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Abstract. In this paper, we propose a genetic algorithm for solving the shortest vector problem

(SVP) based on sparse integer representations of short vectors in lattices as chromesomes, which,

we prove, can guarantee finding the shortest lattice vector under a Markov chain analysis. Moreover,

we also suggest some improvements by introducing heuristic techniques: local search and heuristic

pruning. The experimental results show that the genetic algorithm outperforms most enumeration

algorithms in running time, and achieves the shortest vectors in larger dimensions under SVP

challenge benchmarks[31].
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1 Introduction

A lattice L is a discrete additive subgroup of Rm. It can be generated by integral combinations of , say

n, linear independent vectors b1, . . . ,bn in Rm, and the n vectors constitute the basis of the generated

lattice. The discreteness of lattices implies that there exists a nonzero vector with the smallest non-zero

Euclidean norm in each lattice, denoted as λ1, and a lattice vector closest to a given target vector t in

Rm. Finding the two special lattice vectors leads to the two famous computational problems regarding

lattices:

– Shortest Vector Problem (SVP): Given a lattice basis, find the shortest nonzero vector in the lattice;

– Closest Vector Problem (CVP): Given a lattice basis and a target vector, find the lattice vector closest

to the target.

The CVP has been proved to be NP-complete by van Emde Boas [40] under Karp/Cook reduction in

1981 and refined by Micciancio and Goldwasser [23] in 2002. However, it is not known whether the SVP

is NP-hard until 1998 when Ajtai [1] proved the NP-hardness of SVP through randomized reduction.

The two main problems SVP and CVP are of prime importance to the cryptography in recent years.

A variety of public-key cryptosystems are proposed in recent years, and their security is as hard as solving

the worst-case hardness of the variants of SVP and CVP, which paves a way for the proposal of many

lattice-based cryptosystems[24]. These newly-proposed schemes are said to be promising candidates for the

post-quantum cryptography, which are believed to be secure against the attack of the quantum computers,

even though algorithms on quantum computers have made widely-used cryptosystems nowadays based

on factorization and discrete logarithm insecure again as forwarded by Shor [34] in 1994. Therefore, the

algorithms solving the two main problems are quite important for the research community.
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During the last three decades, a number of algorithms aiming at solving the shortest (short) lattice

vectors problems (SVP or SVP-variants) have been proposed, all of which are of the following two sort-

s in terms of the space complexity: the algorithms with polynomial space complexity and those with

exponential space complexity. The formers include basis reduction algorithms including the celebrated

LLL algorithm [20] which can find a vector as short as 2O(n)λ1 within time polynomial in the rank n,

and the Kannan-Helfrich’s enumeration algorithm [16,14,17] which can find exactly the shortest vector,

or the Hermite Korkin-Zolotarev basis, using a nO(n) time, and the blockwise Korkin-Zolotarev basis

reduction[33,6] which can find a short vector subexponential to the shortest vector, maybe within subex-

ponential time [13]. Furthermore, an enumeration algorithm with extreme pruning for SVP was presented

by Gamma, Nguyen and Regev[11]. The second type of the algorithms include various sieve algorithms

[2,28,25,41] which can find the shortest vector at a lattice in a high probability in 2O(n) time and 2O(n)

space with the different constants in the index O(n). And another deterministic algorithm based on

Voronoi cell computation [25] which is able to find the shortest vector deterministically with exponential

time 22n+o(n) and the space complexity 2n+o(n).

In this paper, we devote to developing a new type of search algorithm based on the genetic algorithm,

which also works on the polynomial space complexity. The genetic algorithm (GA) is originated by

Holland [15] in 1975, which is, sometimes, called the Simple Generic Algorithm (SGA). The fundamental

idea of the genetic algorithms is to mimic the evolutionary process in nature to search for the optimum

solutions, and the main procedure of the simple genetic algorithm can be described as follows:

Table 1. The Simple Genetic Algorithm

Input: An initial population

Output: An optimum population including the optimum individual

1. Initialize population

2. While Optimum population not found do

(a) Evaluate population by the fitness function

(b) Selection: choose randomly individuals as mating parents

(c) Perform Crossover and Mutation to generate new population

(d) Evaluate new population

Ever since then, a variety of GAs have been developed and explored to address a hybrid of search or

optimization problems such as learning or classifier system problems [12,5], combinatorial optimization

problems [29,27,9], and knapsack problems [18,7], some of which are classical NP-hard problems.

