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Abstract
Related-key attacks (RKAs) concern the security of cryptographic primitives in the situation

where the key can be manipulated by the adversary. In the RKA setting, the adversary’s power
is expressed through the class of related-key deriving (RKD) functions which the adversary is re-
stricted to using when modifying keys. Bellare and Kohno (Eurocrypt 2003) first formalised RKAs
and pin-pointed the foundational problem of constructing RKA-secure pseudorandom functions
(RKA-PRFs). To date there are few constructions for RKA-PRFs under standard assumptions,
and it is a major open problem to construct RKA-PRFs for larger classes of RKD functions. We
make significant progress on this problem. We first show how to repair the Bellare-Cash frame-
work for constructing RKA-PRFs and extend it to handle the more challenging case of classes of
RKD functions that contain claws. We apply this extension to show that a variant of the Naor-
Reingold function already considered by Bellare and Cash is an RKA-PRF for a class of affine
RKD functions under the DDH assumption, albeit with an exponential-time security reduction.
We then develop a second extension of the Bellare-Cash framework, and use it to show that the
same Naor-Reingold variant is actually an RKA-PRF for a class of degree d polynomial RKD
functions under the stronger decisional d-Diffie-Hellman inversion assumption. As a significant
technical contribution, our proof of this result avoids the exponential-time security reduction that
was inherent in the work of Bellare and Cash and in our first result.
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1 Introduction

Background and Context. A common approach to prove the security of a cryptographic scheme,
known as provable security, is to relate its security to one of its underlying primitives or to an accepted
hard computational problem. While this approach is now standard and widely accepted, there is still
a significant gap between the existing models used in security proofs and the actual environment in
which these cryptosystems are deployed. For example, most of the existing security models assume
that the adversary has no information about the user’s secret key. However, it is well known that
this is not always true in practice: the adversary may be able to learn partial information about
the secrets using different types of side-channel attacks, such as the study of energy consumption,
fault injection, or timing analysis. In the particular case of fault injection, for instance, an adversary
can learn not only partial information about the secret key, but he may also be able to force a
cryptosystem to work with different but related secret keys. Then, if he can observe the outcome of
this cryptosystem, he may be able to break it. This is what is known in the literature as a related-key
attack (RKA).

Most primitives are designed without taking related-key attacks into consideration so their secu-
rity proofs do not provide any guarantee against such attacks. Hence, a cryptographic scheme that
is perfectly safe in theory may be completely vulnerable in practice. Indeed, many such attacks were
found during the last decade, especially against practical blockciphers [BDK05, BDK08, BDK+10,
BK09,BKN09,KHP07]. Inspired by this cryptanalytic work, some years ago, theoreticians started
to develop appropriate security models and search for cryptographic primitives which can be proven
RKA secure.

Formal Foundations of RKA Security. Though RKAs were first introduced by Biham and
Knudsen [Bih94,Knu93] in the early 1990s, it was only in 2003 that Bellare and Kohno [BK03] began
the formalization of the theoretical foundations for RKA security. We recall their security definition
for RKA security of PRFs here. Let F : K×D → R be a family of functions for a security parameter
κ, and let Φ = {φ: K → K} be a set of functions on the key space K, called a related-key deriving
(RKD) function set. We say that F is a Φ-RKA-PRF if for any polynomial-time adversary, its
advantage in the following game is negligible. The game starts by picking a random challenge bit b,
a random target key K ∈ K and a random function G: K ×D → R. The adversary can repeatedly
query an oracle that, given a pair (φ, x) ∈ Φ×D, returns either F (φ(K), x), if b = 1, or G(φ(K), x),
if b = 0. Finally, the adversary outputs a bit b′, and its advantage is defined by 2 Pr [ b = b′ ]−1. Note
that if the class Φ of RKD functions contains only the identity function, then this notion matches
standard PRF security.

Bellare and Cash [BC10a] designed the first RKA-PRFs secure under standard assumptions, by
adapting the Naor-Reingold PRF [NR97]. Their RKA-PRFs are secure for RKD function classes
consisting of certain multiplicative and additive classes. To explain their results, let us begin by
recalling the definition of the Naor-Reingold PRF. Let G = 〈g〉 be a group of prime order p. Let
NR: (Z∗p)n+1 × {0, 1}n → G denote the Naor-Reingold PRF that given a key ~a = (a0, . . . , an) ∈
(Z∗p)n+1 and input x = x1 ‖ . . . ‖xn ∈ {0, 1}n returns

NR(~a, x) =

[
a0

n∏
i=1

axii

]

where for any a ∈ Zp, [a] stands for ga, as defined in [EHK+13]. The key space of the Naor-
Reingold PRF is K = (Z∗p)n+1, which has a group structure under the operation of component-wise
multiplication modulo p, denoted ∗. Now let Φ∗ denote the class of component-wise multiplicative
functions on (Z∗p)n+1, that is Φ∗ = {φ: ~a ∈ (Z∗p)n+1 7→ ~b ∗ ~a | ~b ∈ (Z∗p)n+1}. It is easy to see
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that NR is not itself a Φ∗-RKA-PRF, since it suffers from simple algebraic attacks, but using a
collision-resistant hash function h: {0, 1}n ×Gn+1 → {0, 1}n−2, Bellare and Cash were able to show
that a simple modification of the Naor-Reingold PRF does yield a Φ∗-RKA-PRF under the DDH
assumption. Specifically, they defined F : (Z∗p)n+1 × {0, 1}n → G by:

F (~a, x) = NR(~a, 11 ‖h(x, ([a0] , [a0a1] , . . . , [a0an])))

and showed that this F is indeed a Φ∗-RKA-PRF under the DDH assumption. A second construction
in [BC10a] uses similar techniques to build an RKA-PRF under the DLIN assumption.

In the original version of their paper, Bellare and Cash also used a variant of the Naor-Reingold
PRF, NR∗: Znp × {0, 1}n \ {0n} → G, defined by:

NR∗(~a, x) =

[
n∏
i=1

axii

]
,

to obtain a third RKA-PRF, this one for additive RKD functions. In more detail, the key space
K = Znp of NR∗, has a natural group structure under the operation of component-wise addition
modulo p. We define Φ+ to be the class of functions, Φ+ = {φ: ~a ∈ Znp 7→ ~a +~b | ~b ∈ Znp}. Then,
Bellare and Cash claimed that the function F : Znp × {0, 1}n \ 0n → G with

F (~a, x) = NR∗(~a, 11 ‖h(x, ([a1] , [a2] , . . . , [an])))

is a Φ+-RKA-PRF under the DDH assumption, when the function h: {0, 1}n × Gn → {0, 1}n−2 is
a collision-resistant hash function. The running time of their security reduction in this case was
exponential in the input size.

These foundational results of [BC10a] were obtained by applying a single, elegant, general frame-
work to the Naor-Reingold PRFs. The framework hinges on two main tools, key-malleability and
key-fingerprints for PRFs and associated RKD function classes Φ. The former property means that
there is an efficient deterministic algorithm, called a key-transformer, that enables one to transform
an oracle for computing M(K,x) into one for computing M(φ(K), x) for any φ ∈ Φ and any input
x (the technical requirements are in fact somewhat more involved than these), where M denotes the
PRF on which one would like to apply the framework. The latter provides a means to ensure that, in
the Bellare-Cash construction for an RKA-PRF from a (normal) PRF M , all adversarial queries to
the putative Φ-RKA-PRF get appropriately separated before being processed byM . In combination,
these two features enable a reduction to be made to the PRF security of the underlying function M .

Unfortunately, it was recently discovered that the original framework of [BC10a] has a bug, in
that a technical requirement on the key-transformer, called hash function compatibility, was too
weak to enable the original security proof of the Bellare-Cash construction to go through. When
hash function compatibility is appropriately strengthened to enable a proof, it still holds for the
key-transformers used in the analysis of their two main constructions, the multiplicative DDH and
DLIN-based RKA-PRF constructions. However, the new compatibility definition no longer holds
for the key-transformer used in their additive, DDH-based RKA-PRF construction. With respect
to their framework and, specifically, their additive, DDH-based RKA-PRF construction, Bellare and
Cash note in the latest version of their paper [BC10b]: We see no easy way to fill the gap within our
current framework and accordingly are retracting our claims about this construction and omitting it
from the current version.

Main Question. A natural question that arises from the work of Bellare-Cash is whether it is
possible to go further, to obtain RKA-PRFs for larger classes of RKD function than Φ∗ and Φ+.
This is important in understanding whether there are yet to be discovered fundamental barriers in
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achieving RKA security for PRFs, as well as bringing the current state of the art for RKA security
closer to practical application. This question becomes even more relevant in the light of the results
of Bellare, Cash and Miller [BCM11], who showed that RKA-security can be transferred from PRFs
to several other primitives, including identity-based encryption (IBE), signatures, as well as symmet-
ric (SE) and public-key encryption (PKE) secure against chosen-ciphertext attacks. Their results
illustrate the central role that RKA-PRFs play in related-key security more generally: any advance
in constructing RKA-PRFs for broader classes would immediately transfer to these other primitives
via the results of [BCM11]. A subsidiary question is whether it is possible to repair the Bellare-Cash
framework without requiring stronger hash compatibility conditions on the key-transformer. This, if
achievable, would reinstate their Φ+-RKA-PRF.

A partial answer to the first question was provided by Goyal, O’Neill and Rao [GOR11], who
proposed RKA secure weak-PRF and symmetric encryption schemes for polynomial functions using
the Decisional Truncated q-ADHE problem. RKA secure weak-PRFs, however, are significantly
weaker than standard RKA-PRFs since their security only holds with respect to random inputs.
Wee [Wee12] provided RKA secure PKE for linear functions, while Bellare, Paterson, and Thomson
[BPT12] proposed a framework for obtaining RKA secure IBE for affine and polynomial RKD function
sets, from which RKA security for signatures, PKE (and more) for the same RKD function sets follows
using the results of [BCM11] and extensions thereof. However, in respect of these works, it should
be noted that achieving RKA security for randomized primitives appears to be substantially easier
than for PRFs which are deterministic objects. An extended discussion on this point can be found
in [BC10a, Section 1].

In parallel work to ours, Lewi et al. [LMR14] showed that the key homomorphic PRFs from
Boneh et al. [BLMR13] (and slight extensions of them) are RKA secure. Specifically, they show
RKA-security for a strict subset of Φ+ for the PRF of [BLMR13] that is based on the Learning with
Error (LWE) problem, and against a claw-free class of affine functions for the PRF of [BLMR13]
that is based on multilinear maps. They also showed that, if the adversary’s queries are restricted
to unique inputs, these two PRFs are RKA secure for larger classes, namely a class of affine RKD
functions (with a low-norm for the “linear” part) for the LWE-based PRF and a class of polynomial
RKD functions for the PRF based on multilinear maps. These classes are not really comparable
to our classes Φaff and Φd of affine and polynomial functions defined below, because the secret-key
structures are slightly different. However, we remark that Lewi et al. [LMR14] do not deal with
claw-free classes and do not show ways to leverage unique-input RKA security to full RKA security.
We handle both of these issues in our paper, and it may be possible to extend our solutions to their
setting. It should also be remarked that the construction of Barnahee and Peikert [BP14] may also
yield another RKA secure PRF based on LWE.

Our Contributions. In this paper, we make substantial progress on the main question above,
obtaining RKA-PRFs for substantially larger classes of RKD functions than were previously known.
To ease notations, we consider our RKD functions to be vectors of multivariate polynomials so
that each component is a multivariate polynomial in Zp[T1, . . . , Tn] = Zp[~T ], where T1, . . . , Tn are
unknowns. Along the way, we recover the original Bellare-Cash framework, showing that their original
technical conditions on the key-transformer are in fact already sufficient to enable a (different) proof
of RKA security to go through. Let us first introduce our main results on specific RKA-PRFs, and
then explain the technical means by which they are obtained.

For p prime and n, d ≥ 1, let Φd denote the class of functions from Znp to Znp each of whose
component functions is a non-constant univariate polynomial of degree at most d. That is, we have:

Φd =

{
φ: Znp → Znp

∣∣∣∣ ~φ = (φ1, . . . , φn);φi : ~T 7→
∑d

j=0 αi,j · T
j
i ,

∀i = 1, . . . , n, (αi,1, . . . , αi,d) 6= 0d

}
.
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For the special case d = 1, we denote Φ1 by Φaff (aff for affine functions). Note that Φ+ ⊂ Φaff .
We will construct RKA-PRFs for the RKD function classes Φaff and Φd for each d. To this end,

let G = 〈g〉 be a group of prime order p, let D = {0, 1}n × Gn and let h: D → {0, 1}n−2 be a hash
function. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Define F : Znp × ({0, 1}n \ 0n)→ G by:

F (~a, x) = NR∗(~a, 11 ‖h(x,NR∗(~a, ~ω)))

for all ~a ∈ Znp and x ∈ {0, 1}n. This is the same F as in the withdrawn construction of [BC10a].
Theorems 4.5 and 6.11 show that this function is an RKA-PRF for both the RKD function classes
Φaff and Φd (for each d), under reasonable hardness assumptions.

For our first result on the Φaff -RKA-PRF security of F , we recover and extend the withdrawn
result of Bellare and Cash [BC10a], under the same hardness assumption that they required, namely
the standard DDH assumption. Here our proof, like that in [BC10a], requires an exponential-time
reduction. We then develop a further extension of the Bellare-Cash framework enabling us to cir-
cumvent their use of key-transformers having a key malleability property. We use this framework to
modularize our proof that F is also a Φd-RKA-PRF. As part of this proof, we require the decisional
d-Diffie-Hellman Inversion (d-DDHI) assumption, introduced in [GOR11]. Informally, the d-DDHI
problem in a group G of prime order p consists of deciding, given inputs ([1] , [a] , . . . ,

[
ad
]
) and z,

where [1] = g is a generator of G, whether z is equal to
[

1
a

]
or to a random group element. Notably,

in our analysis of the Φd-RKA-PRF security of F , we are able to avoid an exponential-time reduction.
This puts the RKA-PRF F on the same footing as the surviving constructions in [BC10a].

Let us now expand on the technical aspects of our contributions.

Proof Barriers and Techniques. We first show how the Bellare-Cash framework can be modified
to deal with RKD functions that are not claw-free, meaning that there exist pairs of different RKD
functions φ1 and φ2 and a key K ∈ K, such that φ1(K) = φ2(K). Up to now, only claw-free
classes have been considered for RKA-PRFs. But classes Φ underlying practical attacks such as fault
injections have no reason to be claw-free, so dealing with non-claw-free classes of RKD functions is
important in advancing RKA security towards practice. Moreover, both our RKD function classes of
interest, Φaff and Φd, do contain claws. The lack of claw-freeness poses a problem in security proofs
because, if an adversary is able to find two RKD functions which lead to the same derived key, he
can detect this via his queries, and then the equation φ1(K) = φ2(K) may leak information on K
sufficient to enable the adversary to break RKA-PRF security in a particular construction.

