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Abstract. KLEIN is a family of lightweight block ciphers which pro-
posed at RFIDSec 2011 by Gong et al. It has a 64-bit state and 64,
80 or 96-bit key size which introduce its version. It uses a 4-bit S-Box
combined with Rijndael’s byte-oriented MixColumn transformation for
each round. This approach allows compact implementations of KLEIN
in both low-end software and hardware. Its simplicity attracts the atten-
tion of cryptanalysts, and several security analyses have been published.
The best of these was represented by Lallemand et al. which was a trun-
cated differential attack. They could attack up to 12, 13 and 14 rounds
out of total number of 12, 16 and 20 rounds for KLEIN-64, -80 and -96,
respectively. In this paper, by finding new truncated differential paths
and improving key recovery method we present two new truncated dif-
ferential attacks on KLEIN, which recover the full secret key with better
time and data complexities for 12, 14 and 15 rounds for KLEIN-64, -80
and -96, respectively.

Keywords: KLEIN, Lightweight Block Cipher, Truncated Differential
Cryptanlysis.

1 Introduction

Lightweight block ciphers are those that are specially designed for constrained
environments. Due to the implementation considerations in such environments
the key size of the cipher is typically 64 or 80 bits. In order to answer the require-
ments of a large number of applications, like RFID and wireless sensor networks.
Through these last years an enormous amount of promising such primitives has
been proposed that KLEIN [1] is one of them. Correctly evaluating the security
of these proposals has become a primordial task that merits all the attention
from the community.

KLEIN family of lightweight block ciphers is proposed by Gong et al. in
RFIDSec 2011 [1]. It supports three key sizes of 64, 80 and 96 bits, with 12,
16 and 20 rounds respectively. KLEIN makes use of the combination of 4-bit
S-Boxes with AES MixColumn in an SPN structure. Such a combination allows
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compact and low memory implementation in software and hardware, which re-
sults show that this cipher is utilizable in constrained-resource environments in
the viewpoint of the performance.

But from the security point of view, although some basic evaluations have
been carried out on KLEIN in [1], its real security level is not determined without
further external analysis. In fact, this type of combination poses serious security
risks to KLEIN, since its publication, several cryptanalysts have been interested
in its analysis and some results on round-reduced versions have been published
[2–7]. Biclique analyses [4, 5] can be remarked that this analyses require to per-
form an exhaustive search on the whole key and that the acceleration factors
are very small. So far, except biclique analyses the highest number of attacked
rounds is full 12-round in the 64-bit version, 13 out of 16 in the 80-bit version
and 14 out of 20 in the 96-bit version, which was discovered and exploited by
Lallemand et al. in FSE 2014 [7].

In this paper, by finding new truncated differential paths and improving key
recovery method we present two new truncated differential attacks, which the
first attack can attacks up to 14 rounds, and the second one up to 15 rounds.
They can be applied to the full 12-round KLEIN-64 with a (time, data) complex-
ities of (255.7, 248.6) or (258.8, 245.5), respectively. To 14-round KLEIN-80 time
and data complexities are (275.9, 260.6) or (278.9, 257.5), respectively. Also for 15-
round KLEIN-80 time and data complexities are (292.9, 263.5). The complexities
of existing attacks and ours are summarized in Table 1.

This paper is organized as follows: Section 2 presents a brief description of
KLEIN. In Section 3, new truncated differential paths, the outline of the key
recovery attack on KLEIN with all details and its complexities evaluations are
represented. Finally, Section 4 concludes this paper.

Table 1. Summary of cryptanalytic results on KLEIN

Vrsion Rounds Time Data Memory Attack Type Ref.

