and halts. We will
often refer to such an agent as a function agent.

Reducing Functional Encryption to Obfuscation. In a sequence of recent results
[10, 44, 87, 20, 33], it was shown how to obtain various flavors of FE from various flavors of
obfuscation. We investigate this connection in terms of schematic reducibility: can Σfe be
reduced to Σobf? For this reduction to translate to an IND-PRE-secure scheme for Σfe, we
will need an IND-PRE-secure scheme for Σobf, and a composition theorem.

Our main result in this section is a ∆-reduction of Σfe to Σobf. Then, combined with a
∆-IND-PRE secure implementation of Σobf, we obtain a ∆-IND-PRE secure implementation
of Σfe, thanks to Theorem 4. 12

11Simulation-based definitions can be captured in terms of reduction to the null schema.
12Given a ∆∗-IND-PRE secure implementation of Σobf, we could obtain a ∆∗-IND-PRE secure implementation

of Σfe using the same reduction. This follows from the fact that the composition theorem for ∆, Theorem 4,
extends to ∆∗ as well.

19

Before explaining our reduction, we compare it with the results in [10, 44, 20]. At a
high-level, these works could be seen as giving “(Γfe,Γobf)-reductions” from Σfe to Σobf for
some pair of test families Γfe and Γobf, such that when it is composed with a Γobf-IND-PRE-
secure scheme for Σobf one gets a Γfe-IND-PRE-secure scheme for Σfe. For example, in [10],
Γobf = ∆det (corresponding to indistinguishability obfuscation); there Γfe is a test-family that
captures selective-secure functional encryption. We do not define such (Γfe,Γobf)-reductions
formally in this work, as they are specific to the test-families used in [10, 44, 20]. Instead, we
propose ∆-IND-PRE-security as a natural security notion for both obfuscation and functional
encryption schemata, and provide a simpler ∆-reduction from Σfe to Σobf.

Our Construction. We shall use a simple and natural functional encryption scheme: the
key for a function f is simply a description of f with a signature on it; a ciphertext of a
message m is an obfuscation of a program which when given as input a signed description of
a function f , returns f(m) if the signature verifies (and ⊥ otherwise). Essentially the same
construction was used in [20] as well, but they rely on “functional signatures” in which it
is possible to derive keys for signing only messages satisfying an arbitrary relation. In our
construction, we need only a standard digital signature scheme.

Below we describe our construction more formally, as a reduction from Σfe to Σobf and
prove that it is in fact a ∆-reduction. Let Σfe = (Pfe

auth,Pfe
user) and Σobf = (∅,Pobf

user). We shall
only describe O = (Osetup,Oauth,Ouser); E is naturally defined, and correctness is verified easily.

• Osetup picks a pair of signing and verification keys (SK,VK) for the signature scheme as
(MSK,MPK).

• Oauth, when given a function agent Pf ∈ Pfe
auth, outputs (f, σ) to be sent to E , where f is

the parameter of Pf and σ is a signature on it.

• Ouser, when given an agent Pm ∈ Pfe
user as input, uploads an agent Pm,MPK ∈ Pobf

user to
B[Σobf], which behaves as follows: on input (f, σ) Pm,MPK verifies that σ is a valid
signature on f with respect to the signature verification key MPK; if so, it outputs f(m),
and else ⊥.

In Appendix E.2 we show that this is indeed a ∆ reduction from Σfe to Σobf.

Relation with known definitions. We examine the relation between IND-PRE-secure
Functional Encryption with standard notions of security, such as indistinguishability based
security. Firstly, we show that ∆det-IND-PRE-secure is equivalent to indistinguishability secure
FE.

Lemma 3. ∃ a ∆det-IND-PRE-secure scheme for Σfe iff ∃ an indistinguishability secure FE
scheme.

Note that an IND-PRE security implies ∆det-IND-PRE security (for any schema). On the
other hand, we show a strict separation between IND-PRE and ∆det-IND-PRE security for FE.

Lemma 4. ∃ a ∆det-IND-PRE secure scheme for Σfe which is not an IND-PRE secure scheme
for Σfe.

We prove these results in Appendix E.3.

20

8.2 Function-Hiding Functional Encryption

Now we turn our attention to function-hiding FE (with public-keys). This a significantly more
challenging problem, both in terms of construction and even in terms of definition [34, 35, 56].
The difficulty in definition stems from the public-key nature of the encryption which allows the
adversary to evaluate the function encoded in a key on arbitrary inputs of its choice: hence a
security definition cannot insist on indistinguishability between two arbitrary functions. In
prior work, this is often handled by restricting the security definition to involve functions that
are chosen from a restricted class of distributions, such that the adversary’s queries cannot
reveal anything about the functions so chosen. The definition arising from our framework
naturally generalizes this, as the security requirement applies to all hiding tests and thereby
removes the need of specifying ad hoc restrictions. We only need to specify a schema for
function-hiding FE, and the rest of the security definition follows from the framework.

The definition of the schema corresponding to function-hiding FE, Σfh-fe = (Pfh-fe
auth ,Pfh-fe

user),
is identical to that of Σfe, except that a function agent PC ∈ Pfh-fe

auth does not take any input,
but always reads an input x from its communication tape and outputs C(x). That is, the
function agents do not reveal the function now.

Constructions. We present two constructions for function-hiding FE – an IND-PRE-secure
scheme for the class of inner-product predicates, and a ∆-IND-PRE-secure scheme for all
function families.

• The first construction is in fact an information-theoretic reduction of the schema Σfh-fe(IP)

(where IP denotes the class of inner-product predicates) to the schema Σbgg. Thus under
the assumption that there is an IND-PRE secure scheme for Σbgg, we obtain a scheme
for Σfh-fe, using Theorem 1. This construction is essentially the same as a construction
in the recent work of [56], which was presented in the generic group model. Intuitively,
the simulation based proof in [56] may be interpreted as a simulation based reduction
from Σfh-fe(IP) to Σgg satisfying Definition 7.

• The second construction is for general function-hiding FE: a ∆-IND-PRE-secure scheme
for Σfh-fe, based on the assumption that a ∆-secure scheme for Σobf exists. We mention
that this construction is not a ∆-reduction. It relies on applying a signature to an
obfuscation, and hence our framework cannot be used to model this as a black-box
reduction (indeed, we cannot model the unforgeability requirement of signatures in our
framework).

Further details of these constructions and their proofs are given in Appendix E.4.

9 Fully Homomorphic Encryption

In this section, we present a cryptographic agent schema Σfhe for Fully Homomorphic
Encryption (FHE). This schema consists of reactive agents (i.e., agents which maintain state
across invocations). For a message space X = {X}κ and a circuit family F = {F}κ, we define
the schema Pfhe = (Pfhe

test ,Pfhe
user) as follows:

• An agent PMsg ∈ Pfhe
user is specified as follows: Its parameter tape consists of an initial

value x. When invoked with an input C on its input tape, it reads a set of messages

21

x2, x3, . . . , xt from its communication tapes. Then it computes C(x1, .., xt) where x1 is
its own value (either read from the work-tape, or if the work-tape is empty, from its
parameter tape). Then it updates its work-tape with this value. When invoked without
an input, it sends its message to the first program in the session.

• An agent PDec ∈ Pfhe
auth is defined as follows: when executed with an agent PMsg it reads

from its communication tape a single message from PMsg and outputs it.13

In Appendix F we show that a semantically secure FHE scheme Sfhe = (Setup,Encrypt,
Decrypt,Eval) can be naturally constructed from a ∆det-IND-PRE secure scheme for Σfhe.

Other Examples. Several examples that we have not discussed, such as witness encryption
and other flavors of FE, can also be naturally modeled as schemata. We present one more
example — namely, property preserving encryption — in Appendix G, and leave the others
to future work on these objects.

10 On Bypassing Impossibilities

An important aspect of our framework is that it provides a clean mechanism to tune the level
of security for each primitive to a “sweet spot.” The goal of such a definition is that it should
imply prevalent achievable definitions while bypassing known impossibilities. The tuning is
done by defining the family of tests, Γ with respect to which IND-PRE security is required.
Below we discuss a few schemata and the definitions we recommend for them, based on what
is known to be impossible.

Obfuscation. As we show in Section 7, an IND-PRE-secure scheme for Σobf cannot exist.
The impossibility proof relies on the fact that the test can upload an agent with (long) secrets
in them. However, this argument stops applying when we restrict ourselves to tests in ∆: a
test in ∆ has the structure D ◦ c ◦ s and c will reveal the agent to User. Note that then there
could be at most one bit of uncertainty as to which agent was uploaded.

We point out that ∆-IND-PRE-security is much stronger than the prevalent notions of
indistinguishability obfuscation and differing inputs obfuscation, introduced by Barak et al.
[29]. Indeed, to the best of our knowledge, it would be the strongest definition of obfuscation
known that can plausibly exist for all functions. We also observe that ∆-IND-PRE-secure
obfuscation 14 is easier to use in constructions than differing-inputs obfuscation, as exemplified
by our constructions in Appendix E.2 and Appendix E.4.2.

Functional Encryption. Public-key function-hiding FE, as modeled by Σfh-fe, is a stronger
primitive than obfuscation (for the same class of functions), as the latter can be easily reduced
to the former. This means that there is no IND-PRE-secure scheme for Σfh-fe for general
functions. We again consider ∆-IND-PRE security as a sweet-spot for defining function-hiding
functional encryption. Indeed, prior to this definition, arguably there was no satisfactory
definition for this primitive. Standard indistinguishability based definitional approaches
(which typically specify an explicit test that is ideal-hiding) run into the problem that if

13Note that there is no parameter to a Pauth agent as there is only one of its kind. However, we can allow a
single schema to capture multiple FHE schemes with independent keys, in which case an index for the key
would be the parameter for Pauth agents.

14or equivalently, adaptive differing-inputs obfuscation

22

the user is allowed to evaluate a given function on any inputs of its choice, there is no one
natural ideal-hiding test. Prior works have proposed different approaches to this problem:
by restricting to only a specific test [34, 35], or using a relaxed simulation-based definition
[57, 15]. ∆-IND-PRE security implies the definitions of Boneh et al. [34, 35], but is in general
incomparable with the simulation-based definitions in [57, 15]. These latter definitions can be
seen as using a test in the ideal world that allows the adversary to learn more information
than in the real world. Our definition does not suffer from such information leakage.

For non-function-hiding FE (captured by the schema Σfe) too, there are many known
impossibility results, when simulation-based security definitions are used [19, 53, 61]. At a
high-level, these impossibilities followed a “compression” argument – the decryption of the
challenge CT with the queried keys comprise a pseudorandom string R, but the adversary’s
key queries and challenge message are sequenced in such a way that to simulate its view,
the simulator must somehow compress R significantly. These arguments do not apply to
IND-PRE-security simply for the reason that there is no simulator implied by it. We do not
have any candidate constructions for IND-PRE-secure scheme for Σfe, for general functions,
but we leave open the possibility that it exists. We do however, provide a construction for a
∆-IND-PRE-secure scheme for Σfe, assuming one for Σobf.

