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Abstract. The GGH Graded Encoding Scheme [10], based on ideal lattices, is the first plausible ap-
proximation to a cryptographic multilinear map. Unfortunately, using the security analysis in [10], the
scheme requires very large parameters to provide security for its underlying “encoding re-randomization”
process. Our main contributions are to formalize, simplify and improve the efficiency and the security
analysis of the re-randomization process in the GGH construction. This results in a new construction
that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the
re-randomization process of [10] from exponential to polynomial in the security parameter. This first im-
provement is obtained via a finer security analysis of the “drowning” step of re-randomization, in which
we apply the Rényi divergence instead of the conventional statistical distance as a measure of distance
between distributions. Our second improvement is to reduce the number of randomizers needed from
R2(nlogn) to 2, where n is the dimension of the underlying ideal lattices. These two contributions allow
us to decrease the bit size of the public parameters from O(\® log \) for the GGH scheme to O(\log? \)
in GGHLite, with respect to the security parameter X\ (for a constant multilinearity parameter ).

1 Introduction

Boneh and Silverberg [7] defined a cryptographic k-multilinear map e as a map from G x...x Gy, to
G, all cyclic groups of order p, which enjoys three main properties: first, for any elements g; € G;
for i <k, j <k and o € Zy, we have e(g1,..., 0 gj,...,9x) = -e(g1,...,gx); second, the map e
is non-degenerate, i.e., if the g;’s are generators of their respective G;’s then e(gy, ..., gx) generates
Gr; and third, there is no efficient algorithm to compute discrete logarithms in any of the G;’s.
Bilinear maps (k = 2) and multilinear maps have a lot of cryptographic applications, see [16,27,6]
and [7,26,22,25], respectively. But unlike bilinear maps, built with pairings on elliptic curves, the
construction of cryptographic multilinear maps was an open problem for several years. In [7], Boneh
and Silverberg studied the interest of such maps, and gave two applications: multipartite Diffie-
Hellman key exchange and very efficient broadcast encryption. But they conjectured that multilinear
maps will probably “come from outside the realm of algebraic geometry.” In 2013, Garg, Gentry
and Halevi [10] introduced the first “approximate” multilinear maps contruction, based on ideal
lattices, and the powerful notion of graded encoding scheme. Based on their work, Coron, Lepoint
and Tibouchi [8] recently described an alternative construction of graded encoding scheme.

We first give a high level description of the GGH graded encoding scheme [10]. If we come back to
the definition of cryptographic multilinear maps, the authors of [10] notice that « - g; can be viewed
as an “encoding” of the “plaintext” a € Z,. They consider the polynomial rings R = Z[x]/(z" + 1)
and Ry, = R/qR (replacing the exponent space Z,). They generate a small secret g € R and let
Z = (g) be the principal ideal over R generated by g. They also sample a uniform z € R, which
stays secret. The “plaintext” is an element of R/Z, and is encoded via a division by z in R,: to
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encode a coset of R/Z, return [c/z],, where c is an arbitrary small coset representative. In practice,
as ¢ is hidden, they give another public parameter y, which is an encoding of 1, and the encoding
of the coset is computed as [e - y|;, where e is a small coset representative (possibly different
from ¢). But, as opposed to multilinear maps, their graded encoding scheme uses the notion of
encoding level: the plaintext e is a level-0 encoding, the encoding [¢/z], is a level-1 encoding, and at
level 4, an encoding of e + Z is given by [c/z], = [e - y],. These encodings are both additively and
multiplicatively homomorphic, up to a limited number of operations. More precisely, a product of 4
level-1 encodings is a level-¢ encoding. One can multiply any number of encodings up to s, instead
of exactly x in multilinear maps (the parameter & is called the multilinearity parameter).

The authors of [10] introduced new hardness assumptions: the Graded Decisional Diffie-Hellman
(GDDH) and its computational variant (GCDH). These are natural analogues of the Diffie-Hellman
problems from group-based cryptography. To ensure their hardness, and hence the security of
the cryptographic constructions, the second main difference with multilinear maps is the ran-
domization of the encodings. The principle is as follows: first some level-1 encodings of 0, called
{x; = [bj/#]q}j<m., are given as part of the public parameters; then, to randomize a level-1 encod-
ing v’ = [e - ylg, one outputs u = [u' + 3, pjajly = [¢/2]q with ¢ = ¢/ + 37, pjb;, where the p;’s
are sampled from a discrete Gaussian distribution over Z with deviation parameter o*. Without
this re-randomization, the encoding u’ of e allows e to be efficiently recovered using u = [u’ y_l]q.
Adding the re-randomization step prevents this division attack, but the statistical properties of the
distribution of the re-randomized encoding u remain correlated to some extent with the original
encoding v’ (for instance, the center of the distribution of ¢ is ¢, since the distribution of > pibj is
known to be centered at 0). This property may allow other attacks that exploit this correlation. The
question arises as to how to set the re-randomization parameter ¢* in order to guarantee security
against such potential “statistical correlation” attacks — the larger the re-randomization parameters
the smaller the correlation, and heuristically the more resistant the scheme is to such attacks. But
increasing o* impacts the efficiency of the scheme.

In [10], the authors use a “drowning step” to solve this problem. This technique, also called
“smudging,” was previously used in other applications [4,13,3,5]. Generally, “drowning” consists in
hiding a secret vector s € Z" by adding a sufficiently large random noise e € Z™ to it, so that
the distribution of s + e becomes “almost independent” of s. In all of the above applications, to
achieve a security level 2* (where A denotes the security parameter), the security analysis requires
“almost independent” to be interpreted as “within statistical distance 2~ from a distribution that
is independent of s.” In turn, this requirement implies the need for “exponential drowning,” i.e.,
the ratio v = ||e]|/||s]| between the magnitude of the noise and the magnitude of secret needs to
be 2¢2(N) . Exponential drowning imposes a severe penalty on the efficiency of these schemes, as their
security is related to y-approximation lattice problems, whose complexity decreases exponentially
with log~. As a result, the schemes require a lattice dimension n at least quadratic in A and key
length at least cubic in A. In summary, the GGH re-randomization step, necessary for its security,
is also a primary factor in its inefficiency.

OUR CONTRIBUTIONS. First, we formalize the re-randomization security goal in the GGH construc-
tion, that is implicit in the work of [10]. A primary security goal of re-randomization is to guarantee
security of the GDDH problem against statistical correlation attacks. Accordingly, we formulate a
security goal that captures this security guarantee, by introducing a canonical variant of GDDH,
called cGDDH. In this variant, the encodings of some elements are sampled from a canonical dis-
tribution whose statistical properties are independent of the encoded elements. Consequently, the



canonical problems are by construction not subject to “statistical correlation” attacks. Our re-
randomization security goal is formulated as the existence of an efficient computational reduction
from the canonical problems to their corresponding non-canonical variants.

Our first main improvement to the GGH scheme relies on a new security analysis of the drowning
step in the GGH re-randomization algorithm. We show that our re-randomization security goal
can be satisfied without “exponential drowning,” thus removing the main efficiency bottleneck.
Namely, our analysis provides a re-randomization at security level 2* while allowing the use of a
re-randomization deviation parameter o* that only drowns the norm of the randomness offset ' € 7
(from the original encoding to be re-randomized) by a polynomial (or even constant) drowning ratio
v = AW (rather than v = 2, as needed in the analysis of [10]). However, our analysis only
works for the search variant of the Graded Diffie-Hellman problem. Fortunately, we show that the
two flagship applications of the GGH scheme — the N-party Key Agreement [10] and the Attribute
Based Encryption [12] — can be modified to rely on this computational assumption (in the random
oracle model).

Our second main improvement of the re-randomization process is to decrease m,., the number
of encodings of 0 needed, from §2(nlogn) to 2. We achieve this result by presenting a new discrete
Gaussian Leftover Hash Lemma (LHL) over algebraic rings. In [10], the authors apply the discrete
Gaussian LHL from [2] to show that the distribution of the sum >>,,, p;r; is close to a discrete
Gaussian on the ideal Z. Our improvement consists in sampling the randomizers p; as elements
of the full n-dimensional ring R, rather than just from Z. Since each randomizer now has n times
more entropy than before, one may hope to obtain a similar LHL result as in [2] while reducing
m, by a factor ~ n. However, as the designers of the GGH scheme notice in [10, Se. 6.4], the proof
techniques from [2] do not seem to immediately carry over to our “algebraic ring” LHL setting. Our
new LHL over rings resolves this problem.

The two contributions above allow us to decrease the bit size of the public parameters from
O(k3N\°log(k\)) for the GGH scheme to O(k3Xlog?(k\)) for GGHLite, for multilinearity factor s
and security level 2* for the graded Diffie-Hellman problem.

TECHNICAL OVERVIEW. Our first main result is to reduce the size of the parameter ¢* in the
re-randomization process. Technically, our improved analysis of drowning is obtained by using
the Rényi divergence (RD) to replace the conventional statistical distance (SD) as a measure of
distribution closeness. The RD was already exploited in a different context in [18, Claim 5.11], to
show the hardness of Ring-LWE. Here, we use the RD to decrease the amount of drowning, by
bounding the RD between a discrete Gaussian distribution and its offset. This suffices for relating
the hardness of the search problems using these encoding distributions, even though the SD between
the distributions is non-negligible. The technique does not seem to easily extend to the decision
problems, as RD induces a multiplicative relationship between success probabilities, rather than an
additive relationship as SD does.

Our second main result is a new LHL over the ring R. We now briefly explain this result and
its proof. For a fixed X = [z1,22] € R?, with each z; sampled from D R,s,» our goal is to study the
distribution & xs = @1 Dgrs + x2 - Drs. In particular, we prove that E x5 is statistically close to
Dyn ¢x7. For this, we adapt the proof of the LHL in [2]: we follow a similar series of steps, but the
proofs of these steps differ technically, as we exploit the ring structure.

We first show that X - R? = R, except with some constant probability < 1. For this, we adapt
a result from [29] on the probability that two Gaussian samples of R are coprime. Note that in
contrast to the LHL over Z in [2], in our setting the probability that X - R? # R is non-negligible.



This is unavoidable with the ring R = Z[x]/(z™ + 1), since each random element of R falls in the
ideal (x+1) with probability ~ 1/2, both 21 and x5 (and hence the ideal they generate) get “stuck”
in (x+1) with probability ~ 1/4. However, the probability of this bad event is bounded away from 1
by a constant and thus we only need a constant number of trials on average with random X'’s to
obtain a good X by rejection.

Then, we define the orthogonal R-module Ax = {v € R? : X - v = 0}, and apply a directly
adapted variant of [2, Le. 10] to show that if the parameter s is larger than the smoothing parameter
n-(Ax) (with Ax viewed as an integral lattice), then the SD between £x , and the ellipsoidal
Gaussian Dyn ¢y is bounded by 2e. We finally show that this condition on the smoothing parameter
of Ax holds. For this, we observe that the Minkowski minima of the lattice Ax are equal, due
to the R-module structure of Ax. This allows us to bound the last minimum from above using
Minkowski’s second theorem. A similar approach was previously used (e.g., in [17]) to bound the
smoothing parameter of ideal lattices.

OPEN PROBLEMS. Our “Rényi divergence” technique used to make the drowning efficient in the
GGH scheme is likely to have many applications. It is an interesting open problem to see whether
it could be used to remove exponential drowning in other contexts, such as [4,13], and whether it
could be used for a wider class of decision problems, such as as GDDH. We also think our new LHL
over rings may have other applications.

A very important open question is to gain a better understanding of the complexity of the
canonical Ext-GCDH problem and its variants, or to modify GGHLite to make its security based
on more well studied problems. Our “NTRU variant” of GGHLite seems somewhat closer to the
NTRUEncrypt scheme [15], and may be a first step in this direction. It is also intriguing to under-
stand better the security connection between this construction and the jigsaw puzzle variant used
in the construction of a candidate indistinguishability obfuscation mechanism [11].

Finally, evaluating the concrete computational and space efficiency achievable by GGHLite, by
setting the parameters based on the best known attacks on the underlying canonical problems
(and comparison with the concrete implementation of the integer-based scheme reported in [8]) is
another direction for future work.

RoaDMAP. The rest of this paper is organized as follows. In Section 2, we summarize notation
and necessary background (some additional background is postponed to the appendices). Section 3
reviews the GGH multilinear map construction, its underlying computational problems, and the
strong re-randomization security requirement from [10], and then introduces our canonical compu-
tational problems and formulates our precise security goal for re-randomization with respect to the
canonical problems. In Section 4, we study the Rényi divergence as an alternative to the statistical
distance in order to improve the security analysis of re-randomization “drowning” step. Section 5
contains our second main improvement to the re-randomization process: the algebraic ring variant
of the discrete Gaussian leftover hash lemma from [2]. In Section 6, we show how to combine the
results from the previous two sections to obtain our improved construction GGHLite. Section 7
compares the asymptotic parameters of GGHLite with those of the original GGH scheme. Finally,
in Section 8, we show how to adapt some applications of multilinear maps to rely on the hardness
of the Ext-GCDH problem, to which our security result for GGHLite applies.