As mentioned in the Table 1, the genetic algorithms include three basic components of operations:

crossover, mutation, and selection. Moreover, various elitist strategies are also used, by GAs, to

ensure them to converge to the optimal solutions. Actually, earlier elitist strategies[39][10] are adopted to

meet conditions, under which GAs are guaranteed to converge. Among the analysis schemes, the Markov

chain analysis, which models the process of genetic algorithms as a finite Markov chain, is an effective

tool to prove rigorously the convergence of GAs as in [9,4,38,30]. For a survey of genetic algorithms, you

can refer to [36,8].

Note that crossover and mutation are both bit operations, and it is necessary to encode each

individual in a population into a chromesome (or, a bit string) for the genetic algorithms to operate on.

Plenty of techniques have been adopted for encoding bit strings in genetic algorithms to solve different

problems, some of which are quite delicate and natural. However, as far as Shortest Vector Problem (SVP)

is concerned, it is a difficult task to encode a lattice vector into a chromesome for genetic algorithms to

handle smoothly, which has not yet been researched into deeply.

A work[22] published in 2013 adopts the strategies of genetic algorithm to improve LLL reduction

algorithm. However, even though their experimental results are reasonable, they didn’t specify how they

encoded lattice vectors (a LLL-reduced basis) into chromesomes, nor the details of their crossover or

mutation. So we fail to obtain a full knowledge of their algorithm.
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Our contributions in this paper are twofold. First, we discover sparse integer representations of the

short vectors in lattices, which might be of independent interest to the existing SVP algorithms, and

an appropriate way to encode lattice vectors into bit strings, as mentioned above. Second, we propose

a genetic algorithm for the shortest lattice vector problem based on the sparse representations of short

vectors. A Markov chain analysis of the genetic algorithm assures that it converges to, precisely, the

shortest vector with a negligible probability of failure. Furthermore, we also present some improvements

of our algorithm by adopting some heuristic techniques: local search and heuristic pruning. Experimental

results show that the improved algorithm behaves fairly well on the benchmarks of the SVP challenge[31],

generating short vectors, most of which are better than the previous challenge results, of lattices of

dimensions up to 118, and a comparison of running times implies that the genetic algorithm outperforms

present-day enumeration algorithms, like the Kannan-Helfrich enumeration and the enumeration with

conservative pruning. We have posted 25 results on the SVP challenge since Feb. 2013. In summary, for

the first time, we propose a genetic algorithm for the SVP, and its heuristically-revised version gains

advantages over previous challenges in quality of generated vectors, and over other practical algorithms

in their running times.

The rest of the paper is organized as follows: In Section 2, we provide some necessary backgrounds

on lattices. In Section 3, we describe the sparse integer representations of the short vectors in lattices;

Section 4 and 5 introduce the details of our genetic algorithm for SVP and its improvements. Finally,

experimental results are given and compared in Section 6 and a conclusion in Section 7 follows.

2 Preliminaries

Let n be an integer, and let Rn be the n-dimensional Euclidean space with the inner product, denoted

as 〈·, ·〉, and the Euclidean norm of v is defined as ‖v‖ =
√∑n

i=1 vi
2, in which v = (v1, . . . , vn) ∈ Rn.

The closed sphere in Rn is denoted as Bn(O, r) with O as its origin and r its radius. The linear space

spanned by a set of vectors is denoted by span(·) and its orthogonal complement span(·)⊥, and BT is

the transpose of a matrix B. We denote b·e as the closest integer to a real number, and b·c as the closest

integer less than or equal to a real number, while d·e the upper closest number.

2.1 Lattices

A lattice L is defined as the set of all integral combinations of n linear independent vectors b1,b2, . . . ,bn ∈
Rm(m ≥ n), where the vectors are referred to as the basis of the lattice, and n as its rank. If m = n, the

lattice is called full-rank. All the lattices we discuss throughout this paper are full-rank lattices unless

specified otherwise.