Generic Group and Random Oracle. It is well known that a proof of security in the
generic group or the random oracle model provides only a heuristic security guarantee. Several
works have shown that these oracles are “uninstantiable,” and further there are uninstantiable
primitives that can be implemented in the models with such oracles [62, 67, 66, 14, 63]. These
results do not contradict Assumption 1, however, because the primitives in question, like
non-commiting encryptions, zero-knowledge proofs and even signature schemes, do not fit
into our framework of schemata. In other words, despite its generality, schemata can be used
to model only certain kind of primitives, which seem insufficient to imply such separations
between the generic group model and the standard model. As such, we propose Assumption 1,
with Γ = Γppt, the family of all PPT tests, as an assumption worthy of investigation. However,
the weaker assumption, with Γ = ∆ suffices for our construction in Appendix E.4.1, if we
settle for ∆-IND-PRE security for the resulting scheme.

11 Conclusions and Open Problems

In this work, we provided a general unifying framework to model various cryptographic
primitives and their security notions, along with powerful reduction and composition theorems.
Our framework easily captures seemingly disparate objects such as obfuscation, functional
encryption, fully homomorphic encryption, property preserving encryption as well as idealized
models such as the generic group model and the random oracle model.

Given that various cryptographic primitives can all be treated as objects of the same kind
(schema), it is natural to compare them with each other. We have shown that obfuscation
is complete (under standard computational assumptions), but completely leave open the
question of characterizing complete schemata. We also raise the question of characterizing
trivial schemata — those which can be reduced to the null schema — as well as characterizing
realizable schemata — those which have (say) IND-PRE-secure schemes.

We presented a hierarchy of security notions {∆∗-IND-PRE,∆det-IND-PRE} ≤ ∆-IND-PRE ≤
IND-PRE ≤ SIM defined using various test families (or, in the case of SIM, as a reduction

23

to the null-schema), but the relationships between these for any given schema are not fully
understood. We leave it as an open problem to provide separations between these various
notions of security for various schemata. For the case of functional encryption we provide a
separation of ∆det-IND-PRE from IND-PRE. For obfuscation we conjecture that all the above
notions are different from each other for some function family.

Finally, while we provide several instantiations of our framework, there are several primi-
tives that our framework does not capture as-is, such as signatures, CCA secure encryption,
obfuscation with security against malicious obfuscators, non-committing encryption and such
others. It is an important open problem to extend our framework to support modeling the
above primitives.

References

[1] H. Wee. On obfuscating point functions. In STOC, pages 523–532, 2005.

[2] S. Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, 2000.

[3] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In TCC, pages
457–473, 2009.

[4] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-secure
multilinear encodings. In CRYPTO, pages 500–517, 2014.

[5] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[6] C. Matt and U. Maurer. A constructive approach to functional encryption. Cryptology
ePrint Archive, Report 2013/559, 2013. http://eprint.iacr.org/.

[7] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT, 2013.

[8] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input, 2014.

[9] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for
circuits from multilinear maps. In CRYPTO, 2013.

[10] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, 2013.

[11] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, pages 24–43, 2010.

[12] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice
basis. In EUROCRYPT, 2010.

[13] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation.
In EUROCRYPT, 2004.

24

http://eprint.iacr.org/

[14] A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Advances in CryptologyASIACRYPT 2002, pages 100–109. Springer, 2002.

[15] A. D. Caro and V. Iovino. On the power of rewinding simulators in functional encryption.
Cryptology ePrint Archive, Report 2013/752, 2013. http://eprint.iacr.org/.

[16] V. Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt,
pages 256–266, 1997.

[17] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360–363, 2001.

[18] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against
algebraic attacks. In Eurocrypt, 2014.

[19] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In TCC, 2011.

[20] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC, 2014.

[21] A. Sahai and B. Waters. Functional encryption:beyond public key cryptography. Power
Point Presentation, 2008.

[22] A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. In Crypto, 2013.

[23] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[24] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, pages 290–307, 2006.

[25] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[26] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM Conference on Computer and Communications
Security, pages 89–98, 2006.

[27] J. Alwen, M. Barbosa, P. Farshim, R. Gennaro, S. D. Gordon, S. Tessaro, and D. A.
Wilson. On the relationship between functional encryption, obfuscation, and fully
homomorphic encryption. In IMA Int. Conf., 2013.

[28] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, pages 213–229, 2001.

[29] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[30] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. J. ACM, 59(2), May 2012.

[31] A. Sahai and H. Seyalioglu. Worry-free encryption: Functional encryption with public
keys. In CCS, 2010.

25

http://eprint.iacr.org/

[32] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive, 2002.

[33] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions.
In PKC, 2014.

[34] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In CRYPTO, 2013.

[35] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership
encryption and its applications. In Asiacrypt, 2013.

[36] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[37] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[38] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[39] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

[40] U. Maurer. Abstract models of computation in cryptography. In IMA Int. Conf., 2005.

[41] B. Waters. Functional encryption for regular languages. In Crypto, 2012.

[42] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[43] S. Micali, R. Pass, and A. Rosen. Input-indistinguishable computation. In FOCS, 2006.

[44] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, 2013.

[45] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[46] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[47] O. Pandey and Y. Rouselakis. Property preserving symmetric encryption. In EURO-
CRYPT, 2012.

[48] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO, 1997.

[49] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS
’01, 2001.

[50] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In CRYPTO, 2010.

26

http://eprint.iacr.org/

[51] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, 2010.

[52] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via uces. In
Crypto, 2013.

[53] M. Bellare and A. O’Neill. Semantically-secure functional encryption: Possibility results,
impossibility results and the quest for a general definition. In CANS, 2013.

[54] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the First Annual Conference on Computer and
Communications Security. ACM, November 1993.

[55] S. Agrawal, S. Agrawal, and M. Prabhakaran. Cryptographic agents: Towards a unified
theory of computing on encrypted data. Cryptology ePrint Archive, Report 2014/480,
2014. http://eprint.iacr.org/.

[56] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran,
and A. Sahai. On the practical security of inner product functional encryption. In J. Katz,
editor, Public-Key Cryptography – PKC 2015, volume 9020 of Lecture Notes in Computer
Science, pages 777–798. Springer Berlin Heidelberg, 2015.

[57] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran,
and A. Sahai. Function private functional encryption and property preserving encryption
: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744, 2013.
http://eprint.iacr.org/.

[58] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output. In
EUROCRYPT, 2008.

[59] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In Asiacrypt, 2011.

[60] R. Canetti, G. Rothblum, and M. Varia. Obfuscation of hyperplane membership. In
TCC, 2010.

[61] S. Agrawal, S. Gurbanov, V. Vaikuntanathan, and H. Wee. Functional encryption: New
perspectives and lower bounds. In Crypto, 2013.

[62] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In
STOC, 1998.

[63] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme
for a hybrid-encryption problem. In EUROCRYPT, pages 171–188, 2004.

[64] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions
(preliminary version). In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC ’98, 1998.

[65] R. Canetti and V. Vaikuntanathan. Obfuscating branching programs using black-box
pseudo-free groups. Cryptology ePrint Archive, Report 2013/500, 2013. http://eprint.iacr.
org/.

27

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[66] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In CRYPTO, pages 111–126, 2002.

[67] M. Fischlin. A note on security proofs in the generic model. In ASIACRYPT, 2000.

[68] D. Hofheinz, J. Malone-lee, and M. Stam. Obfuscation for cryptographic purposes. In In
TCC, pages 214–232, 2007.

[69] N. Bitansky and R. Canetti. On strong simulation and composable point obfuscation. In
CRYPTO, 2010.

[70] N. Bitansky, R. Canetti, Y. T. Kalai, and O. Paneth. On virtual grey box obfuscation
for general circuits. In CRYPTO, pages 108–125, 2014.

[71] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs.
auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report
2013/641, 2013. http://eprint.iacr.org/.

[72] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute based encryption for circuits.
In STOC, 2013.

[73] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions from multiparty computation. In CRYPTO, 2012.

[74] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, 2012.

[75] A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-malleable
hash and one-way functions. In In ASIACRYPT, 2009.

[76] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In STOC,
1987.

[77] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, 2012.

[78] Z. Brakerski and G. N. Rothblum. Black-box obfuscation for d-cnfs. In ITCS, 2014.

[79] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In TCC, 2014.

[80] Z. Brakerski and G. N. Rothblum. Obfuscating conjunctions. In CRYPTO, pages 416–434,
2013.

[81] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In CRYPTO, pages 501–521, 2011.

[82] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS,
2014.

[83] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, 2011.

[84] S. Chatterjee and M. P. L. Das. Property preserving symmetric encryption revisited.
Cryptology ePrint Archive, Report 2013/830, 2013. http://eprint.iacr.org/.

28

http://eprint.iacr.org/
http://eprint.iacr.org/

[85] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to
run turing machines on encrypted data. In CRYPTO (2), pages 536–553, 2013.

[86] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC, pages 555–564, 2013.

[87] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,
and H.-S. Zhou. Multi-input functional encryption. In Eurocrypt, 2014.

[88] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In TCC, 2007.

[89] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption.
In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[90] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely obfuscating
re-encryption. In Proceedings of the 4th Conference on Theory of Cryptography, TCC’07,
2007.

A Related Work

Recent times have seen a fantastic boom in the area of computing with encrypted information.
Several exciting primitives supporting advanced functionalities, such as fully homomorphic
encryption [37, 11, 81, 83, 77, 74, 82, 45], functional encryption [23, 21], property preserving
encryption [47, 57] have been constructed. Some functionalities require the data to be hidden
but permit the function to be public, while others, most notably program obfuscation [29],
permit the data to be public but the function to be hidden. Here, we review the state of the
art in these fields.

Program Obfuscation. Program Obfuscation is the task of garbling a given program so
that the input-output behavior is retained, but everything else about the program is hidden.
The formal study of program obfuscation was initiated by Barak et al. [29] who showed that
the strongest possible notion of security, called virtual black box security was impossible to
achieve for general circuits. To address this, they defined weaker notions of security, such
as indistinguishability obfuscation (denoted by I-Obf), which states that for two equivalent
circuits C0 and C1, their obfuscations should be computationally indistinguishable. A related
but stronger security notion defined by [29] was that of differing input obfuscation (denoted
by DI-Obf), which further requires that an adversary who can distinguish between C0 and C1

can be used to extract an input on which the two circuits differ.

Despite these weakenings, the area of program obfuscation was plagued by impossibilities
[13, 88, 68] for a long time, with few positive results, often for very specialized classes of
functions [48, 64, 1, 60, 90, 58]. This state of affairs however, has improved significantly in
recent times, when constructions of graded encoding schemes [7] were leveraged to build
program obfuscators for complex functionalities, such as conjunctions [80], d-CNF formulas
[78], circuits [10, 79, 65] and even Turing machines [44] in weaker models of computation
such as the generic graded encoding scheme model [80, 78, 79, 44], the generic colored matrix
model [10] and the idealized pseudo free group model [65].