KLEIN-64

7 245.5 234.3 232 Integral [2]
8 246.8 232 216 Truncated [2]
8 235 235 - Truncated [3]
10 262 1 260 PC MitM [6]
12 262.8 239 24.5 Biclique [4]
12 257 254.5 216 Truncated [7]
12 255.7 248.6 232 Truncated Sec. 4

KLEIN-80

8 277.5 234.3 232 Integral [2]
11 274 2 274 PC MitM [6]
13 276 252 216 Truncated [7]
14 275.9 260.6 232 Truncated Sec. 4
16 279 248 260 Biclique [5]

KLEIN-96

13 294 2 282 PC MitM [6]
14 289.2 258.4 216 Truncated [7]
15 292.9 263.5 232 Truncated Sec. 4
20 295.18 232 260 Biclique [5]
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2 Description of KLEIN

The block cipher KLEIN use a Substitution-Permutation Network that operates
on 64-bit blocks. It has 3 versions, denoted by KLEIN-64, KLEIN-80 and KLEIN-
96 that introduce its key size and they have 12, 16 and 20 rounds, respectively.
Each round is composed of 4 layers: AddRoundKey, SubNibbles, RotateNibbles
and MixNibbles. In AddRoundKey layer, the entering state to a round is xored
with the round-key. The output of AddRoundKey layer is divided to 16 nibbles,
and each nibble passed through a same 4×4 S-Box, it isSubNibbles layer. Reason
for this choice by designers is that a byte-wise S-Box needs more implementation
costs and memory than a nibble-wise S-Box. KLEIN’s S-Box is represented in
Table 2.

Table 2. Summary of cryptanalytic results on KLEIN

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f

Output 7 4 a 9 1 f b 0 c 3 2 6 8 e d 5

After SubNibbles layer in RotateNibbles layer, state rotates two bytes to the
left and finally MixNibbles applies AES’s MixColumn transformation to each
half of the state. Unlike to AES, last round’s MixNibbles layer is not omitted.
After last round, an additional AddRoundKey layer is proceed, so the encryption
routine requires one more key than the number of rounds. Structure of a round
of KLEIN is shown in Figure 1. X(r) and K(r) are the input state and the subkey
of round r, respectively.

S   S S   S S   S S   S S   S S   S S   S S   S 

MixColumn MixColumn 

X(r) 

X(r+1) 

K(r) 

Fig. 1. Structure of one round of KLEIN
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Let us focus on AES MixColumn, which works according to the following
matrix multiplication in GF (28) with the irreducible polynomial x8 + x4 + x3 +
x+ 1:

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 . (1)

For reminding, multiplication of 02 by x ∈ GF (28) can be performed as follows:

02× x =

{
x� 1 if MSB(x) = 0

x� 1⊕ 0x1b if MSB(x) = 1
, (2)

where x � n means shifting x, n bits to left and MSB is the most significant
bit. Also the multiplication by 03 is equal to:

03× x = x⊕ 02× x (3)

These descriptions of finite field multiplications will be more useful in explaining
the MixNibbles properties in the next section. It is better to note that only last
layer (MixNibbles) is byte-wise while the others can be seen as nibble-wise.

The Key Schedule of KLEIN is designed under implementation considera-
tions. The round-keys are computed from the MasterKey with the KeySchedule
algorithm that follows a Feistel scheme. The round keys K(r), r = 1, · · · , Nbr
(Nbr is number of rounds), and the final whitening key K(Nbr+1) is generated as
follows. First, the master key MK is stored in a key register as K(1). Then the
following steps are iteratively applied to MK to generate Nbr more subkeys:

K(r) 

K(r+1) 

S   S S   S 
r 

Fig. 2. Key schedule of one round of KLEIN-64



An Improved Truncated Differential Cryptanalysis of KLEIN 5

1. Rotate the two halves of the key state to left one byte each.

2. Swap the two halves by a Feistel-like structure.

3. In left half of key state, xor 3rd byte from left with round counter r

4. In Right half of key state, substitute 2nd and 3rd bytes using four KLEIN
S-Boxes.

At the end of round r, the content of the key register is K(r). Figure 2 shows
one round of the key schedule for KLEIN-64.

