
Sealing the Leak on classical NTRU signatures

C. Aguilar Melchor1, X. Boyen2, J.C. Deneuville1, P. Gaborit1

1 XLIM-DMI, Université de Limoges, France
2 QUT, Brisbane, Autralia

Abstract. Initial attempts to obtain lattice based signatures were closely related to reducing a vector modulo
the fundamental parallelepiped of a secret basis (like GGH [9], or NTRUSign [12]). This approach leaked some
information on the secret, namely the shape of the parallelepiped, which has been exploited on practical
attacks [24]. NTRUSign was an extremely efficient scheme, and thus there has been a noticeable interest on
developing countermeasures to the attacks, but with little success [6].
In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized version of Babai’s nearest plane algorithm
such that the distribution of a reduced vector modulo a secret parallelepiped only depended on the size of
the base used. Using this algorithm and generating large, close to uniform, public keys they managed to get
provably secure GGH-like lattice-based signatures. Recently, Stehlé and Steinfeld obtained a provably secure
scheme very close to NTRUSign [26] (from a theoretical point of view).
In this paper we present an alternative approach to seal the leak of NTRUSign. Instead of modifying the lattices
and algorithms used, we do a classic leaky NTRUSign signature and hide it with gaussian noise using techniques
present in Lyubashevky’s signatures. Our main contributions are thus a set of strong NTRUSign parameters,
obtained by taking into account latest known attacks against the scheme, a statistical way to hide the leaky
NTRU signature so that this particular instantiation of CVP-based signature scheme becomes zero-knowledge
and secure against forgeries, based on the worst-case hardness of the Õ(N1.5)-Shortest Independent Vector
Problem over NTRU lattices. Finally, we give a set of concrete parameters to gauge the efficiency of the obtained
signature scheme.

Keywords: Lattice-based Cryptography, Digital Signatures, NTRUSign, Provable Security, SIS

1 Introduction

Lattice based cryptography has met growing interest since the seminal work of Ajtai [1] which introduced
the so called worst-case to average-case reductions. Based upon this work, a long list of cryptographic
primitives such as One Way Functions, Collision-Resistant Hash Functions, Digital Signatures, or Identi-
fication schemes have been revisited to provide more confidence about security. The most efficient known
digital signature scheme provably secure is BLISS [5] 1 which leads to signatures of about 5kb 2 for a
security level of 128 bits.

Digital signatures have shown great promise since 1997, when was introduced GGH [9]. The most
famous particular instantiation of GGH is NTRUSign, which uses convolution modular lattices. The par-
ticularity of those schemes is their lack of strong worst-case to average-case security reductions, but they
offer amazing performances regarding classical schemes based on number theory or discrete logarithm.
For instance, for a 128 bit security level, a NTRUSign signature would be only 1784 bits long (see [11]).

NTRUSign, first known as NSS [13], was first introduced at EuroCrypt’01 by Hoffstein, Pipher
and Silverman. It was amazingly fast and benefited from small keys due to the cyclic structure of the
underlying convolution modular lattices that were used. The authors were aware that their scheme was
vulnerable to transcript attacks i.e. wasn’t zero-knowledge, but unfortunately they overestimated its
length, and Nguyen and Regev succeeded in breaking the scheme in 2006 [24] by a nice gradient descent
over the even moment polynomials. Initially, their attack required about 100.000 NTRU signatures to
recover the hidden parallelepiped that reveals the secret basis, but still due to the cyclic structure of
convolution modular lattices, they were able to shrink this threshold to about only 400 signatures for a
claimed security level of 80 bits. In order to tackle this issue, several heuristical countermeasures were
proposed such as the use of perturbations [12] and the deformation of the fundamental parallelepiped
[15], but none of them were capable to resist to the improved attack by Ducas and Nguyen [6].

1 which improves [19] with a better rejection sampling
2 for the space-optimized version, see Table 3 of [5] for more details

1.1 Our contribution

We revisit NTRUSign in order to provide it with a zero-knowledge proof. Our technique is inspired from
Lyubashevsky’s scheme [19], where the secret key S consists of a matrix in {−d, . . . , d}m×k, the message
is hashed to a vector c ← {−1, 0, 1}k such that ‖c‖1 ≤ κ, and the signature consists of Sc shifted by

a mask y
$← Dm

σ where Dm
σ represents the discrete gaussian distribution in dimension m with standard

deviation σ.

Instead of hiding Sc, we get a leaky signature from NTRUSign, and then use this signature as the
secret and hide it with a well chosen y. The critical technicality resides in the choice of the dimension
N and the standard deviation σ : if it was chosen too small, the secret isn’t properly hidden, and our
modification doesn’t seal any leak, if σ is too big, so will be our signatures and our scheme loses in
efficiency and practicality.

We note that unlike other provably secure signature schemes such as GPV [8] or [25], we do not
modify the initial NTRU signature scheme, except by chosing public parameters more conservatively, and
thus keep its inherent size and computational efficiency. Of course masking the signature in a second step
comes at a price, but we manage to get signature of size ≈ 10kb together with public and secret keys
respectively around 7000 and 1500 kb.

We choose to hide NTRU signatures with a noise based on the assumption that the leak in the signatures
is exploitable but that there are no structural attacks against the public NTRU key (and thus we suppose
that sealing the leak is enough to secure the scheme). This is based on the observation that the research
community has published no noticeable structural attacks on NTRU lattices in the last decade and that
problems such as SIS do not seem to be easier than in random lattices (if we take into account the gap
induced by the small secret key).

1.2 Organization of the paper

In section 2, we present the basic elements and notations used in NTRUSign and Lyubashevsky’s signature
scheme, then describe these schemes respectively in sections 3 and 4. Finally, we present the scheme we
propose in section 5 along with its security proofs and sets of parameters.

2 Background and Problems

In this section, we introduce basics of lattice-based cryptography. Nevertheless, due to space restriction,
some of them will be omitted and we refer the reader to [23] for further details and proofs.

2.1 Notation

Sets. Throughout this paper, Z will denote the set of integer numbers, and for q ∈ Z, Zq will denote
the set of integers taken modulo q, in the set

[
− q

2 ; q2
)
. We will make heavy use of the notation Rq to

represent Zq[X]/(XN − 1), the ring of polynomials of degree less than N , modulo q and XN − 1. Vectors
and/or polynomials will be represented with bold-face letters, for any x ∈ Rq, we will use either its

polynomial notation x =
∑N−1

i=0 xi . X
i or its vector representation x = (x0, x1, . . . , xN−1)

t. Matrices such
as the public key will be represented with bold-face capital letters A ∈ ZN×2Nq .