We overcome the lack of claw-freeness in our adaptation of the Bellare-Cash framework by intro-
ducing two new concepts, Φ-Key-Collision Security for PRFs and Φ-Statistical-Key-Collision Security.
The former is a property similar to the identity-collision-resistance property defined in [BCM11] in
the context of pseudorandom generators and refers to the non-existence of an adversary who can
find a colliding key (i.e. φ1 6= φ2 s.t. φ1(K) = φ2(K) for φ1, φ2 ∈ Φ), when given oracle access to
the PRF under related keys φ(K). The latter concept is essentially the same, but now oracle access
to the PRF is replaced by oracle access to a random function. These properties are just the right
ingredients necessary to generalize the Bellare-Cash framework to the non-claw-free case.

At the same time as dealing with claws, we are able to repair the gap in the proof for the original
Bellare-Cash framework, showing that the original hash function compatibility condition required of
the key-transformer is already strong enough to enable an alternative proof of RKA security. Our new
proof introduces a slightly different sequence of game hops in order to avoid the apparent impasse in
the original proof. Our main theorem establishing the RKA-PRF security of functions arising from
this framework is Theorem 3.1. It repairs and extends the corresponding main theorem in [BC10a].
Our theorem is then combined with an analysis of the specific function NR∗ to obtain Theorem 4.5
concerning the Φaff -RKA-PRF security of F .
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To show that F is also a Φd-RKA-PRF, we still have a second major difficulty to overcome.
While Φd-key-collision security and Φd-statistical-key-collision security can still be proven for F , we
no longer have the key-transformer component that is critical to the Bellare-Cash framework. Instead,
in Section 5, we introduce a further extension of their framework, replacing the key-transformer with
a stronger pseudorandomness condition on the base PRF M used in the construction, which we call
(S,Φ)-unique-input-prf-rka security. The new requirement essentially states that M should already
act as a Φ-RKA-PRF on a restricted domain S, provided the queries (φ1, x1), . . . , (φq, xq) made by
the Φ-RKA-PRF adversary to its oracle with xi ∈ S are all for distinct xi. Under this condition,
we are able to prove Theorem 5.1 establishing the security of RKA-PRFs arising from our further
extension of the Bellare-Cash framework. This theorem then enables us to prove in a modular fashion
that F is also a Φd-RKA-PRF.

The final technical challenge is in proving that NR∗, playing the role of M , satisfies the relevant
(S,Φ)-unique-input-prf-rka security property so as to allow the application of Theorem 5.1. This
is done in a crucial lemma, Lemma 6.3, whose proof involves a delicate series of hybrids in which
we gradually replace the oracle responses to queries (φi, xi) for xi in a suitable set S with random
values. We exploit the algebraic nature of the function NR∗ to ensure that the hybrids are close
under a particular pair of hardness assumptions (the (N, d)-PDDH and (N, d)-EDDH assumptions,
which are stated in the proof). We also make use of an efficient, approximate (but close to perfect)
procedure to detect linear dependencies arising in the simulation from the adversary’s oracle queries.
This procedure is key to making the entire proof efficient (rather than exponential-time). Finally, we
provide a series of reductions relating our pair of hardness assumptions to the d-DDHI assumption.
Examining the details of the proof shows that we can recover our result concerning Φaff -RKA-PRF
security of F under DDH (rather than DDHI), but now without an exponential-time reduction.

Publication Note. An extended abstract of this paper appears in the Proceedings of the 34th
Annual Cryptology Conference (CRYPTO 2014), Part I, Juan A. Garay and Rosario Gennaro (Eds.),
volume 8616 of Lecture Notes in Computer Science, pages 77–94, Springer, August 2014. This is the
full version.

2 Definitions

Notations and Conventions. Let κ denote the security parameter. Let Fun(K,D,R) be the set
of all functions F : K × D → R. A family of functions F : K × D → R for a security parameter κ
takes a key K ∈ K and an input x ∈ D and returns an output F (K,x) ∈ R. If ~x is a vector then
|~x| denotes its length, and ~x = (x1, . . . , x|~x|). For a binary string x, we denote |x| its length, xi its
i-th bit and, for i, j ∈ {1, . . . , n}, i ≤ j, xi,...,j the binary string xi ‖ . . . ‖xj . For a binary string
x ∈ {0, 1}n and an integer d, we denote by d · x the string y = y1 ‖ . . . ‖ yn ∈ {0, d}n defined by
yi = d · xi for i = 1, . . . , n. For two strings x, y ∈ {0, . . . , d}n, we denote by y � x the fact that
yi ≤ xi, for any i = 1, . . . , n and we denote by S(x) the set {i | xi 6= 0}. We denote by A a matrix of
size k ×m and by Ai,j its coefficients, for i, j ∈ {1, . . . , k} × {1, . . . ,m}. If ~φ is a vector of functions
from S1 to S2 with |~φ| = n and ~a ∈ Sn1 then we denote by ~φ(~a) the vector (φ1(~a1), . . . , φn(~an)) ∈ Sn2 .
If F : K ×D → R is a family of functions and ~x is a vector over D then F (K,~x) denotes the vector
(F (K,x1), . . . , F (K,x|~x|)). If S is a set, then |S| denotes its size. We denote by s $← S the operation
of picking at random s in S. If A is a randomized algorithm, we denote by y $← A (x1, x2, . . .) the
operation of running A on inputs (x1, x2, . . .) with fresh coins and letting y denote the output.

Finally, following [EHK+13], we often implicitly consider a multiplicative group G = 〈g〉 of prime
order p and we denote by [a]g, or simply [a] if there is no ambiguity about the generator, the element
ga.
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Games. Some of our definitions and proofs use code-based game-playing [BR06]. Recall that
a game has an Initialize procedure, procedures to respond to adversary’s oracle queries, and a
Finalize procedure. A game G is executed with an adversary A as follows. First, Initialize
executes and its outputs are the inputs to A . Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its outputs become the input to the
Finalize procedure. The output of the latter, denoted GA is called the output of the game, and
we let “GA ⇒ 1”, abbreviated Succ in the proofs, denote the event that this game output takes
the value 1. Boolean flags are assumed initialized to false. Games Gi, Gj are identical until flag if
their code differs only in statements that follow the setting of flag to true. The running time of an
adversary by convention is the worst case time for the execution of the adversary with any of the
games defining its security, so that the time of the called game procedures is included.

PRFs. PRFs were introduced by [GGM84]. A PRF is a family of functions F : K × D → R which
is efficiently computable and so that it is hard to distinguish a function chosen randomly from the
PRF family from a random function, which is formally defined as the fact that the advantage of any
efficient adversary in attacking the standard prf security of F is negligible. The advantage of an
adversary A in attacking the standard prf security of a family of functions F : K×D → R is defined
via

Advprf
F (A ) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
.

Game PRFRealF begins by picking K
$← K and responds to query Fn(x) via F (K,x). Game

PRFRandF begins by picking f $← Fun(D,R) and responds to oracle query Fn(x) via f(x).

RKA-PRFs. We recall the definitions from [BK03]. Let F : K×D → R be a family of functions and
Φ ⊆ Fun(K,K). The members of Φ are called RKD (Related-Key Deriving) functions. An adversary
is said to be Φ-restricted if its oracle queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted
adversary A in attacking the prf-rka security of F is defined via

Advprf-rka
F,Φ (A ) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandA

F ⇒ 1
]
.

Game RKPRFRealF begins by picking K $← K and then responds to oracle query RKFn(φ, x) via
F (φ(K), x). Game RKPRFRandF begins by picking G $← Fun(K,D,R) and responds to oracle query
RKFn(φ, x) via G(φ(K), x). We say that F is a Φ-RKA-secure PRF if for any Φ-restricted, efficient
adversary, its advantage in attacking the prf-rka security is negligible.

Strong Key Fingerprint. A strong key fingerprint is a tool used in proofs to detect whether a key
arises more than once in a simulation, even if we do not have any information about the key itself.
We recall the definition from [BC10a]. Suppose F : K ×D → R is a family of functions. Let ~ω be a
vector over D and let n = |~ω|. We say that ~ω is a strong key fingerprint for F if

(F (K,ω1), . . . , F (K,ωn)) 6= (F (K ′, ω1), . . . , F (K ′, ωn))

for all distinct K,K ′ ∈ K.
Key-Malleability. As defined in [BC10a], let F : K ×D → R be a family of functions and Φ be a
class of RKD functions. Suppose KT is a deterministic algorithm that, given an oracle f : D → R
and inputs (φ, x) ∈ Φ × D, returns a point KTf (φ, x) ∈ R. KT is said to be a key-transformer for
(F,Φ) if it satisfies the correctness and uniformity conditions. Correctness asks that KTF (K,·)(φ, x) =
F (φ(K), x) for every (φ,K, x) ∈ Φ×K×D. Let us say that a Φ-restricted adversary is unique-input
if, in its oracle queries (φ1, x1), . . . , (φq, xq), the points x1, . . . , xq are always distinct. Uniformity
requires that for any (even inefficient) Φ-restricted, unique-input adversary U ,

Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
,
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proc Initialize // d-SDL

g
$← G ; a

$← Z∗p
Return (g, [a] , . . . ,

[
ad
]
)

proc Finalize(a′) // d-SDL

Return ([a] = [a′])

proc Initialize // d-DDHI-Real

g
$← G

a
$← Z∗p

Return (g, [a] , . . . ,
[
ad
]
, [1/a])

proc Finalize(b) // d-DDHI-Real

Return b

proc Initialize // d-DDHI-Rand

g
$← G

a
$← Z∗p ; z

$← Z∗p
Return (g, [a] , . . . ,

[
ad
]
, [z])

proc Finalize(b) // d-DDHI-Rand

Return b

Figure 1: Games defining the d-SDL and d-DDHI problems in G.

where game KTRealKT is initialized by picking f $← Fun(D,R) and responds to query KTFn(φ, x)
via KTf (φ, x), while KTRandKT has no initialization and responds to oracle query KTFn(φ, x) by
returning a value y $← R chosen uniformly at random in R. If such a key-transformer exists, we say
that F is a Φ-key-malleable PRF.

Compatible Hash Function. Let F : K × D → R be a family of functions and Φ be a class of
RKD functions, such that there is a key-transformer KT for (F,Φ). Let ~ω ∈ Dm and let D = D×Rm.
We denote by Qrs(KT, F,Φ, ~ω) the set of all w ∈ D such that there exists (f, φ, i) ∈ Fun(D,R) ×
Φ × {1, . . . ,m} such that the computation of KTf (φ, ωi) makes oracle query w. Then, we say that
a hash function H: D → S is compatible with (KT, F,Φ, ~ω), if S = D \ Qrs(KT, F,Φ, ~ω). Note that
this definition is the same as that given in the original Bellare-Cash framework [BC10a] rather than
the stronger one used in the authors’ repaired version [BC10b].

CR hash functions. The advantage of C in attacking the collision-resistance security of H: D → R
is

Advcr
H(C ) = Pr

[
x 6= x′ and H(x) = H(x′)

]
where the probability is over (x, x′)

$← C .

Hardness Assumptions. Our proofs make use of the d-Strong Discrete Logarithm (d-SDL) and
Decisional d-Diffie-Hellman Inversion (d-DDHI) problems given in [GOR11] and described in Figure 1.
We define the advantage of an adversary D against the d-SDL problem in G as

Advd-sdl
G (D) = Pr

[
d-SDLD

G ⇒ true
]

where the probability is over the choices of a ∈ Zp, g ∈ G, and the random coins used by the
adversary. The advantage of an adversary D against the d-DDHI problem in G is defined to be

Advd-ddhi
G (D) = Pr

[
d-DDHI-RealDG ⇒ 1

]
− Pr

[
d-DDHI-RandD

G ⇒ 1
]

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random coins used by the
adversary.

We have two assumptions corresponding to the hardness of these problems, the d-SDL assumption
and the d-DDHI assumption. Setting d = 1 in the d-SDL problem, we recover the usual definition of
the DL problem in G.

3 Repairing and Extending the Bellare-Cash Framework

Here, we give a method to deal with classes of RKD functions that are not claw-free, such as affine
classes, by repairing and extending the general framework of Bellare and Cash from [BC10a]. Our
approach still relies on key-malleability, meaning that it is not generally applicable since almost all
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proc Initialize
K

$← K
proc RKFn(φ, x)
y ←M(φ(K), x)
Return y

proc Finalize(φ1, φ2)
Return (φ1 6= φ2 and φ1(K) = φ2(K))

proc Initialize
K

$← K ; D ← ∅ ; E ← ∅
F

$← Fun(K,D,R) ; b′ ← 0

proc RKFn(φ, x)
If φ(K) ∈ E and φ /∈ D then b′ ← 1
D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
y ← F (φ(K), x)
Return y

proc Finalize
Return (b′ = 1)

Figure 2: Game defining the Φ-key-collision security of a PRF M on the left and Φ-statistical-key-
collision security for Fun(K,D,R) on the right.

the known PRFs are not key-malleable for interesting classes of functions. However, as we shall
see, it does provide an easy way to obtain a Φaff -RKA-secure PRF, using the variant NR∗ of the
Naor-Reingold PRF. In Section 5, we will present a further extension of the Bellare-Cash approach
that enables us to deal with PRFs that are not key-malleable.

To deal with non-claw-freeness, we first introduce two new notions. The first one is called Φ-
Key-Collision Security and captures the likelihood that an adversary finds two RKD functions which
lead to the same derived key in a given PRF construction. The second one, called Φ-Statistical-Key-
Collision Security, is similar, but replaces the oracle access to the PRF with an oracle access to a
random function.

Φ-Key-Collision (Φ-kc) Security. Let Φ be a class of RKD functions. We define the advantage
of an adversary A against the Φ-key-collision security of a PRF M : K × D → R, denoted by
Advkc

Φ,M (A ), to be the probability of success in the game on the left side of Figure 2, where the
functions φ appearing in A ’s queries are restricted to lie in Φ.

Φ-Statistical-Key-Collision (Φ-skc) Security. Let Φ be a class of RKD functions. We define
the advantage of an adversary A against the Φ-statistical-key-collision security for Fun(K,D,R),
denoted by Advskc

Φ (A ), to be the probability of success in the game on the right side of Figure 2.
Here the functions φ appearing in A ’s queries are again restricted to lie in Φ.

Using these notions, we can now prove the following theorem, which both repairs and extends
the main result of [BC10a].