These constructions are proven secure under different notions of security : virtual black box,
I-Obf, DI-Obf. Alongside, several new applications have been developed for IP-Obf [22] and

29

DI-Obf [44, 20]. There is a growing research effort in exploring the plausibility and connections
between different notions of obfuscation [71, 8]. A better understanding of various notions of
obfuscation and connections with various related notions such as functional encryption (see
below), is slowly emerging, with much promise for the future.

Functional Encryption. Functional encryption generalizes public key encryption to allow
fine grained access control on encrypted data. In functional encryption, a user can be provided
with a secret key corresponding to a function f , denoted by SKf . Given SKf and ciphertext
CTx = Encrypt(x), the user may run the decryption procedure to learn f(x). Security of the
system guarantees that nothing beyond f(x) can be learned from CTx and SKf . Functional
encryption systems traditionally focussed on restricted classes of functions such as the identity
function [39, 28, 17, 24, 46, 12, 51, 50], membership checking [25], boolean formulas [26, 89, 36],
inner product functions [5, 36, 59] and more recently, even regular languages [41]. Recent
times saw constructions for more general classes of functions: Gurabov et al. [72] and Garg et
al. [9] provided the first constructions for an important subclass of FE called “public index
FE” for all circuits, Goldwasser et al. [86] constructed succinct simulation-secure single-key
FE scheme for all circuits, Garg et al. [10] constructed multi-key FE schemes for all circuits
while Goldwasser et al. and Ananth et al. [85, 44] also constructed FE for Turing machines.

Functional Encryption and Obfuscation are not just powerful cryptographic primitives in
their own right, but are also intimately related objects – for example, it was shown in [10]
that indistinguishability obfuscation implies functional encryption. Recently, differing input
obfuscation has been used to construct FE for Turing machines [85].

Fully homomorphic encryption. Fully homomorphic encryption allows a user to evaluate a
circuit C on encrypted messages {CTi = Encrypt(xi)}i∈[n] so that Decrypt

(
C(CT1, . . . ,CTn)

)
=

C(x1, . . . , xn). Since the first breakthrough construction by Gentry [37], extensive research
effort has been focused on providing improvements [11, 81, 83, 77, 74, 82, 45].

Recently, Alwen et al. [27] explored the connections between FHE, FE and obfuscation. In
[27], the authors introduce the notion of randomized FE which can be used to construct FHE.
In addition, they explore the problem of obfuscating specific re-encryption functionalities,
introducing new notions extending those proposed in earlier works on re-encryption [90]. They
also develop techniques to use obfuscated re-encryption circuits to construct FE schemes.

Property Preserving Encryption. The notion of property preserving encryption (PPE)
was introduced in a very recent work by Pandey and Rouselakis [47]. Property preserving
encryption is a symmetric key primitive, which permits some pre-determined property P (x1, x2)
to be publicly tested given only the ciphertexts CT(x1),CT(x2). In [47], the authors formalize
the notion of PPE, provide definitions of security and provide a candidate construction for
inner product PPE in the generic group model. Subsequently, [84] demonstrated an attack
against the construction in [47], which was fixed in [57]. Agrawal et al. [57] also provide the
first standard model construction of PPE.

This rich body of primitives is interdependent not only in terms of philosophy and
techniques, but also in terms of non-interaction. Unlike the case of multi-party computation,
where a user (in general) continues to send and receive messages throughout the protocol,
the above primitives do not permit users to “keep playing”. A user may create an obfuscated
agent once and for all, and then release it into the wild. This agent is expected to reveal
nothing other than what is permitted by its functionality, but must interface in a well defined
manner with other agents or expected inputs.

30

Another aspect to note, is that many of the above primitives are known to be impossible
to instantiate under the strong simulation based security desired by MPC. Indeed, positive
results often settle for a weaker indistinguishability based security, which is also the focus of
this work.

B Composition and Reduction for ∆ family

Theorem 4 (Restated.) For any two schemata, Σ and Σ∗, if (O, E) ∆-reduces Σ to Σ∗ and
(O∗, E∗) is a ∆-IND-PRE secure implementation of Σ∗, then (O ◦O∗, E∗ ◦ E) is a ∆-IND-PRE
secure implementation of Σ.

Proof sketch: Correctness and efficiency are easily confirmed. To prove security, we need to
show that for every Test ∈ ∆, if Test is hiding w.r.t. Σ, then it is hiding w.r.t. O ◦ O∗. Since
Test ∈ ∆, we can write it as D ◦ c ◦ s. Let Test′ ∈ ∆ be defined as D ◦ c ◦ H ◦ c ◦ s, where H is
related to O as in Definition 8.

First we shall argue that Test′ is hiding w.r.t. Σ∗. Below, we shall also use K that relates
to H as in Definition 8. For any PPT User, for each b ∈ {0, 1}, we have

Test′(b) ≡ D ◦ c ◦ H ◦ c ◦ s(b)
u D ◦ c ◦ H ◦ s(b) / K
u D ◦ c ◦ s(b) ◦ O / K ≡ Test(b) ◦ O / K.

(1)

So for any PPT User,

ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) ◦ O / K | Σ∗ | User〉
= ideal〈Test(b) ◦ O | Σ∗ | User′〉 where User′ incorporates K and User

= ideal〈Test(b) | Σ | S ◦ User′〉 where S is from Definition 7.

Hence if Test is hiding w.r.t. Σ, ideal〈Test(0) | Σ | User′′〉 ≈ ideal〈Test(1) | Σ | User′′〉, where
User′′ stands for S ◦User′, and hence ideal〈Test′(0) | Σ∗ | User〉 ≈ ideal〈Test′(1) | Σ∗ | User〉.
Since this holds for all PPT User, Test′ is hiding w.r.t. Σ∗. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗ as (O∗, E∗) IND-PRE securely implements Σ∗

⇒ Test ◦ O / K is hiding w.r.t. O∗ by Equation 1.

Now, since K only provides extra information to User, if Test ◦ O / K is hiding w.r.t. O∗, then
Test ◦ O is hiding w.r.t. O∗. This is the same as saying that Test ◦ O ◦ O∗ is hiding (w.r.t. a
null scheme), as was required to be shown. �

Theorem 5 (Restated.) For any three schemata, Σ1,Σ2,Σ3, if Σ1 ∆-reduces to Σ2 and
Σ2 ∆-reduces to Σ3, then Σ1 ∆-reduces to Σ3.

Proof sketch: Let Π1 = (O1, E1) and Π2 = (O2, E2) be the schemes that carry out the
∆-reduction of Σ1 to Σ2 and that of Σ2 to Σ3, respectively. We define the scheme Π =
(O1 ◦O2, E2 ◦ E1). As in Theorem 3, we see that Π reduces Σ1 to Σ3 with respect to ∆. What
remains to be shown is that Π also has associated machines (H,K) as required in Definition 8.

31

Let (H1,K1) and (H2,K2) be associated with Π1 and Π2 respectively, as in Definition 8. We
let H ≡ H1 ◦ H2. To define K, consider the cascade K1 / K2: i.e., K1 appends a message to the
first part of the input to K (from c◦H1) and passes it on to K2, which also gets the second part
of the input (from H2), and appends another message of its own. K behaves as K1 / K2 but
from the output, it removes the message added by K1. We write this as K ≡ K1 / K2 //trim ,
where //trim stands for the operation of redacting the appropriate part of the message. Note
that K has the required format, in that it only appends to the entire message it receives.

We confirm that (H,K) satisfy the two required properties:

s(b) ◦ O ≡ s(b) ◦ O1 ◦ O2 u H1 ◦ s(b) ◦ O2 u H1 ◦ H2 ◦ s(b) ≡ H ◦ s(b)
c ◦ H / K ≡ (c ◦ H1 / K1) ◦ H2 / K2 //trim u c ◦ H1 ◦ c ◦ H2 / K2 //trim

u c ◦ H1 ◦ c ◦ H2 ◦ c //trim ≡ c ◦ H1 ◦ H2 ◦ c

where the last identity follows from the fact that the operation //trim removes the appropriate
part of the outgoing message. �

We note the composition (and transitivity) extend to ∆∗ as well. In particular, the
following theorem can be proven by observing that in the proof of Theorem 4, if we consider
Test ∈ ∆∗, then Test′ defined in the proof belongs to ∆∗. (In contrast, this result does not
extend to ∆det, unless the notion of reduction is severely restricted, by requiring H and K to
be deterministic.)

Theorem 6 (∆∗-Composition). For any two schemata, Σ and Σ∗, if (O, E) ∆-reduces Σ to
Σ∗ and (O∗, E∗) is a ∆∗-IND-PRE secure implementation of Σ∗, then (O ◦ O∗, E∗ ◦ E) is a
∆∗-IND-PRE secure implementation of Σ.

Note that here the notion of reduction is still the same as in Theorem 4, namely ∆-
reduction.

C Obfuscation Schema is Complete

In this section we prove that Σobf is “complete” under the notion of reduction defined in
Definition 7. More precisely, we show two kinds of reductions.

1. Any schema (∅,P) in which the agents are non-interactive (but possibly randomized
and reactive) has a reduction (O, E) to Σobf in which O is setup-free.

2. Any schema Σ = (Pauth,Puser) (possibly with Ptest 6= Puser and containing possibly
randomized, reactive, interactive agents) has a reduction (O, E) to Σobf in which O has
setup.

We point out that if Ptest 6= Puser, in general it is necessary that O has setup, as otherwise an
adversarial user can create obfuscations of programs in Pauth itself.

We sketch each of these reductions below. The security of these reductions only depend on
standard symmetric-key and public-key cryptography primitives. The proofs are conceptually
clean and simple, as the reductions between schemata occur in an idealized world. However,
the detailed descriptions of the reductions and the simulator tend to be somewhat long.

32

We provide some of the details to clarify subtleties and also to illustrate the nature of the
reductions and proofs.

We carry out the reduction in two steps: first we show how to reduce any schema with
non-interactive agents to Σobf, and then build on it to reduce all schemata (including those
with interactive agents) to Σobf.

C.1 Construction for Non-Interactive Agents

In this section we reduce any schema of the form ΣRR = (∅,P), in which the agents are
randomized and reactive, but non-interactive, to Σobf. For this we define an intermediate
schema, ΣR of randomized, but non-reactive, non-interactive agents, and give two reductions:
we reduce ΣRR to ΣR and ΣR to Σobf. These can then be composed together using the
transitivity of reducibility (Theorem 3) to obtain our reduction from ΣRR to Σobf.

15

Below, we will write Σ0 for Σobf, Σ1 for ΣR, and Σ2 for ΣRR.