2 Preliminaries

Notation. A function f()\) is said negligible if it is A=) For an integer ¢, we let Z4 denote the
ring of integers modulo ¢. The notation [-], means that all operations within the square brackets
are performed modulo q. We choose n > 4 as a power of 2, and let K and R respectively denote
the polynomial rings Q[X]/(z™ + 1) and Z[X]/(z™ + 1). The rings K and R are isomorphic to
the cyclotomic field of order 2n and its ring of integers, respectively. For an integer ¢, we let R,
denote the ring Z,[z]/(z" + 1) ~ R/qR. For z € R we denote by MSBy(z) € {0,1}*" the ¢
most-significant bits of each of the n coefficients of z. Vectors are denoted in bold. For b € R?
(resp. g € K), we let ||b]| (resp. ||g||) denote its Euclidean norm (resp. norm of its coefficient
vector). The uniform distribution on finite set E is denoted by U(FE). For a random variable z, we
use D(z) to denote the distribution of z. The statistical distance (SD) between distributions D;
and D over a countable domain E is A(D1,Ds) = 23 ,cp|Di(z) — Do(z)|. For a function f
over a countable domain F, we let f(F) = Y, cp f(x). Let X € R™*" be a rank-n matrix and
Ux = {||Xu|| : w € R",||u| = 1}. The smallest (resp. largest) singular value of X is denoted by
on(X) = inf(Ux) (resp. 01(X) = sup(Ux)).

Lattices. We refer to [19,23] for introductions to the computational aspects of lattices. A d-
dimensional lattice A C R™ is the set of all integer linear combinations Ele x;b; of some linearly

independent vectors b; € R™. The determinant det(A) is defined as y/det(BT B), where B = (b;);
is any such basis of A. For i < d, the ith minimum \;(A) is the smallest r such that A contains 4
linearly independent vectors of norms < r.

Lemma 2.1 (Minkowski’s second theorem). Let A be an n-dimensional lattice. Then:

(TLn)"" < vader(ay .

1<n

The following result links the determinants of a lattice and its orthogonal.

Lemma 2.2 ([21, Cor. 2]). Let A C Z" be a lattice, and let A+ = (Span(A))-NZ" denote the
orthogonal lattice of A. Then det(AL) < det(A).

Gaussian distributions. For a rank-n matrix S € R™*" and a vector ¢ € R", the ellipsoid
Gaussian distribution with parameter S and center c¢ is defined as:

Ve € R", psc(x) = exp (—7r(cc — )T (sT8)(x — c)) .

Note that pgc(z) = exp(—n||(ST)T(z — ¢)||?), where XT denotes the pseudo-inverse of X. The
ellipsoid discrete Gaussian distribution over a coset A + z of a lattice A, with parameter S and
center c is defined as: V& € A+ z, Dy, s = ps.e(x)/ps.c(A). The truncated tail Gaussian DY g .
is obtained by sampling « from Dy g ., and resampling if ||z| > 2-\/n-01(S), where n denotes the
dimension of A. As shown in Lemma 2.3 below, the rejection probability can be made O(27").

Smoothing parameter. Introduced by [20], the smoothing parameter n.(A) of an n-dimensional
lattice A and a real € > 0 is defined as the smallest s such that p;/,(A* \ {0}) < e. We use the
following properties.



Lemma 2.3 ([2, Le. 3]). For a rank-n lattice A, constant 0 < ¢ < 1, vector ¢ and matriz S with
on(S) > ne(A), if ¢ is sampled from Dy s then ||x|| < 01(S)y/n, except with probability < 1+8 27,

Lemma 2.4 ([20, Le. 3.3]). Let A be an n-dimensional lattice and € > 0. Then

nel) < \/ln(2n(1+ 1/¢)) ).

s

Lemma 2.5 (Adapted from [20, Le. 2.7]). Let A be an n-dimensional lattice and € € (0,1).
Then for any ¢ € R™ and s > n-(A) we have ps(A) € [1 —e,1 +¢] - det(A)~?

Lemma 2.6 (Adapted from [14, Cor. 2.8]). Let A, A" be n-dimensional lattices with A" C A
and € € (0,1/2). Then for any ¢ € R™ and s > n.(A’) and any x € A/ A" we have

(D40 mod A')(z) € {1 —e 1+ s}  det(4)

1+e’1—¢] det(A)’

Algebraic number rings and ideal lattices. For g,z € R, we let [z], denote the reduction of x
modulo the principal ideal I = (g) with respect to the Z-basis (g,7 - g,...,2" "1 g), ie., [z], is
the unique element of R in P, = {>1- c;ia’g : ¢; € [~1/2,1/2) N R} such that x — [z], € (g). The
set P, N R is a set of unique representatives of the cosets of I in R, that make up the quotient
ring R/I.

To use our improved drowning lemma in Section 4, we need a lower bound on the least singular
value o, (rot(b)) of the matrix rot(b) € Z"*" corresponding to the map = +— b -z over R, for a
Gaussian distributed b <= Dy ,. We also let b[j] = b(¢**1) denote the jth complex embedding of b,
where ¢ € C is a primitive 2nth root of unity. We define T5(b) = (3; 1b[7]|?)"/2. Recall that we
have T (b)? = n||b||? (see, e.g., [29]). In the proof of [29, Le. 4.1], a probabilistic lower bound on

minep,) [b[7]| is obtained for a Gaussian distributed b. Since

1
on(b)? = min |u-b|*== min o Z lul4]|? - |b

ueK,||u||l=1 n uweK,T>(u jeln]
1
= min |b[4][? -
ae[n]’ Uli" = max e[, [0[5] 71 ?
1 B 1
D P (471 e N e [

we can immediately adapt it to get the following.

Lemma 2.7 (Adapted from [29, Le. 4. 1]) Let R = Z"[z]/(z" + 1) for n a power of 2. For any

ideal  C R, 6 € (0,1), t > /27w and o > \ﬁ -ns(I), we have:
Prycp,, {Hb_lll > - Pn/z} < Pryeopy, {Un( ) <7 } o .

We can also obtain a lower bound o, (b)? > 1 - |[b71||72 by replacing the last line in the equations
above Lemma 2.7 by > 1
2

1 —
€[n] ‘b[j]_IIQ o n'”b71”2.



3 GGH and its re-randomization procedure

In this section, we recall the Garg et al. scheme from [10], and its related hard problems. We then
discuss the re-randomization step of the scheme and explain what should be expected from it, in
terms of security. This security requirement is unclear in [10] and [2]. We formulate it precisely.
This will drive our re-randomization design in the following sections.

3.1 The GGH scheme

We recall the GGH scheme in Figure 1. We present it here in a slightly more general form than [10]:
we leave as a parameter the distribution xj of the re-randomization coefficients p; for a level-k
encoding (for any k < k). In the original GGH scheme, we have y = Dy, or for some o}’s, i.e., the
p;’s are integers sampled from a discrete Gaussian distribution. Looking ahead, in Section 5, we
analyze a more efficient variant, in which x; = D Ry SO that the p;’s belong to R.

e Instance generation InstGen(1*,1%): Given security parameter A and multilinearity parameter s, determine
scheme parameters n, ¢, m,, o, o, £,-1, £, based on the scheme analysis. Then proceed as follows:
e Sample g > Dg,o until |g7"|| < ¢,-1 and Z = (g) is a prime ideal. Define encoding domain R, = R/(g).
e Sample z <> U(Ry).
e Sample a level-1 encoding of 1: set y = [a - 27 '], with a <> Dy 1.4
e For k < k, sample m,. level-k encodings of 0: set xﬁ-k) = [b§k) . sz]q with b§k) < Dz o for all j < m,.
(Note that a = 1+ gr, and b;k) = grj(-k) for some ry,rék) €R.)
e Sample h <> Dg, 4 and define the zero-testing parameter p.; = [%z“}q € R,.

e Return public parameters par = (n, q, o', m,,y, {$§k)}‘jgmr’kgn) and p.¢.
e Level-0 sampler samp(par): Sample e <= Dg ,/ and return e.
(Note that e = er, + gen for some unique coset representative er, € Pqy, and some eg € R.)
e Level-k encoding enci(par, e): Given level-0 encoding e € R and parameters par:
e Encode e at level k: Compute v’ = [e - y*],.

e Re-randomize: Sample p; < i for j < m, and return v = [u' + Z;n:rl pj:r;k>]q.

(Note that u' = [¢'/2"]q with ¢ € e, + T and u = [(¢ + > pjbgk))/zk}q.)
¢ Adding encodings add: Given level-k encodings u1 = [c1/2"], and ug = [c2/2"],:
e Return u = [u1 + u2]q, a level-k encoding of [c1 + c2]g.
e Multiplying encodings mult: Given level-k; encoding u1 = [c1/2"!], and a level-k2 encoding us = [c2/2"2]:
e Return u = [u1 - u2]q, a level-(k1 + k2) encoding of [c1 - ¢ao]g.
e Zero testing at level x isZero(par, p.:,u): Given a level-x encoding u = [¢/2"]q, return 1 if ||[p.rulqllec < ¢
and O else.
(Note that [p+ - ulq = [he/glq.)
e Extraction at level k ext(par, p..,u): Given a level-x encoding u = [¢/2"]q, return v = MSB([p.: - u]q).
(Note that if ¢ = [c]q + gr for some r € R, then v = MSBg(%([c]g +gr)) = MSBg(%[c}g + hr), which is equal to
MSB@(%[C]Q), with probability 1 — A~*®) )

3/4

Fig. 1. The GGH graded encoding scheme.

The aim of isZero is to test whether the input u = [¢/2"], is a level-x encoding of 0 or not,
i.e., whether ¢ = g - r for some r € R. The following conditions ensure correctness of isZero,
when X = Dzo+ (for all k& < x): the first one implies that false negatives do not exist (if u is

7



level-x encoding of 0, then isZero(u) returns 1), whereas the second one implies that false positives
occur with negligible probability (see Appendix A).

g > max((nly-1)®, ((me + 1) - 0t3070")5%) 1)
q> (2no)?. (2)

The aim of ext is to extract a quantity from its input u = [¢/2"], that depends only on the encoded
value [c|g, but not on the randomizers. To avoid trivial solutions, one requires that this extracted
value has min-entropy > 2 (if that is the case, then one can obtain a uniform distribution on {0, 1})‘,
using a strong randomness extractor). The following two inequalities guarantee these properties,
when x; = Dz, (for all k). The first one implies that ec;t = Prlext(u) # ext(u')] is negligible,
when v and v’ encode the same value [c]g, whereas the second one provides large min-entropy (see

Appendix A).

1 2
—log g — log( n) > { > log(8no). (3)
4 Eext

3.2 The GDDH, GCDH and Ext-GCDH problems

The computational problems that are required to be hard for the GGH scheme depend on the
application. Here we recall the definitions of the Graded Decisional and Computational Diffie-
Hellman (GDDH and GCDH) problems from [10]. We introduce another natural variant that we
call the Extraction Graded Computational Diffie-Hellman (Ext-GCDH), in which the goal is to
compute the extracted string of a Diffie-Hellman encoding.

Definition 3.1 (GCDH/Ext-GCDH/GDDH). The problems GCDH, Ext-GCDH and GDDH
are defined as follows with respect to experiment of Figure 2:3

— k-graded CDH problem (GCDH): On inputs par, p, and the u;’s of Step 2, output a level-k
encoding of [I;>¢€i + I, i.e., w € Ry such that ||[p.(ve — w)],|| < ¢34

— Extraction k-graded CDH problem (Ext-GCDH): On inputs par, p.; and the u;’s of
Step 2, output the extracted string for a level-x encoding of [[;~qei + I, i.e., the string w =
ext(par, p.t, vo) = MSBi([pat - velq)-

— k-graded DDH problem (GDDH): Distinguish between vp and vg, i.e., between the distri-
butions Dppr = {par, pt, (ui)o<i<w,Up} and Dg = {par, p.¢, (U;)o<i<x: VR}-

Ext-GCDH is at least as hard as GDDH: given v, with z € {DDH, R}, use the Ext-GCDH
oracle to compute w = ext(par, p,¢, vc). Nevertheless, we show that it suffices for instantiating, in
the random oracle model, at least some of the interesting applications of graded encoding schemes,
at a higher efficiency than the instantiations of [10] based on GDDH.

3.3 The GGH re-randomization security requirement

The encoding re-randomization step in the GGH scheme is necessary for the hardness of the prob-
lems above. In [10], Garg et al. imposed the informal requirement that the re-randomization process
“erases” the structure of the input encoding, while preserving the encoded coset. In setting param-
eters, they interpreted this requirement in the following natural way.

3 Note that we use a slightly different process from [10], by adding a re-randomization to the element vp. Without
it, there exists a “division attack” against GDDH.