Theorem 3.1. Let M : K × D → R be a family of functions and Φ be a class of RKD functions
that contains the identity function id. Let KT be a key-transformer for (M,Φ) making QKT oracle
queries, and let ~ω ∈ Dm be a strong key fingerprint for M . Let D = D ×Rm and let H: D → S be
a hash function that is compatible with (KT,M,Φ, ~ω). Define F : K ×D → R by

F (K,x) = M(K,H(x,M(K, ~ω)))

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the prf-rka security of F that
makes QA ≤ |S| oracle queries. Then we can construct an adversary B against the standard prf
security of M , an adversary C against the cr security of H, an adversary D against the Φ-kc security
of M and an adversary E against Φ-skc security for Fun(K,D,R) such that

Advprf-rka
Φ,F (A ) ≤ Advprf

M (A ) + Advcr
H(C ) + Advkc

Φ,M (D) + Advskc
Φ (E ). (1)

Adversaries C , D and E have the same running time as A . Adversary B has the same running time
as A plus the time required for QA · (m+ 1) executions of the key-transformer KT.
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Note that if the class Φ is claw-free, then the advantage of any adversary in breaking Φ-kc
security of M or Φ-skc security for Fun(K,D,R) is zero. In this case Theorem 3.1 matches exactly
the main theorem of [BC10a], under the original and weaker definition of hash function compatibility
from [BC10a]. This justifies our claim of repairing the Bellare-Cash framework.

Overview of the Proof. The proof of the above theorem is detailed below and relies on the sequence
of 11 games (games G0−G10) described in Figure 3. Here we provide a brief overview. Since the RKD
functions that we consider in our case may have claws, we start by dealing with possible collisions
on the related-keys in the RKPRFReal case, using the key-collision notion (games G0 −G2). Then,
in games G3 − G4, we deal with possible collisions on hash values in order to ensure that the hash
values h used to compute the output y are pairwise distinct so the attacker is unique-input. Then,
using the properties of the key-transformer and the compatibility condition, we show that it is hard
to distinguish the output from a uniformly random output (games G5 −G7) based on the standard
prf security of M . Finally, we use the statistical-key-collision security notion to deal with possible
key collisions in the RKPRFRand case (games G8−G10) so that G10 matches the description of the
RKPRFRand game.

Remark 3.2. It is worth noting that we deviate from the original proof of [BC10a] in games G5−G7,
filling the gap in their original proof, but under the same technical conditions on compatibility. Unlike
in their proof, we are able to show that the output of F is already indistinguishable from a uniformly
random output as soon as one replaces the underlying PRF M with a random function f due to
the uniformity condition of the transformer. In order to build a unique-input adversary against the
uniformity condition, the main trick is to precompute the values of f(w) for all w ∈ Qrs(KT,M,Φ, ~ω)
and use these values to compute KTf (φ, ωi), for i = 1, . . . , |~ω| and φ ∈ Φ, whenever needed. This
avoids the need to query the oracle in the uniformity game twice on the same input when computing
the fingerprint.

Proof of Theorem 3.1. The proof is based on the sequence of games in Figure 3. Much of the proof
is similar to that of the general framework of Bellare and Cash from [BC10a]. However, we have
additional games to deal with non-claw-freeness (games G1, G2, G9 and G10), and some games (games
G6 and G7) are modified to deal with the gap in the proof of the corresponding theorem in [BC10a].
Let Succi denote the event that game Gi output takes the value 1.

Game G1 introduces storage of used RKD-functions and values of ~ω in sets D and E respectively
and sets flag1 to true if the same value of ~ω arises for two different RKD-functions. Since this storage
does not affect the values returned by RKFn

Pr [Succ1 ] = Pr [Succ0 ].

Game G2 adds the boxed code which changes how the repetition of an ~ω value is handled, by
picking instead a random value from Rm \ E that will not repeat any previous one. Games G1 and
G2 are identical until flag1 is set to true, hence we have

Pr [Succ1 ] ≤ Pr [Succ2 ] + Pr [E1 ]

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We design an
adversary D attacking the Φ-key-collision security of M such that

Pr [E1 ] ≤ Advkc
Φ,M (D).

Adversary D runs A . When the latter makes a RKFn-query (φ, x), adversary D queries (φ, ωi),
for i = 1, . . . , |~ω|, to its oracle, then computes ~ω and then h = H(x, ~ω) and finally queries (φ, h) to
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proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

h← H(x, ~ω)
y ←M(φ(K), h)
Return y

proc Finalize(b′) // All Games
Return b′

proc Initialize // G1,G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

If ~ω ∈ E and φ /∈ D then

flag1 ← true ; ~ω
$←Rm \ E

Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)
y ←M(φ(K), h)
Return y

proc Initialize // G3,G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

If ~ω ∈ E and φ /∈ D then
~ω

$←Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)
If h ∈ G then flag2 ← true

h
$← S \G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

For i = 1, . . . , |~ω| do
ωi ← KTM(K,·)(φ, ωi)

If ~ω ∈ E and φ /∈ D then
~ω

$←Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)

If h ∈ G then h $← S \G
G← G ∪ {r}
y ← KTM(K,·)(φ, h)
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

f
$← Fun(D,R)

proc RKFn(φ, x) // G6

For i = 1, . . . , |~ω| do
ωi ← KTf (φ, ωi)

If ~ω ∈ E and φ /∈ D then
~ω

$←Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)

If h ∈ G then h $← S \G
G← G ∪ {r}
y ← KTf (φ, h)
Return y

proc Initialize // G8 , G9

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G8 , G9

y ← G(φ(K), x)
If φ(K) ∈ E and φ /∈ D then

flag3 ← true ; y
$←R

D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G7

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7

y
$←R

Return y

proc Initialize // G10

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G10

y ← G(φ(K), x)
Return y

Figure 3: Games for the proof of Theorem 3.1.
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its oracle and sends it to A . When A stops, D searches for two different RKD-functions φ queried
by A that lead to the same value ~ω and returns these two functions if found. Since ~ω is a strong key
fingerprint, two such functions lead to the same key, so D wins if he finds such two functions. (Of
course, if the class of RKD-functions is claw-free, the advantage of the attacker is 0.)

Game G3 introduces storage of hash values in a set G and sets flag2 to true if the same hash
output arises twice. Since this storage does not affect the values returned by RKFn

Pr [Succ3 ] = Pr [Succ2 ].

Game G4 adds the boxed code which changes how repetition of hash values is handled, by picking
instead a random value h from S \G that will not repeat any previously used hash value. Games G3

and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3 ] ≤ Pr [Succ4 ] + Pr [E2 ]

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We design an
adversary C attacking the cr security of H such that

Pr [E2 ] ≤ Advcr
H(C ).

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter makes
an RKFn-query (φ, x), adversary C responds via:

For i = 0, . . . , |~ω| do: ωi ←M(φ(K), ωi)
j ← j + 1 ; φj ← φ ; xj ← x

If ~ω ∈ E and φ /∈ D then ~ω $← S \ E (∗)
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
wj ← ~ω
h← H(x, ~ω)
hj ← h
y ←M(φ(K), h)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it finds them,
outputs (xa, wa), (xb, wb) and halts. The pairs (xa, wa) and (xb, wb) are distinct. Indeed, consider two
cases: first, if φa = φb then since A never repeats an oracle query, xa 6= xb hence (xa, wa) 6= (xb, wb).
Second, if φa 6= φb, then condition (∗) ensures that wa 6= wb. Hence once again, (xa, wa) 6= (xb, wb),
and then

Pr [Succ3 ] ≤ Pr [Succ4 ] + Advcr
H(C ).

In game G5, we use the key transformer KT to compute M(φ(K), ·) via oracle calls to M(K, ·).
The correctness property of the key transformer implies

Pr [Succ4 ] = Pr [Succ5 ].

In game G6, we replace the oracleM(K, ·) given to the key transformer KT by a random function
f . We design an adversary B attacking the prf security of M such that

Pr [Succ5 ] ≤ Pr [Succ6 ] + Advprf
M (B).

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds via
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For i = 0, . . . , |~ω| do ωi ← KTFn(φ, ωi)

If ~ω ∈ E and φ /∈ D then ~ω $← S \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)
y ← KTFn(φ, h)
Return y

where Fn is B’s own oracle. When A halts, B halts with the same output. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ5 ] and Pr
[

PRFRandB
M ⇒ 1

]
= Pr [Succ6 ].

In game G7, instead of computing the output y using the key-transformer, we set the value y
to a uniformly random value. To show that games G6 and G7 are perfectly indistinguishable, we
use the uniformity condition of the Key-Transformer KT. Let us recall that, as formally defined
in [BC10a, Section 3.1], the uniformity condition states that for any (even inefficient) Φ-restricted,
unique-input adversary U ,

Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
,

where game KTRealKT picks f $← Fun(D,R) during the initialization and responds to oracle query
KTFn(φ, x) via KTf (φ, x), while game KTRandKT has no initialization and responds to oracle
query KTFn(φ, x) by returning a value y $← R chosen uniformly at random in R. We show that if
an adversary A can distinguish games G6 and G7, then we can construct a unique-input adversary
U that can distinguish games KTRealKT and KTRandKT; since KT is a key-transformer, these
two games are perfectly indistinguishable for a unique-input adversary by the uniformity condition.
Hence, so are G6 and G7.

Adversary U starts by initializing sets D ← ∅, E ← ∅, G ← ∅, then makes the queries (id, w)
to its oracle, for every w ∈ Qrs(KT,M,Φ, ~ω) and stores these values. This is possible under our
assumption that id ∈ Φ. We let fw denote the value that D gets from its oracle in response to
the query (id, w). Depending on U ’s oracle, the value of fw for w ∈ Qrs(KT,M,Φ, ~ω) is either
KTf (id, w) = f(w) (KTRealKT), with f the random function defined in the Initialize procedure of
KTRealKT, or a uniformly random value from R (KTRandKT). All these values will be used by U to
compute the value ~ω in its simulation. Now, U runs A . When A makes an oracle query (φ, x), U
starts by computing the values ωi, for i = 1, . . . , |~ω|, using the values fw he has stored, the function
φ he gets from A , and the key-transformer KT. Note that, because U already queried (id, w) to its
oracle for every w ∈ Qrs(KT,M,Φ, ~ω), U is able to compute by itself the values ωi, for i = 1, . . . , |~ω|.
This is because, in making these queries, U already sets a value fw for every w ∈ Qrs(KT,M,Φ, ~ω),
and this is the set of all values that might be needed in computing KTf (φ, ωi), for i = 1, . . . , |~ω| and
φ ∈ Φ. Notice that, in making these queries all at once at the beginning, U remains a unique-input
adversary. After computing ~ω, U checks if ~ω ∈ E and φ /∈ D. If these conditions hold, U picks
~ω

$← Rm \ E at random, otherwise U sets D ← D ∪ {φ}. It then sets E ← E ∪ {~ω}. Next, U

computes h ← H(x, ~ω) and checks if h ∈ G. If this holds, U picks h $← S \ G at random. Notice
that this step guarantees that all values h are in S and are all distinct as long as A makes at most
|S| queries. Finally, U sets G ← G ∪ {h}, makes the query (φ, h) to its oracle, and returns the
value it gets, which is either KTf (φ, h) or a uniformly random value, to A . When A halts, U
halts with the same output. The compatibility condition ensures that S does not contain any w
with w ∈ Qrs(KT,M,Φ, ~ω). It follows from these observations that U is a unique-input adversary.
Finally, it is clear that if U ’s oracle is KTRealKT, then it simulates exactly game G6 with f being
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the function f chosen at random in the Initialize procedure of game KTRealKT. If U ’s oracle is
KTRandKT, then it simulates exactly game G7 since the values given to A are uniformly random
values. Then, we have

Pr
[

KTRealUKT ⇒ 1
]

= Pr [Succ6 ] and Pr
[

KTRandU
KT ⇒ 1

]
= Pr [Succ7 ]

and then, since Pr
[

KTRealUKT ⇒ 1
]

= Pr
[

KTRandU
KT ⇒ 1

]
for any unique-input adversary U , by

the uniformity condition, we finally have

Pr [Succ6 ] = Pr [Succ7 ].

Games G7 and G8 are identical since even if two different queries lead to the same key, the “If”
test ensures that the returned value is still uniformly random over R. Hence,

Pr [Succ7 ] = Pr [Succ8 ].

Games G8 and G9 are identical until flag3 is set to true, hence we have

Pr [Succ8 ] ≤ Pr [Succ9 ] + Pr [E3 ]

where E3 denotes the event that the execution of A with game G9 sets flag3 to true. We design an
adversary E breaking Φ-skc security for Fun(K,D,R) such that:

Pr [E3 ] ≤ Advskc
Φ (E ).

Adversary E runs A . When the latter makes a RKFn-query (φ, x), so does E and E returns the
value he receives to A . When A stops, if A has queried two different functions φ1 and φ2 such that
φ1(K) = φ2(K) then b′ was set to 1 when the second of these two functions was queried by E , and
then E wins. (Of course, if the class of RKD functions is claw-free, this probability is 0.)

Games G9 and G10 are identical, so

Pr [Succ9 ] = Pr [Succ10 ].

Equation (1) on page 8 now follows by combining the bounds arising in the different game hops.

4 Related-Key Security for Affine RKD Functions

In this section, we apply the above framework to the variant NR∗ of the Naor-Reingold PRF. Recall
that NR∗: Znp × {0, 1}n \ {0n} → G was defined in [BC10a] by:

NR∗(~a, x) =

[
n∏
i=1

axii

]

for all ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. We recall the definition of Φaff (= Φ1) from the introduction.
Using the above theorem, we prove that NR∗ can be used to build a Φaff -RKA-secure PRF under
the DDH assumption, thereby recovering and strengthening the withdrawn result from [BC10a]. We
first recall the following lemma from [BC10a].
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Lemma 4.1. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let A be an adversary against the standard prf

security of NR∗ that makes QA oracle queries. Then we can construct an adversary B against the
DDH problem such that

Advprf
NR∗(A ) ≤ (n− 1) ·Advddh

G (B).

The running time of B is equal to the running time of A, plus the time required to compute O(QA )
exponentiations in G.

In what follows, we prove the properties needed to apply Theorem 3.1 to NR∗.

Strong Key Fingerprint. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Then ~ω is a strong key
fingerprint for NR∗. Indeed, we have (NR∗(~a, ω1), . . . ,NR∗(~a, ωn)) = ([a1] , . . . , [an]), so if ~a 6= ~a′ are
two distinct keys in K = Znp , then there exists i ∈ {1, . . . , n} such that ai 6= a′i, so [ai] 6= [~a′i].

Compatible Hash Function. We have Qrs(KTΦaff
,NR∗,Φaff , ~ω) = {ω1, . . . , ωn}, so let D =

{0, 1}n × Gn and let h: D → {0, 1}n−2 be a collision resistant hash function. Then the hash func-
tion defined by H(x, ~z) = 11 ‖h(x, ~z) is a collision resistant hash function that is compatible with
(KTΦaff

,NR∗,Φaff , ~ω) since every element of Qrs(KTΦaff
,NR∗,Φaff , ~ω) has at most one 1 bit and every

output of H has at least two 1 bits. Note that in particular the output of H is never 0n, so it is
always in the domain of NR∗.