(O1, E1) to reduce Σ1 to Σ0. On receiving a randomized agent P1 from Test, O1 uploads
the following (deterministic) agent P0 to B[Σ0]: P0 has the parameters of P1 as well as a
freshly chosen seed s for a pseudorandom function (PRF) built-in as its parameters; when
invoked it interprets its input as (i, x), generates a random tape for P1 using the PRF applied
to (i, x), as r = PRFs(i, x), and executes P1(x; r). (The κ-bit index i is used to implement
multiple independent executions of the randomized agent with the same input.)

E1 translates User’s interaction with B[Σ1] to an interaction with B[Σ0]: when User
requests to upload a randomized agent to B[Σ1], E1 will upload to B[Σ0] an agent as created
by O1. When B[Σ0] sends E1 a handle, it forwards it to User. When User sends an execution
command with a handle h and an input x to B[Σ1], E1 translates it to the handle h and input
(i, x) for B[Σ0], where i is a randomly chosen κ-bit index. The correctness of the reduction
follows directly from the security of the PRF, and the fact that it is unlikely that E1 will
choose the same value for i in two different sessions.

The simulator S1, which translates Adv’s interaction with B[Σ0] to an interaction with
B[Σ1], behaves as follows: it passes on handles it receives from B[Σ1] as handles from B[Σ0].
If the user sends an upload command, S1 will upload the agent as it is (since Σ1 allows
deterministic agents as well). S1 also maintains a list of the form (h, i, x, y) where h is a
handle obtained that does not correspond to an agent uploaded by Adv, (i, x) is an input for
h from a session execution command given by Adv, and y is the output it reported back to
Adv for that session. On receiving a new session request h(z), i.e., for an agent handle h with
input z, S1 behaves differently depending on whether h is a handle that corresponds to an
agent uploaded by Adv, or not. In the former case, S1 simply forwards the request h(z) to
B[Σ1] and returns the response from B[Σ1] back to Adv. In the latter case, S1 interprets z as
(i, x); then, if there is an entry of the form (h, i, x, y) in its list, S1 returns y to Adv; else it
forwards the session request (h, x) to Σ0, and gets back (a fresh) output y, records (h, i, x, y)
in its list, and sends y to User. It is easy to show, from the security of the PRF, that S1
satisfies the correctness requirements.

(O2, E2) to reduce Σ2 to Σ1. We omit the detailed description of O2, E2 and the simulator
S2 associated with this reduction, but instead just describe the behavior of the non-reactive

15The tape and time bounds for the agents in Σobf will depend on the tape and time bounds for the schema
ΣRR. For simplicity, we leave this bound to be only implicitly specified by our reductions.

33

agent P1 that O2 sends to B[Σ1], when given a reactive agent P2 of schema Σ2.

The idea is that the reactive agent P2 can be implemented by a non-reactive agent P1

which outputs an encrypted configuration of P2 that can then be fed back as input to P1.
More precisely, P1 will contain the parameters of P2 and keys for a semantically secure
symmetric-key encryption scheme and a message authentication code (MAC) built-in as its
own parameters. If invoked with just an input for P2, P1 considers this an invocation of
P2 from its start configuration. In this case, P1 uses its internal randomness to initialize a
random-tape for P2, and executes P2 on the given input until it blocks or halts. Then (using
fresh randomness) it produces an authenticated ciphertext of the resulting configuration of P2.
It outputs this encrypted configuration along with the (unencrypted) contents of the output
tape of P2. P1 can also be invoked with an encrypted configuration and an input: in this
case, it checks the authentication, decrypts the configuration (which contains the random
tape for P2) and executes P2 starting from this configuration, with the given input added to
the input-tape.

The security of this reduction follows from the semantic security of the encryption and
the existential unforgeability of the MAC.

C.2 General Construction for Interactive Agents

In this section, we shall reduce a general schema Σ = (Pauth,Puser) to the schema ΣR from
Section C.1, which consists of arbitrary randomized (non-reactive, non-interactive) agents.
Combined with the first of two reductions from the previous section, using Theorem 3, this
gives a reduction of Σ to Σobf.

Our reduction (O, E) is fairly simple. At a high-level, O will upload an agent called Prun

to B[ΣR], which will be used as a key for carrying out all sessions. The agents in the sessions
are maintained as encrypted and authenticated configurations, which the Prun will decrypt,
execute and update, and then reencrypt and sign. Note that for this Prun needs to be a
randomized agent (hence the reduction to ΣR rather than Σobf).

More precisely, during setup, Osetup will pick a secret-key and public-key pair (SK,PK)
for a CCA2-secure public-key encryption, and a pair of signing and verification keys (Sig, V er)
for a digital signature scheme, and sets MPK = PK and MSK = (SK,PK, Sig, V er). It
will also upload the following randomized agent Prun to B[ΣR]: the parameters of Prun include
MSK.

1. Prun takes as input ((C1, σ1, x1), · · · , (Ct, σt, xt)) for t ≥ 1, where Ci are encrypted
configurations of agents in Pauth ∪ Puser, σi are signatures on Ci, and xi are inputs for
the agents.

2. It decrypts each Ci using SK. It also checks the signatures on all the ciphertexts using
V er, except for the ciphertexts that contain a start configuration16 of an agent in Puser.

3. If all the configurations and signatures are valid, then first Prun chooses a seed for a
pseudorandom generator (PRG) to define the random-tape of each agent in a start

16A start configuration has all the tapes, except the parameter tape, empty. The configuration also contains
information about the agent family that the agent belongs to.

34

configuration.17

4. Then Prun copies the inputs xi to input tapes of the respective agents and carries out a
session execution.

5. When the session terminates, Prun encrypts each agent’s configuration (along with
the updated seed of the PRG that defines its random tape), to obtain ciphertexts
C ′i; it signs them using Sig to get signatures σ′i; finally, it halts after outputting
((C ′1, σ

′
1, y1), · · · , (C ′t, σ′t, yt)), where yi are the contents of the output tapes of the agents.

After setup, when Oauth is given an agent in Pauth by Test, it simply encrypts (the start
configuration of) the agent, signs it, and outputs the resulting pair (C, σ) as the obfuscation
of the given agent. Ouser only encrypts the agent and outputs (C,⊥) as the obfuscation; it is
important that the encryption scheme used is CCA2 secure.

E behaves as follows. During setup, E receives PK from O and a handle from B[ΣR].
E sends User the handles corresponding to agents which are uploaded by User, or received
(as cryptographically encoded agents) from O, or (as part of session output) from Prun. For
each agent uploaded by User, E stores its parameters (i.e., start configuration) encrypted
with PK, indexed by its handle. For cryptographically encoded agents received from O or
Prun, it stores the obfuscation (C, σ), indexed by its handle. When given a session execution
command, E retrieves the cryptographically encoded agents stored for each handle (with an
empty signature if it is an agent in Puser with start configuration) and sends them to B[ΣR],
along with the handle for Prun. It gets back ((C ′1, σ

′
1, y1), · · · , (C ′t, σ′t, yt)) as the output from

the session. It stores each (C ′i, σ
′
i) received with a new handle, and sends these handles along

with the outputs yi to User.

The correctness of this reduction is straightforward, depending only on the security of
the PRG (and only the correctness of the encryption and signature schemes). To prove the
security property, we sketch a simulator S. It internally runs Osetup to produce (MSK,MPK)
and sends the latter to Adv. It also sends Adv a handle, to simulate the handle for Prun it
would receive during the setup phase. Subsequently, when S receives handles from B[Σ] for
agents uploaded by Test, it simulates the output of Oauth or Ouser (depending on whether the
handle is for Pauth or Puser) by encrypting a dummy configuration for an agent. Note that the
ciphertexts produced by Ouser are not signed. Also, when S receives new handles from a session
executed by B[Σ], it simulates the output of Prun, again by encrypting dummy configurations
(these are signed ciphertexts). S hands over all such simulated ciphertexts to Adv, and also
records them along with the corresponding handles it received from B[Σ]. When Adv sends a
session execution command for Prun, with an input of the form ((C1, σ1, x1), · · · , (Ct, σt, xt)),
S attempts to find a handle for each Ci as follows: first, S looks up the handles for the
ciphertexts, if any, that it has recorded already. Note that if a ciphertext has a valid signature,
it must have been generated and recorded by S. But if there is any ciphertext which is
not signed, and which does not appear in S’s table, then S will decrypt the ciphertext; if
that gives a valid start configuration for an agent in Puser, then S will upload that agent to
B[Σ], and obtains a handle for it. As we shall see, this is where the CCA2 security is crucial,
as explained below. (If any of the above steps fail (invalid signature, invalid ciphertext or
invalid decrypted configuration), S can simply simulate an empty output from Prun.) Once
it has a handle hi for every Ci, S asks B[Σ] to execute a session with those handles and

17We use the PRG in a stream-cipher mode: it produces a stream of pseudorandom bits, such that at any
point there is an updated seed that can be used to continue extracting more bits from the PRG.

35

inputs x1, · · · , xt. It returns the resulting outputs as well as dummy ciphertexts (as already
described) as the output from Prun.

The proof that the simulation is good relies on the CCA2 security of the encryption
scheme (as well as the unforgeability of the signatures, and the security of the PRG). Note
that on obtaining handles for various agents from B[Σ], S hands over dummy ciphertexts to
Adv, and if Adv gives them back to S, it translates them back to the handles. Every other
ciphertext is decrypted by S and used to create an agent that it uploads. However, if the
encryption scheme were malleable, Adv could generate such a ciphertext by malleating one of
the ciphertexts it received (from S or from, say, Ouser). Thus in the real execution, the agent
created by Adv would be related to an agent created by Ouser, where as in the simulation it
would be related to dummy agent created by S, leading to a distinguishing attack. CCA2
security prevents this: one can translate a distinguishing attack (Test, Adv and S together) to
an adversary in the CCA2 security experiment, in which, though the adversary does not have
access to the decryption keys as S would, it can still carry out the decryptions carried out
by S using the decryption oracle in the CCA2 experiment. The details of this reduction are
fairly routine, and hence omitted.

D Obfuscation

D.1 Indistinguishability and Differing Inputs Obfuscation

Below we provide formal definitions for indistinguishability obfuscation and differing-inputs
obfuscation.

Definition 9 (Indistinguishability Obfuscation). A uniform PPT machine obf(·) is called
an indistinguishability obfuscator for a circuit family F = {Fκ} if it probabilistically maps
circuits to circuits such that the following conditions are satisfied:

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial p such that for
any circuit C, we have |C ′| ≤ p(|C|, κ) where C ′ ← obf(1κ, C).

• Indistinguishability: For every pair of circuits C0, C1 ∈ Fκ, such that ∀x, C0(x) =
C1(x), we have that for all PPT distinguishers D

D
(
1κ,obf(1κ, C0)

)
≈ D

(
1κ,obf(1κ, C1)

)
.