Given parameters A, k, (0} )k<x, proceed as follows:

1. Run InstGen(1*,1%) to get

Given parameters A, k, proceed as follows:
_ / (k)Y . d
par = (n7Q7U 7mTay7{mj }]7"3) anda pzt.

1. Run InstGen(1*,1%) to get Write xiﬁ) _ [b;k)z_k]q and B® — [bﬁk), . ,bg’,«fZ] cTmr.
par = (n,q,0',mr,y, {wgk)}m) and pzt. 2. Fort=0,...,k:

2. Fori=0,...,x -Sample e; > U(Ry), fi +> U(Ry),
-Sample e; < DR,O'/7 fZ <~ DR’,_.,/7 -Set u; = [Cizil]q PN Dé}l?n(ei),
-Set u; = [@i Y+ Z]' Pijmj]q i.e., with ¢; < DIJrei,O'i‘(B(l))T'

with p;; <= x1 for all j.
i. :et ‘ i [ " Ui]q~ 4. Set vo = [eou”]q.

. et vo = [eou ]q- ] 5. Set UD:[CD . Z*N] > Dggzl( " 61‘)
5. Sample p; <= x, for all j, - g q i=0%)
(n)]q i.e., with cp DI+HN

. =0

set vp = [eou” + Z]. P;T;

6. Set vr = [fou" + ). pjmg.”)]q. 6. Set 'UR.t:h[CR : Zi;]q « Dih(fo [T e,
i.e., with cr+> .
’ R I+fo Hq‘,:l

3. Set u* = [ ;.;1 ui}q.

ei,o i (BT

ein0k(BUO)T"

Fig. 2. The GGH security experiment. Fig. 3. The canonical security experiment.

Definition 3.2 (Strong re-randomization security requirement). Let u' = [¢'/2*],, with

d = e +gr' be a fived level-k encoding of e, € Ry, and let u = [u' + 3; pjm,gj)]q = [c/2*), with

k)

c=ep+grandr =1+ > pjrj(~ be the re-randomized encoding, with p; <= xy for j < m,. Let

DM (er,r") denote the distribution of u (over the randomness of p;’s), parameterized by (er,r")
and let D((;lgr)l(e,;) denote some canonical distribution, parameterized by ey, that is independent of r’.
Then we say that the strong re-randomization security requirement is satisfied at level k with respect
to Dgg%(fL)) and encoding norm %) if A(D&k)(eL,r’),Désr)l(eL)) < 27 for any W' = [ /2], with
/]l < ~*.

The authors of [10] argued that with x; = Dz (for k < k) and a “drowning ratio” o} /{|7”||

exponential in security parameter A, the distribution D&k)(e L,7") is within negligible statistical

)

distance to the canonical distribution Dgsn(e L) =[Ds et (BT - 27¥],. This requirement may be
stronger than needed. Accordingly, we now clarify the desired goal.

3.4 Our security goal: canonical assumptions

We formalize a re-randomization security goal to capture a security guarantee against “statistical
correlation” attacks on GCDH/Ext-GCDH/GDDH. We define canonical variants cGCDH/Ext-
c¢GCDH/cGDDH of GCDH/Ext-GCDH/GDDH, using Figure 3. The main difference with Figure 2
is that the encodings u; = [¢;/z]q of the hidden elements e;, are sampled from a canonical distri-
bution Dg%(ei), parameterized by e;, whose statistical parameters are independent of the encoded
coset e;, so that it is “by construction” immune against statistical correlation attacks. In partic-
ular, in the canonical distribution Dg;gl(ei) that we use, ¢; is sampled from a discrete Gaussian
distribution D tesot (BT (over the choice of the randomization, for a fixed e;), whose statistical
parameters such as center (namely 0) and deviation matrix of(B™M)” are independent of ;. The
only dependence this distribution has on the encoded element e; is via its support Z + e;.



We believe the canonical problems are cleaner and more natural than the non-canonical variants,
since they decouple the re-randomization aspect from the rest of the computational problem. As a
further simplification, the canonical variants also have their level-0 elements e; distributed uniformly
on Ry (rather than as reductions mod Z of Gaussian samples).

Definition 3.3 (cGCDH/Ext-cGCDH/cGDDH). The canonical problems c¢GCDH, FEut-
cGCDH and cGDDH are defined as follows with respect to the experiment of Figure 3 and canonical
encoding distribution Dgg%(e) (parameterized by encoding level k and encoded element e):

— ¢GCDH: On inputs par, p,; and the u;’s, output w € Ry such that ||[p.:(ve — w)]4|| < ¢*/%.

— Ext-cGCDH: On inputs par, p,; and the u;’s, output: w = ext(par, p.t, vc) = MSBe([pzt-vclq)-
— ¢GDDH: Distinguish between Dppy = {par, p.t, (ui)o<i<k,vp} and Dg =

{par, p.t, (ui)o<i<w, VR}-

REMARK. One could consider alternative definitions of natural canonical encoding distributions
besides the ones we adopt here. For instance, our results in this paper can also be adapted to hold
for the canonical distribution Dgézl(ei) of u; = [¢;/z]4 in which ¢; is sampled from D; tesot (BT ;-
In this alternative, although the center of ¢;’s distribution depends on e;, the distribution of the
randomizer r in the representation ¢; = e; + g - r, is independent of e;.

Given the canonical problems on whose hardness we wish to rely, our security goal for re-
randomization with respect to the GCDH (resp. Ext-GCDH/GDDH) problems can now be easily

formulated: hardness of the latter should be implied by hardness of the former.

Definition 3.4 (Re-randomization security goal). We say that the re-randomization security
goal is satisfied with respect to GCDH (resp. Ext-GCDH/GDDH) if any adversary against GCDH
(resp. Ext-GCDH/ GDDH) with run-time T = O(2%) and advantage ¢ = §2(27*) can be used to
construct an adversary against cGCDH (resp. Ext-cGCDH/cGDDH) with run-time T" = poly(T, \)
and advantage €' = 2(poly(g, \)).

To set the background for our result, we show (in appendix) that Definition 3.2 implies that our
security goal is reached. This is implicit in [10]. Looking ahead, we will show that in some cases, we
may circumvent the strong re-randomization requirement of Definition 3.2 by replacing it with a
weaker requirement (see Definition 6.1), while still reaching the security goal if Definition 3.4, with
substantial consequent efficiency gains.

4 Polynomial drowning via Rényi divergence

In this section, we present our first result towards our improvement of the GGH scheme re-randomiza-
tion. It shows that one may reduce the re-randomization “drowning” ratio o} /||7’|| from exponential
to polynomial in the security parameter A. Although the SD between the re-randomized encoding
distribution D; (essentially a discrete Gaussian with an added offset vector ) and the desired
canonical encoding distribution Dy (a discrete Gaussian without an added offset vector) is then
non-negligible, we show that these encoding distributions are still sufficiently close with respect to
an alternative closeness measure to the SD, in the sense that switching between them preserves
the success probability of any search problem adversary receiving these encodings as input, up to
a polynomial transformation. This allows us to show that our re-randomization goal is satisfied for
the search problems GCDH and Ext-GCDH.
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Technically, the closeness measure we study is the Rényi divergence R(D1||D3) between the
distributions D; and Ds, defined as the expected value of Dj(r)/Dy(r) over the randomness of r
sampled from D; (for brevity we will call R(D; || D2) the RD between Dy and Ds). Intuitively, the RD
is an alternative to SD as measure of distribution closeness, where we replace the difference between
the distributions in SD, by the ratio of the distributions in RD. Accordingly, one may hope RD to
have analogous properties to SD, where addition in the property of SD is replaced by multiplication
in the analogous property of RD. Remarkably, this holds true in some sense, and we explore some
of this below. In particular, a very important property of the SD is probability preservation: for any
two distributions Dy, Dy on space X, and any event £ C X, we have Dy(FE) > D1(FE)— A(Dy, D2).
Lyubashevsky et al. [18] observed an analogous property of the RD that follows roughly the above
intuition: Do(E) > D1(E)?/R(D1||D2). The latter property implies that as long as R(D1| D)
is bounded as poly(\), any event E of non-negligible probability D;(F) under D; will also have
non-negligible probability Dy(E) under Da. We show that for our discrete Gaussian distributions
Dy, Dy above, we have R(Di||D2) = O(poly(X)), if of/||7|| = 2(poly())), as required for our

re-randomization security goal.

4.1 The Rényi divergence (RD) and its properties

We review the RD [24,9] and some of its properties. For convenience, our definition of the RD is
the exponential of the usual definition used in information theory [9], and coincides with a discrete
version of the quantity R defined for continuous density functions in [18, Claim 5.11].

For any two discrete probability distributions P and @ such that Supp(P) C Supp(Q) over a
domain X and « > 1, we define the Rényi divergence of orders o and co by

1
Ra(P|Q) = (Toex gogir) ™ and  Roo(P|Q) = maxsex 5

with the convention that the fraction is zero when both numerator and denominator are zero. A
convenient choice for computations (as also used in [18]) is @ = 2, in which case we omit the «
subscript. Note that R, (P||Q)*! = 3, P(x) - (P(2)/Q(x))* ! < Roo(P||Q)* 1. We list several
properties of the RD that can be considered the multiplicative analogues of those of the SD.

Lemma 4.1. Let Py, P>, P3 and Q1, Q2 denote discrete distributions on a domain X and let o €
(1,00]. Then the following properties hold:

— Log. Positivity: R,(P1]|Q1) > Ro(P1]|P1) = 1.

— Data Processing Inequality: Ra(PfCHQ{) < Ro(P1||Q1) for any function f, where Plf (resp.
Q{) denotes the distribution of f(y) induced by sampling y <= Py (resp. y <= Q1).

— Multiplicativity: Let P and () denote any two distributions of a pair of random wvariables
(Y1,Y2) on X x X. Fori € {1,2}, assume P; (resp. Q;) is the marginal distribution of Y; under
P (resp. Q), and let Py (:|y1) (resp. Qo (-ly1)) denote the conditional distribution of Y2 given
that Y1 = y1. Then we have:

o R\(P|Q) = Ra(P1||@Q1) - Ra(P||Q2) if Y1 and Ya are independent.

* Ra(P[Q) < Roo(P1[|Q1) - maxy, ex Ra(Pyy1(-y1)[| Q211 (-|y1))-
— Weak Triangle Inequality: We have:

Ro(P1||P2) - Roo(P2|| P3),
R, (P ||P3) < _a’
(Frl[Fs) {ROO<P1||P2>M Ra(P2|[Py).

11



— Ro Triangle Inmequality: If Roo(Pi||P2) and Reo(P|Ps) are defined, then Roo(P1]|P3) <
Roo(P1||P2) - Roo (P2 Ps). o
— Probability Preservation: Let A C X be an arbitrary event. Then Q1(A) > P1(A)a—1 /Ry (P1]|Q1).

Proof. The log. positivity and data processing inequalities are proved in [9, Th. 8&9].
For multiplicativity, we have

a1 _ (Pr(z1) - qu(m2!x1
HalPIQN= x%;z (Qu(1) - Qopr (w2|z1)) Z Ra(Pon (+|z1) [ @op (1))

If X; and X3 are independent, then we have Py (w2|71) = P2(z2) and Qg (72|71) = Q2(22) for
all 21, and the result follows. More generally, since R, (P||/@Q)%! is the expected value of f(x1) =

% - Ra(Poy1 (+21)[|Qay1 (-|21))* over 21 sampled from Py, it follows that R, (P||Q)*"! <

maxg, f(x1), which gives the second multiplicativity property.
For the first weak triangle inequality, we have

Pi(x)* Pi(z)®  Py(x)>! Pi(x)” Py(z)*t
Ra(Pil|P)*" = %: Pgég(c)gu = ; Pgéfi)tzcl ' Pzgx§a1 = (%: Pgé‘i)(Bél) e T

which gives the desired result. Similarly, for the second weak triangle inequality,

Pi(z)® Pi(z)* Py(z)® P(x)~ Po(x)~
Ra(PIP) = Y0t = 3 el O < (e )Y

as required. For the R, triangle inequality, we have

P (z) P2($)>
Roo(PL||Ps) = . < . .
(PR =m0 = - ey < (me ) - (e
Finally, the probability preservation property is proved in [18, Claim 5.11] for the case
a = 2 using the Cauchy-Schwarz inequality. The general case follows by replacing the latter
with the more general Holder inequality, which states that ,c 4 |f(2)g(2)] < (Xpea |f(2)[P)/P -

(Yaea lg(@)[A=YPH1=1/P for real-valued functions f,g and p > 1. Taking f(z) = #@1/&7

g(z) = Q1(z)"V and p = a, we get Pi(A) < (X,ea Qig(cﬂ)ci‘il)l/a - Q1(A)'=1/%. The fact that
D weA QI;%()i r < Ro(P1]|@Q1)* ! provides the result. 0

We note that the RD does not satisfy the (multiplicative) triangle inequality R(Pi||Ps) <
R(P1||P2) - R(P2||P3) in general (see [9]), but a weaker inequality holds if one of the pairs of
distributions has a bounded R, divergence, as shown above. We also observe that R., does satisfy
the triangle inequality.