Lemma 4.2. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \{0n}. Let D be an adversary against the Φaff-key-collision

security of NR∗ that makes QD oracle queries. Then we can construct an adversary C against the
DL problem in G with the same running time as that of D such that

Advkc
Φaff ,NR∗(D) ≤ n ·Advdl

G(C ).

Since the hardness of DDH implies the hardness of DL, the above lemma does not introduce any
additional hardness assumptions beyond DDH.

Proof of Lemma 4.2. Let D be an adversary against the Φaff -key-collision security of NR∗ that makes
QD oracle queries. Then we construct an adversary C against the DL problem in G as follows.
Adversary C receives as input a DL tuple ([1] , [a]). Adversary C then picks j $← {1, . . . , n} at
random; this is a guess of a coordinate where the two vectors of affine functions ~φ(1) and ~φ(2) that D

will use as inputs in the Finalize procedure are different. Then C picks ai
$← Zp for i = 1, . . . , n, i 6= j

at random. Adversary C implicitly sets aj = a.

When D makes a query (φ, x), C computes y = ([φj(aj)
xj ])

∏n
i=1
i6=j

φi(ai)
xi

= [
∏n
i=1 φi(ai)

xi] =
NR∗(~a, x), where ~a = (a1, . . . , an). Here, C uses its input [a] to compute an “affine function in
the exponent” for [φj(aj)]. At the end, D sends (~φ(1), ~φ(2)) to C and D wins if ~φ(1) 6= ~φ(2) and
~φ(1)(~a) = ~φ(2)(~a), where ~φ(i) = (φ

(i)
1 , . . . , φ

(i)
n ), i ∈ {1, 2}. Since j was chosen uniformly at random

and ~φ(1) 6= ~φ(2), with probability at least 1
n , we have φ(1)

j 6= φ
(2)
j but φ(1)

j (aj) = φ
(2)
j (aj). In this

case, aj = a is the root of the non zero affine function ψ = φ
(1)
j − φ

(2)
j , that can be easily computed.

Hence, we have
Advkc

Φaff ,NR∗(D) ≤ n ·Advdl
G(C )

and the claim follows.
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proc Initialize // Gi, i = 0, . . . , n

f
$← Fun({0, 1}n \ {0n},G)

proc Finalize(b′)
Return b′ = b

proc RKFn(φ, x) // Gi, i = 0, . . . , n

If hw(x) ≤ n− i then
y ← KTfΦaff

(φ, x)

Else y $← G
Return y

Figure 4: Games for the proof of Lemma 4.3.

Lemma 4.3. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let KTΦaff

be defined via

KTfΦaff
(φ, x) =

 ∏
i∈S(x)

ci

 · ∏
y�x,y 6=0n

f(y)
∏
j∈S(y) bj

∏
k∈S(x)\S(y) ck

where ~φ = (φ1, . . . , φn) ∈ Φaff , with φi: a ∈ Zp 7→ bia+ ci ∈ Zp, bi 6= 0, for i = 1, . . . , n. Then KTΦaff

is a key-transformer for (NR∗,Φaff). Moreover, the worst-case running time of this key-transformer
is the time required to compute O(2n) exponentiations in G.

Proof of Lemma 4.3. Let us first check the correctness condition.

KT
NR∗(~a,·)
Φaff

(~φ, x) =

 ∏
i∈S(x)

ci

 · ∏
y�x,y 6=0n

 ∏
l∈S(y)

al


∏
j∈S(y) bj

∏
k∈S(x)\S(y) ck

=
∏

R⊆S(x)

∏
i∈R

(bi · ai)
∏

j∈S(x)\R

cj

 =

 ∑
R⊆S(x)

∏
i∈R

(bi · ai)
∏

j∈S(x)\R

cj


=

 ∏
i∈S(x)

(bi · ai + ci)

 =

[
n∏
i=1

(bi · ai + ci)
xi

]
= NR∗(~φ(~a), x) .

Then, we have verified the correctness condition, and it is clear that the worst-case running time is
the time to compute 2n exponentiations in G, when x = 11 ‖ . . . ‖ 1 and none of the exponents is 0.
Hence, only the uniformity condition remains to prove. We use the sequence of games in Figure 4.
Let us recall that the adversary is supposed to be unique-input, meaning that for any sequence of
queries (~φ1, x1), . . . , (~φq, xq), the entries xi, for i = 1, . . . , q are all distinct. We denote by hw(x) the
Hamming weight of a bitstring x. Let Succi denote the event that game Gi output takes the value
1.

In game G0, the “If” statement will always pass since hw(x) ≤ n for any bitstring of length n.
Hence, we have

Pr [Succ0 ] = Pr
[

KTRealAKT ⇒ 1
]
.

We claim that for all 0 ≤ i ≤ n− 1,

Pr [Succi ] = Pr [Succi+1 ] .

The only difference between games Gi and Gi+1 is in the way that bitstrings x of Hamming weight
n− i are handled. Indeed, such a string is fed to KTfΦaff

(~φ, x) in Gi, which computes

KTfΦaff
(~φ, x) =

 ∏
i∈S(x)

ci

 · ∏
y�x,y 6=0n

f(y)
∏
j∈S(y) bj

∏
k∈S(x)\S(y) ck
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where ~φ = (φ1, . . . , φn) ∈ Φaff , with φi: ~T 7→ biTi + ci, bi 6= 0, for i = 1, . . . , n. Now, since we need
only deal with unique-input adversaries, this is the only time that Gi will query f at input x (all
other queries to f will be at other points with the same Hamming weight or at points with strictly
smaller Hamming weight). Hence, the entire value computed above can equivalently be set to a value
chosen uniformly at random. (This relies on the exponent for f(x) used in the computation being
non-zero; this is guaranteed by the requirement that bi 6= 0, for i = 1, . . . , n and the fact that when
y = x, the product

∏
k∈S(x)\S(y) ck is empty.) Setting the entire value to a uniformly random value

is exactly what is done in Gi+1, and the claim follows.
Finally, in Gn, the “If” statement will never pass since hw(x) > 0 for any x ∈ {0, 1}n \ {0}n, so

we have
Pr [Succn ] = Pr

[
KTRandA

KT ⇒ 1
]
.

The uniformity condition follows.

Lemma 4.4. Let G = 〈g〉 be a group of prime order p. Let A be an adversary against the Φaff-
statistical-key-collision security for Fun(Znp , {0, 1}n,G) making QA queries. Then we have

Advskc
Φaff

(A ) ≤
Q2

A

2p
.

Proof of Lemma 4.4. Let A be an adversary against the Φaff -statistical-key-collision security for
Fun(Znp , {0, 1}n,G) that makes QA queries. Since the function F defined in the Initialize procedure
is a random function, A does not learn any information on the key ~a until b′ ← 1, so Advskc

Φaff
(A )

is bounded by the probability that A makes use in its queries of two different RKD functions that
lead to the same key. We claim that

Advskc
Φaff

(A ) ≤
Q2
A

2p
.

This follows easily on noting that, if two different RKD functions lead to the same key, then those
two functions must differ in some coordinate k. This means that the difference in those components
is a non-constant affine function ψk such that ψk(ak) = 0, where ak is the k-th component of key ~a
that was taken uniformly at random in the Initialize procedure. Since ψk is a non-constant affine
function and ak is uniformly random in Zp, the probability that ψk(ak) = 0 is bounded by 1

p . To
obtain the final result, one simply applies a union bound over the (at most)

(
QA

2

)
pairs of choices of

different RKD functions accessed by A .

We now have everything we need to apply Theorem 3.1 to NR∗. Combining Theorem 3.1, Lem-
mas 4.1–4.4 and the above properties, we obtain the following theorem.

Theorem 4.5. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let D = {0, 1}n ×Gn and let h: D → {0, 1}n−2 be

a hash function. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Define F : Znp × {0, 1}n → G by

F (~a, x) = NR∗(~a, 11 ‖h(x,NR∗(~a, ~ω)))

for all ~a ∈ Znp and x ∈ {0, 1}n. Let A be a Φaff-restricted adversary against the prf-rka security of F
that makes QA oracle queries. Then we can construct an adversary B against the DDH problem in
G, an adversary C against the cr security of h, and an adversary D against the DL problem in G,
such that

Advprf-rka
Φaff ,F

(A ) ≤ n ·Advddh
G (B) + Advcr

h (C ) + n ·Advdl
G(D) +

Q2
A

2p
.

The running time of B is that of A plus the time required to compute O(QA · (n+ 1) · 2n) exponen-
tiations in G. The running times of C and D are the same as that of A .
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5 Further Generalisation of the Bellare-Cash Framework

We introduce a new type of PRF, called an (S,Φ)-Unique-Input-RKA-PRF. We then use this
notion as a tool in a further extension of the Bellare-Cash framework that can be applied to non-
key-malleable PRFs and non-claw-free classes of RKD functions. This new framework provides in
particular a route to proving that the variant of the Naor-Reingold PRF introduced in Section 4 is
actually Φd-RKA-secure.

(S,Φ)-Unique-Input-RKA-PRF. Let M : K × D → R be a family of functions. Let S be a
subset of D and Φ be a class of RKD functions. We consider the class of adversaries A in Fig-
ure 5 such that all queries (φ, x) with x ∈ S made by A to its oracle are for distinct values of x.
That is, for any sequence of A ’s queries (φ1, x1), . . . , (φq, xq) with xi ∈ S for all i = 1, . . . , q, we
require all the xi to be distinct (no such restriction is made for queries (φi, xi) with xi /∈ S). We
denote the advantage of such an adversary A by Adv

(S,Φ)-ui-prf-rka
M (B). We then say that M is an

(S,Φ)-unique-input-RKA-PRF if the advantage of any such Φ-restricted, efficient adversary A in
attacking (S,Φ)-unique-input-prf-rka security is negligible.

proc Initialize
K

$← K ; b $← {0, 1}
proc Finalize(b′)
Return b′ = b

proc RKFn(φ, x)
If x ∈ S then

If b = 0 then y ←M(φ(K), x)

Else y $← R
Else y ←M(φ(K), x)
Return y

Figure 5: Game defining the (S,Φ)-unique-input-prf-rka security of a PRF M .

The following theorem is an analogue of Theorem 3.1 in which the roles of key malleability and
hash function compatibility are replaced by our new notion, (S,Φ)-unique-input-prf-rka security.

Theorem 5.1. Let M : K×D → R be a family of functions and Φ be a class of RKD functions. Let
~ω ∈ Dm be a strong key fingerprint for M . Let D = D ×Rm and let H: D → S be a hash function,
where S ⊆ D \ {ω1, . . . , ωm}. Define F : K ×D → R by

F (K,x) = M(K,H(x,M(K, ~ω)))

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the prf-rka security of
F that makes QA ≤ |S| oracle queries. Then we can construct an adversary B against the
(S,Φ)-unique-input-prf-rka security of M , an adversary C against the cr security of H, an adversary
D against the Φ-kc security of M and an adversary E against Φ-skc security for Fun(K,D,R) such
that

Advprf-rka
Φ,F (A ) ≤ Adv

(S,Φ)-ui-prf-rka
M (B) + Advcr

H(C ) + Advkc
Φ,M (D) + Advskc

Φ (E ). (2)

Adversaries C , D and E have the same running time as A . Adversary B makes (m+ 1) ·QA oracle
queries and has the same running time as A .

Overview of the Proof. The proof of the above theorem is detailed below and relies on the sequence
of 10 games (games G0−G9) described in Figure 6. Here we provide a brief overview. Since the RKD
functions that we consider in our case may have claws, we start by dealing with possible collisions
on the related-keys in the RKPRFReal case, using the key-collision notion(games G0 − G2). Then,
in games G3 − G4, we deal with possible collisions on hash values in order to ensure that the hash
values h used to compute the output y are distinct. Then, in contrast to the proof of Theorem 3.1, we
use the new (S,Φ)-unique-input-RKA-PRF notion and the compatibility condition to show that it is
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hard to distinguish the output of F from a uniformly random output(games G5−G6). Finally, we use
the statistical-key-collision security notion to deal with possible key collisions in the RKPRFRand
case (games G7 −G9) so that G9 matches the description of the RKPRFRand Game.

Remark 5.2. In Appendix A, we explore the relationship between key-malleable PRFs and unique-
input-RKA-secure PRFs. Specifically, we show that the (S,Φ)-unique-input-prf-rka security of a
Φ-key-malleable PRF M is implied by its regular prf security if the key-transformer KT associated
with M satisfies a new condition that we call S-uniformity. This condition demands that the usual
uniformity condition for KT should hold on the subset S of D rather than on all of D. Whether
S-uniformity is implied by (regular) uniformity is an open question.

Proof of Theorem 5.1. The proof is based on the sequence of games in Figure 6. Much of the proof
is similar to the proof of Theorem 3.1 (which itself is based on the proof of the general framework
of Bellare and Cash from [BC10a]). The current proof, however, is somewhat simpler and has
fewer games since it relies on a stronger security property of the underlying PRF M , namely its
(S,Φ)-unique-input-prf-rka security. Let Succi denote the event that game Gi output takes the
value 1.

Game G1 introduces storage of used RKD-functions and values of ~ω in sets D and E respectively
and sets flag1 to true if the same value of ~ω arises for two different RKD-functions. Since this storage
does not affect the values returned by RKFn

Pr [Succ1 ] = Pr [Succ0 ] .

Game G2 adds the boxed code which changes how the repetition of an ~ω value is handled, by
picking instead a random value from Rm \ E that will not repeat any previous one. Games G1 and
G2 are identical until flag1 is set to true, hence we have

Pr [Succ1 ] ≤ Pr [Succ2 ] + Pr [E1 ]

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We design an
adversary D attacking the Φ-key-collision security of M such that

Pr [E1 ] ≤ Advkc
Φ,M (D) .

Adversary D runs A . When the latter makes a RKFn-query (φ, x), adversary D queries (φ, ωi),
for i = 1, . . . , |~ω|, to its oracle, then computes ~ω and then h = H(x, ~ω) and finally queries (φ, h) to
its oracle and sends it to A . When A stops, D searches for two different RKD-functions φ queried
by A that lead to the same value ~ω and returns these two functions if found. Since ~ω is a strong key
fingerprint, two such functions lead to the same key, so D wins if he finds such two functions. (Of
course, if the class of RKD-functions is claw-free, the advantage of the attacker is 0.)