Multiple obfuscated circuits: Using a hybrid argument, one can show that if obf(·) is an
indistinguishability obfuscator, then security also holds against distinguishers who have access
to multiple obfuscated circuits. More formally, let (C0, C1) be a pair of sequence of circuits
where Cb = {Cb,1, Cb,2, . . . , Cb,`} for b ∈ {0, 1} (and ` is some polynomial in κ). Suppose for
every i ∈ [1, `] and for all x, C0,i(x) = C1,i(x). Then, for all PPT distinguishers D we have
that

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`)

)
≈ D

(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`)

)
.

36

Definition 10 (Differing Inputs Obfuscation). A uniform PPT machine obf(·) is called a
differing inputs obfuscator for a circuit family F = {Fκ} if it probabilistically maps circuits to
circuits such that it satisfies the correctness and relaxed polynomial slowdown conditions as in
Definition 9 and also:

• Differing Inputs: For every algorithm Sampler which takes 1κ as input and outputs
(C0, C1, aux), where C0, C1 ∈ Fκ, if for all PPT A

Pr
[
C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1κ);x← A(1κ, C0, C1, aux)

]
≤ negl(κ),

then for all PPT distinguishers D

D
(
1κ,obf(1κ, C0), aux

)
≈ D

(
1κ,obf(1κ, C1), aux

)
.

We call the Sampler whose output satisfies the condition given above (against all PPT A)
a good sampler. Note that differing inputs obfuscation requires indistinguishability to hold for
good samplers only.

Multiple obfuscated circuits : Like in the case of indistinguishability obfuscation, we
can show that if a differing inputs obfuscator obf(·) exists, then it is also secure against the
following more general class of sampling functions. Let Sampler` be an algorithm that on input
1κ outputs a pair of sequence of circuits (C0, C1) and aux, where Cb = {Cb,1, Cb,2, . . . , Cb,`} for
b ∈ {0, 1} (and ` is some polynomial in κ). We claim that if Sampler` is good, i.e., for all PPT
A,

Pr
[
C0,i(x) 6= C1,i(x) : (C0, C1, aux)← Sampler(1κ); (x, i)← A(1κ, C0, C1, aux)

]
≤ negl(κ),

then for all PPT distinguishers D,

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`), aux

)
≈ D

(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`), aux

)
.

We can prove this claim via a hybrid argument. For i ∈ [0, `], let Hi be the hybrid
consisting of obf(C1,1), . . . ,obf(C1,i), obf(C0,i+1), . . . ,obf(C0,`) and aux (κ has been omitted
for convenience). In order to show that H0 is indistinguishable from H`, it is sufficient to
show that for every i ∈ [0, `− 1], Hi is indistinguishable from Hi+1. Both Hi and Hi+1 have
obf(C1,1), . . . ,obf(C1,i), obf(C0,i+2), . . . ,obf(C0,`) and aux in common. The only difference
is that while the former has obf(C0,i+1), the latter has obf(C1,i+1).

Consider an algorithm Sampler which on input 1κ, runs Sampler`(1
κ) and outputs (C0,i+1,

C1,i+1, aux
′), where aux′ = (C0, C1, aux). We can easily show that Sampler is a good sam-

pling algorithm if Sampler` is good. Hence, (obf(C0,i+1), aux
′) is indistinguishable from

(obf(C1,i+1), aux
′). This implies that Hi is indistinguishable from Hi+1.

D.2 Relation to existing notions of Obfuscation

Conversion: Firstly, we note that a (set-up free) obfuscation scheme (O, E) in our framework
can be easily mapped to the syntax of an obfuscation scheme in the traditional sense. It
is easy to see that the efficiency requirement of (O, E) implies a pre-determined poly(κ)
upperbound on the execution time of E on a single invocation (because, the agents in Σobf

have a pre-determined poly(κ) upperbound on their running time). Hence we can define a

37

circuit E [O] (with a built-in string O) of a pre-determined poly(κ) size that carries out the
following computation: on input x, it interacts with an internal copy of E , first simulating to
it the message O from O (upon which E will output a handle), followed by a request from
User to execute a session with that handle and input x; E [O] outputs whatever E outputs.
Let O ◦ E denote a program which, on input a circuit C (of size at most s(κ)), invokes O on
C to obtain a string O, and then outputs the program E [O].

Indistinguishability Obfuscation. We now show that if we restrict our attention to the
family of tests ∆det ⊂ ∆ where D is a deterministic party, then a secure scheme for this family
exists iff an indistinguishability obfuscator does. Formally,

Lemma 1 (Restated.) A set-up free ∆det-IND-PRE-secure scheme for Σobf (with perfect
correctness) exists if and only if there exists an indistinguishability obfuscator.

Proof. Suppose (O, E) is a set-up free ∆det-IND-PRE-secure scheme for Σobf, then O ◦ E is an
indistinguishability obfuscator, where O ◦ E is defined as discussed before. By construction,
O ◦ E satisfies the correctness and polynomial slowdown requirements. So suppose O ◦ E does
not satisfy the indistinguishability preservation property. Then there exists two circuits C0

and C1 which have identical input-output behavior, but there exists a PPT algorithm D which
distinguishes between of O ◦ E(C0) and O ◦ E(C1). Now, define a simple Test ∈ ∆det which
on input b, uploads Cb. It is easy to see that Test is hiding w.r.t. Σobf as the User gets only
black-box access to C0 or C1. On the other hand, we argue that Test is not hiding w.r.t. O. For
this consider an adversary Adv which, on obtaining a string O from O constructs the program
Z := E [O] and invokes D(Z). Then real〈Test(0) | O | Adv〉 6≈ real〈Test(1) | O | Adv〉
follows from the fact that Z is distributed as O ◦ E(Cb), where b is the input to Test, and the
distinguishing advantage of D.

We now show how obf(.), an indistinguishability obfuscator, yields a (perfectly correct)
set-up free ∆det-IND-PRE-secure scheme for Σobf. Together with the observation above, this
will prove the lemma. We know that obf maps circuits to circuits. Hence, O on input a circuit
C runs obf on the same input to obtain another circuit C ′. This latter circuit is forwarded to
E . When E receives a circuit, it forwards a handle to the User; and when it receives a handle h
and an input x from the User, it executes the circuit C ′ corresponding to h on x, and returns
C ′(x). Correctness easily follows from the construction of O and E .

Now, suppose that (O, E) is not a secure implementation. This implies that there exists a
Test ∈ ∆det which is hiding w.r.t Σobf but not w.r.t. O. Hence, there exists an adversary Adv
which can distinguish between Test(0) and Test(1) in the real world. Using Test and Adv, we
construct a distinguisher D as follows. Recall that Test(b) can be represented as D ◦ cs(b),
where D is a deterministic party. D internally simulates a real world set-up with D, O and
Adv. Note that every pair of circuits (C0, C1) that D sends to c must be equivalent, otherwise
Test would not be hiding w.r.t. Σobf. When D uploads (C0, C1), D forwards them to Adv
and the challenger. Let us say that the challenger picks a bit b ∈ {0, 1}. When D receives
obf(Cb) = O(Cb) from the challenger, he forwards it to Adv. Finally, D outputs the view of
the adversary. Since the view of Adv in the experiment where challenger picks b is identical to
its view in the real world when Test has input b, D succeeds in distinguishing between the
case where challenger picks 0 from the case where it picks 1.

Differing Inputs Obfuscation. Next we show that if we consider the family of tests which
do not receive any input from the user, then a secure scheme for this family exists iff a differing

38

input obfuscator does. Formally,

Lemma 2 (Restated.) A set-up free ∆∗-IND-PRE-secure scheme for Σobf (with perfect
correctness) exists if and only if there exists a differing-inputs obfuscator.

Proof. We first show the only if direction. Let (O, E) be a ∆∗-IND-PRE-secure scheme for
Σobf. We claim that O ◦ E is a differing inputs obfuscator, where O ◦ E is defined as discussed
before. Towards this, let S be a good sampling algorithm which takes 1κ as input and outputs
(C0, C1, aux). We define a TestS ∈ ∆∗ as follows: D runs S to obtain (C0, C1, aux); it sends
aux to the User and (C0, C1) to c. The only way an adversary can distinguish between the
case where s uploads C0 from the case where it uploads C1 is if it queries B[Σobf] with an
input x s.t. C0(x) 6= C1(x). But this is not possible because S is a good sampler. Therefore,
TestS is hiding w.r.t. Σobf. This implies that TestS is hiding w.r.t. O as well. It is now easy
to show that (O ◦ E(C0), aux) is indistinguishable from (O ◦ E(C1), aux).

We now show the if direction of the lemma. Suppose obf(·) is a differing inputs obfuscator.
Using obf we can define a scheme (O, E) in the natural way (see the proof of the previous lemma
for details). We claim that (O, E) is an ∆∗-IND-PRE-secure scheme for Σobf. Correctness
easily follows from construction. In order to prove indistinguishability preservation, consider
a Test ∈ ∆∗. Let (C0, C1) denote the sequence of pairs of circuits uploaded by D, where
Cb = {Cb,1, Cb,2, . . . , Cb,`} for b ∈ {0, 1}, and aux be the messages sent to the User. Observe
that for both b = 0 and 1, any adversary Adv receives C0, C1, aux, and a sequence of handles
h1, . . . , h`. If Test is hiding w.r.t Σobf, then the probability that Adv queries with hi and input
x such that C0,i(x) = C1,i(x) is negligible. Hence an algorithm Sampler which runs Test and
outputs (C0, C1, aux) is a good sampling algorithm. Therefore, (obf(C0,1), . . . ,obf(C0,`), aux)
cannot be distinguished from (obf(C1,1), . . . ,obf(C1,`), aux). We can now show that Test is
hiding w.r.t. O in a manner similar to the previous lemma.

D.3 Adaptive Differing Inputs Obfuscation

Earlier, we saw that indistinguishability obfuscation is equivalent to ∆det-IND-PRE and
differing inputs obfuscation is equivalent to ∆∗-IND-PRE. In Appendix D.4, we will see that
IND-PRE secure obfuscation is impossible for general functionalities. It is natural to ask what
happens “in-between”, i.e. for ∆ family of tests?

To this end, we state a definition for the security of obfuscation – adaptive differing-inputs
obfuscation, which is equivalent ∆-IND-PRE security. Informally, it is the same as differing
inputs obfuscation, but an adversary is allowed to interact with the sampler (which samples
two circuits one of which will be obfuscated and presented to the adversary as a challenge),
even after it receives the obfuscation. We define it formally below. An equivalent notion was
defined in [87].

Good sampler : Let F = {Fκ} be a circuit family. Let Sampler be a PPT stateful oracle
which takes 1κ as input, and upon every invocation outputs two circuits C0, C1 ∈ Fκ and
some auxiliary information aux. We call this oracle good if for every PPT adversary A with
oracle access to Sampler, the probability that A outputs an x such that C0(x) 6= C1(x) for
some C0, C1 given by Sampler, is negligible in κ.