4.2 The Rényi divergence between a discrete Gaussian and its offset

For our re-randomization application, we are interested in the RD between two discrete Gaussians
with the same deviation matrix .S, that differ by some fixed offset vector d. The following result
shows that their RD is O(1) if 0,,(S)/||d|| = £2(1).
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Lemma 4.2. For any n-dimensional lattice A C R™ and rank n matriz S € R™™ (with> n), let
P be the distribution Dy s, and Q) be the distribution D g, for some fized w,z € R". If w,z € A,
let € = 0. Otherwise, fiz ¢ € (0,1) and assume that o, (S) > n.(A). Then:

nei)e |(172) (725 esviomts 7

) ()] e ()

Proof. By definition,

exp(—|(S) (= — w)|*) exp(—||(ST) (= — 2)[?)

HR I ST [ ] o B SO Y= e e Y
We have:
R(PIQ) =
xEA

exp(—7|[(ST)t(y — 2)]?
-5 yEAAeprZ(—w||<EsT>)f<;y— w)) |‘||2>))2 3 exp(-2n (87 @ — w)|” + 7l (ST (@~ 2)P).
IS TeA

Defining ¢ = 2w — z, we have that:
2|(8T) (@ — )| = 18Tz = 2)I* = (5@ = I = 2[1(5T)(w - 2)|>.
Hence,
Yaeaexp(=[[(ST)(x = )|*) - Tyeaexp(=m[(ST)(y - 2)I1*)
(Xyeaexp(=rl|(ST)(y — w)[?))? '
Notice that for any z € A, we have 3,4 exp(—7[|(ST) (x — 2)||?) = S,eaexp(—7||(ST)Tz|?).

From this, we conclude that if w,z € A, then ¢ € A and hence the sums in the quotient above
cancel out, and we get R(P||Q) = exp(27||(ST)T(w — 2)||?). In general, for any y, z € R", we have

> exp(=mo1((ST)) ly—21*) < Y exp(=x | (ST)'-(y—2)I") < > exp(—man((ST))?-[ly—2?),

yed yeA yeA
using the fact that o (ST)1) - fly — 2l < (ST - (y — 2)[| < 01 ((ST)) - [ly — zI|. Bus

> exp(—mo1 (ST -y = 201%) = p1/oy ((57)1).2(A) = Pon(s),2(A)
yeN

> exp(—=mon (™)) 1y = 201%) = P10 ((57)1).2(A) = Poy(s),2(A)-
yeAN

R(P|Q) = exp(2x]|(ST) (w—=2)|*)-

Using the assumption 01(S) > 0,(S) > n:(A) and Lemma 2.5, it follows that ps, (g).(A) and
Pon(S),2(A) are both in the interval [1 —e,1+¢] - (det A)~L. From the above inequality, we get that
doyed exp(—7||(ST)t- (y — 2)||?) is also in this interval. Applying this to the sums in the expression
for R(P||Q) gives the claimed interval for R(P||Q).
The claimed inequality follows from ||(ST)T2]|? < o1 ((ST)")? - ||z]|? and o1 ((ST)T) = 1/0,(S).
O
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5 A discrete Gaussian leftover hash lemma over R

In this section, we present our second main result for improving the GGH scheme re-randomization
algorithm. Recall that the GGH algorithm re-randomizes a level-k encoding «’ into v = [u' +

> pjmg-k)]q, where the p;’s are sampled from xj = Dy, and :L“g.k) = [bg-k)/zk]q = [grj(k)/zk]q. To

show that the distribution of Z;nz’“l pjbg-k) is close to a discrete Gaussian over Z, they then apply

the discrete Gaussian LHL from [2, Th. 3|, using m, = {2(nlogn) fixed elements b§~k) € T that

are published obliviously as randomizers “inside” the public zero-encodings xg-k). We show that it
suffices to sample 2 randomizers as elements of the full n-dimensional ring R, rather than just
from Z, i.e., we set xi = DR,"Z' In Appendix B, we review the results of [2], as our proof follows
the same high-level steps.

For a fixed X = (71, 22) € R?, we define the distribution g’X75 = x1Dp s+ x2Dp s as the distri-
bution induced by sampling u = (u1,u2) € R? from a discrete spherical Gaussian with parameter s,
and outputting y = x1u1 + xous. We prove the following result on £ X ,s-

Theorem 5.1. Let R = Z[z]|/{z™ + 1) with n a power of 2 and T = (g) C R, for some g € R. Fix
€€ (0,1/2), X = (x1,22) € Z X T and s > 0 satisfying the conditions

— Column span: X - R*> =1T.
— Smoothing: s > max(||g 7 21|00, |97 72]l00) - 7 - v/210g(2n(1 + 1/¢)) /7.

Then, for all x € I we have gx,s(m) = cf(z) - Dz 4xr (), for some constant ¢ and function f with

values in [37=

e 1]. In particular, we have

A(Ex 5, Dz oxr) <2 and max(Reo(Ex 5| Dz ox7), Roo(Dzox7||Ex.5)) < 1+ 4e.

Finally, if ' - on(g7') > T In'5(n),* z1,29 <> Dz and n grows to infinity, then the first
condition holds with probability £2(1).

We prove this result for ¢ = 1, and then we generalize to general g. First, we consider the
column span condition.

Lemma 5.2 (Adapted from [29, Le. 4.2 and Le. 4.4]). Let S € R™", and 0,(S) >
7n'® Int(n). For n going to infinity, we have Pry, apenps[X - R? = R} > 0(1).

Let Ax C {(v1,v2) € R?: 101 +22v2 = 0} be the 1-dimensional R-module of vectors orthogonal
to X. We view Ax as an n-dimensional lattice in Z?", via the polynomial-to-coefficient-vector

mapping.

Lemma 5.3 (Adapted from [2, Le. 10]). Fiz X such that X - R? = R and Ax as above. If
s > n:(Ax), then Ex s(2) = cf(2) - Dgn sx7(2) for any z € R, for some constant c and function f

with values in Hfi, 1).% In particular, we have
~ € ~ ~ 14+¢
A(EXVS,DZn’sXT) < 12 and maX(Roo(gXJHDZ'n’SXT),ROO(DZWL’S)(THCC/‘)QS)) < T

4 By abuse of notation, we identify g~ € K with the linear map over Q" obtained by applying the polynomial-to-
coefficient-vector mapping to the map r g .

® The normalization constant ¢ was omitted in [2].
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We now study the quantity 7. (Ax). First, we show that all successive Minkowski minima of A x
are equal. This property is inherited from the “equal minima property” of ideal lattices in R.

Lemma 5.4. Let X and Ax be as above. Then \1(Ax) =---= A\, (4x).

Proof. We observe that Ax is closed under scalar multiplication by an arbitrary element w € R,
ie., if v = (vi,v2) € Ax then w-v = (w-vy,w-vy) € Ax. In particular, let v € Ax be a vector of
norm |[v|| = A\ (Ax). Fori =0,...,n—1, let e;(z) = 2* € R. Then the n vectors (ep-v,...,en_1-V)
are in Ay, and all have the same norm A (Ax), because ||e; - v;|| = |lv;|| for all ¢, j. Further, these n
vectors are linearly independent over Q: let ¢ be such that v; # 0 (which must exist since v # 0);
the vectors (eg - vj, ..., en—1 - v;) are linearly independent over Q, because the fraction field K of R
is a field (it they were not linearly independent over Q, we would have (3_; aje;) - v; = 0 for some
non-zero a =y aje; € K). It follows that \j(Ax) =--- = A\ (Ax) = [Jv]|. O

Lemma 5.5. Let X and Ax be as above. Then we have n-(Ax) < max(||z1]co, |[|Z2|lcc) - 7 -
V2log(2n(1+1/e)) /7.

Proof. We first use Lemma 5.4 and Minkowski’s second theorem (see Lemma 2.1) on the lattice Ax:
1/n 1/n
M(Ax) = (Theica Mi(Ax)"" < V- (det(4x)""

Now, observe that Ay = L%, where Ly = R-X = {(r-21,7-22) : r € R} is viewed as a sublattice
of Z*". We have, by Lemma 2.2, that det(Ax) < det(Lx) < || X ||, where the latter inequality fol-

lows from the Hadamard inequality, with || X|| = /[Jz1[]? + [|z2]]? < max(||z1]/cos [|72]/c0) - V21
As a consequence \,(Ax) < max(||z1]|oos [|72]loc) - V2n. By Lemma 2.4, we have n.(Ax) <
VIn(2n(1+1/¢))/7 - M(Ax), which completes the proof. O

Combining the above lemmas, we get Theorem 5.1 for g = 1. The general case is proved as
follows. The injective map My : y — g -y on R takes the distribution &5 _ with X=g9g"'"Xto

the distribution gx,s, while it takes D, <r to Dz xr, with T = {(g). The conditions X - R?> = T

and X - R? = R are equivalent. The smoothing condition is satisfied for X by the choice of s. Thus
we can apply Theorem 5.1 with g = 1 to 5—7 s and conclude by applying the mapping M, to get
the general case of Theorem 5.1. For the very last statement of Theorem 5.1, it suffices to observe
that Dz g =g- DR78/(971)T.6 O

6 Owur improved GGH grading scheme: GGHLite

We are now ready to describe our simpler and more efficient variant of the GGH grading scheme,
that we call GGHLite. The scheme is summarized in Figure 4. The modifications from the original
GGH scheme consist in:

— Using m, = 2 re-randomization elements x1,x2 in the public key, sampling the randomizers
p1, p2 from a discrete Gaussian Dp o+ over the whole ring R (rather than from Z), applying our
algebraic ring variant of the LHL from Section 5.

— Saving an exponential factor ~ 2" in the re-randomization parameter o} by applying the RD
bounds from Section 4.

6 With the same abuse of notation as in the previous footnote, for the term (g~*)7.
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In terms of re-randomization security requirement, we relax the strong SD-based requirement
on the original GGH scheme to the following weaker RD-based requirement on GGHLite.

Definition 6.1 (Weak re-randomization security requirement). Using the notations of Def-
inition 3.2, we say that the weak re-randomization security requirement is satisfied at level k with
respect to D((;];%(eL) and encoding norm v*) if R(D&k)(eL,r’)HDégg(eL)) = O(poly(N)) for any
u' = [ /2%, such that ||| < v*).

We summarize GGHLite in Figure 4, which only shows the algorithms differing from those in
the GGH scheme of Figure 1.

e Instance generation InstGen(1*, 1“) Given security parameter A and multilinearity parameter s, determine
scheme parameters n, ¢, m, = 2, o, o', £,-1, ly, £, based on the scheme analysis. Then proceed as follows:
e Sample g <> Dg,, until ||| < 6971 and Z = (g) is a prime ideal and ||g]| < /n - 0.
e Sample z <> U(Ry).
e Sample a level-1 encoding of 1: y = [a - 271], with a <> Dy 7.4
o For k < k:
+ Sample B® = (b 57 from (Dz,,)2. 1t (b7, 657) £ T, or o, (rot(B®)) < 4, or | B®| > /-0
then re-sample.
« Define level-k encodings of 0: z*) = (" . 27*],, (" = [p{¥) . 27¥],.
e Sample h <> Dg, s and define the zero-testing parameter Dzt = [hz“}q € R,.

e Return public parameters par = (n, g, y, {(xgk), x2 )}k<,€) and p.¢.

e Level-k encoding ency(par, e): Given level-0 encoding e € R and parameters par:
e Encode e at level k: Compute uw = [e-y¥]q

e Return u = [t/ + p1 - 2 + po - 2{P],, with py, pa < Dr,or.

Fig. 4. The new algorithms of our GGHLite scheme.

Choice of o, £,~1 and o', 4. The upper bound £,-1 on ||g~!|| in the rejection test of InstGen can be
chosen as small as possible while keeping the rejection probability p, bounded from 1. According
to Lemma 2.7 and Lemma 2.4 with ¢ = 2\/27renp;1 and 0 = 1/3, one can choose

g1 = 4/men/(pgo) and o > 4mny/eln(8n)/m/p,, (4)

to achieve p; < 1. Note that the same choices apply to the GGH scheme: here we have a rigorous
bound on p, instead of the heuristic arguments for estimating in ||g~| in [10]; however, as in [10],
we do not have a rigorous bound on the probability that Z is prime conditioned on this choice.