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same hash
output arises twice. Since this storage does not affect the values returned by RKFn, we have

Pr [Succ3 ] = Pr [Succ2 ] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by picking
instead a random value h from S \G that will not repeat any previously used hash value. Games G3

and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3 ] ≤ Pr [Succ4 ] + Pr [E2 ]
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proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

h← H(x, ~ω)
y ←M(φ(K), h)
Return y

proc Finalize(b′) // All Games
Return b′

proc Initialize // G1,G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

If ~ω ∈ E and φ /∈ D then

flag1 ← true ; ~ω
$← Rm \ E

Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)
y ←M(φ(K), h)
Return y

proc Initialize // G3,G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

If ~ω ∈ E and φ /∈ D then
~ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)
If h ∈ G then flag2 ← true

h
$← S \G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

For i = 1, . . . , |~ω| do
ωi ←M(φ(K), ωi)

If ~ω ∈ E and φ /∈ D then
~ω

$← Rm \ E
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
h← H(x, ~ω)

If h ∈ G then h $← S \G
G← G ∪ {r}
y

$← R
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G6

y
$← R

Return y

proc Initialize // G7 , G8

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7 , G8

y ← G(φ(K), x)
If φ(K) ∈ E and φ /∈ D then

flag3 ← true ; y
$← R

D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G9

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G9

y ← G(φ(K), x)
Return y

Figure 6: Games for the proof of Theorem 5.1.
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where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We design an
adversary C attacking the cr-security of H such that

Pr [E2 ] ≤ Advcr
H(C ) .

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter makes
a RKFn-query (φ, x), adversary C responds via

For i = 0, . . . , |~ω| do: ωi ←M(φ(K), ωi)
j ← j + 1 ; φj ← φ ; xj ← x

If ~ω ∈ E and φ /∈ D then ~ω $← S \ E (∗)
Else D ← D ∪ {φ}
E ← E ∪ {~ω}
wj ← ~ω
h← H(x, ~ω)
hj ← h
y ←M(φ(K), h)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it finds them,
outputs (xa, wa), (xb, wb) and halts. The pairs (xa, wa) and (xb, wb) are distinct. Indeed, consider two
cases: first, if φa = φb then since A never repeats an oracle query, xa 6= xb hence (xa, wa) 6= (xb, wb).
Second, if φa 6= φb, then condition (∗) ensures that wa 6= wb. Hence once again, (xa, wa) 6= (xb, wb),
and then

Pr [Succ3 ] ≤ Pr [Succ4 ] + Advcr
H(C ) .

In game G5, instead of returning the value M(φ(K), h), we always return a random value.
To show that games G4 and G5 are indistinguishable, we design an adversary B against the
(S,Φ)-unique-input-prf-rka security of M such that

Pr [Succ4 ] ≤ Pr [Succ5 ] + Adv
(S,Φ)-ui-prf-rka
M (B) .

Adversary B starts by initializing sets D ← ∅, E ← ∅, G ← ∅. Then B runs A . When the latter
makes an RKFn-query (φ, x), B responds as follows. For i = 1, . . . , |~ω|, it asks (φ, ωi) to its oracle
and sets ωi to this value. Since for all i = 1, . . . , |~ω|, ωi /∈ S by assumption, the value it gets is
M(φ(K), ωi), whatever its oracle is. Then, B checks if ~ω ∈ E and φ /∈ D. If they do, B picks
~ω

$← Rm \ E at random, otherwise B sets D ← D ∪ {φ}. B then sets E ← E ∪ {~ω}. Next, B

computes h ← H(x, ~ω) and checks if h ∈ G. If it does, B picks h $← S \ G at random. Notice that
this step guarantees that all values h are in S and are all distinct as long as A makes at most |S|
queries. Finally, B sets G← G ∪ {h}, makes the query (φ, h) to its oracle, and returns the value it
gets, which is either M(φ(K), h) or a uniformly random value, to A . When A halts, B halts with
the same output. The definition of S ensures that it does not contain any ωi for i = 1, . . . , |~ω|. It
follows from these observations that B is a unique-input adversary for queries in S. Finally, it is
clear that if B’s oracle gives real outputs of M for queries in S, then it simulates exactly game G4

and if B’s oracle gives uniformly random values for queries in S, then it simulates exactly game G5.
In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6 are

identical since the value returned is a uniformly random value for any query. Then, we have

Pr [Succ5 ] = Pr [Succ6 ] .
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In game G7, we check if two different queries can lead to a key collision. Since the “If” test ensures
that the returned value is still uniformly random over R even when two different queries result in
the same key, games G6 and G7 are identical. Hence,

Pr [Succ6 ] = Pr [Succ7 ] .

In game G8, we compute the output of RKFn using a random function G in Fun(K,D,R). Since
games G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7 ] ≤ Pr [Succ8 ] + Pr [E3 ]

where E3 denotes the event that the execution of A with game G8 sets flag3 to true. To bound the
probability of event E3, we design an adversary E attacking Φ-statistical-key-collision security for
Fun(K,D,R) such that

Pr [E3 ] ≤ Advskc
Φ (E ) .

Adversary E runs A . When the latter makes an RKFn-query (φ, x), so does E and E returns the
value he receives to A . When A stops, if A has queried two different functions φ1 and φ2 such that
φ1(K) = φ2(K) then b′ was set to 1 when the second of these two functions was queried by E , and
then E wins. (Of course, if the class of RKD functions is claw-free, this probability is 0.)

Since A does not repeat oracle queries and since key collisions are dealt with in a similar way, it
follows that games G8 and G9 are identical. Thus,

Pr [Succ8 ] = Pr [Succ9 ] .

Equation (2) on page 17 now follows by combining the bounds arising in the different game
hops.

6 Related-Key Security for Polynomial RKD Functions

We apply Theorem 5.1 to the variant NR∗ of the Naor-Reingold PRF for the class of RKD functions
Φd = {φ: K → K | φi: ~T 7→

∑d
j=0 αi,j ·T j , (αi,1, . . . , αi,d) 6= 0d; ∀i = 1, . . . , n}. Specifically, we prove

that NR∗ can be used to build a Φd-RKA-secure PRF, under the d-DDHI assumption. Remarkably,
our proof provides an efficient reduction, avoiding an exponential running time like that seen in
Theorem 4.5. The key step in establishing our result is Lemma 6.3. Its proof involves at its core the
construction of a bespoke key-transformer to handle Φd and a delicate analysis of it using sequences
of hybrid games.

In what follows, we prove the various properties needed to apply Theorem 5.1 to NR∗.

Strong Key Fingerprint. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Then, as before, ~ω is a strong
key fingerprint for NR∗.

Hash Function. Let D = {0, 1}n × Gn and let h: D → {0, 1}n−2 be a collision resistant hash
function. Then, as previously, the hash function defined by H(x, ~z) = 11 ‖h(x, ~z) is a collision
resistant hash function with range S satisfying S ⊆ {0, 1}n \ ({ω1, . . . , ωn} ∪ {0n}).

Lemma 6.1. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let D be an adversary against the Φd-key-collision

security of NR∗ that makes QD oracle queries. Then we can construct an adversary C against the
d-SDL problem in G such that

Advkc
Φd,NR∗(D) ≤ n ·Advd-sdl

G (C ).

The running time of C is that of D plus the time required to factorize a polynomial of degree at most
d in Fp (sub-quadratic in d and logarithmic in p) plus O(QD · d) exponentiations in G.
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Proof of Lemma 6.1. Let D be an adversary against the Φd-key-collision security of NR∗ that makes
QD oracle queries. Then we construct an adversary C against the d-SDL problem in G as follows.

Adversary C receives as input a d-SDL tuple ([1] , [a] , . . . ,
[
ad
]
) where a $← Zp. Adversary C then

picks j $← {1, . . . , n} at random; this is a guess of a coordinate where the two vectors of polynomial
functions ~φ(1) and ~φ(2) that D will use as inputs in the Finalize procedure are different. Then C

picks ai
$← Zp for i = 1, . . . , n, i 6= j at random. Adversary C implicitly set aj = a.

When D makes a query ( ~phi, x), C computes y = ([φj(aj)
xj ])

∏n
i=1
i6=j

φi(ai)
xi

= [
∏n
i=1 φi(ai)

xi] =
NR∗(~a, x), where ~a = (a1, . . . , an). Here, C uses its input ([1] , [a] , . . . ,

[
ad
]
) to compute a “polynomial

function in the exponent” for [φj(aj)].
At the end, D sends (~φ(1), ~φ(2)) to C and D wins if ~φ(1) 6= ~φ(2) and ~φ(1)(~a) = ~φ(2)(~a), where

~φ(i) = (φ
(i)
1 , . . . , φ

(i)
n ), i ∈ {1, 2}. Since j was chosen uniformly at random and ~φ(1) 6= ~φ(2), with

probability at least 1
n , we have φ(1)

j 6= φ
(2)
j but φ(1)

j (aj) = φ
(2)
j (aj). In this case aj = a is a root of

the polynomial ψ := φ
(1)
j − φ

(2)
j , whose degree is at most d. So D factorizes ψ (using, for instance,

the Kedlaya-Umans algorithm [KU11], which has complexity sub-quadratic in d and logarithmic in
p), and selects as its output the unique root r such that [r] = [a]. The claim follows.

Lemma 6.2. Let G be a group of prime order p. Let Fun(Znp , {0, 1}n \{0n},G) be the set of functions
from which the random function in the Φd-statistical-key-collision security game is taken. Let A be
an adversary against the Φd-statistical-key-collision security that makes QA queries. Then we have

Advskc
Φd

(A ) ≤
d ·Q2

A

2p
.

Proof of Lemma 6.2. Let A be an adversary against the Φd-statistical-key-collision security that
makes QA queries. Since the function F defined in the Initialize procedure is a random function, A
does not learn any information on the key ~a until b′ ← 1, so Advskc

Φd
(A ) is bounded by the probability

that A makes use in its queries of two different RKD functions that lead to the same key. We claim
that

Advskc
Φd

(A ) ≤
d ·Q2

A

2p
.

This follows easily on noting that, if two different RKD-functions do lead to the same key, then those
two functions must differ in some coordinate k, meaning that the difference in those components is
a non-zero polynomial ψk of degree at most d such that ψk(ak) = 0. Here ak is the k-th component
of vector ~a that was selected uniformly at random in the Initialize procedure. Since ψk has at most
d roots and ak is uniformly random in Zp, the probability that ψk(ak) = 0 is bounded by d/p. To
obtain the final result, one simply applies a union bound over the (at most)

(
QA

2

)
pairs of choices of

different RKD-functions accessed by A .

Lemma 6.3. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =
[
∏n
i=1 a

xi
i ], where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let S be the set {0, 1}n \ ({0n}∪ {ω1, . . . , ωn}). Let

A be an adversary against the (S,Φd)-unique-input-prf-rka security of NR∗ that makes QA oracle
queries. Then, assuming nd ≤ √p, we can design an adversary B against the d-DDHI problem in G
such that

Adv
(S,Φd)-ui-prf-rka
NR∗ (B) ≤

(
n · d ·

(
p

p− 1

)2

+ n · (d− 1)

)
·Advd-ddhi

G (A ) +
2n ·QA

p
.

The running time of B is that of A plus the time required to compute O(d ·(n+QA )) exponentiations
in G and O(Q3

A · (nd+QA )) operations in Zp.
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Proof of Lemma 6.3. In order to prove Lemma 6.3, let us first introduce the following intermediate
problems, which are related to the d-DDHI problem in G.

(N, d)-Polynomial DDH ((N, d)-PDDH). Let G be a group of prime order p. For d ≥ 1,
the (N, d)-PDDH problem in G consists of deciding, given ([1] , ~X1, . . . , ~XN ) with G = 〈g〉 and
~Xi = ([ai] , . . . ,

[
adi
]
, zi), where ai ∈ Z∗p, for i = 1, . . . , N , whether zi =

[
ad+1
i

]
for i = 1, . . . , N

(corresponding to (N, d)-PDDH-Real) or whether zi = [ci] for random ci ∈ Z∗p for i = 1, . . . , N
(corresponding to (N, d)-PDDH-Rand). The advantage of an adversary B against the (N, d)-PDDH

problem in G, denoted by Adv
(Adv,N)-pddh
d (G)B is defined to be:

Adv
(N,d)-pddh
G (B) = Pr [ (N, d)-PDDH-Real⇒ 1 ]− Pr [ (N, d)-PDDH-Rand⇒ 1 ]

where the probabilities are over ai, ci
$← Z∗p, i = 1, . . . , N .

(N, d)-Extended DDH ((N, d)-EDDH). Let G be a group of prime order p with generator [1].
Then the (N, d)-EDDH problem in G consists of deciding, given ~Z = (Zk,l), for k = 0, . . . , N and
l = 0, . . . , d with Z0,0 = [1], whether Zk,l =

[
akb

l
]
, with a0 = 1, ak ∈ Z∗p for k = 1, . . . , N and b ∈ Z∗p

(corresponding to (N, d)-EDDH-Real) or whether Zk,l = [ck,l], for (k, l) 6= (0, 0), with ck,l ∈ Z∗p
(corresponding to (N, d)-EDDH-Rand). The advantage of an adversary B against the (N, d)-EDDH

problem in G, denoted by Adv
(N,d)-eddh
G (B) is defined to be:

Adv
(N,d)-eddh
G (B) = Pr [ (N, d)-EDDH-Real⇒ 1 ]− Pr [ (N, d)-EDDH-Rand⇒ 1 ]

where the probabilities are over ak
$← Z∗p, for k = 1, . . . , N , b $← Z∗p, and ck,l

$← Z∗p, for (k, l) 6= (0, 0).
Let S denote {0, 1}n \ ({ω1, . . . , ωn} ∪ {0n}). To prove the (S,Φd)-unique-input-prf-rka security

of NR∗ based on the d-DDHI problem in G, we first prove a similar statement in Lemma 6.4 based
on hardness of the (N, d)-PDDH and the (N, d)-EDDH problems in G. Then, in Lemmas 6.5–6.10,
we relate the hardness of both these problems to the hardness of the d-DDHI problem in G.

Lemma 6.4. Let G be a group of prime order p. Let g = [1] be a generator of G and NR∗: Znp ×
({0, 1}n \ {0n}) → G defined via NR∗(~a, x) = [

∏n
i=1 a

xi
i ]. Let S denote the set {0, 1}n \ ({0n} ∪

{ω1, . . . , ωn}). Let B be an adversary against the (S,Φd)-unique-input-prf-rka security of NR∗ that
makes QB oracle queries. Then, assuming nd ≤ √p, we can design adversaries Bj against the
(QB, d)-EDDH problem in G, for j = 0, . . . , n − 1, and adversaries Dk against the (n, k)-PDDH
problem in G, for k = 1, . . . , d− 1 such that

Adv
(S,Φd)-ui-prf-rka
NR∗ (B) ≤

n−1∑
j=0

Adv
(QB,d)-eddh
G (Bj) +

2n ·QB

p
+

d−1∑
k=1

Adv
(n,k)-pddh
G (Dk) . (3)

The running time of Bj is that of B plus O(Q3
B(n · d+QB)) operations in Zp. The running time of

Dk is that of B plus the time required to compute (at most) d ·QB exponentiations in G.