Definition 11 (Adaptive Differing Inputs Obfuscation). A uniform PPT machine obf(·) is
called an adaptive differing inputs obfuscator for a circuit family F = {Fκ} if it probabilistically

39

maps circuits to circuits such that it satisfies the following conditions:

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial p such that for
any circuit C, we have |C ′| ≤ p(|C|, κ) where C ′ ← obf(1κ, C).

• Adaptive Indistinguishability: Let Sampler be a stateful oracle as described above.
Define Samplerb to be an oracle that simulates Sampler internally, and when Sampler
outputs C0, C1 and aux, Samplerb additionally outputs obf(1κ, Cb). We require that for
every good Sampler, for all PPT distinguishers D

DSampler0(1κ) ≈ DSampler1(1κ).

As we shall see, this notion of obfuscation is very useful and we will be able to construct
∆-IND-PRE FE schema by providing a ∆ reduction to a ∆-IND-PRE secure obfuscation schema
(see Section 8 for more details).

D.4 Impossibility of IND-PRE obfuscation for general functionalities

In this section we exhibit a class of programs F such that Test is hiding w.r.t Σobf(F) but
for any real world cryptographic scheme (O, E), Test is not hiding w.r.t. O. The idea for
our impossibility follows the broad outline of the impossibility of general virtual black box
(VBB) obfuscation demonstrated by Barak et al. [29]. Intuitively the impossibility of VBB
obfuscation by Barak et al. follows the following broad outline: consider a program P which
expects code C as input. If the input code responds to a secret challenge α with a secret
response β, then P outputs a secret bit b. Barak et al. show that using the code of P , one
can construct nontrivial input code C that can be fed back to P forcing it to output the
bit b. On the other hand, a simulator given oracle access to P cannot use it to construct a
useful input code C and has negligible probability of guessing an input that will result in P
outputting the secret b. For more details, we refer the reader to [29].

At first glance, it is not clear if the same argument can be used to rule out IND-PRE
secure obfuscation schema. The argument by Barak et al. seems to rely crucially on
simulation based security, whereas ours is an indistinguishability style definition. Indeed,
other indistinguishability style definitions such as indistinguishability obfuscation (I-Obf)
and differing input obfuscation (DI-Obf) are conjectured to exist for all functions. However,
our notion of indistinguishability preserving obfuscation is too strong to be achieved, as the
following informal argument shows. Consider the same class of functions F as in [29], with
the bit b as the secret. We construct Test which expects b as external input, and uploads
agents from the function family F . In the ideal world, it is infeasible to distinguish between
Test(0) and Test(1) since it is infeasible to recover b from black box access. In the real world
however, a user may execute a session in which the agent for P is executed to produce an
agent for C, following which P may be run on C to output the secret bit.

40

E Functional Encryption

E.1 Traditional Definition of Functional Encryption

The following definition of functional encryption is from [19, 42]. It corresponds to non-
function-hiding, public-key functional encryption.

Syntax. A functional encryption scheme FE for a circuit family F = {Fκ} over a message
space X = {Xκ} consists of four PPT algorithms:

• Setup(1κ) takes as input the unary representation of the security parameter, and outputs
the master public and secret keys (MPK,MSK);

• KeyGen(MSK, C) takes as input the master secret key MSK and a circuit C ∈ Fκ, and
outputs a corresponding secret key SKC ;

• Encrypt(MPK, x) takes as input the master public key MPK and a message x ∈ Xκ, and
outputs a ciphertext CTx;

• Decrypt(SKC ,CTx) takes as input a key SKC and a ciphertext CTx, and outputs a value.

These algorithms must satisfy the following correctness property for all κ ∈ N, all C ∈ Fκ
and all x ∈ Xκ,

Pr

[
(MPK,MSK)← Setup(1κ);

Decrypt(KeyGen(MSK, C),Encrypt(MPK, x)) 6= C(x)

]
= negl(κ),

where the probability is taken over their coin tosses.

Indistinguishability Security. The standard indistinguishability based security definition
for functional encryption is defined as a game between a challenger and an adversary A as
follows.

• Setup: The challenger runs Setup(1κ) to obtain (MPK,MSK), and gives MPK to A.

• Key queries: A sends a circuit C ∈ Cκ to the challenger, and receives SKC ←
KeyGen(MSK, C) in return. This step can be repeated any polynomial number of times.

• Challenge: A submits two messages x0 and x1 such that C(x0) = C(x1) for all C
queried by A in the previous step. Challenger sends Encrypt(MPK, xb) to A.

• Adaptive key queries: A continues to send circuits to the challenger subject to the
restriction that any C queried must satisfy C(x0) = C(x1).

• Guess: A outputs a bit b′.

The advantage of A in this security game is given by |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]| .
We say that a functional encryption scheme FE = (Setup,KeyGen, Encrypt,Decrypt) is indis-
tinguishability secure if for all PPT adversaries A, the advantage of A in the security game
described above is negligible in κ.

Multiple challenge phases : One can show via a hybrid argument that if no adversary has
a significant advantage in the above security game, then the same holds for a generalized

41

game where there are multiple challenge phases interspersed with key query phases. In the
generalized game, it is required that for every (x0, x1) submitted in a challenge phase, and
every circuit C queried in any key query phase, C(x0) = C(x1).

E.2 ∆-reduction from Functional Encryption to Obfuscation

In this section we show that the scheme for Σfe using Σobf that was presented in Section 8.1
is indeed a ∆-reduction. First we recall the construction.

Let Σfe = (Pfe
auth,Pfe

user) and Σobf = (∅,Pobf
user). We shall only describeO = (Osetup,Oauth,Ouser);

E is naturally defined, and the correctness will be easy to verify.

• Osetup picks a pair of signing and verification keys (SK,VK) for the signature scheme as
(MSK,MPK).

• Oauth, when given a function agent Pf ∈ Pfe
auth, outputs (f, σ) to be sent to E , where f is

the parameter of Pf and σ is a signature on it.

• Ouser, when given an agent Pm ∈ Pfe
user as input, uploads an agent Pm,MPK ∈ Pobf

user to
B[Σobf], which behaves as follows: on input (f, σ) Pm,MPK verifies that σ is a valid
signature on f with respect to the signature verification key MPK; if so, it outputs f(m),
and else ⊥.

To show that this is a valid ∆-reduction, apart from verifying correctness, we need to
demonstrate S, H and K as required in Definition 7 and Definition 8. We describe these below.

• S will first simulate Osetup, by picking a signing and verification key pair itself, and
publishing the latter as MPK. On obtaining a handle hf for an agent in Pfe

auth, it runs the
agent with no input to recover f , and then simulates Oauth by outputting (f, σ) where σ is a
signature on f . On obtaining a handle h for an agent in Pfe

user, it outputs a simulated handle
h′ from B[Σobf] (for the agent Pm uploaded by Ouser), and internally keeps a record of the
pair (h, h′). Subsequently, on receiving a session execution request for a simulated handle h′

with some input, first S checks if the input is of the form (f, σ) and σ is a valid signature
on f . If so, it looks for a handle hf corresponding to f that it received from B[Σfe]; if no
such handle exists, it aborts the simulation. Else it requests an execution of B[Σfe] session
involving two handles hf and h, where (h, h′) was the pair it had recorded when issuing the
simulated handle h′. It returns the output from this B[Σfe] session as the outcome of the
execution of the simulated B[Σobf] session.

The probability S aborts is negligible, since any PPT adversary will have negligible probability
of producing an f with a valid signature, if it was not given out by S. Conditioned on the
adversary never creating a forged signature, the simulated and real executions are identical.

• We can define H as follows. It implements Osetup faithfully. When it is given a pair of
agents in Pfe

user, it simply forwards both of them (to s). When it receives a pair of agents in
Pfe
auth from T, if they are not identical, H aborts; otherwise H will simulate the effect of Oauth

by signing the function f in (both) the agents, and forwards it to User. Now, conditioned on
D never outputting a pair of distinct agents in Pfe

auth, we have D ◦ c ◦ H ◦ s ≡ D ◦ c ◦ s ◦ O.

Now, if D ◦ c ◦ s is hiding w.r.t. Σfe, then it must be the case that the probability of D
outputting a pair of distinct agents is negligible. This is because, D ◦ c ◦ s will forward the

42

two agents to User, and if the two agents are not identical, the function-revealing nature of
the schema, will let the User learn the secret bit b.

• We define K as follows. It observes the inputs sent to H (as reported to User by c), and
whenever it sees a pair of agents in Pfe

user, it appends a copy of those two agents (as if it was
reported the second instance of c in c ◦ H ◦ c). This in fact ensures that c ◦ H ◦ c ≡ c ◦ H / K.

E.3 Indistinguishability Secure FE vs. Secure Schemes for FE Schema

Lemma 3 (Restated.) A ∆det-IND-PRE-secure scheme for Σfe exists if and only if there
exists an indistinguishability secure FE scheme.

Proof. We first prove the easier side. Let (O, E) be a ∆det-IND-PRE-secure scheme for Σfe,
where O = (Osetup,Oauth,Ouser). We construct an FE scheme Sfe using (O, E) as follows.

• Setup(1κ): Run Osetup to obtain a master secret key MSK and a public key MPK.

• KeyGen(MSK, C): Output SKC ← Oauth(C;MSK) (where C is passed to Oauth as the
parameter for the agent P Fun

C ∈ PPubFE
auth).

• Encrypt(MPK, x): Output CTx ← Ouser(x;MPK) (where x is passed to Ouser as the

parameter for the agent PMsg
x ∈ PPubFE

user).

• Decrypt(SKC ,CTx): Run a copy of E as follows: first feed it SKC and CTx as messages
from O, and obtain agent handles hC and hx; then request it for a session execution
with handles (hC , hx) (and no input). Return the output for the agent hC as reported
by E .

In order to show that Sfe is an indistinguishability secure FE scheme, we consider the
following Test ∈ ∆det. Upon receipt of a circuit C from User, Test uploads C and adds C to
a list L. Upon receipt of a pair of inputs (x0, x1), if for every C ∈ L, C(x0) = C(x1), Test
uploads xb. After this, if User sends a circuit C ′, Test uploads C ′ iff C ′(x0) = C ′(x1). (If User
sends any other type of message, it is ignored.)

Now suppose there is an adversary A who breaks the security of Sfe. Then we show that
the above Test is hiding w.r.t. Σfe but not w.r.t. O. To see this, firstly note that Test is hiding
w.r.t. Σfe by design: there is no way an adversary can learn whether Test uploaded x0 or x1 in
the ideal world. Now, consider an adversary Adv who runs A internally: first it forwards MPK
received from Osetup to A; then it forwards A’s requests to the challenger (in the IND security
game) to Test; the outputs received from O are forwarded to A. Finally Adv outputs A’s
output bit. It is straightforward to see that the advantage Adv has in distinguishing interaction
with Test(0) and Test(1) is exactly the advantage A has in the IND security experiment.