In section 3, the NTRUSign secret polynomials f ,g will be sampled from a particular subset T (d) of
Rq, which consists of polynomials f of degree strictly less that N , with exactly d + 1 coefficients equal
to 1, d equal to −1 and the N − 2d− 1 others equal to 0. All logarithms will be based 2 unless explicitly
mentioned.

Norms. For any s, t ∈ Rq, we will make use of several norms :

– The centered norm : ‖s‖2c =
∑N−1

i=0 s2i − 1
N

(∑N−1
i=0 si

)2
= N .Variance(s)

– The balanced norm : ‖(s, t)‖2ν = ‖s‖2c + ν2 . ‖t‖2c

2

– The euclidian norm : ‖s‖22 =
∑N−1

i=0 s2i , or just ‖s‖2 for simplicity as this norm is the most standard
in lattice-based cryptography

The first and second norms are somehow typical to NTRU, and don’t give many intuition of the actual
length of a vector, in the common (euclidian) sense. Therefore, we describe a method to experimentally
translate a balanced norm into a euclidian one with arbitrary desired probability. As ‖s‖c = σs

√
N where

σs is the standard deviation of the sis, so that each si is approximately σs, and by lemma 2.3.2 we have

‖s‖2 ≤ α . σs
√
N with probability 1− 2−k

where k is the security parameter and the corresponding α can be read in table 1. Even if the sis are
not necessarly distributed according to a gaussian, it is possible to lower ‖s‖2 with the same probability
using tighter rejection sampling. We use this fact for size-optimizations in parameters given in table 3.

2.2 Digital Signatures

For completeness, we recall the definition of a Digital Signature scheme.

Definition 2.2.1 (Signature Scheme) A signature scheme is composed of 3 polynomial-time algo-
rithms (K,S, V) :

1. KeyGen K : which given a security parameter k as input returns a couple of keys (pk, sk)

2. Sign S : which given the secret key sk and a message µ returns a signature s of this message

3. Verify V : which given the public key pk, the signature s and the message µ, ensures that this
signature was indeed generated using sk

such that for any (pk, sk)← K(k), Pr[V (pk, µ, S(sk, µ)) = 1] = 1.

There are two ways to attack a signature scheme, either try to create a signature from other couples
(µ, s) and the public key pk, or recover the secret key sk directly from pk and eventually some signed
messages. The former idea leads to the following definition :

Definition 2.2.2 (Forgery) A signature scheme (K,S, V) is said to be secure against forgeries, if for
any polynomial-time adversary A who has access to pk and couples {(µ1, s1), . . . , (µn, sn)}, A only has
a negligible probability (depending on the security parameter k) to create a couple (µ 6= µi, s

′) such that
V (pk, µ, s′) = 1, that is to say a valid signature.

2.3 Discrete Normal Distribution

In this section, we define the Discrete Normal Distribution and describe some of its desirable properties,
that fit particularly well with lattices.

Definition 2.3.1 (Continuous Normal Distribution) The Continuous Normal Distribution over R2N

centered at v with standard deviation σ is defined by ρ2Nv,σ(x) = (1
σ
√
2π

)2N . exp(−‖x−v‖
2
2

2σ2).

In order to make the Normal Distribution fitting with lattices and obtain a probability function, we
need to scale this distribution by the lattice quantity ρ2N0,σ(Z2N) =

∑
x∈Z2N ρ2N0,σ(x).

Definition 2.3.2 (Discrete Normal Distribution) The Discrete Normal Distribution over Z2N cen-
tered at v with standard deviation σ is defined by D2N

v,σ(x) = ρ2Nv,σ(x)/ρ2N0,σ(Z2N).

The next lemma gives us an idea of how big the standard deviation must be to ensure that the
inner product of two vectors doesn’t overflow a certain amount. This lemma is crucial to determine our
signature size in table 3 with overwhelming probability.

Lemma 2.3.1 ([19]) ∀v ∈ R2N ,∀σ, r > 0, we have Pr
[
| 〈x,v〉 | > r; x

$← D2N
σ

]
≤ 2e

− r2

2‖v‖2σ2 .

3

Optimally, we will set r = α . ‖v‖σ. Table 1 shows how big α should be to ensure k bits of security.
We also need a few more material to prove that our NTRU signature will be correctly hidden by our mask.
This material is given by the following lemma.

Lemma 2.3.2 ([19])

1. ∀α > 0,Pr
[
|x| > ασ;x

$← D1
σ

]
≤ 2e−

α2

2

2. ∀η ≥ 1,Pr
[
‖x‖ > ησ

√
2N ; x

$← D2N
σ

]
< η2NeN(1−η2))

3. ∀x ∈ Z2N and σ ≥ 3√
2π

, we have D2N
σ (x) ≤ 2−2N

Security parameter k 80 100 112 128 160

Gap factor α 11 12 13 14 15

Table 1: α = d
√

2(k + 1)ln(2) e as a function of the security level k

For our purposes, as the mask y is sampled from a Discrete Normal Distribution, we might have to
re-sample several times before obtaining a valid signature, but still, we want our signature procedure
to terminate, in a reasonable (polynomial) time. This is ensured by the next lemma, whose proof is
essentially detailed in [19] for a security level of k = 100 bits. We extend the proof of this lemma (in
appendix A.1) to make it fitting better with different security levels.

Lemma 2.3.3 ([19] extended) For any v ∈ Z2N and σ = ω(‖v‖2
√

log2(2N)), we have :

Pr
[
D2N
σ (x)/D2N

v,σ(x) = O(1); x
$← D2N

σ

]
= 1− 2−ω(log2(2N))

and more concretely, ∀v ∈ Z2N , if σ = α‖v‖ for some positive α, then

Pr
[
D2N
σ (x)/D2N

v,σ(x) < e1+1/(2α2); x
$← D2N

σ

]
> 1− 2−k

This lemma ensures us that Lyubashevsky’s layer of the signing procedure will be called at most
M = e1+1/(2α2) times with probability at least 1 − 2−k. Keeping this repetition rate down is of major
importance especially as this layer involves a NTRUSign procedure which is itself also a loop. In table
3, we provide two versions of parameters for each security level. In the first one, the NTRUSign part
is generated in only one round with overwhelming probability, before applying the rejection step with
M ≈ 2.8, leading to a speed-optimized version. In the second one, we allow the generation of the NTRU

signature to take at most 5 rounds whilst reducing its norm. This implies more rejection steps (M ≈ 7.5)
but allows us to shrink the signature sizes by approximately 15%.

To prove the security of our scheme, we also need the following rejection sampling lemma, which will
be used in the proof of theorem 2.3.5 that will help us getting our security reduction to SIS.