Let py be the rejection probability for the lower bound ¢, on o,(B®)) in the rejection test
of InstGen. To keep p, away from 1, we use that o, (B®)? = min,cx juj=1 Dieyo ||u - bEk)H2 >
dic12 Un(bgk))2. Applying Lemma 2.7 with ¢ = 2v/2menp, ! and § = 1/3, we get that crn(bgk)) >
8\}’%‘0’, except with probability < py, for i € {1,2}if o’ > \/77]1/3(1)7 where 1, /3(Z) < /In(8n) /7
llg|| by Lemma 2.4. Therefore, we can choose

by = 2\;7% o' and o > 2n'cy\/eln(8n)/m/ps. (5)
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We also need to bound the probability pj of the first rejection test (bgk),bgk)> # Z. This is
bounded by some constant < 1 by Theorem 5.1, but it requires the assumption o’ - o, (g71) >
7n'5In'5(n). To use Theorem 5.1 to obtain a rigorous bound on p},, we can satisfy the assumption
as follows. Using the lower bound o, (g~ 1) > m from the remark after Lemma 2.7, and using

the rejection condition [|g|| < v/n - o, we have 0,(¢7!) > -1, so the Theorem 5.1 assumption is

satisfied by setting
o' > > 1ntP(n) - 0. (6)

Zero-testing and extraction correctness. The correctness conditions for zero-testing and correctness
remain the same as conditions (2), (3) for the original GGH scheme. The only modification needed is
for condition (1), because in GGHLite, m, = 2 and p; € R so ||,0jb§»1)|| < \/ﬁ\|p]|||]b§1)|| Accordingly,
condition (1) is replaced by:

g > max ((nfg_l)g, (3- n1'50*0’)8”) . (7)

Security. We state our improved re-randomization security reduction for GGHLite, that works with
much smaller parameters than GGH. To our knowledge, it is the first security proof in which the
RD is used to replace the SD in a sequence of games, using the RD properties from Section 4 to
combine the bounds on changes between games. This allows us to gain the benefits of RD over SD,
for both the drowning and smoothing aspects. Namely, with €4, ,, €. in Theorem 6.2 set as large as
O(log A/k), our weak security requirement of Definition 6.1 is satisfied (the RD between real and
canonical encoding distributions is bounded by the quantity R = poly()) in Theorem 6.2), and our
re-randomization goal for Ext-GCDH is achieved (whereas the strong requirement of Definition 3.2
is not satisfied).

Theorem 6.2 (Security of GGHLite). Let €4,¢,,ec € (0,1/2) and v < 2". Suppose that the
following conditions are satisfied for GGHLite:

— LHL Smoothing:

or>n' b 1o \/2 log(4n - e, ) /. (8)

o >nd (o)) \/8meyt /b (9)

— samp Uniformity Smoothing:

— Offset “Drowning:”

U'Za-\/nln(4n-6e_1)/7r. (10)

Then, if A is an adversary against the (non-canonical) Ext-GCDH problem for GGHLite with run-
time T and advantage €, then A is also an adversary against the canonical problem Ext-cGCDH
for GGHLite with T' = T and advantage

e >(e—O0(rk-27")/R with R =20 (Eatepteet2™™) (11)

In particular, there exist eq, ce, €, bounded as O(log A\/k) such that the re-randomization security
goal in Definition 3.4 is satisfied by GGHLite with respect to problem Ext-GCDH.

Proof. We consider a sequence of games Gamey, ..., Games, where the distributions of the view of
A differ among the games as follows:
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— Gamey: The Ext-GCDH experiment, where y = [az™!], with a = 14+gry <> D17, and Z = (g),

1 _ .
ui = [(eir + 325 Pz’jbg- )+ ci) -2z g for i € {0,... .k}, eir = [eily, i = eir + geinm < Dro,
and ¢; = g(e; Lry + eim) + g°ryein.
— Game;: Modification of Gamey in which e; (for i € {0,...,x}) and a are sampled from the

truncated tail Gaussians D%, and Dj 17, (instead of the untruncated Gaussians Dp . and
D7, respectively).

— Gamey: Modification of Game; in which the distribution of the re-randomization term }_; ,ol-jb(l)
is replaced by the canonical distribution DI,a;(B(U)T? so uj = [(e;r +wi + ¢) - zfl]q, with
w; DI,a{(Bm)T for 0 <i < k.

— Gamegs: Modification of Games in which offset vector ¢; in the randomization of encoding wu; is
removed and replaced by —e; 1, so that u; = [(e;,r + w;) - 271]4, where w; DIJT(BQ))Q_%L
for 0 < i < k (note that e; 1, + w; is distributed as DIJFGLL,UI(B@))T over the randomness of w;).

— Gamey: Modification of Games in which e; is sampled from Dp, (instead of sampling e; from
the truncated tail Gaussian D%y o), for 0 < i < K, and a is sampled from D; 7, (instead of
Di«#l’,o“)'

— Games: The Ext-cGCDH experiment, which can be obtained as a modification of Gamey in
which e; 1, is sampled uniformly from Ry, instead of being computed from e; as e; 1, = [e;]g.

For ¢ = 0,...,5, let V; denote the distribution of the view of A in Game;, and let E de-
note the event that A outputs the correct Ext-GCDH solution. By the probability preserva-
tion property of RD from Lemma 4.1, we have that the advantage of A against Ext-cGCDH is
V5(E) > Vi(E)?/R(V1||V5) and from the probability preservation property of the SD, the latter is
> (e — A(Vo, V1))2/R(V1 || V5).

To complete the proof, it thus remains to show that A(Vp, Vi) = O(k-27") and R(V1||V5) < R,
with R defined in the theorem statement. Using two applications of the weak triangle inequality and
one application of the R, triangle inequality from Lemma 4.1, we get R(V1||Vs) < Roo(V4]|V2)? -
R(Va|[VA), R(Val[Vs) < R(Val[Va) - Roo(V&|V5) and finally

R(V1||[V5) < Roo(V1[V2)? - R(Va|[V3) - Roo(V3]|[Va) - Roo(Va|V5).
We now bound each factor in turn:

— To bound A(Vp, V1), we use the fact that Gamey and Game; differ only if the norm of one of the
sampled e; (for i € {0,...,x}) or a exceeds 2/n - ¢’. By Lemma 2.3, since 0’ > 1 9(Z) (which
follows from the samp uniformity smoothing condition, as shown below), this event occurs with
probability at most 27"%2 for each of these x + 2 Gaussian samples. By the union bound, it
thus follows that

AV, Vi) < (k4+2)- 272 = O(k - 27™).

— To bound Rs(Vi||V2)?, we apply our LHL over R (Theorem 5.1) to conclude that, for each

i € [k + 1], Roo(D(, pih§)IDg e pyr) < 1+ 42, < expldey) if g, < 1/2, of >

HgilB(l)Hoon\/Q log(4n - e, 1) /m, and B - R? = 7. The last condition on BM) holds by the
rejection test of the InstGen algorithm of GGHLite. The condition on o7 holds by the assumed
LHL Smoothing condition and the bound |lg=! - B < [lg7 1| - |BY|| < ;-1 - 0’ - \/n, from
the rejection tests of the InstGen algorithm. Using the multiplicativity property over i € [k + 1],
and data processing inequality for R, we conclude that

Roo(V1]|V2)? < exp(8 - (1 +1) - £).
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— To bound R(V3||V3), let Dy; = DI,O.T(B(l))T + ¢ = DLUT(B@))T@ (using Z 4+ ¢; = Z, since
c; € I) and Dgﬂ' = DZ,UI(B(l))T,*ei,L
have of - ¢, > o/, and using the samp uniformity smoothing condition, we have o’ > 0. (Z),
where we have used the bound 7., (Z) < M - An(Z) from Lemma 2.4, and the fact
that A\, (Z) = M(Z) < |lgll < /n - 0. We conclude that o, (cf(BM)T) > of - £, > 1., (T).
Therefore, we can apply our offset Gaussian divergence bound (Lemma 4.2) for each i (with
w = ¢ and z = —e; 1) to get that, conditioned on a fixed value of offset ¢; and encoded
clement e; 1, (as well as fixed g, BY) and a), we have R(Dy;||Dq;) < (i‘—i:)Q - exp(27|¢; +
ein||?/ (oo, (BM))?) < exp(27|lci+eir||?/(076)? +8¢.) using (Ha:) < exp(8e,) for e, < 1/2.
We also have |l¢;+e; 1| = |le;-all < v/n-|leill - ||la]| < n'5-(0’)?, using the bounds ||e;|| < v/n-o’,
lall < 2y/no’. Therefore, we get R( i) < exp(eq + 8¢¢) using the “Offset Drowning”
condition. Using the multiplicativity property over i € [k + 1], and data processing property
of R, we conclude that

for ¢ € [k + 1]. From the offset drowning condition, we

R(Va|[V3) < exp((k+1) - (€4 + 8zc))-

— To bound R (V3]|V4), we recall that for each i € [k + 1], the distribution DR o of e; in Games
is obtained by rejecting and resamphng from Dp, if the rejection test |le;|| > /no’ is satisfied.
It follows that DR,U (x) = 1=— - DRo(z) for all x in the support of DR’U,, where pre; is the

probability that a sample Dp , is rejected, and hence that ROO(D%’G, |DRro) = 1

_prej

discrete Gaussian tail bound Lemma 2.3, we have p;..; < 272 if o/ >y /Q(R), and the latter
condition is satisfied by the choice of o’. Tt follows that Roo(D% || Dror) <1 +273, Applying
a similar argument to the distribution of a using ¢’ > 1, 5(Z), we have Ry (D] 1.0/ 1D1+z,07) <
1 4+ 2773 and hence by the multiplicativity and data processing properties of the RD:

Roo(V3[[Va) < (14 27"7%)"*2 < exp((k +2) - 27"77).

— To bound R (V4]|V5), let D, denote the distribution of [e;], over the randomness of e; sampled
from Dp . We apply smoothing Lemma 2.6. to get that Ro(U(Ry)||De) < ii‘—iz if o’ > e, (I).
The latter condition holds as shown above. Using the multiplicativity and data processing
properties of RD from Lemma 4.1, over i =0, ..., k, we conclude that for e, < 1/2:

1+ee
<
(Vi) < (15

Combining the above bounds gives the claimed bound. For the last statement, it suffices to observe
that &’ = 2(e?/poly(N)) if k - max(eq,,,ec) = O(log \). O

Kk+1
) < exp((r + 1) - dey).

6.1 Canonical re-randomization algorithm cenc.

In Remark 2 of [10], the authors of the original GGH scheme define a canonicalizing encoding
algorithm cenc that allows for certain applications (like the ABE scheme in [12]) to use the encoding
re-randomization multiple times. We can define such a canonical re-randomization algorithm for
our GGHLite in a similar way.

Algorithm cenc;(par, k,u") takes a level-k encoding ' of some element e € R, with k < x and
returns a re-randomized level-k encoding u of e. The parameter [ indicates the “re-randomization
depth,” i.e., the number of times that cenc has been applied, and determines the re-randomization
noise level.
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Alternative “pairwise closeness” re-randomization security requirement. For applications such as
the ABE scheme in [12], it is required that, for any two given level-k encodings u} = [c1/2%],, u) =
[ca/2*], of the same element e, the pair of distributions D(uy), D(uz) of u; = cenc;(par, k,u}) and
ug = cency(par, k, ub), respectively (over the randomness of cenc), are “close.” This “pairwise close-
ness” requirement for re-randomized encodings is an alternative to the “closeness to a canonical
distribution” requirement for re-randomized encodings in Definition 3.2 and Definition 6.1. In the
case of the strong SD-based “closeness” requirement in Definition 3.2, we have, from the triangle
inequality property of SD, that the “closeness to a canonical distribution” requirement of Defini-
tion 3.2 implies the “pairwise closeness” requirement. However, due to the lack of such a general
triangle inequality property for the RD, such an implication does not immediately hold for our
weak RD-based “closeness” requirements. Nevertheless, our improved re-randomization analysis of
GGHLite above can be carried over to establish the weak “pairwise closeness” requirement as well.

In the following, we define our weak RD-based “pairwise closeness” re-randomization require-
ment.

Definition 6.3 (Weak pairwise-closeness re-randomization property of cenc). Fiz a k-
graded encoding scheme S, and an instance par of this scheme for security parameter . For k < k
andl < L, let S ;) denote a set of “admissible” level-k input encodings at re-randomization depth l.
Let cenc; denote a re-randomization probabilistic algorithm that takes as input (par, k,u') with v’ a
level-k encoding of some level-0 element er,, and returns a re-randomized level-k encoding u of ey, .
Then we say that cenc satisfies the weak pairwise closeness re-randomization property for S with
RD bound R and admissible input encoding sets {S(x1) tre[sie(r) o for any k € [x], | € [L] and
two level-k encodings uy,uy € Sy of the same level 0 element er, we have R(D(u1)||D(uz)) <
R = O(poly())), where D(u;) denotes the distribution (over the randomness of cenc) of the re-
randomized encoding u; = cency(par, k,u,) fori € {1,2}.