3 Truncated Differential Cryptanalysis of KLEIN

In this section, we will introduce two new truncated differential paths. Then we
will introduce key recovery method which is improved version of key recovery
method used in [7]. Finally, the complexities of our attacks will be represented.

Proposition 1. [2, 3, 7] If the eight nibbles entering MixNibbles are of the form
0X0X0X0X, where the wild-card X represents any 4-bit value, then the output
is of the same form if and only if the MSB of the 4 lower nibbles all have the
same value. This case occurs with probability 2−3.

Proposition 2. If the eight nibbles entering MixNibbles are of the form 0X0X0X
0X, then the output is the form of 00000X0X or 0X0X0000 with probability
of 31× 2−15.

Proposition 1 explained enough in previous cryptanalyses, especially in [7],
so we don’t speak more about that. The proof of Proposition 2 is as follow.

Proof. Consider 0A0B0C0D be the eight nibbles entering MixNibbles and 00000E
0F be the eight output nibbles. Also consider that X = x0x1x2x3, which x0 is
the MSB of X. As two most significant bytes of output is zero, we must have:{

B = 7×A⊕ 7× C
D = 3×A⊕ 2× C ⇒

{
E = 11×A⊕ 9× C
F = 14×A⊕ 13× C (4)

Since B,D,E and F are only four bits (higher nibbles in every byte are zero),
it is equal to:  c0 = a0

c1 = a1
c2 = a0 ⊕ a2

(5)

Therefore, from 216 case for A,B,C and D only 25 of them is acceptable. One
of this 32 case is all zeros which it is not acceptable. So the probability for this
event is 31×2−16. By purposing second form of MixNibbles’s output (0E0F0000)
the probability will be 31/215.
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3.1 Truncated Differential Paths

Using Proposition 1 an iterated truncated differential path for one round is
presented in previous cryptanalyses, which its probability is 2−6. This iterated
truncated differential path is shown in Figure 3.

Fig. 3. Iterated truncated differential path for one round of KLEIN

Also using Propsition 2, we introduce two new truncated differential paths
for four or three rounds that are shown in Figure 4 and 5, respectively. In the first
path we consider that the event which was introduced in Propsition 2 happens
for both of MixColumn with condition of that the output active nibbles be close
to each other. Its probability is p1 = 1/2× (31× 2−15)2 ' 2−21. Therefore only
one MixColumn is active in round 2 and if the mentioned event happens to this
MixColumn again, its probability gets p2 = 31 × 2−15 ' 2−10. So there are at
most 2 active lower nibbles for input of third round. These lower nibbles will
activate only one MixColumn, and only lower nibbles in output of MixColumn
will be active with probability of:

p3 = 2/31× 7/15 + 29/31× (7/15)2 ' 2−2.1 (6)

About this equation it must be told that for 2 case of 31, only one lower nibble
is active, and when a nibble is active with probability one, the probability for
that output difference of S-Box has a MSB equal to 0 is 7/15. After this input of
each MixColumn in fourth round has at most 2 active lower nibbles. Probability
for that output of fourth round have only active lower nibbles is:

p4 ' (7/15)4 ' 2−4.4 (7)

The second path is look like the first one, except that event of second round
in first path is omitted. Therefore the probability for that only lower nibbles
activated is p2 = 2−3 and p3 = 2−4.4. In both of the paths, we will use in-
troduced iterated truncated path for reminded rounds. The probability for an
(N−1)-round distinguisher of KLEIN will be p = 2−6×N−7.6 and p = 2−6×N−4.5,
respectively using first and second path. As we will see, these two paths will be
able to attack up to 14 and 15 rounds, respectively. It must be considered that
in Figure 4 or 5 only one side of the probability is shown.
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Fig. 4. Truncated differential path for 4 round of KLEIN

Fig. 5. Truncated differential path for 3 round of KLEIN

3.2 Procedure of key recovery attack

For recovering key’s lower nibbles we will improve the used procedure of key
recovery in [7] and by some differences with this procedure we will attack on
KLIEN. First we will bring two propositions that introduced in previous crypt-
analysis. Using these propositions we will be able to decrypt the lower or nibbles
in each round.