Lemma 2.3.4 ([19]) For any set V , and probability distributions h : V → R and f : Z2N → R, if
gv : Z2N → R is a family of probability distributions indexed by v ∈ V such that ∃M ∈ R / ∀v ∈
V, Pr[Mgv(z) ≥ f(z); z

$← f] ≥ 1− ε then the outputs of algorithms A and F

Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)

3: output (z, v) with probability 1/M

are within statistical distance ε/M .

4

The next theorem is a direct consequence of lemmas 2.3.3 and 2.3.4 by replacing V by the subset of
Z2N of vector v of length at most T , f by D2N

σ and gv by D2N
v,σ.

Theorem 2.3.5 ([19]) Let V =
{
v ∈ Z2N ; ‖v‖ ≤ T

}
, σ = ω(T

√
log 2N) ∈ R and h : V → R a prob-

ability distribution. Then ∃M = O(1) such that distributions of algorithms A and F below are within

statistical distance 2−ω(log 2N)

M . Moreover, A outputs something with probability at least 1−2−ω(log 2N)

M

Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z,v) with probability min
(

f(z)
Mgv(z)

, 1
)

3: output (z,v) with probability 1/M

2.4 Average-Case SIS Problems

Problems. The last part of this background section describes the main average-case lattice problem
we will base our signature scheme upon, namely the Short Integer Solution (SIS) Problem, which is a
least as hard as the worst-case of Shortest Independent Vector Problem (SIVP) [1] up to a polynomial
approximation factor.

Definition 2.4.1 (`2-SISq,N,2N,β problem) For any A ∈ ZN×2Nq , the `2-SISq,N,2N,β problem consists

in finding a vector v ∈ Z2N
q \ {0} such that Av = 0 and ‖v‖2 ≤ β.

Relations between parameters q,N and β will be discussed later in this section as they condition the
length of the shortest expected vector, but we can already mention that for a `2-SISq,N,2N,β solution to
exist, we need to set β ≥

√
2Nq.

Definition 2.4.2 (SISq,N,2N,d distribution) Given a matrix A ∈ ZN×2Nq , and a random v ∈ Z2N
q ,

output (A,Av mod q).

Definition 2.4.3 (Search SISq,N,2N,d) Given (A, t) ∈ ZN×2Nq ×ZNq , find v ∈ {−d, . . . , 0, . . . , d}2N such
that Av = t.

Definition 2.4.4 (Decisional SISq,N,2N,d) Given (A, t) ∈ ZN×2Nq ×ZNq , decide whether it comes from

the SISq,N,2N,d distribution or the uniform distribution over ZN×2Nq ×ZNq with non-negligible advantage.

Relations between these problems. We now recall existing relations betweens the problems described
above, together with relationships between their parameters which somehow strengthen or weaken these
problems. Fisrt, it is rather intuitive that the smaller d, the harder the problem, but this remark doesn’t
take the modulus q into account. We can see the matrix multiplication by A ∈ ZN×2Nq as a linear map

whose domain is Z2N
q (of size q2N) and range is ZNq (of size qN). So by constraining the domain to Z2N

d ,
we need d to be of order

√
q for domain and range to be in one-to-one correspondence (even if it is not

a sufficient condition). As a consequence, when d� √q there will be only one v ∈ {−d, . . . , 0, . . . , d}2N
satisfying Av = t with high probability, which makes it easier to distinguish between the SISq,N,2N,d
distribution and the uniform one. On the other hand, increasing d far beyond

√
q leaves room for multiple

solutions to the Search SISq,N,2N,d Problem with high probability. Therefore, we can reasonably expect
the hardest SISq,N,2N,d instances to rely where d ≈ √q.

Besides relationships between those parameters, there are reductions from some of these problems
to others. For instance, as it is often the case between search and decisional problems, one can build a
distinguisher from an oracle solving Decisional SISq,N,2N,d to solve the search version, and that is what
the following theorem states :

Theorem 2.4.6 ([16, 21]) For any d ∈ O(N), there is a polynomial-time reduction from solving Search
SISq,N,2N,d to solving Decisional SISq,N,2N,d.

5

Actually, the best (known) way to solve the search version of SIS appears to be solving the decisional
version. However, the next lemma gives us confidence about the hardness of the decisional SIS problem
when the solution is allowed to be larger and larger, which translates the fact that the SIS distribution
comes closer and closer to the uniform distribution.

Lemma 2.4.7 ([19]) For any α ≥ 0 such that gcd(2α + 1, q) = 1, there is a polynomial-time reduction
from solving Decisional SISq,N,2N,d to solving Decisional SISq,N,2N,(2α+1)d+α.

As mentioned in [23], when the dimension equals twice the rank (m = 2N), and above all if β is small
enough, the actual best known way to solve Decisional SISq,N,2N,d is to solve the `2-SISq,N,2N,β problem.

Lemma 2.4.8 ([23]) If 4dβ ≤ q, there is a polynomial-time reduction from solving Decisional SISq,N,2N,d
to solving `2-SISq,N,2N,β.

As a consequence, it has been shown in [22, 19] that for `2-SISq,N,2N,β to be hard, one has to ensure
that the following inequality is satisfied for any desired security level k :

2β

√
N . d(d+ 1)

3
>
q

π

√
k . ln(2) (1)

This lemma already gives us a first restriction for setting the parameters. Indeed, by rewriting the

above inequality, we have 4 .
(
dβ
q

)2
. N(d+1)π2

3 ln(2) > k, and as 4π2

3 ln(2) ≈ 42 and 4dβ
q ≤ 1, this condition means

that N .(d + 1) is greater than k by some multiplicative gap. We now discuss about another kind of
restriction due to the expected length of “the” shortest vector in a given convolution modular lattice (i.e
Gaussian Heuristic) relatively to lattice basis reduction techniques.

Since its introduction in 1982 by Lenstra, Lenstra and Lovász [17] with the LLL algorithm, lattice
reduction has known great applications and generalizations. Among all those techniques lives a perpetual
trade-off between the running time of the reduction algorithm and the quality of the (eventual) output,
which is gauged by the Hermit Factor δ. This factor plays a crucial role in the hardness of the `2-
SISq,N,2N,β problem in the sense that lattice reduction algorithms can find vectors v ∈ Z2N

q such that

Av = 0 and ‖v‖2 ≤ δ2N
√
q [7]. Even if δ ≈ 1.007 seems to be a lower bound for reasonable future

[4], deepest explorations on this factor have been made in [18], and more precise approximations have
been extrapolated for different security levels. Parameter δ in table 4 has been set sticking to these
extrapolations.

Further analysis led Micciancio and Regev [23] to the conclusion that the SIS problem does not become
that harder by increasing the number of columns. Actually, they show that one can find a lattice vector
v such that

‖v‖ ≈ min
(
q, 22

√
N log q log δ

)
(2)

and Av = 0 using only
√
N log q/ log δ of the 2N columns of the matrix A. This bound will gives us

another restriction when setting our parameters in section 5.