Proof of Lemma 6.4. The proof is based on the sequence of games of Figure 7. Let B be an adversary
against the (S,Φd)-unique-input-prf-rka security of NR∗, so B never queries the same entry x twice,
for any x ∈ S.
Preliminaries. For a RKD-function ~φ = (φ1, . . . , φn) ∈ Φd, we let φi be the polynomial defined by
φi : Ti 7→

∑d
k=0 αi,k · T ki , for each i = 1, . . . , n.

23



proc Initialize // G0, G2

~a
$← Znp ; Φd

proc RKFn(~φ, x) // G0

y ← NR∗(~φ(~a), x)
Return y

proc Finalize(b′) // G0–G2

Return b

proc Initialize // G1

~a
$← Znp ; Φd

T[0i−1 ‖ l ‖ 0n−i]
$← G,

∀l = 1, . . . , d, ∀i = 1, . . . , n
T[0n]← [1]

proc RKFn(~φ, x) // G1

// ~φ = (φ1, . . . , φn)

// φi : ~T 7→
∑d

j=0 αi,j · T
j
i

// ∀i = 1, . . . , n
If x ∈ S then

y
$← G

Else // x = ωi for i ∈ {1, . . . , n}

y ←
d∏

k=0

T[0i−1 ‖ k ‖ 0n−i]αi,k

Return y

proc RKFn(~φ, x) // G2

If x ∈ S then
y

$← G
Else

y ← NR∗(~φ(~a), x)
Return y

Figure 7: Game for the proof of the (S,Φd)-unique-input-prf-rka security of NR∗.

To each query (~φ, x) of the adversary, we associate the following polynomials, for j = 1, . . . , n:

P~φ,x,j(
~T ) =

j∏
i=1

φi(Ti)
xi =

∑
z�d·x1,...,j

j∏
i=1

αi,ziT
zi
i ,

with indeterminates ~T = (T1, . . . , Tj). These polynomials may have up to (d + 1)j (distinct) mono-
mials and so cannot be expanded efficiently. But they can still be formally considered as row vectors
(P

(z)
~φ,x,j

)z∈{0,...,d}j in Z(d+1)j

p , where P (z)
~φ,x,j

is the coefficient of the monomial T z[1]
1 · · ·T z[j]j .

As vectors, they can be multiplied to other vectors or matrices (with indices from the set
{0, . . . , d}j) over Zp. We can also define the multiplication of such a vector with a column vec-
tor over G. Specifically, if ~U = (Uz)z is a column vector with entries from G, then we write:

P~φ,x,j � ~U =
∏

z∈{0,...,d}j
U
P

(z)
~φ,x,j

z =
∏

z�d·x1,...,j

U
∏j
i=1 αi,zi

z .

Let us suppose that we have a polynomial-time procedure TestLin which takes as input j, a
list L of pairs (~φl, xl) (for l = 1, . . . , L, such that P~φl,xl,j are linearly independent as polynomials)

together with a pair (~φ, x) and which outputs:{
⊥ if P~φ,x,j is linearly independent of the set {P~φl,xl,j |l = 1, . . . , L}
~λ = (λ1, . . . , λL) otherwise, so that P~φ,x,j =

∑L
l=1 λlP~φl,xl,j

Since the P~φl,xl,j are linearly independent polynomials, there is at most one possible ~λ. Unfortunately,
we do not know any such polynomial-time procedure. But, as we will see later, we can approximate
such a procedure by evaluating the polynomials, and this is sufficient for our purposes.

Indistinguishability of Game G0 and Game G1. It is clear that game G0 instantiates exactly
the game defining the (S,Φd)-unique-input-prf-rka security of NR∗ when b = 0.
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In game G1, we respond to queries in S by uniformly random values, as is done in the game
defining the (S,Φd)-unique-input-prf-rka security of NR∗ when b = 1. However we do not reply to
queries x /∈ S as is done in that game. We design adversaries Bj attacking the (QB, d)-EDDH
problem in G such that

Pr [Succ0 ]− Pr [Succ1 ] ≤
n−1∑
j=0

Adv
(QB,d)-eddh
G (Bj) .

For that purpose, we use the sequence of games in Figure 8, in the following order: G0,0,G′0,0,
G0,1, . . . ,G′0,n−1,G0,n. More precisely, we prove that G0,j is indistinguishable from G′0,j under the
(QB, d)-EDDH assumption, while we show that G′0,j is perfectly indistinguishable from G0,j+1.

In G0,0, TestLin always returns an empty vector ~λ, L and T remain empty, and y is set to 1,
i.e., the empty product. So G0,0 is exactly G0.

proc Initialize // G0,j ; j = 0, . . . , n

~a
$← Znp

L ← []
T← []
L← 0

proc RKFn(~φ, x) // G0,j ; j = 0, . . . , n

// ~φ = (φ1, . . . , φn)

// φi : ~T 7→
∑d

j=0 αi,j · T
j
i , ∀i = 1, . . . , n

~λ← TestLin(j,L, (~φ, x))

If ~λ =⊥ then
L← L+ 1

L[L]← (~φ, x)

T[L]
$← G

~λ← (0, . . . , 0, 1) ∈ ZLp

y ←
L∏
l=1

T[l]λl

y′ ← y
∏n
i=j+1 φi(ai)

xi

Return y′

proc Initialize // G′0,j ; j = 0, . . . , n− 1

~a
$← Znp

L ← []
T← []
L← 0

proc RKFn(~φ, x) // G0,j ; j = 0, . . . , n

// ~φ = (φ1, . . . , φn)

// φi : ~T 7→
∑d

j=0 αi,j · T
j
i , ∀i = 1, . . . , n

~λ← TestLin(j,L, (~φ, x))

If ~λ =⊥ then
L← L+ 1

L[L]← (~φ, x)
For k = 0, . . . , d

T[L, k]
$← G

~λ← (0, . . . , 0, 1) ∈ ZLp

y ←
L∏
l=1

d·xj+1∏
k=0

T[l, k]λl·α
xj+1
j+1,k

y′ ← y
∏n
i=j+2 φi(ai)

xi

Return y′

Figure 8: Games G0,j and G′0,j for the proof of Lemma 6.4.

Indistinguishability of Game G0,j and Game G′0,j under the (QB, d)-EDDH assumption.
Let us now design adversaries Bj attacking the (QB, d)-EDDH problem in G such that

Pr [Succ0,j ]− Pr
[
Succ′0,j

]
≤ Adv

(QB,d)-eddh
G (Bj) ; ∀j = 0, . . . , n− 1

assuming the existence of a perfect TestLin oracle (which we recall does not exist). Later, we will
get the real bound using a concrete, approximate TestLin procedure.

Let ~Z be an (N, d)-EDDH tuple. So Z0,0 = [1] = g with G = 〈g〉. In the (QB, d)-EDDH-Real

case, we have Zl,k =
[
alb

k
]
, with a0 = 1 and b, al

$← Z∗p for l = 1, . . . , QB and k = 0, . . . , d. In the
(QB, d)-EDDH-Rand case, we have Zl,k = [cl,k] where cl,k

$← Z∗p, for (l, k) ∈ {0, . . . , QB}×{0, . . . , d},
(l, k) 6= (0, 0).
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Adversary Bj starts by picking ai
$← Zp, for i = j + 2, . . . , n. Adversary Bj then runs A . When

the latter makes an RKFn-query (~φ, x), adversary Bj does everything as in Game G0,j , except it
does not return y′ but instead computes z and z′ as follows:

z ←
L∏
l=1

d·xj+1∏
k=0

Z
λl·α

xj+1
j+1,k

l,k

z′ ← z
∏n
i=j+2 φi(ai)

xi

and returns z′. Adversary Bj does not compute y and y′.
If ~Z is a real (QB, d)-EDDH tuple, then

z =
L∏
l=1

d·xj+1∏
k=0

Z
bk·λl·α

xj+1
j+1,k

l,0 =
L∏
l=1

Z
λl·φj+1(b)xj+1

l,0 =

(
L∏
l=1

Zλll,0

)φj+1(b)xj+1

,

and so z = yφj+1(b) and z′ = y′, where y and y′ are computed as in Game G0,j and when aj = b
and T[l] = Zl,0 (which are random and used nowhere else). So, in this case, Bj simulates perfectly
Game G0,j .

Now, if ~Z is a random (QB, d)-EDDH tuple, then Bj simulates perfectly Game G0,j , when
T[l, k] = Zl,k (which are random and used nowhere else), z′ = y′ and z = y.

Perfect Indistinguishability of Game G′0,j and Game G0,j+1. It remains to prove that
Game G′0,j is perfectly indistinguishable from Game G0,j+1. To establish that, we will consider
another intermediate game (Game G′′0,j in Figure 9). This game is not polynomial-time (since ~U
contains (d + 1)j+1 entries), but we will show that it is perfectly indistinguishable from Game G′0,j
and Game G0,j+1.

proc Initialize // G′′0,j ; j = 0, . . . , n− 1

~a
$← Znp

Ux
$← G ; ∀x ∈ {0, . . . , d}j+1 \ {0j+1}

U0j+1 ← [1]

proc RKFn(~φ, x) // G′′0,j ; j = 0 . . . , n− 1

// ~φ = (φ1, . . . , φn)

// φi : Ti 7→
∑d

j=0 αi,j · T
j
i , ∀i = 1, . . . , n

y ← P~φ,x,j+1
� ~U

y′ ← y
∏n
i=j+2 φi(ai)

xi

Return y

Figure 9: Games G′′0,j for the proof of Lemma 6.4.

Let us first prove that Game G′0,j is perfectly indistinguishable from Game G′′0,j . We do this in
two steps:

1. Let us show that we can compute T in G′0,j as follows:

T[l, k] =
(
P~φl,xl,j

· T kj+1

)
� ~U (4)

with ~U computed as in G′′0,j and L[l] = (~φl, xl). If we look at T = (T[l, k])l,k as a vector over
ZL(d+1)
p and M = (P~φl,xl,j

· T kj+1)l,k as a matrix of L(d+ 1) rows and (d+ 1)j+1 columns (each
row corresponding to a polynomial P~φl,xl,j · T

k
j+1), then we can write this as:

T = M � ~U .
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But since the polynomials P~φl,xl,j are linearly independent (and do not contain Tj+1), the rows
of M are also linearly independent, and M is full rank. Therefore, if ~U is random, then so is
T, exactly as in Game G′0,j .

2. Supposing T is computed as in Equation (4), then the output y in Game G′0,j is equal to:

y =

L∏
l=1

d·xj+1∏
k=0

T[l, k]λl·α
xj+1
j+1,k =

L∏
l=1

d·xj+1∏
k=0

((
λl · α

xj+1

j+1,k · P~φl,xl,j · T
k
j+1

)
� ~U

)
=

(
L∑
l=1

λl · P~φl,xl,j · φj+1(Tj+1)xj+1

)
� ~U =

(
P~φ,x,j · φj+1(Tj+1)xj+1

)
� ~U = P~φ,x,j+1

� ~U

which is exactly the way it is computed in Game G′′0,j .

Let us now prove that Game G′′0,j is perfectly indistinguishable from Game G0,j+1. We again use
two steps, which are very similar to the previous ones:

1. Let us show that we can compute T in G0,j+1 as follows:

T[l] = P~φl,xl,j+1
� ~U (5)

with ~U computed as in G′′0,j and L[l] = (~φl, xl). If we look at T = (T[l])l as a vector over ZLp
and M = (P~φl,xl,j+1

)l as a matrix of L rows and (d + 1)j+1 columns (each row corresponding
to a polynomial P~φl,xl,j+1

), then we can write this as:

T = M � ~U .

But since the polynomials P~φl,xl,j+1
are linearly independent, the rows of M are also linearly

independent, and M is full rank. Therefore, if ~U is random, then so is T, exactly as in
Game G0,j+1.

2. Supposing T is computed as in Equation (5), then the output y in Game G0,j+1 is equal to:

y =
L∏
l=1

T[l]λl =
L∏
l=1

((
λl · P~φl,xl,j+1

)
� ~U

)
=

(
L∑
l=1

λl · P~φl,xl,j+1

)
� ~U = P~φ,x,j+1

� ~U

which is exactly the way it is computed in Game G′′0,j .

Perfect Indistinguishability of Game G0,n and Game G1. Let us now prove that Game G0,n

is perfectly indistinguishable from Game G1. We just need to prove that all polynomials P~φ,x,n
corresponding to queries (~φ, x) with x ∈ S are linearly independent of all other polynomials P~φ′,x′,n
corresponding to queries (~φ′, x′) with x′ 6= x. To prove this, let us suppose P~φ,x,n with x ∈ S is a
linear combination of some P~φ2,x2,n, . . . , P~φm,xm,n:

m∑
i=1

λi · P~φi,xi,n = 0 ,
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with λi 6= 0 for all i, and with ~φ1 = ~φ and x1 = x. Then, in this sum, let us consider an arbitrary
monomial T z11 · · ·T znn with z of highest Hamming weight. Necessarily, the Hamming weight of z is
at least 2, since the Hamming weight of x1 = x ∈ S is at least 2. But, since the sum is the zero
polynomial, there must exist two distinct polynomials P~φi,xi,n and P~φij ,xj ,n containing this monomial
T z11 · · ·T znn .

Let ẑ be the n-bit string such that ẑi = 0 if zi = 0, while ẑi = 1 otherwise, for all i. Then, since z
has the highest possible Hamming weight, xi = xj = ẑ (from the definitions of P~φi,xi,n and P~φj ,xj ,n).
In addition ẑ ∈ S, because the Hamming weight of z is at least 2, and so is the Hamming weight of
ẑ. This means the adversary B queried twice ẑ ∈ S, which is forbidden.

TestLin Procedure. It remains to provide a polynomial-time TestLin procedure. Unfortunately,
we do not know any polynomial-time exact procedure, but we provide an approximate one in Fig-
ure 10. We assume in the analysis that nd ≤ √p, which is true for sufficiently large p and fixed
d, n.

Let us prove that this approximate procedure is incorrect with probability at most 1
p (over its

random coins). The polynomials P~φl,xl,j with l = 1, . . . , L are supposed to be linearly independent.
Then, there are two cases:

1. If P~φ,x,j = P~φL+1,xL+1,j
is linearly independent from P~φ1,x1,j , . . . , P~φL,xL,j , then the probability

that the procedure does not return ⊥ is (over the value of X):

Pr
[
∃~λ ∈ Z(L+1)

p , ~λ ·M = 0
]
≤

∑
~λ∈Z(L+1)

p

Pr
[
~λ ·M = 0

]

≤
∑

~λ∈Z(L+1)
p

Pr

[
∀k = 1, . . . , N, (

L+1∑
l=1

λlP~φl,xl,j
)(γk) = 0

]

and
∑L+1

l=1 λlP~φl,xl,j
is a non-zero polynomial of degree at most jd. Since γk are chosen inde-

pendently and uniformly at random in Znp , according to the Schwartz-Zippel lemma, the error
probability is at most:

∑
~λ∈Z(L+1)

p

(
jd

p

)N
= pL+1 ·

(
jd

p

)N
≤ pL+1 · 1

pL+2
=

1

p
,

since jd ≤ nd ≤ √p and N = 2L+ 4.