We now prove the other side of the lemma. Let FE = (Setup,KeyGen, Encrypt,Decrypt)
be an indistinguishability secure FE scheme. We can construct a ∆det-IND-PRE-secure scheme
(O, E) for Σfe using the scheme FE in a way analogous to how an IND secure FE scheme
is constructed from an IND-PRE secure scheme above. We now show that if (O, E) is not a
secure scheme then neither is FE . That is, if there exists a Test ∈ ∆det such that Test is
hiding in the ideal world, but there exists a PPT adversary Adv which can distinguish between

43

Test(0) and Test(1) in the real world, then there exists an adversary A which can break the
security of FE in the generalized IND game.

Recall that Test(b) can be represented as D ◦ cs(b), where D is a deterministic party. A
internally simulates a real world set-up with D, O and Adv, and externally participates in the
indistinguishability game with a challenger. We will show that for b ∈ {0, 1}, if challenger
picks the bit b, then Adv’s view is identically distributed to its view in the real world when
Test gets input b. This will complete the proof.

At any point during a run of the real world, D either uploads a pair of function agents
(C0, C1) or a pair of message agents (x0, x1) to c. We can see that C0 and C1 must be the
same circuits, otherwise Test would not be hiding in the ideal world. Similarly, for every
function agent C = C0 = C1 ever uploaded, it must be the case that C(x0) = C(x1), for every
(x0, x1). It is now easy to simulate the view of Adv. When a function agent C is uploaded by
D, A sends C to the challenger, and forwards the key obtained to Adv (along with (C0, C1)).
When D uploads (x0, x1), A forwards it to the challenger. The ciphertext returned by the
challenger is forwarded to Adv (along with (x0, x1)).

Lemma 4 (Restated.) There exists a ∆det-IND-PRE secure scheme for Σfe which is not an
IND-PRE secure scheme for Σfe.

Proof. The idea of the separation follows that in [19]. Let β : {0, 1}n → {0, 1}n be a one-way
permutation, and h be its hard-core predicate. Consider a function family which has only
one function f . For all x ∈ {0, 1}n, define f(x) := β(x). Consider an FE scheme FE where
Encrypt(x) is simply a public-key encryption (PKE) of x, and the secret key for f is the secret
key of the PKE scheme. (Decrypt first runs the decryption algorithm of PKE to obtain x,
and then outputs β(x).) In the indistinguishability game, if the adversary doesn’t ask for any
key, then clearly he cannot distinguish. On the other hand, if he does request a key for f , he
can only send identical messages to the challenger (β is a permutation), and therefore has
no advantage. Hence, FE is secure under the standard indistinguishability based security
definition.

On the other hand, if we transform FE to a scheme (O, E) in the schemata framework, we
show that the latter is not secure. Consider a Test algorithm which on input a bit b, chooses
an n-bit string x uniformly at random, uploads message agent x and sends b⊕ h(x) to the
User. It also uploads a function agent corresponding to f . Thus, the ideal user sees β(x) and
b⊕ h(x). Clearly, in the ideal world a PPT adversary cannot distinguish between Test(0) and
Test(1), since doing so would imply guessing the hard-core bit. However, in the real world
distinguishing between Test(0) and Test(1) is trivial because decryption reveals x.

Finally, one can see that if Ouser simply outputs β(x) on input x, then we get a secure
IND-PRE scheme.

E.4 Constructions for Function Hiding FE

E.4.1 Function Hiding FE for Inner-Product from Generic Group Schema

Lemma 5. Σfh-fe(IP) reduces to Σbgg.

44

Proof. As mentioned earlier, our construction follows that of [56]. To formally define this
as a reduction, i.e., a scheme (O, E)Σbgg, we need to translate the use of generic groups in
that construction to fit the interface of B[Σbgg]. Note that unlike in the generic group model,
B[Σbgg] does not send any handles to the scheme’s O algorithm. Instead, O will work with a
concrete group. Let Ŝ denote the construction S, but instantiated with the concrete group Zq,
where q is the order of the (source and target) groups provided by Σbgg.18 Then, we define O
as follows:

• Encoding scheme O:

– Osetup: Run Ŝ.Setup and obtain (MPK,MSK), each of which is a vector of elements
in Zq. Create an agent for each group element in MPK, and send it to B[Σbgg]
(which will send a handle for it to the user). (If there were to be entries in MPK
which are not group elements, O sends them directly to the user.)

– Oauth: Given an agent Pf ∈ Pfh-fe
auth , extract f from Pf and let SKf = Ŝ.KeyGen(MSK, f).

For each group element in SKf , send it to B[Σbgg].

– Ouser: Given an agent Pm ∈ Pfh-fe
user , let CTm = Ŝ.Encrypt(MPK,m). Again, or each

group element in CTm, send it to B[Σbgg].

• Executer E: Given handles corresponding to a function agent SKf and handles cor-
responding to a message agent CTm, E invokes S.Decrypt with these handles. During
the execution, S will require access to the generic group operations, and at the end
will output a group element which is either the identity (in which case the predicate
evaluates to true) or not (in which case it evaluates to false).19 E will use access to
B[Σbgg] to carry out the group operations, and at the end carry out an equality check
to find out whether the final handle output by S.Decrypt encodes the identity or not.

Correctness follows from correctness of S. To define our simulator, we use the simulator
S.sim, which simulates the generic group oracle to a user. Our simulator is slightly simpler
compared to that for S: there, the simulator proactively checked if a group element for which a
handle is to be simulated would be equal to a group element for which a handle was previously
issued, and if so, used the handle again. This is because, in the generic group model, a
single group element has only one representation. In our case, the simulator will issue serial
numbers as handles (as B[Σbgg] would have done), and equality checks are carried out (using
information gathered from B[Σfe]) only to correctly respond to equality check requests made
by the user to B[Σbgg]. In all other respects, our simulator is the same as the simulator in the
generic group model. The proof that the simulation is good also follows the same argument
as there.

E.4.2 General Construction from Obfuscation

Lemma 6. If there exists an ∆-IND-PRE-secure scheme for Σobf, then there exists a ∆-
IND-PRE-secure scheme for Σfh-fe.

18Groups of different orders can also be handled, but for simplicity, we consider the source and target groups
to be of the same order.

19Though not the case with the construction in [56], a general algorithm in the generic group model may
check for identities by comparing handles, not just at the end, but at any point during its execution. In this
case, E should proactively check every handle it receives from B[Σbgg] against all previously received handles,
to see if they encode the same group element; if so, the newly received handle is replaced with the existing one.

45

Proof. Let Π∗ = (O∗, E∗) that be a ∆-IND-PRE-secure scheme for Σobf. Then we define a
scheme (O, E) for Σfh-fe as follows.

• Encoding scheme O:

– Osetup: Generate (VK,SK) as the verification key and signing key for a signature
scheme. Output VK as MPK.

– Oauth: Given an agent Pf ∈ Pfh-fe
auth , define an agent P ′f ∈ Pobf

user , which on input x

outputs f(x). Let c :=
(
O∗(P ′f)

)
and σ = SignSK(c). Send (c, σ) to User.

– Ouser: Given an agent Pm ∈ Pfh-fe
user , define an agent P ′′m,VK ∈ Pobf

user as follows: on
input (c, σ), check if VerifyVK(c, σ) holds, and halt otherwise; if the signature does
verify, invoke E∗ with handle c and input m, and output whatever E∗ outputs. Let
d = O∗(P ′′m,VK)). Send d to User.

• Executer E: Given handle (c, σ) corresponding to a function agent and a handle d
corresponding to a message agent, E invokes E∗ with handle d and input (c, σ). It
outputs what E∗ outputs.

The correctness of this construction is straightforward. To argue security, consider any
test Test = D ◦ c ◦ s ∈ ∆, such that Test is hiding w.r.t. Σfh-fe. Then, for any PPT adversary
Adv, we need to show that real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉. For this we
consider an intermediate hybrid variable, defined as follows. Let s̃(0, 1) indicate a modified
version of s, which when given two agents Pm0 , Pm1 in Pfh-fe

user , selects Pm0 , but when given
two agents Pf0 , Pf1 in Pfh-fe

auth , selects Pf1 . Then we claim that real〈Test0 | O | Adv〉 ≈
real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉. For simplicity, consider D which
only outputs a single pair of function agents (Pf0 , Pf1) and a single pair of message agents
(Pm0 , Pm1). (The general case is handled using a sequence of hybrids, in a standard way.)

To show the first approximate equality, consider a test Test′ and adversary Adv′ which work
as follows. Test′ internally simulates Test(0) and O with the following differences: when Osetup

outputs the signing key SK, Test′ forwards it to Adv′; when the two agents Pf0 , Pf1 are sent to s,
Test′(b) outputs Pfb to B[Σobf] (or O∗). Adv′, when it receives c from O∗, first signs it using SK
to obtain σ, and then passes on (c, σ) to an internal copy of Adv; otherwise, it lets Adv directly
interact with Test′. It can be seen that real〈Test′(0) | O∗ | Adv′〉 = real〈Test(0) | O | Adv〉
and real〈Test′(1) | O∗ | Adv′〉 = real〈D ◦ c ◦ s̃ | O | Adv〉. Further, Test′ ∈ ∆. Also, it is easy
to see that if Test′ is not hiding w.r.t. Σobf, then Test is not hiding w.r.t. Σfh-fe (because
User’s interface to Σfh-fe can be used to emulate its interface to Σobf). Thus, if Test is hiding
w.r.t. Σfh-fe, then real〈Test′(0) | O∗ | Adv′〉 ≈ real〈Test′(1) | O∗ | Adv′〉. This establishes
that real〈Test0 | O | Adv〉 ≈ real〈D ◦ c ◦ s̃ | O | Adv〉.

To show that real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉, we consider another test
Test′′. Now, Test′′ internally simulates Test(1) and O with the following differences: when
the two message agents Pm0 , Pm1 are sent to s, Test′′(b) sends (P ′′m0,VK

, P ′′m1,VK
) to Adv′′ and

outputs P ′′mb,VK
to B[Σobf] (or O∗), where P ′′mb,VK

was as defined in the description of Ouser.

Then, real〈Test′′(0) | O∗ | Adv〉 = real〈D ◦ c ◦ s̃ | O | Adv〉 and real〈Test′′(1) | O∗ | Adv〉 =
real〈Test(1) | O | Adv〉. Also, as before, Test′′ ∈ ∆. If Test′′ is hiding w.r.t. Σobf, then
we can conclude that real〈Test′′(0) | O∗ | Adv〉 ≈ real〈Test′′(1) | O∗ | Adv〉, and hence
real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉. Thus it only remains to show that
Test′′ is hiding w.r.t. Σobf. Firstly, by the security of the signature scheme, for any PPT

46

adversary User, w.h.p., it does not query Σobf with a handle and an input (c, σ) for a c that
was not produced by Test′′. Now, conditioned on this event, if User distinguishes Test′′(0)
and Test′′(1), this User can be turned into one that distinguishes between Test(0) and Test(1)
when interacting with Σfh-fe. Thus, since Test is hiding w.r.t. Σfh-fe, it follows that Test′′ is
hiding w.r.t. Σobf, as was required to be shown.