3 General overview of NTRUSign

In this section, we briefly describe the NTRUSign scheme. For a complete description of the scheme, we
refer the reader to [10, 11]. The basic set for NTRUSign is Rq = Zq/(XN−1) with addition and polynomial
multiplication modulo XN − 1, also known as convolution product and denoted by ∗ :

(f ∗ g) (X) =

N−1∑
k=0

 ∑
i+j≡k mod N

figi

Xk (3)

6

The public and private keys will be matrices P, and S defined by :

P =



1 0 . . . 0 h0 hN−1 . . . h1
0 1 . . . 0 h1 h0 . . . h2
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 hN−1 hN−2 . . . h0
0 0 0 0 q 0 . . . 0
0 0 0 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q


S =



f0 fN−1 . . . f1 F0 FN−1 . . . F1

f1 f0 . . . f2 F0 FN−1 . . . F1
...

...
. . .

...
...

...
. . .

...
fN−1 fN−2 . . . f0 FN−1 FN−2 . . . F0

g0 gN−1 . . . g1 G0 GN−1 . . . G1

g1 g0 . . . g2 G0 GN−1 . . . G1
...

...
. . .

...
...

...
. . .

...
gN−1 gN−2 . . . g0 GN−1 GN−2 . . . G0


(4)

where h = f−1 ∗ g mod q for f ,g ∈ Rq, F,G ∈ Rq are given by the keyGen algorithm 1, and verify
f ∗G− g ∗ F =q. As operations are performed modulo q and as (F,G) can be obtained efficiently from
(f ,g) using [12], we will denote P = (1 h) and S = (f g) for short. The NTRU lattice is :

Λq(A) = {(y1,y2)/y2 = y1 ∗ h mod q} (5)

Algorithms. We now recall the algorithms used in NTRUSign. More sophisticated versions of this
signature scheme have been elaborated, such as the one with perturbations [12] or the deformation of the
fundamental parallelepiped [15] to counter the attack of [24], but all these upgrades have been broken
with the later improved attack of [6]. Therefore, we will further use the basic instantiation of NTRUSign

for our scheme, which offers greater performances together with smaller keys. We will discuss the security
of our scheme in section 5.

Key generation and signing procedures are described respectively in algorithms 1 and 2. The NTRU

signature s ∈ Rq is a simple Babäı’s round-off [2] of the target (0,m) using the secret key sk, where
m = H(µ) is the hash of the message µ to be signed by H : {0, 1}∗ → Rq. In order to process this
round-off, for any x ∈ R we will denote by bxe the nearest integer to x so that {x} = x− bxe ∈ (−1

2 ,
1
2].

By extension, for any x ∈ Rq, {x} will denote the previous operation applied to every xi. Due to the
particular structure of the NTRU lattice and to the fact that the NTRU signature is a lattice vector, giving
s as the signature suffices to reconstruct the right part using the public key. This trick permits to save
half of the space needed to represent the NTRU signature.

Polynomials F and G in algorithm 1 can be obtained efficiently using the technique described in
[12], but as we are using the transpose NTRU lattice, those polynomials are not even used for signing nor
verifying the signature. So in the case of a constrained environment, one can just skip this computation.
Nevertheless, F and G play a role in the size of the error when rounding-off the target. The technique of

[12] permits to find those polynomials in such a way that ‖F‖ ≈ ‖G‖ ≈
√

N
12‖f‖ so that the error when

signing using sk is of size approximately (
√

N
6 + ν N

6
√
2
)‖f‖. As a comparison, a invalid signer trying to

sign using pk instead of sk would generate an error of magnitude ν
√

N
12q.

k N d q ν N ωcmb c ωlk ωfrg γ ωlf R L

100 431 34 210 0.16686 141 167 3.714 187 172 0.0516 415 131 180

112 479 42 210 0.15828 165 200 4.232 209 137 0.0558 470 157 200

128 541 61 211 0.14894 211 269 3.711 239 329 0.0460 541 207 226

160 617 57 211 0.13946 217 269 3.709 272 360 0.0431 627 210 258

Table 2: New NTRUSign parameters, ρ = 1, no perturbation

Parameters. Setting concrete NTRUSign parameters for a given security level seems to be an unclear
task to perform. Nevertheless, the authors of [10] provide a generic algorithm to generate such parameters,

7

Algorithm 1: KeyGen(N , q, d, N , ν)

Input: N , q, d, N , and ν
Output: pk = h = f−1 ∗ g mod q and sk = f ,g
begin

repeat

f
$← T (d), g

$← T (d);
until f is invertible in Rq;
h = g ∗ f−1;

return pk =

(
1 h
0 q

)
, sk =

(
f F
g G

)
;

Algorithm 2: NTRUSign(pk, sk, µ)

Input: Public and private keys, and µ ∈ {0, 1}∗ the
message to sign

Output: s the NTRU signature
begin

cpt← 0;
repeat

cpt← cpt+ 1;
m← H(µ, cpt) ∈ Rq;

(x,y) = (0,m) .
(
G −F
−g f

)
/q;

s = −{x} ∗ f − {y} ∗ g;

until ‖(s, s ∗ h−m)‖ν ≤ N ;
return (s, cpt);

Algorithm 3: Verify(pk = h, s, cpt, µ)

Input: Public key pk, the signature s, and the message µ ∈ {0, 1}∗
Output: true if and only if s is a valid signature of µ
begin

m = H(µ, cpt);
if ‖(s, s ∗ h−m)‖ν ≤ N then

return true;

else
return false;

given the security parameter k, the signing tolerance ρ 3, and an upper bound Nmax on the degree of the
polynomials f and g. Even if this algorithm doesn’t take into account best known attacks, it can provide
one with a hint of how the parameters should look like, relatively to one another. Therefore we will use
it to get N , q, d, N , and ν, and then check that best known attacks are out of range. We will not care
about the transcript length as the fix we propose hides the leaky part of the signature, and an adversary
would not learn anything more from issued signatures.

4 General overview of Lyubashevsky’s scheme

In this section, we recall briefly the signature scheme presented by Lyubashevsky at EuroCrypt’12,
and refer the reader to the original paper [19] for more details. The most efficient instantiations of this
scheme rely on the average-case hardness of two problems : the SISq,n,m,d decisional problem and the
`2-SISq,n,m,β problem, which are at least as hard as the worst-case of the O(n1.5)-SIVP [1].