Next, we show that our requirement above is satisfied for GGHLite by a canonical re-randomization
algorithm cenc with a similar choice of parameters as in Theorem 6.2. The proof is very similar
to the proof of Theorem 6.2. The main difference is the direct “jump” in the RD-based analysis
between the pair of encoding distributions D(uy), D(ug2) to avoid going through an intermediate
canonical distribution, which would require applying a “strong” triangle inequality for the RD.

Lemma 6.4 (Weak Pairwise-closeness Re-randomization for GGHLite). Let g4,6,,6c €
(0,1/2) and k < 2™. For k < k and | € [L], let cenci(par, k,u") denote the canonicalizing encoding
algorithm for GGHLite that takes a level-k encoding v’ = [c'/2*], with ||¢|| < Yk, and returns a
re-randomized encoding u = [u' + p; - xgk) + p2 - a:gk)]q with py, p2 < DRJ;; i for some admissible
input encoding norm bound 7y ;. Suppose that the following conditions hold:

— LHL Smoothing:

opy >ntP Ayg—1 -0 \/2 log(4n - e, 1) /7. (12)

ok = (\/8me /) - - (13)

Then cenc; satisfies the weak pairwise-closeness re-randomization property for GGHLite with RD
bound

— Offset “Drowning:”

R = exp(12¢, + €4), (14)

and admissible input encoding sets Sy, = {u' = [¢'/2F]4 : ||| < Ya}-
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Proof. We fix an instance par = (n, ¢, y, {(1:1 ),xQ ) }k<x) and p.; of GGHLite, w1th:c = [ /z los
gk) = [bQ /z lg» and y = [a/2] with a = 1+ gry, and two level-k encodings u} = [c;/z¥], in Sk, i.e.
with ||c}|| < vk, of the same level 0 element ey, so that ¢; = e, +¢; € R with ¢; € T for ¢ € {1, 2}.
We consider the following sequence of games, where in each game, a re-randomized level-k encoding
u of ey, is sampled, but the distribution of u differs among the games as follows:
— Gameg: In this game, we define u as the re-randomization of u}, i.e. u = cencj(par, k,u}) =

[(er + c1 4+ w)/2F],, where w = py - b(k) + p2 - b( ) € R and pi <= Dpor forie {1,2}.
— Game;: Modification of Game; in which the dlstrlbutlon of the re- randomlzatlon term w is
replaced by the distribution Dy . (pooyr, ie. u = [(er + c1 +w)/z¥], with w Dz g (BT
— Gamey: Modification of Gamey in Wthh the randomization offset term ¢; € 7 is replaced by
offset term cp € 7, i.e. u = [(ef + c2 + w)/2F], with w Dz g (B0O)T
— Games: Modification of Gamey which “undoes” the modlﬁcatlon introduced in Gamey, i.e. in
this game we have u = [(ef, + c2 + w)/z¥],, where w = p; -bg ) 4 p2 - bgk) € R and p; <> Dpor,
for i € {1,2}. Observe that in this game, u has exactly the distribution of a re-randomization
of ub, i.e. u = cency(par, k, ul).

For i =0,...,3, let D(u); denote the distribution of v in Game;. To prove the lemma, it thus
suffices to show that R(D(u)o||D(u)3) < R, with R defined in the lemma statement. Applying both
of the weak triangle inequalities from Lemma 4.1, we get

R(D(u)o]| D(u)3) < Roo(D(w)o|D(u)1)? - R(D(u)1[|D(w)2) - Roo(D(w)2|D(u)3).
We now bound each factor in turn:
— To bound Reo(D(u)o||D(u)1)?, we apply our LHL over R (Theorem 5.1) to conclude that
Roo(D(u)o||[D(u)1) < 1+ 4e, if of; > ||g_1B(1)||OOn\/2log(4n-5;1)/7r, and BV . R? = T.

The last condition on B holds by the rejection test of the InstGen algorithm of GGHLite The
condition on o} ; holds by the assumed LHL Smoothing condition and the bound [|g LB

g~ 1| - ||1B®|| < ly—1-0"-y/n, from the rejection tests of the InstGen algorithm. Using the data
processing inequality for R, we conclude that

Roo(D(uw)o||D(u)1)? < exp(8e,).
— To bound R(D(u)1||D(u)2), notice that for i € {1, 2}, using the fact that ¢; € Z, the distribution
of ¢; + w in Game; is D; def DI,U,’;l( BT ¢, Applying our offset Gaussian divergence bound

(Lemma 4.2) (with w = ¢1,2 = ¢2) gives R(D(u)1||D(u)2) < exp(27|/c; — cal|? /(of10n (B#)))2).

The latter is upper bounded by exp(ey) if (Uk;,l) > %. This last condition is satisfied
by the offset drowning condition, using |lc1 —ca|| = ||} —c5|| < 274, and the acceptance condition

on(B®)) > £, of the InstGen algorithm. We conclude that

R(D(u)1[[D(u)2) < exp(ea).

— To bound Ry (D(u)2||D(u)s3), we apply the LHL over R (Theorem 5.1) with the same argument
as used to bound R (D(u)o||D(u)1), except that this time, the order of the arguments to R is
reversed. Since the R, upper bound of Theorem 5.1 holds regardless of the order, we conclude
that

R (D(u)2]|D(u)3) < exp(4ep).
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Combining the above bounds gives the claimed bound R.

6.2 Eliminating z: an NTRU variant of GGHLite

In this section, we introduce a simplified variant of the GGH/GGHLite scheme that eliminates the
parameter z, and yet preserves the security of the GDDH/GCDH problems. We call our variant the
NTRU variant, since it involves publishing “NTRU-like” quotients pk:§k> = [xgk) Jy*], = [bgk) /a*],
instead of the separate GGH parameters xgk),y, thus cancelling out the parameter z, and replacing
it effectively by a. Similarly, level-k encodings in this construction also correspond to GGHLite
encodings divided by ¢*, i.e., have the form u = [(e-ak—i-plbgk)+p2bgk))/ak]q = [e—i—pmk%k)—i-pgpkék)]q.
The zero testing parameter is accordingly modified to p,; = gak. The latter encoding resembles an

NTRU ciphertext for e with respect to public keys pk:gk) , pk:gk), although in NTRU we have only one

public key, whereas here we have two public keys. The fact that public parameters and encodings
can be efficiently translated from GGHLite to the NTRU variant by taking quotients in R,, implies
that the security of the NTRU variant is at least as hard as GGHLite. Details of the scheme are
summarized in Figure 5.

e Instance Generation InstGen(l)‘7 1%): Given security parameter A and multilinearity parameter x, determine
scheme parameters n, q, m, =2, 0, o', £y-1, €y,L. Let R = Z[z]/(«" + 1) and Ry = R/qR = Z[z]/(z™ + 1). Do
the following:

e Sample g <> Df . If (1) [[g7"|| > €,~1 or (2) (g) is not a prime ideal, resample g, else define ideal Z = (g).
e Sample a <= D}, ., (note that a = 1+ gr, for some 7, € R).
e For k € [k]:
« Sample B® = (b b)) from (D} /)% If: (1) " b8 £ T, or (2) o (rot(B™)) < £, resample.
* Define level-k public keys: pkim = [b(lk) ~a” "y, pkék) = [bgk) ~a” ),
h kK

e Sample h <> Dpg /4 and define the zero-testing parameter: p.¢ , = [ga lq € Rq.

e Return public parameters par = (n, g, {(pkim,pkék))}ke[m]) and p.¢.
e Level-k encoding ency(par, e): Given level-0 encoding e € R and parameters par, return u = [e + p1 -pk§k> +
p2 - PS4, with p1, pa < Dror (note u = [(c' + p1b) + pab)/ak],, where ¢ = e - a* € e+ I).

Fig. 5. The new algorithms of our NTRU variant GGHLite scheme. Other algorithms are the same as in the original
GGH scheme.

Security of the construction. We can define the corresponding problems GCDHN TRV ExtGCDHNTEU

and GDDHNTRU for this NTRU variant, in the natural way as in Section 3, but with respect to
experiment of Figure 6.

To show that the NTRU variant of the GGH encoding scheme is at least as secure as the GGH
scheme, we now provide a formal reduction from GDDH to GDDHNTRU (and similarly for the
other two problems).

Theorem 6.5. There exists a polynomial time reduction from GDDH (resp. GCDH/ExtGCDH)
to GDDHNTEY (resp. GCDHNTEY /ExtGCDHNTRY ),
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Given parameters \,n, q, m., k,c’, proceed as follows:
1. Run InstGen(1",1%) to get par = (n,q, {pkj(k)}j,k)
and p_t.
2. Fori=0,...,k
-Sample e; <> Dg . and f; <> Dg o/,
-Set u; = [ei + > pijpkjlg With pi; <= xa for all j.
3. Set u* = [H:":l ui]q.
Set ve = [eou™]q-
5. Sample p; <+ x. for all j; set vp = [eou” +
Ej Pjpk]('n)]q'
6. Set vg = [fou" + Ej pjpkﬁ.'i)]q.

L

Fig. 6. The GGHVTRU security experiment.

Proof. For simplicity, we only describe the reduction from GDDH to GDDHNTRU  [Let

{(y,{xj}j,pzt), w0, - .., us,v} be a GDDH instance and let O be a polynomial-time oracle for solving
GDDHNTEU,
®) _ (=01 for
o Let pk; = [~—]q for j € {1,2} and k € [#],

o Let p,; = [pzt : yﬁ]qv
o Let 0 =[v-y™"],,
e (Call the oracle O on input {({pk‘ }J ko Dat) [5as -5 [ g, 0}

We Ellz:ve u; = encyi(e;) = [e;y + Z~p§i)x(-1)] for all i € [s], then let ug™" = []q = [e; +
> pJ . “2=lg = lei + 32, pj)pk( )}q is a valid NTRU variant level-1 encoding for e;. Furthermore, if
v = vp, then

(%)

)+ ]y = e HNW+Zm k],

K

. u
P, i=1 Z/ j Y =1

is a valid NTRU variant level-x encoding of ], e;. Similarly, if v = vg, then ¢ is a valid NTRU variant

level-x encoding of fo [[;> €i, as required. O

7 Parameter settings

In Table 1, we summarize asymptotic parameters for GGHLite to achieve 2* security for the under-
lying Ext-GCDH problem, assuming the hardness of the canonical Ext-cGCDH problem, and to
satisfy the zero-testing/extraction correctness conditions with error probability A=« For simplic-
ity, we assume that K = w(1) and kK = O(poly(\)). For comparison, we also show the corresponding
parameters for GGH. The “Condition” column lists the conditions that determine the corresponding
parameter in the case of GGHLite. For security of the canonical Ext-cGCDH problem, we assume (as
in [10]) that the best attack is the one described in [10, Se. 6.3.3], whose complexity is dominated
by the cost of solving v-SVP (the Shortest lattice Vector Problem with approximation factor ) for
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the lattice Z, with v set at ~ ¢*/® to get a sufficiently short multiple of ¢g. By the lattice reduction
“rule of thumb,” to make this cost 2*, we need to set

n = 2(Xlogq). (15)

Table 1. Asymptotic parameters.

Parameter ~ GGHLite GGHI10] Condition
my 2 2(nlogn) LHL: Th. 5.1
o O(nlogn) O(nlogn) Eq. (4)
tyr  O(1/v/nlogn) O(1/vnlogn)  Ea. (4)
€d,€e,Ep O(x™) 02 1) Eq. (11)
o’ O(n*?) O(n"3v/X) Eq. (6)
o1 O(n®>\/k) O(2*An*®k)  Drown: Eq. (9)
Eext on—+W) on—+W)
q O(n'*/r)* O(2*A\5n35k)% Corr.: Eq. (7)
n O(kXlog \) O(kA?) SVP: Eq. (15)
lenc| O(xk*Xlog? \) O(K*\?) O(nlogq)

|par]| O(x*Mog? \)  O(k*N°log))  O(m.knlogq)

When k = poly(log A), the dimension n, encoding length |enc| and public parameters length
|par| in our scheme GGHLite are all asymptotically close to optimal, namely quasi-linear in the
security parameter A, versus quadratic (resp. cubic and quintic) in A for GGH [10]. Thus we expect
GGHLite’s public parameters and encodings to be orders of magnitudes shorter than GGH for typical
A =~ 100.

8 Applications

In previous sections, we have shown that our graded encoding scheme GGHLite can be instantiated
much more efficiently than the GGH scheme [10], but on the other hand, with our efficient choice
of parameters for GGHLite, we have only been able prove the hardness of the search problem Ext-
GCDH (based on the hardness of the corresponding canonical problem) rather than the decision
problem GDDH used in [10]. In this section, we show that the hardness of Ext-GCDH is sufficient
for important applications of graded encoding schemes, in the random oracle model. In particular,
we show that existing protocols based on the hardness of GDDH can be easily modified to make
their security based on Ext-GCDH in the random oracle model, while preserving the efficiency of
the original protocols, up to a small factor.