Conveniently, if given a matrix B = [b1, . . . ,bn] ∈ Rn×n with the n linear independent vectors as its

columns, the lattice L generated by the basis B is defined as

L(B) = {Bx|x ∈ Zn} = {v ∈ Rn |v =

n∑
i=1

bixi, xi ∈ Z}.

A single lattice can be generated by a series of the basis, or, in other words, the basis of one lattice is not

unique. For a specific basis B, the fundamental parallelepiped P(B) of the lattice is defined as:

P(B) = {Bx|x = (x1, . . . , xn) ∈ Rn, for all 0 ≤ xi < 1, i = 1, 2, . . . , n}.

The determinant det(L) of a lattice L is defined as the volume of the fundamental parallelepiped P(B)

by selecting any basis B. More precisely, for any basis B of a lattice L, the determinant of L is computed

as:

det(L) =
√

det(BTB) =
√

det(〈bi,bj〉)0≤i,j≤n.
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The determinant of a lattice is well-defined in the sense that the determinant does not depend on the

choice of the basis. The ith successive minimum λi(L) of a lattice L implies the smallest radium of a

sphere within which there are i linearly independent lattice points, i.e.,

λi(L) = inf{r ∈ Rn|dim{span(L ∩ Bn(O, r))} = i}.

For a basis B = [b1, . . . ,bn] of a lattice L(B) ∈ Rn×n, its Gram-Schmidt Orthogonalization B∗ =

[b∗1, . . . ,b
∗
n] is defined as,

b∗i = bi −
i−1∑
j=1

µijb
∗
j ,

where

µij =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, for 1 ≤ j < i ≤ n.

In other words, the Gram-Schmidt procedure projects bi to the space orthogonal to the space spanned

by b1, . . . ,bi−1, and keeps the determinant unchanged, i.e., det(B) =
∏n
i=1 ‖b∗i ‖. For more details about

lattices, refer to [23].

A basis B = [b1, . . . ,bn] of a lattice L is LLL-reduced if it satisfies the following two conditions:

1. Its |µij | ≤ 1/2, for 1 ≤ j < i ≤ n;

2. and ‖bi + µi,i−1‖2 ≥ 3
4 ‖bi−1‖

2
, for 2 ≤ i ≤ n.

In 1982, A. K. Lenstra and H. W. Lenstra and L. Lavász proposed the seminal LLL algorithm [20] that

can reduce an arbitrary lattice basis into a LLL-reduced basis within a polynomial time complexity.

2.2 Korkin-Zolotarev Basis and Blockwise Korkin-Zolotarev Basis

Let B = [b1, . . . ,bn] be a basis of a lattice L ⊂ Rn. Define πi : Rn 7→ span(b1, . . . ,bi−1)⊥ as the

projection on the orthogonal complement of the span of the first i− 1 bases of B, for all i ∈ {1, 2, . . . , n}.
πi(bj) is expressed as,

πi(bj) = b∗j +

j−1∑
k=i

µjkb
∗
k, if i < j.

In particular, πi(bi) = b∗i and πi(bj) = 0 for j < i.

L(k)
i is the lattice of rank k generated by the basis [πi(bi), . . . , πi(bi+k−1)] in which i + k ≤ n + 1.

Clearly, it is true that L(n−i+1)
i = πi(L), which implies the lattice of rank n − i + 1 generated by basis

[πi(bi), . . . , πi(bn)].

In terms of the denotations aforementioned, a basis B = [b1, . . . ,bn] is defined as reduced in the sense

of Korkin and Zolatarev or Korkin-Zolatarev basis, or HKZ-reduced basis, if it satisfies that:

1. Its |µij | ≤ 1/2, for 1 ≤ j < i ≤ n;

2. and πi(bi) is the shortest vector of the lattice L(n−i+1)
i under the Euclidean norm, for 1 ≤ i ≤ n.