As mentioned by the author, key sizes can be shrunk by a factor k using more structured matrices and
relying on the ring version of the SIS problem, but we will skip this detail in this section for simplicity. Pub-
lic and private keys are respectively uniformly random matrices A ∈ Zn×mq and S ∈ {−d, . . . , 0, . . . , d}m×k

and the signature process invokes a random oracle H : {0, 1}∗ →
{

v : v ∈ {0, 1}k , ‖v‖1 ≤ κ
}

. A signa-

ture (z, c) of a message µ corresponds to a combination of the secret key and the hash of this message,
shifted by a commitment value also used in the random oracle.

5 Description of our scheme

5.1 Putting the pieces together

Before exposing our scheme, we want to recall an important property over the NTRU lattice that we will
make use of. We denote :

Λ⊥q (P) =
{

(y1,y2)/(1 h) .(y1 y2)t = 0 mod q
}

=
{

(−h ∗ x mod q,x),x ∈ ZNq
}

(6)

3 if E is the expected size of a signature, the verifying process should fail for every signature whose size is greater than ρE .
Notice that the author also use one in [19], namely η. We will be tempted to set ρ = η in next sections.

8

Algorithm 4: KeyGen(n,m, k, q)

Input: n,m, k, q
Output: pk = (A,T) ∈ Zn×mq × Zn×kq and

sk = S ∈ Zm×kq

begin

S
$← {−d, . . . , 0, . . . , d}m×k;

A
$← Zn×mq ;

T← AS;
return pk = (A,T), sk = S;

Algorithm 5: Sign(pk, sk, µ)

Input: Public and private keys, and µ ∈ {0, 1}∗ the
message to sign

Output: (z, c) the signature
begin

y
$← Dm

σ ;
c← H(Ay, µ);
z← Sc + y;

return (z, c) with probability min
(

Dmσ (z)

M .Dm
Sc,σ

(z)
, 1
)

;

Algorithm 6: Verify(pk, (z, c), µ)

Input: Public key, message µ, and the signature (z, c) to check
Output: true if and only if (z, c) is a valid signature of µ
begin

if H(Az−Tc, µ) = c and ‖z‖ ≤ ησ
√
m then

return true;

else
return false;

Then one can see Λ⊥q (P) = q . Λq(P)∗, and Λq(P) = q . Λ⊥q (P)∗. If we borrow the notation from code-based

cryptography, if Λq(P) is generate by P = (1,h) then Λ⊥q (P) is generated by (h,−1).

As the key generation part of our scheme is exclusively constituted by the NTRUSign key generation
process, we use the algorithm described in [10] to get N , q, d, N , and ν, then invoke algorithm 1 for our
keyGen procedure, to get the public and private matrices P and S as depicted in algorithm 7.

To sign a message µ ∈ {0, 1}∗, we will need a regular random oracle H : {0, 1}∗ → Rq. To add some
randomness to our signature, the oracle’s input will be an element of Rq represented under a bit string
concatenated with our message µ. We then NTRUSign the oracle’s output to get our leaky sample, which
we shift by a mask (y1,y2) large enough to statistically hide this leak. Finally, we apply a rejection
sampling step to ensure that the overall signature follows the expected distribution.

Algorithm 7: KeyGen(N , q, d, N , and ν)

Input: N , q, d, N , and ν
Output: pk = h = g ∗ f−1 mod q and sk = f ,g
begin

repeat

f
$← T (d), g

$← T (d);
until f is invertible in Rq;
h = g ∗ f−1;
return P = (−h,1), S = (f ,g);

Algorithm 8: Sign(P,S, µ)

Input: Public and private keys, and µ ∈ {0, 1}∗ the
message to sign

Output: (x1,x2), e the signature
begin

y1
$← DN

σ , y2
$← DN

σ ;
e = H(P(y1,y2), µ) = H(y2 − h ∗ y1, µ);
(s, t) = NTRUSignS(0, e);
(x1,x2) = (0, e)− (s, t) + (y1,y2);

return (x1,x2), e with probability

min

(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
;

We insist on the fact that in the original scheme with perturbations, the aim was to sign the message
µ enough times so that the transcript an adversary could collect with couples of messages and signatures
is short enough to make all secret key recovery techniques fail. The main difference in our scheme consists
in hiding the leaky part with something larger so that it becomes indistinguishable, whether than sign it
again and again. In other words, the leaky part of NTRUSign plays the role of the secret key in [19].

9

Algorithm 9: Verify(P, (x1,x2), e, µ)

Input: Public key P, a signature (x1,x2), e, and a message µ
Output: true if and only if (x1,x2), e is a valid signature of µ
begin

if ‖(x1,x2)‖2 ≤ ησ
√

2N and H(P .(x1,x2)− e, µ) = e then
return true;

else
return false;

5.2 Sets of parameters

Hereafter is a set of parameters for our signature scheme, given different security levels. One interesting
aspect of those sets is that we had to raise q and N for our NTRUSign part to be secure, but due to the
small norm of our NTRU signature, this q is not raised as much as in [19]. This results in the nice property
of lowering key and signature sizes.

Security parameter (bits) k 100 100 112 112 128 128 160 160

Optimized for Size Speed Size Speed Size Speed Size Speed

N 431 431 479 479 541 541 617 617

d 34 34 42 42 61 61 57 57

log2(q) 16 16 16 16 16 16 16 16

η (lemma 2.3.2) 1.296 1.296 1.297 1.297 1.299 1.299 1.314 1.314

ν 0.16686 0.16686 0.15828 0.15828 0.14894 0.14894 0.13946 0.13946

N 109 139 128 165 160 213 165 218

α (lemma 2.3.1) 6 12 6.5 13 7 14 7.5 15

σ = ηαN 848 2162 1080 2783 1455 3874 1627 4297

M = e1+1/(2α2) (lemma 2.3.3) 7.492 2.728 7.477 2.726 7.465 2.725 7.455 2.724

approximate signature size (bits) ≈ 2N log2(ασ) 10700 12700 12300 14600 14500 17100 16800 19800

approximate pk size (bits) ≈ N log2 q 212.8 212.8 212.9 212.9 213.1 213.1 213.3 213.3

approximate sk size (bits) ≈ 2N log2(3) 210.4 210.4 210.6 210.6 210.7 210.7 210.9 210.9

Table 3: Parameters, signature and key sizes for our scheme, given the security level k

5.3 Security of our scheme

In this section, k will represent the security parameter, typically k = 80 for a “toy” security, k = 100
or 112 for a current security, and k = 128 to 160 for a “strong” security. Due to space restrictions, we
will only mention the different known kinds of attack the reader can find in the literature. For further
details, we refer to [11, 20, 6, 14] for the NTRUSign part, and to [19, 18, 23] for Lyubashevsky’s scheme.
Due to the hybridness of our scheme, potential attacks could be of three types, that we exposed in what
follows, before tackling them.