8.1 Efficient one-round N-party Diffie-Hellman key exchange in the ROM

We show how to adapt the one round N-party key exchange protocol described in [10, Section 5]
(originally described by Boneh and Silverman [7] in the abstract setting of multilinear maps) to
achieve security assuming the hardness the Ext-GCDH problem, rather than the GDDH problem,
in the random oracle model. The modification is straightforward: we simply replace the shared key
s = ext(par, p,t,v) in the original protocol, where v is the encoding of the Diffie-Hellman product of
the N parties’ secrets, by its hash K = H(ext(par,p.¢,v)), where H(.) : {0,1}* — {0,1}* denotes
a hash function modelled as a random oracle. Details follow.
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Construction. Given a k-graded encoding scheme with K = N —1 over an encoded element ring R/Z
of prime order p, and a hash function H : {0,1}* — {0,1}*, the N-party key exchange protocol is
presented in Figure 7.

e Setup Setup(1*,1%): Given security parameter A and number of parties N, run InstGen(12*** 1¥=1) for the
graded encoding scheme to get (par,p.:) and output protocol public parameters (par, p.¢).

e Publish Publish(par, p.¢,i): The ith party runs the level-0 encoding sampler to generate a random secret key
e; = Samp(par) (corresponding to encoded element e; 1), and publishes a corresponding level-1 public key u; =
ency (par, ;).

e KeyGen KeyGen(par, p.¢, j, €5, {u; }i=;): The jth party computes a level-(N —1) encoding v; = e; -Hi#j u; of the
Diffie-Hellman product [, e; ., and computes the key K; = H(s;), where s; = ext(par, p.¢,v;) is the extracted
string for v;.

Fig. 7. Our modified N-party Diffie-Hellman key exchange protocol.

Correctness. We have to show that all the N computed keys Kji,..., Ky are equal except for
negligible probability A=), In the KeyGen algorithm, each party computes an encoding v; of the
product ey, = []; ;1 in the ring R/Z. Since |R/Z| = 2(2%) is prime and the distribution of the
e;,1’s is within statistical distance O(27*) of uniform on R/Z, the product ey, is also within negli-
gible statistical distance O(27*) to a uniformly random element in R/Z. Hence by the extraction
correctness property of the encoding scheme, all IV extracted strings {s; };c|n], and hence also all N
computed keys { K };c[n), are equal, except with negligible probability O(IV - 2wy = o(A—w)
for N = A0,

Passive security. We have to show that, given (par,p,;) and the public keys w1, ..., uy, the key
(say K1) is indistinguishable to the adversary A from a uniformly random string in {0, 1}*, assuming
the hardness of the Ext-GCDH problem and the random oracle model for H. Formally, we define
a passive security attack game, in which A is given (par,p.), ui,...,un, and Ty, for a uniformly
random bit b € {0,1}, where Ty = K is the real key and T3 = R <> U({0,1}* is an independent
uniformly random string, and A outputs a guess b’ for b. We say that A’s advantage is ¢ = 2(Pr[b/ =
b] —1/2).

Lemma 8.1. Let A denote an attacker, in the random oracle model for H, against the passive
security of the N-party Diffie-Hellman key exchange protocol in Figure 7, with run-time T and
advantage €, making qg queries to H. Then there exists an algorithm A’ for the Ext-GCDH problem
for the underlying encoding scheme, with run-time T' =T and success probability €' > ¢/(2qp).

Proof. Let Game; denote the passive security attack game with A, and let Gamey denote a mod-
ification of Game; in which A’s queries to H are answered differently as follows: if the query =z is
equal to s1 = ext(par, ps, €1 - [[;51 ui), the query is answered with a uniformly random K € {0,1}*
(instead of K1 = H(sy)), otherwise, the query is answered with H(x), as in Game.

For i € {1,2}, let S; denote the event that b’ = b in Game;, and let E denote the event in Game;
that A queries H at s;. Note that by definition, Pr[S;] = 1/2+¢/2, and we also have Pr[Ss] = 1/2
because in Games, T}, is a uniformly random string independent of A’s prior view, regardless of the
value of b. On the other hand, since the view of A is identical in Game; and Game, until A queries
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H at si, we have | Pr[Si] — Pr[S2]| < Pr[E]. It follows that Pr[E] > /2. Given an input instance
(par, put, {u; };) of the Ext-GCDH problem, the attacker A’ simply runs .4 on input (par, p¢, {u;}:)
and T (with Ty = K7 chosen uniformly random in {0,1}* — note that A’ does not need to know
s1 to simulate 7p) and simulates Game;, hoping that the event £ occurs. Let {;};c|q,) denote the
queries made by A to H, When A finishes, A’ chooses i € [¢y] uniformly at random and outputs z;
as its guess for A’s query that equals s; (note that until A queries H at s1, the view of A is perfectly
simulated by A" as in Game;, so Pr[E] is preserved). Conditioned on the event E occurring, we
have x; = s; with probability > 1/qg. Overall, A’ outputs the correct Ext-GCDH solution with
probability > 1/qg - Pr[E] > ¢/(2qm). O

Note that when the protocol attacker A has run-time 7' = 2* (so that also ¢z < 2}) and advantage
e > 27 the Ext-GCDH attacker A’ constructed by our security lemma above, has run-time
T’ = 2* and advantage ¢/ > 2~ 1) thus contradicting the assumed 2221 security of the undrlying
encoding scheme (it is for this reason that we used a security parameter A’ = 2A+1 for the encoding
scheme). Consequently, we only lose a constant factor ~ 2 in relating the security parameter of
the encoding scheme to that of the protocol, essentially preserving the efficiency of our encoding
scheme in this application.

8.2 Efficient ABE from canonical Ext-GCDH in the ROM

We explain how to modify the Attribute Based Encryption (ABE) scheme for circuits by Garg et
al. [12] and its security proof, to achieve security assuming the hardness the Ext-GCDH problem
in the random oracle model, and our weak canonical re-randomization property from Lemma 6.4,
rather than the GDDH problem and the strong canonical re-randomization property from [10], al-
though in this application, we need to set the re-randomization bound R(D(u1), D(u2)) = exp(O(eq+
€p)) to be relatively small, namely O(1/Ngqy), where Ngy is the total size of the circuits queried to
the key generation oracle by the adversary. This still gives our scheme significant savings when Ngqy
is much smaller than 2*. Our modification of the scheme uses the same hashed-key idea as used
in the key-exchange protocol of the previous section. Since the scheme and its analysis are almost
identical to that in [12], we only summarize the required changes below and refer the reader to [12]
for details.

Construction. Given a k-graded encoding scheme over an encoded element ring R/Z of prime
order p with canonical re-randomization algorithm cenc (see end of Section 6) and a hash function
G :{0,1}* — {0, 1}, the ABE scheme is presented in Figure 8.

Correctness. The correctness analysis in [12] shows that Decrypt correctly recovers a level-x en-
coding E of a - s if f(x) = 1. By the extraction property of the encoding scheme and the random
choice of s, we have v’ = ext(par, p.¢, E) is equal to v = ext(par, p,¢, H - s) and therefore decryption
succeeds to recover M, except with negligible probability O()\*“(l)).

Security. We sketch how to modify the security proof of selective security from [12, Theorem 6.1].
Full security follows as in [12, Corollary 6.2]. The selective security game consists of the following
game. In the Init. stage, the adversary commits to the challenge attribute string x*. Then the
challenger runs Setup, gives PP to the adversary and keeps SK to itself. The adversary then makes
qr private key queries f of his choice such that f(z*) = 0 to get keys KeyGen(MSK, f). The

26



e Setup Setup(l’\,ln,ﬁc): Given security parameter )\, maximum circuit depth ¢. and number of circuit in-
puts n, run InstGen(1?**! 1°=f+1) for the graded encoding scheme to get (par,p.:). Sample a,hi, ... hn
using Samp(par). Return public parameters PP = (par,p.:,H = cenca(par,k,enck(par,a)),{h; =
cenca(par, 1, ency (par, fu))}ie[n]) and Master secret key MSK = a.

e Encrypt Encrypt(PP,z € {0,1}", M € {0,1}): Sample s = Samp(par), and compute the key K = G(v), where
v = ext(par, p.¢+, H - s) is the extracted string for the encoding H - s of « - s, and compute Cpy = M & K € {0,1}.
Let S denote the set of ¢ such that z; = 1. Return the ciphertext C' = (C, § = cency(par, 1, enci(par, s)), {C; =
cencs(par, 1, h; - 8) hies).

e KeyGen KeyGen(MSK = «,f): Identical to [12]. Return SK consisting of function f, ‘header’ Ky =
cencz(par,k — 1,0 — rnyq) (with 744 <= Samp(par)), and key components {Kw,i tweintq)-

e Decrypt Decrypt(SK,C): If f(z) = 1, compute a level-k encoding E of « - s, as in [12] and recover v’ =
ext(par,p.+, F), K' = G(v') and M’ = Cp @ K'. Return message M'.

Fig. 8. Our modified ABE.

adversary then outputs a pair of messages My, M7, and the challenger returns challenge ciphertext
C' = Encrypt(PP, x*, My) for b a uniformly random bit. The challenger continues to run and outputs
a guess b’ for b. We say that A’s advantage is ¢ = 2(Pr[t/ = b] — 1/2).

Theorem 8.2. Let A denote an attacker, in the random oracle model for G, against the selective
security of the ABE scheme in Figure 8, with run-time T and advantage £, making qc queries to G
and qy private key queries on circuits f of < N wires. Then there exists an algorithm A’ for the Ext-
GCDH problem for the underlying encoding scheme, with run-time T' = T and success probability
e = (%W /(qaRONW))Y), where R = R(D(uy)||D(ug)) is the canonical re-randomization RD
bound for the canonical re-randomization algorithm cenc of the underlying encoding scheme (see
Definition 6.3).

Proof. (Sketch.) Let Game; denote the selective security attack game with A, with v = ext(par, p.¢, H-
s) being the extracted string of element «s, used to derive the key K = G(v) in the challenge ci-
phertext C. As in the proof of Lemma 8.1, let Gamey denote a modification of Game; in which
A’s queries to G are answered differently as follows: if the query x is equal to v, the query is
answered with a uniformly random K’ € {0,1}* (instead of K = G(v)), otherwise, the query is
answered with G(x), as in Game;. Let E; denote the event in Game; that A queries G at v. As
in the proof of Lemma 8.1, we have Pr[E;] = Pr[Es] > ¢/2. Now, we define a sequence of games
Games, Gamey, Games, where in Games, algorithm A will solve the Ext-GCDH problem with re-
spect to an input instance par,p., 5§ = cenci(par,1,enci(par,s)), {& = cenci(1,¢;)}icfs), Where
$,C1,...,¢x <= Samp(par). Let V; denote the view of A in Game;.

— Games: Change the definition of h; in PP to h; = cency(par, 1,ency(par,y;)) if 27 = 0 and
hi = cency(par,1,ency(par,y;) + ¢1) if 7 = 1, where y; <= Samp(par) for i € [n] (instead
of h; = cency(par, 1,ﬁi)}i€[n] in Gamey) . The encoded elements in the encodings that are
input to cenc are uniformly random elements in R/Z in both games, so by the weak canonical
randomization and the multiplicativity property of RD over i € [n], we have R(V;||V3) < R".
By the probability preservation property of RD, it follows that Pr[E3] > (¢/2)%/R".

— Gamey: Change the definition of H in PP to H = cency(par, k, enc(par, §) + [ [;c(. &) (instead
of H = cency(par, k, enci(par, «))), where £ <= Samp(par) is random, effectively using element
€ + 11, ¢i to represent a. As above, the encoded element in H is a uniformly random element
in R/Z in both games, so by the weak canonical re-randomization assumption on cenc, we
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have R(V3||Vy) < R . By the probability preservation property of RD, it follows that Pr[F4] >
Pr[E3)?/R.

— Games: Change the KeyGen query answers for circuits f with f(z*) = 0 so that a = £ +[]; ¢; is
not used explicitly in the computation of K. This change is described in the “KeyGen Phase”
of the proof of [12, Theorem 6.1]. It involves changing the definition of key components K, ; for
the wires w of f. The distribution of the encoded elements in the encodings re-randomized by
cenc in the computation of K, ; are the same as in the previous game, but the input encodings
have a different distribution. By the weak canonical re-randomization assumption on cenc and
the multiplicativity property of RD over the O(N - ¢¢) key components in A’s view, we have
R(Vy||V5) < ROWar), By the probability preservation property of RD, it follows that Pr[Ej] >
Pr[E4)?/ROWas),

In Games, algorithm A does not use the Ext-GCDH secrets s, ¢y, ..., cq. The Ext-GCDH attacker
A’ simply runs A (with K = H(v) chosen uniformly random in {0,1} for computing the challenge
ciphertext component Cp; — note that A’ does not need to know v to simulate Cps) and simulates
Games, hoping that the event E5 occurs. Let {xi}ié[qc] denote the queries made by A to G. When
A finishes, algorithm A’ chooses i € [gg| uniformly at random and outputs z; as its guess for
A’s query that equals the Ext-GCDH solution v. Conditioned on the event E5 occurring, we have
x; = v with probability > 1/qg. Overall, algorithm A’ outputs the correct Ext-GCDH solution
with probability > 1/qq - Pr[Es] = 2(e°M /(qgROWN))). 0
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A Background on graded encoded schemes

We refer to [10] for the basic definitions concerning graded encoded schemes.