2. If P~φ,x,j = P~φl+1,xL+1,j
is such that there exists ~λ ∈ ZLp such that P~φ,x,j =

∑L
l=1 λlP~φl,xl,j

, then

such ~λ is unique. Let us prove that the probability that the TestLin procedure does not return
~λ is at most 1

p . Let Λ be the set of ~λ′ ∈ ZL+1
p such that λ′L+1 · ~λ 6= ~λ′1,...,L. Then the error

probability of the TestLin procedure is at most:

Pr
[
∃~λ′ ∈ Λ, ~λ′ ·M = 0

]
≤
∑
~λ′∈Λ

Pr

[
∀k = 1, . . . , N, (

L+1∑
l=1

λ′lP~φl,xl,j
)(γk) = 0

]
.

Moreover,
∑L+1

l=1 λ′lP~φl,xl,j
is a polynomial of degree at most jd, which is non-zero because

otherwise the P~φ1,x1,j , . . . , P~φL,xL,j would not be independent. We can conclude the proof as in

the first case, since |Λ| ≤ |Z(L+1)
p |.
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procTestLin(j,L, (~φ, x))

// L[l] = (~φl, xl) for l = 1, . . . , L and L = |L|
(~φL+1, xL+1)← (~φ, x)
N ← 2L+ 4
M matrix over Zp of L+ 1 rows and N columns
X table of L+ 3 vectors in Znp
For k = 1, . . . , N

γk
$← Znp

For i = 1, . . . , L+ 1
For k = 1, . . . , N

Mi,k ← P~φi,xi(γk)

Apply Gaussian elimination on M
If M is full-rank then

Return ⊥
Else

Let ~λ′ be the row vector such that ~λ′ ·M = ~0
~λ← (λ′1/λ

′
L+1, . . . , λ

′
L/λ

′
L+1)

Return ~λ

Figure 10: TestLin procedure.

Therefore replacing a perfect TestLin oracle by this TestLin procedure is 1/p-statistically in-
distinguishable. In addition, the only parts where we supposed TestLin to be exact, was for proving
the perfect indistinguishability of G′0,j and G0,j+1 (for j = 0, . . . , n − 2), and the perfect indistin-
guishability of G′0,n−1, G0,n and G1 (note that we actually do not need G0,n and we can directly
go from G′0,n−1 to G1). The computationnal indistinguishability of G0,j and G′0,j does not use any
property of TestLin. Since this procedure is called at most QB times in G0,j , G0,j′ , and G1 we have:

Pr
[
Succ′0,j

]
− Pr [Succ0,j+1 ] ≤ QB

p
; ∀j = 0, . . . , n− 2 ,

Pr
[
Succ′0,n−1

]
− Pr [Succ1 ] ≤ QB

p
.

TestLin evaluates L+ 1 polynomials (which are themselves products of j univariate polynomials of
degree d) in N = 2L+4 points, which costs O(LNdj) = O(L2dn) operations in Zp (using the Hörner
scheme); and then it does a Gaussian elimination on a matrix of L+ 1 rows and N columns, which
costs O(N3) = O(L3) operations in Zp. In total, Bj has a running time that is the same as that of
B plus O(Q3

B(dn+QB)) operations in Zp (since L ≤ QB).
Hence, we can prove that:

Pr [Succ0 ]− Pr [Succ1 ] ≤
n−1∑
j=0

Adv
(QB,d)-eddh
G (Bj) +

2nQB

p
. (6)

Indistinguishability of Game G1 and Game G2 under (n, k)-PDDH. Game G2 instantiates
exactly the game defining the (S,Φd)-unique-input-prf-rka security of NR∗ when b = 1, so the only
difference with game G1 is in the way queries x with x /∈ S are handled. We design adversaries Dk
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against the (n, k)-PDDH problem in G such that

Pr [Succ1 ]− Pr [Succ2 ] ≤
d−1∑
k=1

Adv
(n,k)-pddh
G (Dk) . (7)

We prove this statement using the sequence of games of Figure 11.

proc Initialize // G1,k ; k = 1, . . . , d

~a
$← Znp

T[0i−1 ‖ l ‖ 0n−i]←
[
ali
]
,

l = 1, . . . , k; i = 1, . . . , n

T[0i−1 ‖ l ‖ 0n−i]
$← G,

l = k + 1, . . . , d; i = 1, . . . , n
T[0n]← [1]

proc RKFn(~φ, x) // G1,k ; k = 1, . . . , d

// ~φ = (φ1, . . . , φn)

// φi : Ti →
∑d

j=0 αi,j · T
j
i , ∀i = 1, . . . , n

If x ∈ S then
y

$← G
Else // x = ωi for some i = 1, . . . , n

y ←
d∏
l=0

T[0i−1 ‖ l ‖ 0n−i]α
i
l , for x = ωi

Return y

Figure 11: Games G1,k for the proof of Lemma 6.4.

Game G1,1 is identical to Game G1, since every value in the table is chosen uniformly at random,
so we have

Pr [Succ1 ] = Pr
[
Succ′1,1

]
.

The only difference between games G1,k and G1,k+1 is the definition of the table values T[0i−1 ‖ k+
1 ‖ 0n−i], for i = 1, . . . , n. Indeed, this value is taken uniformly at random in game G1,k but set to[
ak+1
i

]
in game G1,k+1. We design an adversary Dk against the (n, k)-PDDH problem in G such that

Pr
[
Succ′1,k

]
− Pr

[
Succ′1,k+1

]
≤ Adv

(n,k)-pddh
G (Dk) .

Adversary Dk does the following. It gets an (n, k)-PDDH tuple ([1] , ~X1, . . . , ~Xn) with for i =

1, . . . , n, ~Xi = ([ai] , . . . ,
[
aki
]
, zi) where ai

$← Z∗p and either zi =
[
ak+1
i

]
or zi = [ci] for ci

$← Z∗p.

Then Dk sets T[0n] ← [1] and T[0i−1 ‖ l ‖ 0n−i]
$← G, for l = k + 2, . . . , d and i = 1, . . . , n. It also

sets T[0i−1 ‖ l ‖ 0n−i] ← ~Xi,l =
[
ali
]
, for l = 1, . . . , k and T[0i−1 ‖ k + 1 ‖ 0n−i] ← ~Xi,k+1 = zi, for

i = 1, . . . , n. Hence, if ([1] , ~X1, . . . , ~Xn) is a real (n, k)-PDDH tuple, we have T[0i−1 ‖ k+ 1 ‖ 0n−i] =[
ak+1
i

]
, for i = 1, . . . , n, and then we simulate exactly game G1,k+1. If ([1] , ~X1, . . . , ~Xn) is a random

(n, k)-PDDH tuple, then T[0i−1 ‖ k+ 1 ‖ 0n−i] = [ci] is a uniformly random value, for all i = 1, . . . , n
and then we simulate exactly game G1,k. This proves the above statement.

To conclude, it is clear that game G1,d is identical to game G2.
Equation (3) now follows from equations (6) and (7).

We now explain how the (N, d)-PDDH assumption and the (N, d)-EDDH assumption are related
to the d-DDHI assumption, by introducing two further new assumptions.

d-Polynomial DDH. Let G be a group of prime order p. For d ≥ 1, the d-Polynomial Decisional
Diffie-Hellman problem in G consists of deciding, given ([1] , [a] , . . . ,

[
ad
]
, z), with G = 〈[1]〉, whether

z =
[
ad+1

]
or whether z = [c] for a random c ∈ Z∗p. The advantage of an adversary B against the

d-PDDH problem in G, denoted by Advd-pddh
G (B) is

Advd-pddh
G (B) = Pr [ d-PDDH-Real⇒ 1 ]− Pr [ d-PDDH-Rand⇒ 1 ]
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where the probabilities are over a, c $← Z∗p. In particular, this problem is an extension of the Decisional
SqDH problem (d = 1).

d-Hybrid EDDH. Let G be a group of prime order p. The d-HEDDH problem in G consists of
deciding, given ( ~X, ~Y ) ∈ Gd+1, with Xi =

[
ai
]
g
, Yi =

[
ai
]
h
for i = 0, . . . , d− 1, whether Xd =

[
ad
]
g
,

Yd =
[
ad
]
h
, (corresponding to d-HEDDH-Real) or whether Xd = [c1] , Yd = [c2]h are both uniformly

random and independent (corresponding to d-HEDDH-Rand). Here a, c1, c2
$← Z∗p, and g = [1]g

and h = [1]h are random generators of G. The advantage of an adversary B against the d-HEDDH
problem in G, denoted by Advd-heddh

G (B) is

Advd-heddh
G (B) = Pr [ d-HEDDH-Real⇒ 1 ]− Pr [ d-HEDDH-Rand⇒ 1 ]

where the probabilities are over a, c1, c2
$← Z∗p and g, h $← G \ {1}.

Lemma 6.5. Let G be a group of prime order p and d ≥ 2. Let A be an adversary against the
(N, d)-PDDH problem in G. Then we can construct an adversary B against the d-PDDH problem
in G such that

Adv
(N,d)-pddh
G (A ) ≤ N ·Advd-pddh

G (B) .

The running time of B is that of A plus the time required to compute (N − 1) · d exponentiations in
G.

Proof of Lemma 6.5. The proof follows a standard hybrid argument. We define games Hj for j =
0, . . . , N as in Figure 12. Clearly, we have H0 ≡ d-PDDH-Rand and HN ≡ d-PDDH-Real. More-
over, it is straightforward to construct an adversary B such that Pr [Hj ⇒ 1 ] − Pr [Hj−1 ⇒ 1 ] ≤
Advd-pddh

G (B), for j = 1, . . . , N . Adversary B does the following. It gets a d-PDDH tuple
([1] , [a] , . . . ,

[
ad
]
, z) and picks ai, ci at random in Z∗p, for i = 1, . . . , N . Then, it set ~Xi =

([ai] , . . . ,
[
ad+1
i

]
), for i = 1, . . . , j − 1 and ~Xi = ([ai] , . . . ,

[
adi
]
, [ci]), for i = j + 1, . . . , N and

finally let ~Xj = ([a] , . . . ,
[
ad
]
, z), and sends ([1] , ~X1, . . . , ~Xn) to A . The lemma easily follows.

proc Initialize // Hj , j = 0, . . . , N

ai
$← Z∗p, for i = 1, . . . , N

ci
$← Z∗p, for i = j + 1, . . . , N

Xi,k ←
[
ai
k
]
, for k = 1, . . . , d, for i = 1, . . . , N

Xi,d+1 ←
[
ai
d+1
]
, for i = 1, . . . , j

Xi,d+1 ← [ci], for i = j + 1, . . . , N

Return ([1] , ~X1, . . . , ~XN )

proc Finalize(b)

Return b

Figure 12: Game for the proof of Lemma 6.5.

Lemma 6.6. Let G be a group of prime order p and d ≥ 2. Let 2 ≤ j ≤ d. Let A be an adversary
against the j-PDDH problem in G. Then we can construct an adversary B against the d-PDDH
problem in G such that

Advj-pddh
G (A ) ≤ Advd-pddh

G (B) .

The running time of B is the same as that of A .
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Proof of Lemma 6.6. Adversary B does the following. It gets a d-PDDH tuple ([1] , [a] , . . . ,
[
ad
]
, z).

Then, it just sends (
[
ad−j

]
,
[
ad−j+1

]
, . . . ,

[
ad
]
, z) to A . When A halts, B halts with the same

output. Since [1] = g is a random generator of G and since a is random in Z∗p, then
[
ad−j

]
is a

random generator of G and (
[
ad−j

]
,
[
ad−j+1

]
, . . . ,

[
ad
]
, z) simulates perfectly a j-PDDH tuple (with

generator
[
ad−j

]
and exponent a). The lemma easily follows.

Lemma 6.7. Let G be a group of prime order p and d ≥ 2. Let ( ~X, ~Y ) be a d-HEDDH tuple.
Then there exists a randomized algorithm Rd that takes ( ~X, ~Y ) ∈ Gd+1 ×Gd+1 as input and outputs
~Y ′ ∈ Gd+1 with the following properties:

− If ( ~X, ~Y ) is a real d-HEDDH tuple, then so is ( ~X, ~Y ′). Moreover, Y ′0 is uniformly random and
independent from ( ~X, ~Y );

− If ( ~X, ~Y ) is a random d-HEDDH tuple, then so is ( ~X, ~Y ′). Moreover, both Y ′0 and Y ′d are
uniformly random and independent from ( ~X, ~Y ) with probability (1− 1

p) (over ~X and ~Y only).

Proof of Lemma 6.7. Let ( ~X, ~Y ) be a d-HEDDH tuple. Let b be the discrete logarithm of Y0 = h =
[1]h in base g = [1]g = X0 and let a be the discrete logarithm of X1 in base g, so that X1 = [a]g and

Y0 = h = [b]g, with a, b
$← Z∗p. Then the idea in the algorithm Rd is to randomize the tuple ~Y to

produce a new tuple ~Y ′. We pick α, β $← Zp at random. We compute ~Y ′i ← Y α
i ·X

β
i for i = 0, . . . , d.

Hence, we have Y ′0 = h′ = [αb+ β]g. For i = 1, . . . , d− 1, it is straightforward that ~Y ′i =
[
ai
]
h′
.

If ( ~X, ~Y ) is a real d-HEDDH tuple, then Y ′d =
([
bad
]
g

)α
·
([
ad
]
g

)β
=
[
(αb+ β)ad

]
g

=
[
ad
]
h′
.

Let b′ = αb+ β. Since for any fixed b′, b ∈ Z∗p and for any fixed α ∈ Zp, there exists a unique β ∈ Zp
such that αb+β = b′, it is clear that Y ′0 = h′ = [b′]g is uniformly random in G and independent from
( ~X, ~Y ). Then ( ~X, ~Y ′) is a real d-HEDDH tuple.

Now, if ( ~X, ~Y ) is a random d-HEDDH tuple, then Y ′d = [c2]h
α · [c1]g

β = [αbc2 + βc1]g and we
still have Y ′0 = h′ = [αb+ β]g. Here it is not immediately clear that ~Y ′ is uniformly random and
independent from ( ~X, ~Y ). To show this, we fix b, c1, c2. Let b′ = αb+ β and c′ = αbc2 + βc1. Then
~Y ′ is uniformly random and independent from ( ~X, ~Y ) if and only if for any fixed b′, c′ ∈ Z∗p, there is
a unique (α, β) ∈ Zp such that αb + β = b′ and αbc2 + βc1 = c′. Hence, we need the determinant

of the matrix
(
b 1
bc2 c1

)
to be non-zero. This determinant is D = b(c1 − c2) so it is non-zero if and

only if b 6= 0 and c1 6= c2. Since h = [b]g is a generator of G, it is clear that b 6= 0. Hence, we have
D 6= 0 if and only if c1 6= c2, which happens with probability p−1

p . The claim now follows.