F Fully Homomorphic Encryption

Given a ∆det-IND-PRE secure scheme (O, E) for Σfhe, we show how to construct a semantically
secure FHE scheme Sfhe = (Setup,Encrypt,Decrypt,Eval). For a formal treatment of FHE,
see [38].

• Setup(1κ) : Run Osetup to obtain public key PK and secret key SK.

• Encrypt(x,PK) : Run Ouser((0, x),PK) to obtain a ciphertext CTx. Here 0 denotes that
x is a parameter for agent PMsg.

• Decrypt(CT,SK) : Let D ← Oauth(1,SK), where 1 denotes that the agent is PDec. Then
run a copy of E as follows: first feed it D and CT as messages from O, and obtain
handles hD and hm; then request it for a session execution with (hD,⊥) and (hm,⊥).
Return the output for the agent hD as reported by E .

• Eval(C,CT1,CT2, . . . ,CTn): Run a copy of E as follows: first feed it CT1,CT2, . . . ,CTn
as messages from O, and obtain handles h1, h2, . . . , hn. Then request E to run a session
with (h1, f), (h2,⊥), . . . , (hn,⊥). Output the ciphertext CT returned by E .

Correctness follows easily from construction. Compactness follows from the fact that the
size of string recorded for each handle by E is a priori bounded. We now show that Sfhe is
semantically secure. On the contrary, suppose there exists an adversary A who breaks the
semantic security of Sfhe. Consider the following Test(b): Upon receipt of inputs x0, x1 from
User, Test chooses xb and uploads it (as parameter for agent PMsg). This Test is clearly hiding
in the ideal world, because in the absence of a decryption agent, an adversary only obtains
handles from B[Σfhe]. Therefore, by IND-PRE security of (O, E), Test is also hiding w.r.t. O.

Now, consider an adversary Adv who runs A internally: first it forwards PK received
from Osetup to A; then it forwards A’s requests (x0, x1) to the challenger (in the semantic
security game) to Test; the outputs received from O are forwarded to A. Finally Adv outputs
A’s output bit. It is straightforward to see that the advantage Adv has in distinguishing
interaction with Test(0) and Test(1) is exactly the advantage A has in the semantic security
experiment.

G Property Preserving Encryption

G.1 Definitions

In this section, we formally define PPE and the standard notion of security for it [47].

47

Definition 12 (PPE scheme). A property preserving encryption scheme for a binary property
P :M×M→ {0, 1} is a tuple of four PPT algorithms defined as follows:

• Setup(1κ) takes as input the security parameter κ and outputs a secret key SK (and
some public parameters).

• Encrypt(m,SK) takes as input a message m ∈M and outputs a ciphertext CT.

• Decrypt(CT, SK) takes as input a ciphertext CT and outputs a message m ∈M.

• Test(CT1,CT2) takes as input two ciphertexts CT1 and CT2 and outputs a bit b.

We require that for all messages m,m1,m2 ∈M, the following two conditions hold:

• Decryption: Pr[SK← Setup(1κ);Decrypt(Encrypt(m,SK), SK) 6= m] = negl(κ), and

• Property testing: Pr[SK← Setup(1κ);Test(Encrypt(m1,SK),Encrypt(m2, SK)) 6= P (m1,m2)] =
negl(κ),

where the probability is taken over the random choices of the four algorithms.

Security. In [47], the authors show that there exists a hierarchy of meaningful indistinguisha-
bility based security notions for PPE, which does not collapse unlike other familiar settings.
At the top of the hierarchy lies Left-or-Right (LoR) security, a notion that is similar to full
security in symmetric key functional encryption.

LoR security. Let ΠP = (Setup,Encrypt,Decrypt,Test) be a PPE scheme for a binary property

P . Consider an adversary A in the security game exp
(b)
LoR,A(1κ) described below, for b ∈ {0, 1}.

The Setup algorithm is run to obtain a secret key SK and some public parameters. A is given the
parameters, and access to an oracle Ob(SK, ·, ·), such that Ob(SK,m0,m1) = Encrypt(mb,SK).

Let Q = {(m(0)
1 ,m

(1)
1), (m

(0)
2 ,m

(1)
2), . . . , (m

(0)
` ,m

(1)
`)} denote the queries made by A to the

oracle. At the end of the experiment, A produces an output bit; let this be the output of the
experiment. We call A admissible if for every two (not necessarily distinct) pairs of messages

(m
(0)
i ,m

(1)
i), (m

(0)
j ,m

(1)
j) ∈ Q, P (m

(0)
i ,m

(0)
j) = P (m

(1)
i ,m

(1)
j). We also refer to such messages

as admissible.

Definition 13 (LoR security). The scheme ΠP is an LoR secure PPE scheme for a property
P if for all PPT admissible adversaries A, the advantage of A defined as below is negligible
in the security parameter κ:

AdvLoR,A(κ) :=
∣∣Pr[exp

(0)
LoR,A(1κ) = 1]− Pr[exp

(1)
LoR,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of ΠP and that of A.

G.2 PPE as a schema

In this section, we present a cryptographic agent schema ΣPPE for property preserving
encryption(PPE).

Let P :M×M→ {0, 1} be a (polynomial-time computable) binary property over the
message space M. The schema ΣPPE = (PPPE

auth , ∅), where PPPE
auth has two kinds of agents,

denoted by PMsg and PDec, is defined as follows:

48

• PMsg for a message m ∈M is specified as follows: it has a message m on its parameter
tape. When invoked with a command compute on its input tape, it reads a message m′

from its communication tape, computes P (m,m′), outputs it and halts. When invoked
with a command send, it sends its message m to the first agent in the session.

• PDec reads from its communication tape a single message and outputs it.

G.3 Equivalence

In this section, we show that ∆det-IND-PRE and LoR security notions are equivalent for PPE.

Theorem 7. A ∆det-IND-PRE secure scheme for ΣPPE exists if and only if an LoR secure
scheme for PPE exists.

We first prove the only if side of the theorem. Let (O, E) be a ∆det-IND-PRE-secure scheme
for ΣPPE, where O = (Osetup,Oauth,Ouser). We construct a PPE scheme SPPE using (O, E) as
follows.

• Setup(1κ): Run Osetup to obtain the public parameters MPK and secret key MSK.

• Encrypt(m,MSK): Output CTm ← Oauth((0,m),MSK) where the first bit 0 indicates
that the parameter m is for the agent PMsg.

• Decrypt(CT,MSK): Let D ← Oauth(1,MSK), where 1 denotes that the agent is PDec.
Then run a copy of E as follows: first feed it D and CT as messages from O, and obtain
handles hD and hm; then request it for a session execution with (hD,⊥) and (hm, send).
Return the output for the agent hD as reported by E .

• Test(CT1,CT2): Run a copy of E as follows: first feed it CT1 and CT2 as messages from
O, and obtain handles h1 and h2. Then request E to run a session with (h1, compute)
and (h2, send). Output the answer returned by E .

It is easy to see that the decryption and property testing properties of PPE are satisfied.
In order to show that Sfe is an LoR secure PPE scheme, we consider the following Test ∈ ∆det.
Let L be a list of pairs of messages, which is initially empty. Upon receipt of a pair (m0,m1)
from User, Test checks if for every (m′0,m

′
1) ∈ L, Test(m0,m

′
0) = Test(m1,m

′
1) and vice versa,

and Test(m0,m0) = Test(m1,m1). If the checks pass, Test uploads mb and adds (m0,m1) to
the list; otherwise this pair is ignored. (If Test receives a single message m from the User, it
is treated as a pair (m,m).) Now suppose there is an adversary A who breaks the security
of SPPE. Then we can show that the above Test is hiding w.r.t. ΣPPE but not w.r.t. O. The
proof is very similar to the one given for Lemma 3, so we omit it here.

Next, we prove the if side of the theorem. Let SPPE = (Setup,Encrypt,Decrypt,Test) be an
LoR secure PPE scheme. We construct a scheme (O, E) in the cryptographic agents framework
as follows:

• Osetup(1
κ): Run Setup(1κ) to obtain (MPK,MSK).

• Oauth((b,m);MSK): If b = 0, output CT ← Encrypt(m,MSK), else output MSK itself.
(Recall that 0 denotes an agent in PMsg, while 1 denotes an agent in PDec.)

49

• E: When O sends a ciphertext CT, forward a handle h to the User and store (h,CT).
When O sends a key MSK, forward the handle hkey and store (hkey,MSK). When User
requests a session execution with (h1, compute) and (h2, send), retrieve the corresponding
ciphertexts CT1 and CT2, and return Test(CT1,CT2) to the User. On the other hand,
when User sends (hkey,⊥) and (h, send), retrieve the ciphertext CT corresponding to h,
and return Decrypt(CT,MSK) to the User.

We now show that if (O, E) is not a secure scheme then neither is SPPE. That is, if there
exists a Test ∈ ∆det such that Test is hiding w.r.t. ΣPPE but not w.r.t. O, then there exists
an adversary A which can break the security of SPPE in the LoR security game. Recall that
Test(b) can be represented as D ◦ cs(b), where D is a deterministic party. It is clear that if D
ever uploads a key agent, then every pair of messages (m0,m1) that it uploads must be such
that m0 = m1 (otherwise Test would not be hiding in the ideal world). Such a Test would
trivially be hiding in the real world. On the other hand, even if D never uploads a key agent,
it must always upload admissible pairs of messages (see definition of LoR security) to remain
hiding w.r.t. ΣPPE. Rest of the proof is similar to Lemma 3, and hence omitted.

50

	Introduction
	Preliminaries
	Defining Cryptographic Agents
	Reductions and Compositions
	Restricted Test Families: , * and det
	Generic Group Schema
	Obfuscation Schema
	Functional Encryption
	Functional Encryption without Function Hiding
	Function-Hiding Functional Encryption

	Fully Homomorphic Encryption
	On Bypassing Impossibilities
	Conclusions and Open Problems
	Related Work
	Composition and Reduction for family
	Obfuscation Schema is Complete
	Construction for Non-Interactive Agents
	General Construction for Interactive Agents

	Obfuscation
	Indistinguishability and Differing Inputs Obfuscation
	Relation to existing notions of Obfuscation
	Adaptive Differing Inputs Obfuscation
	Impossibility of IND-PRE obfuscation for general functionalities

	Functional Encryption
	Traditional Definition of Functional Encryption
	-reduction from Functional Encryption to Obfuscation
	Indistinguishability Secure FE vs. Secure Schemes for FE Schema
	Constructions for Function Hiding FE
	Function Hiding FE for Inner-Product from Generic Group Schema
	General Construction from Obfuscation

	Fully Homomorphic Encryption
	Property Preserving Encryption
	Definitions
	PPE as a schema
	Equivalence