A.1 Correctness analysis of the GGH scheme

We explain here how to derive the correctness conditions of Section 3. For this, we need the following
result.

Lemma A.1 (Adapted from [10, Lemma 4]). Let g € R such that T = (g) is a prime ideal
in R, let ¢ € R with ||c| < ¢"/® and h € R with |h|| < v/ng'/? and ¢,h ¢ T and q > (2tno)* for
some t > 1. Then ||[h-c/glqlloo >t - ¢*/*

¢

Correctness of zero-testing. To satisfy the “no false negatives” zero-testing condition, we need
(0) (0)
K

[pattt]| oo < ¢*/* for all valid level-x encodings u = [¢/2"], € Sy of zero. Taking Si” as the set of
possible encodings obtained by multiplying x level-1 encodings u; = [¢;/z]4 output by Enc, we have

he he _ _
[ [pztulglloc = H[;]quo = H;Hoo < el - g~ I < 1Bl - llell - lg™ Iv/n-
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To satisfy ||pzitt]|oo < ¢*/%, it therefore suffices to have ||¢|| < ¢*/® and Hh||~q1/8-€g_1‘\/ﬁ < ¢*/*. Now,
we have ||h|| < v/ng'/?, |leil| < o'/, |pj| < otv/n, ||b§-1)|] < ¢’y/n, with probability exponentially

close to 1, thanks to Lemma 2.3. Now, we have [Ju;|| = [[e;+3; pjb§1) | < llei||[+m, max; \pj]~Hb§1)H <
(mr +1) - noto’ and ||c| = || TIL, wll < V™' - (max; |ui]))* < ((my + 1)nt5070’)%. Therefore,
these two conditions are satisfied if:

g > max ((nly-1)%, ((m, +1) - n'Poi0’)™). (16)

To satisfy the “negligible probability false positives” zero-testing condition, we need ||p,iul/c >

¢34, for any level-x encoding u = [¢/ z")q € S,(fL) of e, € Ry, except with negligible probability

e = AW over the uniform choice of ey € R,. By Lemma A.1 with ¢t = 1, the facts that

lell < "8, ||h]| < /ng'/? (see just above), h € T (see just below), and that Z is prime, it follows

that, [|p.ullec > ¢** for any encoding of a non-zero ey, ¢ I (and hence e,; = Prle; = 0] = 1/|Ry| =
0(27")), assuming the condition

q > (2no)*. (17)

We have h ¢ Z, except with probability O(1/|R/Z|) over the choice of h, by Lemma 2.6, when

q = w(no)?. Note that thanks to the remark just after Lemma 2.7, we have |R/I| > oy, (rot(g))"™ >

(m)" Now, by the InstGen rejection test, we have [|g~!|| < £,-1. Condition (4) finally implies

that |R/I| > 2" when n > 8.

Correctness of extraction. To satisfy the min-entropy extraction condition, we need that the min-
entropy of [pulg is > 2\. Indeed, any two level-x encodings u = [(er + gr)/z"]; and v/ =
[(e}, +gr')/z"]q of different elements e; # €} € R4 have different extracted elements MSBy(p.iu) #
MSBy(p.iu') as long as ||[pzuly — [Pat]glloe = |[Pat(u — w)]glloo > 2E7¢FL If that condition is
satisfied, then the min-entropy is log, |R/Z|. As |R/I| > 2" for n > 8 (see above), we have
logy |R/Z| > n > 2\. We now prove that the condition ||[p.¢(u — u')]gllec > 2F7F! is satisfied.
Since v — v’ is an encoding of a non-zero element e; — €} € R, this follows, similarly to the zero-
testing correctness above, from Lemma A.1 with ¢ satisfying t¢*/4 > 2L=¢+1. The latter holds with
t = ¢'/*27%+2 The condition ¢ > 1 is satisfied by the upper bound (19) on ¢ below, while the
condition ¢ > (2tno)?* is satisfied by the lower bound

¢ > logy(8no). (18)

To satisfy the “negligible failure probability” extraction condition, we need MSB(p,u) =
MSBy(p.+u') for any two level-x encodings u = [(er, + gr)/2"]q and v’ = [(er, + gr')/2"], of the
same element e;, € Ry, except with negligible probability €., over the uniform choice of e;, € R,.
Since [p,uly, = [her/g + hr]y and [pa], = [her/g + ']y with [|hr]oo, |7 [eo < ¢/, we can
only have MSBy(p.;u) # MSBy(p.iu') if hey /g falls within infinity distance < ¢®* of a multiple
of 2L=%1 where L = |log, ¢|. Under the heuristic assumption that each coefficient of [hey,/g],
is uniform in Z, over the choice of ey, (this heuristic assumption is reasonable from the point of
view of entropy; indeed, by the min-entropy condition above, the entropy of [her,/gl, € R4 over the
choice of ey, uniformly in R/Z, is at least n bit, and this exceeds log, g because of the lattice rule
of thumb security requirement n = 2(Aloggq) in Eq. (15)), we have by a union bound over all n

coefficients that this “bad” event occurs with probability < 22?37%41. To make this probability < ¢y,

it suffices to take
2n

1
¢ < 7 logy q —logy(—). (19)

ext
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A.2 Review of GGH re-randomization security reduction

To set the background for our result, we review the re-randomization security reduction from the
non-canonical problems to their canonical variants, which is implicit in the work of Garg et al.
(GGH) [10]. For simplicity, we explain it for the case of Ext-GCDH, although it holds similarly for
the other variants GCDH and GDDH.

The first step is to show that re-randomization security goal in Definition 3.4 is satisfied if the
strong re-randomization requirement in Definition 3.2 is satisfied. Let A denote a (T',¢) adversary
against problem Ext-GCDH, in which e; <> D ./, u} = [e;-ylq = [(€i.1, +gr)z 1], with e; 1, = [ei]g,
and u; = [u} + 37, pijxjlq where pjj <> Do+, for i € {0,...,x} and j € {1,...,m,}. Let Game;
denote this game. Now let Games denote the game in which e; <> Dg s and u; = [(e; 1 + gri)2z ],
with e; 1 + gr; < Dg;zq(ei,L) =Drie ) 0r(BO)T

Note that the only difference between the two games is the distribution of the randomizers 7;:
in Gamey, we have r; = 1} + 3, pijr(-l), which has the distribution Dq(}i)(eu,rg) in Definition 3.2
(over the randomness of p;;), while in Games, we have r; sampled from the canonical distribution
(Déﬁ%(e@ L) — €i,r)/g. Hence, by the strong re-randomization requirement in Definition 3.2, the
statistical distance between the r;’s in the two games is < 27*. Therefore, we have that the statistical
distance between the distributions of the view of A in the two games is at most (k + 1) - 272
Finally, let Gamey denote the Ext-cGCDH game. The only difference between Games and Gamey
is the distribution of e; 1,: in Games, we have e; 1, = [e;], with e; sampled from Dpg ./, whereas in
Gamey we have e; 7, sampled uniformly from R,. By Lemma 2.6, if o’ > n..(Z), then the statistical
distance between the distributions of e; ;, in both games is < 2¢., so that the statistical distance
between the view of A in both games is O(k - &.). By Lemma 2.4, the latter condition is satisfied if

o = gl - 2 <\/log(neel)> > oy 0 ( log(nsel)> . (20)

The second step is to show that the strong re-randomization requirement in Definition 3.2 is
satisfied, i.e., that the distribution of r; in Games is statistically close to the distribution of r;
in Game;. To do so, consider the intermediate game Games, in which the distribution of the term
> pijrj(»l) is replaced by D((:Ql(O), so that r; = r} + w, where w < Dé}ﬁl(o) = Dz g (payyr- There
are now two changes to analyze:

— For the change from Game; to Gamey, the authors of [10] apply a discrete Gaussian variant of
the Leftover Hash Lemma from [2] (see Theorem B.5 in Section 5) to show that A(>; pijr](-l) :
pij < DZ70-1‘;DI70.1=(B(1))T) < 2e, if m; = 2(nlogn) and o = 2(m,n*log(1/e,)).

— For the change from Gamez to Games, the authors of [10] argue (informally) that if the ran-
domizer deviation parameter o7 is sufficiently large to “drown” the offset r; € Z by an expo-
nential ratio, i.e., if o%/||ri|| > 2*, then the statistical distance between r! + Dz o+ (pyr and

Drye; ot (BW)T 18 O(|lrill/ot) < O(27%).

Overall, the statistical distance between the views of A in Game; and Gamey is A(Game;, Gamey) =
O(k - (ep + ||ril| /o™ + €c)). Therefore, algorithm A solves Ext-cGCDH with run-time 7 = T and
success probability

e 2e—O0(k- (g +Irill /0" +ec)), (21)
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so that the re-randomization security goal of Definition 3.4 is satisfied if

I71l/0%, eprce = O™ -27%), (22)

and m, = 2(nlogn) and ¢’ = ||g|| - 2 ( log(nsel)).

Our main contribution is to improve the above analysis, and show how to satisfy the security
goal with much better parameters, namely ||7%|/0*,e,,ec = O(k™!). In Section 5, we show that
we can take m, = 2 in the leftover hash lemma step, between Games and Games, using a ring-
based variant of the leftover hash lemma from [2]. In Section 4, we develop a better analysis of the
drowning step above, between Gamey, and Games.

B Review of the discrete leftover hash lemma from [2]

We review the results of [2]. For X € Z"*™ and s > 0, the authors define the distribution £x s =
X - Dgzm 5 as the distribution induced by sampling an integer vector v from a discrete spherical
Gaussian with parameter s and outputting y = X -v. They show that with overwhelming probability
over the choice of X, the distribution £x , is statistically close to a discrete Gaussian distribution.

Theorem B.1 ([2, Theorem 2]). For € negligible in n, let S € R" ™ be a matriz such that
Sp = on(S) > 18Kn.(Z"™) (for some universal constant K > 0), and set s; = 01(S) and w = s1/sy,.
Also let m, s be parameters such that m > 10nlog(8(mn)!%s1w) and s > 4mnwIn(1/e).

Then, when choosing the columns of an n-by-m matriz X from the ellipsoid Gaussian over Z',
X < (Dzn,g)™, we have with all but probability 2=2(m) puer the choice of X, that the statistical
distance between Ex s and the ellipsoid Gaussian Dyn xr is bounded by 2e.

Note that this result has been recently improved in [1], but this improvement is independent
from ours. In [1], the authors keep the same distribution €x s, but obtain weaker conditions under
which the result holds. We recall the proof line of [2], as we modify it in our improvement. In [2],
the proof of this theorem proceeds by the following three lemmata.

Lemma B.2 ([2, Lemma 9]). With parameters as above, when drawing the columns of an n-by-m
matriz X independently at random from Dzn g, we get X - Z™ = Z" with all but probability 9—§2(m),

Let A= A(X)={veZ™: X v=0} be the (m — n)-dimensional lattice in Z" orthogonal to
all the rows of X. If the smoothing parameter of A is small, then Ex s and Dyn  xyr must be close.

Lemma B.3 ([2, Lemma 10]). Fiz X and A as above. If s > n:(A), then for any point z € 7",
the probability mass assigned to z by Ex s differs from that assigned by Dyn sxr by at most a factor

of (1 —¢)/(1+¢), namely
1-¢

1+¢’

In particular, if e < 1/3 then the statistical distance between Ex s and Dyn (xr is at most 2¢.

Ex.s(z) € [ 1} - Dgnyx(2)

Finally, the authors of [2] show that the smoothing parameter of A is indeed small.

Lemma B.4 ([2, Corollary 3]). With the parameters above, the smoothing parameter of A sat-
isfies n-(A) < dmnwn(1/e), except with probability 2=,
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The following also holds for general lattices.

Theorem B.5 ([2, Theorem 3]). Let A C R™ be a full-rank lattice and B a matriz whose columns
form a basis of A. Also let M € R™ "™ be a full-rank matriz, and denote S = M(BT)™!, 51 = 01(9),
Sn = on(S), and w = s1/s,. Finally, let ¢ be negligible in n and m, s be parameters such that
m > 10nlog(8(mn)'Ssiw) and s > 4mnwln(1/e). If s > n-(Z"), then when choosing the columns
of an n-by-m matriz X from the ellipsoid Gaussian over A, X <= (D)™, we have with all but
probability 2= over the choice of X, that the statistical distance between Ex,s and the ellipsoid
Gaussian D 4 gxr is bounded by 2e.
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