Proposition 3. [2, 4, 6, 7] In the Key Schedule algorithm, lower nibbles and
higher nibbles are not mixed: the lower/higher nibbles of any round-key can be
computed directly from the lower/higher nibbles of the master key.

Proposition 4. [7] The values of the lower nibbles outputting MixNibbles de-
pend on the values of the lower nibbles at the input and on 3 quantities computed
from the higher nibbles that we will call 3 information bits. A similar property
holds for the computation of the output lower nibbles of MixNibbles−1.
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Key recovery method is as follow:

1. With the use of structures, we generate a certain number of ciphertexts such
that we obtain enough pairs to be ensured to get one that verify our dif-
ferential path. The size of the truncated difference entering the first round
determines the size of the structures that we can build with the input plain-
texts. Then if our truncated have ∆ active bits, the size of structures will
be 2∆. For obtaining the required p−1 pairs, we must encrypt p−1/2∆−1

plaintexts then this number is our Data Complexity. All 2∆ plaintexts in
a structure will be saved and processed and then be deleted, so we need
a memory to save all this plaintexts. As we will see this is our Memory
Complexity and other needs to memory is negligible.

2. As detailed in [2, 3], by inverting the output difference through the last
MixNibbles we can observe the value of the difference entering this trans-
formation and then discard the ones that do not have the higher nibbles
inactive. In practice, we construct a sorted list of all the 8 nibbles values
obtained by MixColumn of 0X0X0X0X, and look for collisions. Such a col-
lision occurs with probability 2−32, so there are p−1 × 2−32 remaining pairs
of plaintexts.

3. For each pair of plaintexts and their associated ciphertexts that collide at
the previous step, we will find possible values of the first 8 lower nibbles of
the key in two levels. For event described in Proposition 2 there are 2× 31
possible input differences for MixColumn, so 62 × 216 pair is possible for
half of output SubNibbles. Therefore there are normally 31 pairs which have
same differences. By passing these pairs from SubNibbles and saving them
and their differences in a table, we can find all 62 passible keys for 4 lower
nibbles only by xoring the plaintexts pair with pairs of table that both pairs
have a same differences.
Using this method again we can find 31 possible keys for other 4 lower
nibbles. In other meaning, for each pair of plaintexts and their ciphertexts
that pass the previous step, we have 2×312 possible key for the 8 first lower
nibbles of the master key.
If the version attacked is KLEIN-64, the 8 lower nibbles correspond to the
lower nibbles of the whole key but for KLEIN-80 and KLEIN-96, we have to
make additional guesses to obtain all the possible lower nibble values. For
KLEIN-64, KLEIN-80 and KLEIN-96 we obtain respectively p−1 × 2−32 ×
2× 312, p−1 × 2−32 × 2× 312 × 28 and p−1 × 2−32 × 2× 312 × 216 possible
candidates (C,C ′, klow).
This step requires a negligible time because all used operations are xoring,
and allows us to compute the associated pair of states at the input of the
first MixNibbles that already satisfies the conditions from round 1. This pair
of states will be denoted by (S, S′)∗1.

4. For first path in round 2 that the mentioned event of Proposition 2 happens
again, we will use saved table again to know whether possible candidates for
lower nibbles of key can pass this round or not. Because we know values of
active nibbles after SubNibbles of first round in both plaintexts, we can guess
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values of lower nibbles (we will path value of for nibbles through MixColumn
and this value is one possible value and other is this value xored with 0xb). So
we will search on 24 possible differences on the table and examine that value
of 4 nibbles xored with corresponding 4 nibbles of subkey of candidate key is
equal with the plaintext values saved in table or not. A plaintext pair and a
candidate key can pass through this sieve with probability of 31×2−15×24.
Note that this step will be used only with first path. Like previous step, this
step has not such salient Time Complexity.