Similarly, a basis B = [b1, . . . ,bn] is defined as a β-blockwise Korkin-Zolotarev basis, or BKZ-reduced

basis, if the following conditions hold:

1. Its |µij | ≤ 1/2, for 1 ≤ j < i ≤ n;

2. and πi(bi) is the shortest vector of the lattice L(min(β,n−i+1))
i under the Euclidean norm, for 1 ≤ i ≤ n.
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2.3 The Blockwise Korkin-Zolotarev (BKZ) Algorithm

The Blockwise-Korkin-Zolotarev (BKZ) algorithm[32,33], on an input lattice basis B = [b1, . . . ,bn] of

rank n, outputs its BKZ-reduced basis with a blocksize β and a reduction factor ε, in which 2 ≤ β ≤ n

and 0 < ε ≤ 1. ε is always fixed for LLL reduction, and so we call the algorithm as β-BKZ algorithm.

As in Table 2, the algorithm starts with a LLL-reduced basis B = [b1, . . . ,bn], and recursively reduces

each projected sublattices L(min(β,n−i+1))
i for i to run through [1, . . . , n], such that the the first vectors

of each such sublattices is its shortest vectors, i. e. ‖πi(bi)‖ = λ1(L(min(β,n−i+1))
i ) for all 1 ≤ i ≤ n. The

algorithm invokes an enumeration procedure ENU to find such shortest vector in each sublaticces of

rank β, which is most time-consuming part and, so far, several improved methods[6,16,14,11] has been

proposed to accelerate the BKZ algorithm.

Table 2. β-BKZ Algorithm

Input: A lattice basis B = [b1, . . . ,bn], its Gram-Schmidt Orthogonalization B∗ = [b∗1, . . . ,b
∗
n]

as well as its µ = {µi,j}, and blocksize β.

Output: The β-BKZ reduced basis B = [b1, . . . ,bn]

1. z ← 0; i← 1; LLL(b1, . . . ,bn, µ);// LLL-reduce the basis, and update µ

2. While z < n− 1 do

(a) i← (i mod (n− 1)) + 1; k ← min(i+ β − 1, n); h← min(k + 1, n);// define the current

projected sublattices L(min(β,n−i+1))
i

(b) x← ENU(‖b∗i ‖2 , . . . , ‖b∗k‖2 , µ);// find x = [xi, . . . , xk] such that
∥∥∥∑k

j=i bjxi

∥∥∥ =

λ1(L(min(β,n−i+1))
i

(c) If x 6= (1, 0, . . . , 0) Then

z ← 0; LLL(b1, . . . ,bi−1,
∑k
j=i bjxj , . . . ,bh, µ) at stage i;//insert the new vector at

the start of current sublattice, LLL-reduce it ro remove its linear dependency, and update µ

(d) Else

z ← z + 1; LLL(b1, . . . ,bh, µ) at stage h− 1;// LLL-reduce the next sublattice

before enumeration

3. Return B which is β-BKZ reduced.

3 y-Sparse Representations of Lattice Vectors: Lattice Vectors from

Another Point of View

Before devoting to the genetic algorithm, we should encode a lattice vector into a bit sequence, or, namely,

a chromesome in genetic algoithms, since genetic algorithms can only operate on bit sequences. However,

the elements of lattice vectors are real numbers, which defies encoding into bit strings. In order to address

this problem, we need to find a method to transform the lattice vectors into bit strings. Given a certain

basis B of a lattice, a lattice vector v can be represented as the integral combination of the basis vectors

v = Bx, in which elements of the coordinate x are all integers. Therefore, we can use the coordinate x to

generate the chromesome: transform every the elements of the vector into signed binary integers (with

one bit as the sign) and concatenate them in order together. But there is one drawback in this method:

it is difficult to bound the bit length of each element of x for the short vectors, and, then, the length of

the bit string might be quite long. So, in this section, we change x into another form of integer vector y

which can avoid the drawback of x above.
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3.1 An Equivalent Integer Representations of Lattice Vectors Relating to Gram-Schmidt

Orthorgonalization

In this subsection, we lay no assumptions on the lattice basis [b1, . . . ,bn], or, in other words, the basis

is arbitrary. Given a lattice L(B), any vector v in this lattice can be represented as:

v = Bx =

n∑
i=1

xibi,

in which x = (x1, . . . , xn) ∈ Zn. Putting it in another way, we can represent the vector v in terms of the

Gram-Schmidt orthorgonalization B∗ in place of B as described in the following.