The first one consists in attacking the NTRU lattice by trying to find back the private key (f ,g) only
from the public key h = g ∗ f−1 (and eventually some signatures after Lyubashevsky’s layer). Even if
there is no theoretical proof on the intractability of this attack, there hasn’t been (to the best of our
knowledge) any efficient way to do so neither. Parameters given in table 3 have been chosen so that
someone succeeding in doing so would achieve a lattice reduction with better Hermit factors than those
described in 4 respectively to the security parameter k. Such a good algorithm could obviously be used to
solve worst-case of lattice problems on general convolution modular lattices. A second way to break our
signature scheme, still by finding out the secret key, could be trying to isolate the NTRU signature inside
our signature to find enough leaky parts to then proceed to a [6]-like attack. This issue is addressed by

10

Theorem 2.3.5. Finally, we show that if an adversary succeed in creating a forgery in polynomial-time,
then we can use this forgery to solve the SIS problem, which is the main theorem (5.3.1) of this section.

Regarding attacks against the NTRUSign, all parameters have been heighten so they ensure way more
than k bits of security. We are aware that some attacks might lower the security level [20, 7, 14, 6],
but also due to our lack of knowledge on how to benefit from the singular structure of NTRU lattices,
we take a conservative gap between claimed and effective security. Nevertheless, all parameters given in
table 2 were set in such a way that lattice reduction techniques are meant to fail, either by finding a
short vector too long, either by a computational complexity blow up. Also due to recent attacks such as
[14, 7, 6], the NTRUSign parameters presented in [11] don’t reach the claimed security. Therefore, we ran
the Baseline Parameter Generation Algorithm of [10], and integrated the most recent known attacks. As
one can notice, we intentionally took a “huge” degree N , and a big q for two reasons. It first gives more
confidence about the security of the underlying NTRU lattice, and it was also necessary for proofs to work
after applying Lyubashevsky’s layer to our scheme.

As far as we know, lattice-reduction over Λ⊥q (A) is the most efficient technique to solve random

instances of knapsack problems. Experiments in [7] led to the ability of finding a vector v ∈ Λ⊥q (A)

whose norm is at most ‖v‖2 ≤ δ2N .
√
q, for δ depending on the lattice-reduction algorithm which is

used (see below). Experiments from Micciancio and Regev [23] conducted to a minimum of δm . qn/m ≈
min(q, 22

√
N log2(q) log2(δ)) for m ≈

√
N log2(q)/ log2(δ).

In 2011, Lindner and Peikert [18] achieved to give an approximation of the best δ reachable for a
given security level k, using a conservative approximation on BKZ’s running time :

tBKZ(δ) = log2(TBKZ(δ)) = 1.8/ log2(δ)− 110 (7)

where TBKZ(δ) is the running time of BKZ in second, on their machine. So assuming one can achieve
230 operations per second on a “standard” computer, to determine δ given the security parameter k, we
have :

log2(δ) :=
1.8

log2(
TBKZ(δ)

230
) + 110

=
1.8

k − 30 + 110
=

1.8

k + 80
(8)

This equation gives us a way to get δ as a function of the security parameter k, see table 4. Similarly to
[19], in order to hide properly our leaky part (0, e)− (s, t), we will use Lemmas 2.3.1 and 2.3.2 to get a
proper α.

k 100 112 128 160

δ 1.00696 1.00652 1.00602 1.00521

α 12 13 14 15

Table 4: δ and α as a function of the security level k

Against forgeries. In this section, we give a short overview of the material that will be needed to base
our signature scheme upon the SIS problem over random NTRU lattices. This leads to a signature scheme
based on the worst-case hardness of the Õ(N1.5)-SIVP problem over general convolutional modular
lattices.

We now expose the core of the reduction, which allows us to base the security of our signature scheme
upon the `2-SISq,N,2N,β Problem of general NTRU lattices. Our main theorem will be proved by two lemmas,
mostly proved in [19], but revisited in appendix A in some of the details in order to fit best with our sets
of parameters.

Theorem 5.3.1 ([19] revisited) Assume there is polynomial-time forger F , which makes at most s
(resp. h) queries to the signing (resp. random) oracle, who breaks our signature scheme (with parameters
such those in Table 3), then there is a polynomial-time algorithm to solve the `2-SISq,N,2N,β Problem

for β = 2ησ
√

2N with probability ≈ δ2

h+s . Moreover, the signing algorithm 8 produces a signature with

11

Hybrid 1

Sign(P,S, µ)

1. y1
$← DN

σ , y2
$← DN

σ

2. e
$←Rq

3. (s, t) = NTRUSignS(0, e)
4. (x1,x2) = (0, e)− (s, t) + (y1,y2)

5. with probability min(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1) :

– Output (x1,x2), e
– Program H(P .(x1,x2)− e, µ) = e

Hybrid 2

Sign(P,S, µ)

1. e
$← Rq

2. (x1,x2)
$← D2N

σ

3. with probability 1/M :
– Output (x1,x2), e
– Program H(P .(x1,x2)− e, µ) = e

Fig. 1: Signing Hybrids

probability ≈ 1
M and the verifying algorithm 9 accepts the signature produced by an honest signer with

probability at least 1− 2−2N .

Proof. We begin the proof by showing that our signature algorithm 8 is statistically close (within distance

ε = s(h + s) . 2−N+1 + s . 2
−ω(log2 2N)

M by Lemma 5.3.2) to the one in Hybrid 2 in Figure 1. Given that
Hybrid 2 outputs something with probability 1/M , our signing algorithm will output something too
with probability (1 − ε)/M . Then by Lemma 5.3.3, we show that if a forger F succeeds in forging with
probability δ when the signing algorithm is replaced by the one in Hybrid 2, then we can use F to come
up with a non-zero lattice vector v such that ‖v‖ ≤ 2ησ

√
2N and Pv = 0 with probability at least(

δ − 2−k
) (

δ−2−k
h+s − 2−k

)
. ut

Lemma 5.3.2 ([19] revisited) Let D be a distinguisher who can query the random oracle H and either
the actual signing algorithm 8 or Hybrid 2 in Figure 1. If he makes h queries to H and s queries to
the signing algorithm that he has access to, then for all but a e−Ω(N) fraction of all possible matrices
P, his advantage of distinguishing the actual signing algorithm from the one in Hybrid 2 is at most

s(h+ s) . 2−N+1 + s . 2
−ω(log2 2N)

M .