5. At this point we start inverting the rounds from the candidates that we have
obtained, generating possible pairs (S, S′)r for r from N to 1. That step
requires 2 × 23 round encryptions per inversion and per triple. During the
iterative rounds, the number of possible triples stays the same, contrary to
what happens during the non-iterative rounds where the number of candi-
dates is reduced. The attack is performed one triple at a time. Once we have
computed (S, S′)1, we have to guess the 6 bits needed to invert the first
MixNibbles, and next we have to match values and active differences with
the already computed values (S, S′)∗1.

If the number of remaining candidates is smaller than 2klow , as there is one
possible value for klow per candidate, the cost of recovering the key is smaller
than the one of exhaustive search. In practice, after inverting all the rounds,
the number of remaining candidates is currently very small.

The cost of this step for KLEIN-64 is given by the initial candidate triples
multiplied by 24 (cost of inverting), multiplied by the number of inverted
rounds with probability of 2−6 and by the relative cost to one encryption of
each inverted round. The cost for inverting non-iterative rounds are so small,
because number of candidates will be reduced so much. Because time cost
for other steps are not so important, this step will determine this attack’s
Time Complexity.

6. Finally, the higher nibbles will be recovered with an exhaustive search. Also
there is a better process than exhaustie search in [7], but it will not cause to
a better time complexity. More detailed attack can be found in [7].

3.3 Results and Complexities

Applying described key recovery attack to paths 1 and 2, we will able to attack
up to 14 and 15 rounds KLEIN which cases introduced in [7] could not. Results
of our attacks is shown in Table 3. In all of our attacks the Memory Complexity
is 232 of 64-bit (size of plaintext).

As it can be seen, using first path makes a good Time Complexity and second
path a good Data Complexity. These have a trade-off between time and data. Our
attack to full-round KLEIN-64 and reduced 13-round KLEIN-80 can recovery
full master key with 2.5 times more speed and 1/64 data better than in [7]. About
attack to reduced 14-round KLEIN-96, our attack by using first path have 1/40
time but 2 times data complexities toward previous cryptanalysis, and using
second path 1/5 time and 1/2 data. Except biclique attacks, cryptanalyzing
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reduced 14-round KLEIN-80 and reduced 15-round KLEIN-96 are introduced
for first time.

Table 3. Summary of the complexities of our attacks

Vrsion/Rounds Path Probability Time Data

KLEIN-64/12
I 2−79.6 255.7 248.6

II 2−76.5 258.8 245.5

KLEIN-80/13
I 2−85.6 269.8 254.6

II 2−82.5 272.9 251.5

KLEIN-80/14
I 2−91.6 275.9 260.6

II 2−88.5 278.9 257.5

KLEIN-96/14
I 2−91.6 283.9 260.6

II 2−88.5 286.9 257.5

KLEIN-96/15 II 2−94.5 292.9 263.5

4 Conclusions

In this paper we introduce two new truncated differential paths for KLEIN, and
using an improved key recovery method which basic of that was used before
by Lallemand et al. Results show that our attacks have a good time and data
complexities on full-round KLEIN-64, reduced 13-round KLEIN-80 and reduced
14-round KLEIN-96. Also we introduce two new attacks on reduced 14-round
KLEIN-80 and reduced 15-round KLEIN-96 for first time.

The block cipher KLEIN has two main weaknesses: 1. MixNibbles transforma-
tion using Rijndael’s MixColumn transformation does not correctly mix higher
and lower nibbles, as it is the only transform that does so. 2. KeySchedule does
not mix higher and lower nibbles. These two helps the cryptanalyst to perform
a reduced partial key search, so maybe considering other matrices instead of
Rijndael’s and a stronger KeySchedule could help to prevent the attacks.
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