Lemma 6.8. Let G be a group of prime order p and d ≥ 1. Let A be an adversary against the
(N, d)-EDDH problem in G. Then we can construct adversaries Bj against the j-HEDDH problem
in G, for j = 1, . . . , d such that

Adv
(N,d)-eddh
G (A ) ≤

d∑
j=1

p

p− 1
Advj-heddh

G (Bj) ≤
p

p− 1
· d ·Advd-heddh

G (Bd) .

The running time of Bj is that of A plus the time required to compute (N−1)·2·(j+1) exponentiations
in G.

Proof of Lemma 6.8. The proof follows a standard hybrid argument. We define games Hj for j =
0, . . . , d as in Figure 13. Clearly, we have H0 ≡ (N, d)-EDDH-Rand and Hd ≡ (N, d)-EDDH-Real.
Moreover, it is straightforward to construct an adversary Bj such that Pr [Hj ⇒ 1 ]−Pr [Hj−1 ⇒ 1 ] ≤
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Advj-heddh
G (Bj), for j = 1, . . . , d. Adversary Bj just executes N − 1 times algorithm Rj to compute

Zk,l for k = 2, . . . , N and l = 0, . . . , j, using the j-HEDDH tuple it gets as input, so its running
time is that of A plus the time to compute (N − 1) · 2 · (j + 1) exponentiations in G. Moreover, the
simulation is perfect with probability 1− 1

p .
Finally, it is clear that for j = 1, . . . , d, Advj-heddh

G (Bj) ≤ Advd-heddh
G (Bd), since from a

d-HEDDH tuple ( ~X, ~Y ), with ~Xi =
[
ai
]
g
, Yi =

[
ai
]
h
for i = 0, . . . , d − 1, and with Xd =

[
ad
]
g

and Yd =
[
ad
]
h
or Xd = [c1]g and Yd = [c2]h where a, c1, c2

$← Z∗p and g and h are random generators
of G, we can extract a j-HEDDH tuple using the last j + 1 components of ~X and ~Y (generators are
now

[
ad−j

]
g
and

[
ad−j

]
h
, which are random generators of G since g, h are random generators of G

and since a is random). The lemma easily follows.

proc Initialize // Hj , j = 0, . . . , d

a0 ← 1 ; ak, b
$← Z∗p, for k = 1, . . . , N

ck,l
$← Z∗p, for l = j + 1, . . . , d and k = 0, . . . , N

Zk,l ←
[
akb

l
]
, for l = 0, . . . , j and k = 0, . . . , N

Zk,l ← [ck,l], for l = j + 1, . . . , d and k = 0, . . . , N

Return ~Z

proc Finalize(b)

Return b

Figure 13: Game for the proof of Lemma 6.8.

Lemma 6.9. Let G be a group of prime order p and d ≥ 1. Let A be an adversary against the
d-HEDDH problem in G. Then, we can construct an adversary B against the d-PDDH problem in
G, such that

Advd-heddh
G (A ) ≤ p

p− 1
Advd-pddh

G (B) .

The running time of B is that of A plus the time required to compute 2 · (d+ 1) exponentiations in
G.

Proof of Lemma 6.9. Let G be a group of prime order p and d ≥ 1. Adversary B gets a d-PDDH
tuple ~Z = ([1] , [a] , . . . ,

[
ad
]
, z) = (Z0, . . . , Zd+1) ∈ Gd+2 and set Xi ← Zi+1, for i = 0, . . . , d, so

~X = ([a] , . . . ,
[
ad
]
, z). Next, B does the following. It first chooses α, β $← Zp at random and

computes the tuple ~Y by letting Yl ← Zαl+1 ·Z
β
l for l = 0, . . . , d. Hence, for l = 0, . . . , d−1, it is clear

that Yl =
[
(αa+ β) · al

]
.

If Zd+1 =
[
ad+1

]
, we have Yd =

[
(αa+ β) · ad

]
and Xd =

[
a · ad

]
. Hence, since g and a ∈ Z∗p are

random, X0 = [a] is a random generator ofG and Y0 = [αa+ β] is uniformly random and independent
from X0 (these claims follow using similar arguments to those in the proof of Lemma 6.7) and ( ~X, ~Y )
is a real d-HEDDH tuple.

If Zd+1 = [c] with c $← Z∗p, then Yd =
[
αc+ βad

]
. We fix a, c ∈ Z∗p and we let b′ = αa + β and

c′ = αc + βad. Then, Yd is uniformly random and independent from Xd if and only if for any fixed
b′, c′ ∈ Z∗p, there is a unique (α, β) ∈ Zp such that b′ = αa + β and c′ = αc + βad. Hence, we need

the determinant of the matrix
(
a 1
c ad

)
to be non-zero. This determinant is D = ad+1 − c so it is

non-zero if and only if c 6= ad+1. Since c is by definition uniformly random in Zp, we have D 6= 0
with probability p−1

p . The claim easily follows.
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Lemma 6.10. Let G be a group of prime order p and d ≥ 1. Let A be an adversary against the
d-PDDH problem in G. Then we can construct an adversary B against the d-DDHI problem in G
such that

Advd-pddh
G (A ) ≤ Advd-ddhi

G (B) .

Moreover, the running time of B is the same as A .

Proof of Lemma 6.10. Let G be a group of prime order p and d ≥ 1. B gets a d-DDHI tuple
([1] , [a] , . . . ,

[
ad
]
, z) ∈ Gd+2. Then, B runs A , giving it the tuple (

[
ad
]
,
[
ad−1

]
, . . . , [a] , [1] , z).

When A halts, B halts with the same output. Since g = [1] and a are random, h =
[
ad
]
is a

random generator of G and 1
a is random in Z∗p, so we have

[
ad−j

]
=
[
( 1
a)j
]
h
, for j = 0, . . . , d and

if ([1] , [a] , . . . ,
[
ad
]
, z) is a real d-DDHI tuple then z is equal to

[
1
a

]
=
[
( 1
a)d+1

]
h
, otherwise z is

random in G. Hence, the simulation is perfect and the claim follows.

Lemma 6.3 now follows from combining Lemmas 6.4–6.10.

Finally, by combining the results in Lemmas 6.1–6.3 with Theorem 5.1, we can prove the following
theorem.

Theorem 6.11. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via NR∗(~a, x) =[∏n
i=1 a

x[i]
i

]
, where ~a ∈ Znp and x ∈ {0, 1}n \ {0n}. Let D = {0, 1}n × Gn and let h: D → {0, 1}n−2

be a hash function. Let ωi = 0i−1 ‖ 1 ‖ 0n−i, for i = 1, . . . , n. Define F : Znp × {0, 1}n → G by

F (~a, x) = NR∗(~a, 11 ‖h(x,NR∗(~a, ~ω)))

for all ~a ∈ Znp and x ∈ {0, 1}n. Let A be a Φd-restricted adversary against the prf-rka security
of F that makes QA ≤ |{0, 1}n−2| oracle queries. Then, assuming nd ≤ √p, we can construct an
adversary B against the d-DDHI problem in G, an adversary C against the cr security of h, and an
adversary D against the d-SDL problem in G such that

Advprf-rka
Φd,F

(A ) ≤
(
n · d · (1− 1/p)2 + n · (d− 1)

)
·Advd-ddhi

G (B)

+ Advcr
h (C ) + n ·Advd-sdl

G (D) +
(
d ·Q2

A + 4n ·QA

)
/(2p).

The running time of B is that of A plus O(d ·(n+QA )) exponentiations in G and O(Q3
A ·(nd+QA ))

operations in Zp. C has the same running time as A . The running time of D is that of A plus
the time required to factorize a polynomial of degree at most d in Fp, which is sub-quadratic in d,
logarithmic in p.
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A From Malleability to Unique-Input-RKA-Security

In this section, we explore the relationship between key-malleable PRFs and unique-input RKA secure
PRFs. Specifically, we show that the (S,Φ)-unique-input-prf-rka security of a Φ-key-malleable PRF
M is implied by its regular prf security if the key-transformer KT associated with M satisfies a new
notion of uniformity that we call S-uniformity and which is defined below.

S-Uniform Key-Transformer. Let M : K × D → R be a family of functions and Φ be a class of
RKD-functions, such that there is a key-transformer KT for (M,Φ). We generalize the uniformity
property of a key-transformer, defined in [BC10a, Section 3.1], by allowing the uniformity condition
to be restricted to a subset S of D. Indeed, let S be a subset of D; then we say that KT is an S-
Uniform Key-Transformer if the games S-KTReal and S-KTRand defined in Figure 14 are perfectly
indistinguishable for any Φ-restricted adversary A , where A belongs to the class of adversaries such
that all queries (φ, x) with x ∈ S made by A to its oracle are for distinct values of x. That is,

Pr
[
S-KTRealAT ⇒ 1

]
= Pr

[
S-KTRandA

T ⇒ 1
]
.

Note that the standard uniformity condition given in Section 2 corresponds to the KT being a D-
uniform key-transformer.

proc Initialize // S-KTReal

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // S-KTReal

y ← KTf (φ, x)
Return y

proc Finalize(b′) // S-KTReal

Return b′

proc Initialize // S-KTRand

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // S-KTRand

If x ∈ S then y $← R
Else y ← KTf (φ, x)
Return y

proc Finalize(b′) // S-KTRand

Return b′

Figure 14: Games used in the definition of an S-uniform key-transformer KT.

Theorem A.1. Let M : K × D → R be a family of functions and Φ be a class of RKD-functions,
such that there exists an S-uniform key-transformer KT for (M,Φ). Let A be an adversary against
the (S,Φ)-unique-input-prf-rka security of M that makes QA oracle queries. Then we can design an
adversary B against the standard prf security of M such that

Adv
(S,Φ)-ui-prf-rka
M (A ) ≤ 2 ·Advprf

M (B) . (8)

Moreover, the running time of B is that of A plus the time required to execute QA times the key-
transformer.

Proof of Theorem A.1. The proof is based on the sequence of games in Figure 15. Let Succi denote
the event that game Gi output takes the value 1.

In game G1, we use the key-transformer KT to compute M(φ(K), ·) via oracle calls to M(K, ·).
The correctness property of the key transformer implies

Pr [Succ0 ] = Pr [Succ1 ] .
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In game G2, we replace the oracleM(K, ·) given to the key transformer KT by a random function
f . We design an adversary B attacking the standard prf security of M such that

Pr [Succ1 ] ≤ Pr [Succ2 ] + Advprf
M (B) .

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds via

y ← KTFn(φ, x)
Return y

where Fn is B’s own oracle. When A halts, B halts with the same output. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ1 ] and Pr
[

PRFRandB
M ⇒ 1

]
= Pr [Succ2 ] .

Games G2 and G3 differ only in the way that queries (φ, x) with x ∈ S are handled. Indeed,
for such queries, in G3, the output is just taken uniformly at random instead of computed using the
key-transformer. Since the adversary A belongs to the class of Φ-restricted adversaries such that
all queries (φ, x) with x ∈ S made by A to its oracle are for distinct values of x, games G2 and
G3 match exactly games S-KTReal and S-KTRand, respectively. Since we assume that KT is an
S-uniform key-transformer KT, these two games are perfectly indistinguishable. So

Pr [Succ2 ] = Pr [Succ3 ] .

In game G4, we replace the random function f given to the key-transformer KT by the oracle
M(K, ·). We design an adversary B attacking the prf security of M such that

Pr [Succ3 ] ≤ Pr [Succ4 ] + Advprf
M (B).

Adversary B runs A . When the latter makes an RKFn-query (φ, x), adversary B responds via

If x ∈ S then y $← R
Else y ← KTFn(φ, x)
Return y

where Fn is B’s own oracle. When A halts with output b, B halts with output 1− b. Then

Pr
[

PRFRealBM ⇒ 1
]

= Pr [Succ3 ] and Pr
[

PRFRandBM ⇒ 1
]

= Pr [Succ4 ] .

Finally, in game G5, instead of using the key-transformer KT to compute M(φ(K), ·) via oracle
calls to M(K, ·), we use M directly. The correctness property of the key transformer implies that

Pr [Succ4 ] = Pr [Succ5 ] .

Equation (8) on 35 now follows by combining the bounds arising in the different game hops.

Application to NR∗. In what follows, we apply Theorem A.1 and Theorem 5.1 to NR∗ to prove that
the construction given in Section 4 is a Φaff -RKA-secure PRF. Note that this gives an alternative
proof of Theorem 4.5.

Let S = {0, 1}n \ ({ω1, . . . , ωn}∪ {0n}). The only point that remains to prove is that there exists
an S-uniform key-transformer KTΦaff

for NR∗ and the class Φaff of RKD functions. This result is
actually implied by Lemma 4.3. Indeed, the same key-transformer is an S-uniform key-transformer
for (NR∗,Φaff). This statement is implied by the fact that games G0 and Gn−1, defined in the proof
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proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

y ←M(φ(K), x)
Return y

proc Finalize(b′) // All Games
Return b′

proc Initialize // G1

K
$← K

proc RKFn(φ, x) // G1

y ← KTM (φ, x)
Return y

proc Initialize // G2

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // G2

y ← KTf (φ, x)
Return y

proc Initialize // G3

K
$← K

f
$← Fun(K,D,R)

proc RKFn(φ, x) // G3

If x ∈ S then y $← R
Else y ← KTf (φ, x)
Return y

proc Initialize // G4

K
$← K

proc RKFn(φ, x) // G4

If x ∈ S then y $← R
Else y ← KTM (φ, x)
Return y

proc Initialize // G4

K
$← K

proc RKFn(φ, x) // G4

If x ∈ S then y $← R
Else y ←M(φ(K), x)
Return y

Figure 15: Games for the proof of Theorem A.1.

of Lemma 4.3, are indistinguishable, even when the adversary is not a unique-input adversary with
respect to the set S (where S denotes the complement of S).

To see why, note that the argument used to prove that Games Gj and Gj+1 are indistinguish-
able in that proof remains valid because all points in S have a strictly smaller Hamming weight
than those in S. Hence, there exists an S-uniform key-transformer KTΦaff

for (NR∗,Φaff), and the
(S,Φaff)-unique-input-prf-rka security of NR∗ follows. Finally, by applying Theorem 5.1, we can prove
a similar statement to the one in Theorem 4.5.

Remark A.2. It is worth noting that it is not clear that the usual uniformity condition of a key-
transformer directly implies that the same key-transformer is S-uniform for S ⊂ D without making
additional assumptions about the key-transformer.
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