Lemma 5.3.3 ([19] revisited) Suppose there exists a polynomial-time forger F who makes at most h
queries to the signer in Hybrid 2, s queries to the random oracle H, and succeeds in forging with probability

δ. Then there exists an algorithm of the same time-complexity as F that for a given P
$← ZN×2Nq finds a

non-zero v such that ‖v‖2 ≤ 2ησ
√

2N and Pv = 0 with probability at least(
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

Conclusion

In this work, we described a method for sealing NTRUSign signatures’ leak, based on the worst-case hard-
ness of standard problems over ideal lattices. This method differs from existing heuristic countermeasures
such the use of perturbations [12] or the deformation of the parallelepiped [15] - both broken [6] - but
also from provably secure modifications of NTRUSign like [26] which uses gaussian sampling techniques
in order to not disclose the secret basis [8]. Moreover, this technique seems to be sufficently generic to be
applied on GGH signatures. Details on this will be provided in a longer version of this paper.

We show that it is actually possible to use the rejection sampling technique from [19] instead of
gaussian sampling to achieve zero-knnowledgeness, while keeping most of NTRUSign’s efficiency. More-
over, parameter refinements allowed us to lower the rejection rate, leading to performance improvements
regarding [19], together with smaller signature and secret key sizes.

It might be possible to imrove the rejection sampling procedure even more using techniques such those
in [5], but it seems necessary to break the public key’s particular shape to do so. Therefore, it is still an
open question whether the resulting benefit in the signature size would worth the key sizes growth.

12

References

[1] Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, ACM (1996) 99–108

[2] Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem (shortened version).
In: Proceedings of the 2nd Symposium of Theoretical Aspects of Computer Science. STACS ’85,
London, UK, UK, Springer-Verlag (1985) 13–20

[3] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma.
In: Proceedings of the 13th ACM Conference on Computer and Communications Security. CCS ’06,
New York, NY, USA, ACM (2006) 390–399

[4] Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: ASIACRYPT. Volume 7073
of Lecture Notes in Computer Science., Springer (2011) 1–20

[5] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians.
In: CRYPTO (1). (2013) 40–56

[6] Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of ntrusign countermeasures.
In: Proceedings of the 18th international conference on The Theory and Application of Cryptology
and Information Security. ASIACRYPT’12, Berlin, Heidelberg, Springer-Verlag (2012) 433–450

[7] Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Proceedings of the theory and applica-
tions of cryptographic techniques 27th annual international conference on Advances in cryptology.
EUROCRYPT’08, Berlin, Heidelberg, Springer-Verlag (2008) 31–51

[8] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: STOC. (2008) 197–206

[9] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems.
In: Proceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’97, London, UK, UK, Springer-Verlag (1997) 112–131

[10] Hoffstein, J., Howgrave-graham, N., Pipher, J., Silverman, J.H., Whyte, W.: Performance Improve-
ments and a Baseline Parameter Generation Algorithm for NTRUSign. In: In Proc. of Workshop on
Mathematical Problems and Techniques in Cryptology. (2005) 99–126

[11] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based cryptography:
NTRUEncrypt and NTRUSign. Nguyen, Phong Q. (ed.) et al., The LLL algorithm. Survey and appli-
cations. Dordrecht: Springer. Information Security and Cryptography, 349-390 (2010). (2010)

[12] Hoffstein, J., Howgrave-graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: Digital
Signatures Using the NTRU Lattice. In: City University of Hong Kong, Springer-Verlag (2002)

[13] Hoffstein, J., Pipher, J., Silverman, J.H.: Nss: An ntru lattice-based signature scheme. In: EURO-
CRYPT. (2001) 211–228

[14] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against ntru. In:
CRYPTO. (2007) 150–169

[15] Hu, Y., Wang, B., He, W.: Ntrusign with a new perturbation. IEEE Trans. Inf. Theor. 54(7) (July
2008) 3216–3221

[16] Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. Journal
of Cryptology 9 (1996) 236–241

[17] Lenstra, H.j., Lenstra, A., Lovász, L.: Factoring polynomials with rational coefficients. Mathema-
tische Annalen 261 (1982) 515–534

[18] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-based Encryption. In: Proceedings
of the 11th international conference on Topics in cryptology: CT-RSA 2011. CT-RSA’11, Berlin,
Heidelberg, Springer-Verlag (2011) 319–339

[19] Lyubashevsky, V.: Lattice Signatures Without Trapdoors. In: Proceedings of the 31st Annual in-
ternational conference on Theory and Applications of Cryptographic Techniques. EUROCRYPT’12,
Berlin, Heidelberg, Springer-Verlag (2012) 738–755

[20] May, A., Silverman, J.H.: Dimension reduction methods for convolution modular lattices. In Sil-
verman, J.H., ed.: Cryptography and Lattices, International Conference, CaLC 2001, Providence,
RI, USA, March 29-30, 2001, Revised Papers. Volume 2146 of Lecture Notes in Computer Science.,
Springer (2001) 110–125

13

[21] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of lwe search-to-
decision reductions. In: Proceedings of the 31st annual conference on Advances in cryptology.
CRYPTO’11, Berlin, Heidelberg, Springer-Verlag (2011) 465–484

[22] Micciancio, D., Regev, O.: Worst-case to Average-case reductions based on Gaussian measure. SIAM
Journal on Computing 37(1) (2007) 267–302 Preliminary version in FOCS 2004.

[23] Micciancio, D., Regev, O.: Lattice-based Cryptography. In Bernstein, D., Buchmann, J., Dahmen,
E., eds.: Post-Quantum Cryptography. Springer Berlin Heidelberg (2009) 147–191

[24] Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures. In:
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Volume 4004 of Lecture Notes in Computer Science.,
Springer (2006) 271–288

[25] Stehlé, D., Steinfeld, R.: Making ntru as secure as worst-case problems over ideal lattices. In:
Proceedings of the 30th Annual international conference on Theory and applications of cryptographic
techniques: advances in cryptology. EUROCRYPT’11, Berlin, Heidelberg, Springer-Verlag (2011)
27–47

[26] Stehlé, D., Steinfeld, R.: Making ntruencrypt and ntrusign as secure as standard worst-case problems
over ideal lattices. Cryptology ePrint Archive, Report 2013/004 (2013) http://eprint.iacr.org/.

A Proofs

A.1 Section 2

Most of the lemmas of Section 2 are proved in [19]. We therefore refer the reader to the original paper
for these proofs. Nevertheless, we adapted lemma 2.3.3 to make bounds tigher with respect to different
security levels. We prove the corectness of our modification :

Proof.

D2N
σ (x)/D2N

v,σ(x) = ρ2Nσ (x)/ρ2Nv,σ(x) = exp

(
‖x− v‖2 − ‖x‖2

2σ2

)
= exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
By lemma 2.3.1 and using the fact that σ = ω(‖v‖

√
log(2N)), with probability 1− 2−ω(log(2N)) we have

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + ω(σ‖v‖

√
log(2N))

2σ2

)
= O(1).

And more precisely, by setting r = α‖v‖σ in lemma 2.3.1 with α determined by the security parameter
k in table 1, we obtain with probability 1− 2−k that

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + 2α‖v‖σ

2σ2

)
= exp

(
‖v‖2

2σ2
+
α‖v‖
σ

)
σ=α‖v‖

= e1+1/(2α2).

ut

A.2 Proofs of Section 5

We begin with the proof of lemma 5.3.2, which states that our actual signing algorithm 8 is indistin-
guishable from Hybrid 2 depicted in Figure 1, using Hybrid 1 as an intermediate step.

Proof. First, let us prove that D has an advantage of at most s(h+ s) . 2−N+1 of distinguishing between
the actual signature scheme 8 and Hybrid 1. The only difference between those algorithms is the output
of the random oracle H. It is chosen uniformly at random from Rq in Hybrid 1, rather than according to

H(Py, µ) for y
$← D2N

q in the real signing algorithm. Random oracle in Hybrid 1 is then programmed to
answer H(Px− e, µ) = H(Py, µ) without checking whether (Py, µ) was already queried or not. Since D

14

http://eprint.iacr.org/

calls H (resp. algorithm 8) h (resp s) times, at most s+h values of (Py, µ) will be set. We now bound the
probability of generating such an already set value. Using lemma 2.3.2, we can see that for any t ∈ ZNq ,

Pr[Py = t; y
$←D2N

q] = Pr[y1 = (t− h ∗ y0); y
$← D2N

q] ≤ max
t′∈ZNq

Pr[y1 = t′; y1
$← DN

q] ≤ 2−N .

Therefore, if Hybrid 1 is called s times with the probability of getting a collision begging less than
(s + h) . 2−N+1 for each call, then the probability of coming up with a collision after s calls is at most
s(s+ h) . 2−N+1.

We pursue by showing that the outputs of Hybrids 1 and 2 are statistically within distance 2−ω(log2 2N)

M .
As noticed in [19], this is an almost straightforward consequence of theorem 2.3.5 : assuming both Hybrids

output (x, (−s, e− t)) with respective probabilities min

(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
for Hybrid 1 and 1/M for

Hybrid 2, they respectively play the role of A and F (with T = ηαN). Even if both Hybrids only output
e, this does not increase the statistical distance because given e, one can generate (−s, e− t) such that
P(−s, e− t) = e simply by NTRUSigning (0, e), and this will have the exact same distribution as the
e in both Hybrids. Finally, as the signing oracle is called s times, the statistical distance between the

two Hybrids is at most s . 2
−ω(log2 2N)

M , or more concretely s . 2
−k

M . The claim in the lemma is obtained by
summing both distances. ut

We now prove lemma 5.3.3, which provides us with a `2-SISq,N,2N,β solver using a polynomial-time
successful forger.

Proof. Let t = h+ s be the number of calls to the random oracle H during F ’s attack. H can be either
queried by the forger or programmed by the signing algorithm when F asks for some message to be signed.
We pick random coins φ (resp. ψ) for the forger (resp. the signer), along with r1, . . . , rt ← Rq, which will
correspond to the H’s responses. We now consider a subroutine A, which on input (P,φ, ψ, r1, . . . , rt)
initializes F by giving it P and φ and run it. Each time F asks for a signature, A runs Hybrid 2 using the
signer’s coins ψ to get a signature, and H is programmed to answer with the first unused ri ∈ (r1, . . . , rt).
A keeps track of the answered ri in case F queries the same message to be signed again. Similarly, if F
queries directly the random oracle, H will answer with the first unused ri ∈ (r1, . . . , rt), unless the query
was already made. When F ends and eventually come up with an output (with probability δ), A simply
forwards F ’s output.

With probability δ, F succeeds in forging, coming up with (x, e) satisfying ‖x‖ ≤ ησ
√

2N and
H(Px−e, µ) = e for some message µ. If H was not queried nor programmed on some input w = Px−e,
then F has only a 1/|Rq| = q−N (i.e. negligible) chance of generating a e such that e = H(w, µ).
Therefore, F has at least a δ−q−N chance of succeeding in a forgery with e being one of the ri’s. Assume
e = rj , we are left with two cases : rj is a response to a random oracle query made by F , or it was
program during the signing procedure invoked by A.

Let first assume that the random oracle was programmed to answer H(Px′−e, µ′) = e on input µ′. If
F succeeds in forging (x, e) for some (possibly different) message µ, then H(Px′−e, µ′) = H(Px−e, µ).
If µ 6= µ′ or Px′− e 6= Px− e, then F found a pre-image of rj . Therefore, µ = µ′ and Px′− e = Px− e,
so that P(x− x′) = 0. We know that x− x′ 6= 0 (because otherwise (x, e) and (x′, e) sign the same
message µ), and since ‖x‖2, ‖x′‖2 ≤ ησ

√
2N , we have that ‖x− x′‖ ≤ 2ησ

√
2N .

Let now assume that rj was a response of the random oracle invoked by F . We start by recording F ’s
output (x, rj) for the message µ, then generate fresh random elements r′j , . . . , r

′
t ← Rq. We then run A

again with input (P, φ, ψ, r1, . . . , rj−1, r
′
j , . . . , r

′
t), and by the General Forking Lemma [3], we obtain that

the probability that r′j 6= rj and the forger uses the random oracle response r′j (and the query associated
to it) in its forgery is at least (

δ − 1

|Rq|

)(
δ − 1/|Rq|

t
− 1

|Rq|

)
,

15

and thus with the above probability, F outputs a signature (x′, r′j) of the message µ and Px−e = Px′−e′

where we let e = rj and e′ = r′j . By rearranging terms in the above equality we obtain

P(x− x′)−

P((0,e)−(0,e′)−((s,t)−(s′,t′)))︷ ︸︸ ︷
(e− e′) = 0

P
(
y − y′

)
= 0 (9)

But since H(Py, µ) = e = rj 6= r′j = e′ = H(Py′, µ), necessarly y 6= y′, and as ‖y‖2, ‖y′‖2 ≤ ησ
√

2N ,

we finally have that ‖y − y′‖2 ≤ 2ησ
√

2N with probability(
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

ut

16

	Sealing the Leak on classical NTRU signatures
	Introduction
	Our contribution
	Organization of the paper

	Background and Problems
	Notation
	Digital Signatures
	Discrete Normal Distribution
	Average-Case SIS Problems

	General overview of NTRUSign
	General overview of Lyubashevsky's scheme
	Description of our scheme
	Putting the pieces together
	Sets of parameters
	Security of our scheme

	Proofs
	Section 2
	Proofs of Section 5