Definition 1. Given a lattice basis B = [b1, . . . ,bn] and its Gram-Schimdt orthogonalization B∗ =

[b∗1, . . . ,b
∗
n] with the matrix R = [µij ]1≤i,j≤n ∈ Rn×n such that B = B∗R, any vector v ∈ L(B), and

v = Bx, in which x = (x1, x2, . . . , xn), we define a vector t = (t1, . . . , tn) ∈ Rn as

ti =

{
0 for i = n,∑n
j=i+1 µjixj for i < n.

and another vector y = (y1, y2, . . . , yn) ∈ Zn such that,

yi = bxi + tie

Remark 1. Since xi ∈ Z, we have

yi = xi + btie(1 ≤ i ≤ n),

and thus,

xi = yi − btie(1 ≤ i ≤ n).

Thereby establishing a one-to-one correspondence between x and y, and, also, a one-to-one correspondence

between v and y as described below:

y
y=x+bte←−−−−→ x

v=Bx←−−−→ v,

where bte = (bt1e, . . . , btne) ∈ Zn. Therefore, we call the y corresponding to a lattice vector v as y ∼ v.

This is quite important to represent a lattice vector as a chromesome in the genetic algorithm to be

described in the next section.

For any vector v in the lattice L(B), the new integer vector y = (y1, . . . , yn) ∈ Zn described above

satisfies that:

v =

n∑
i=1

(yi + εi)b
∗
i ,

in which 0 ≤ |εi| ≤ 1/2.

Then, ∑
yi 6=0

(
|yi| −

1

2

)2
‖b∗i ‖

2 ≤ ‖v‖2 ≤
n∑
i=1

(
|yi|+

1

2

)2
‖b∗i ‖

2
. (1)

Provided that y is the integer vector relating to the shortest vector v(‖v‖ = λ1(L)), it satisfies:

∑
yi 6=0

(
|yi| −

1

2

)2
‖b∗i ‖

2 ≤ ‖v‖2 .
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Since ‖v‖ = λ1(L) and yi ∈ Z for 1 ≤ i ≤ n, we have

n∑
i=1

(1

2
|yi|
)2
‖b∗i ‖

2 ≤
∑
yi 6=0

(
|yi| −

1

2

)2
‖b∗i ‖

2 ≤ ‖v‖2 = λ21(L).

That is to say,
n∑
i=1

|yi|2 ‖b∗i ‖
2 ≤ 4λ21(L). (2)

This means that, we can bound the the bit-length of y by guessing the upper bound of λ1. The left is

to find an appropriate Gram-Schimdt orthogonalization, and decrease the length of y as small as possible.

One choice is to find a good Gram-Schimdt orthogonalization by invoking the BKZ-reduced basis.

3.2 The Estimate of y under β-Blockwise Korkin-Zolotarev Basis

Rewriting the the Proposition 4.2 in [19] gives the following lemma.

Lemma 1. Let B = [b1, . . . ,bn] be a Korkin-Zolotarev basis of a lattice L(B), with Gram-Schmidt

orthogonalization [b∗1, . . . ,b
∗
n]. Then we have

λ1(L)

‖b∗i ‖
≤ i

1+log i
2 . (3)

With this lemma in consideration, we can prove the theorem that follows.

Theorem 1. Let 1 < β < n. For a β-blockwise Korkin-Zolotarev basis B = [b1, . . . ,bn] and its Gram-

Schmidt orthogonalization is [b∗1, . . . ,b
∗
n], we have, for 1 ≤ i ≤ β,

‖b∗1‖
‖b∗i ‖

< i
1+log i

2 , (4)

and, for β < i ≤ n,
‖b∗1‖
‖b∗i ‖

≤ β
1+log β

2 ( i−1
β−1+1). (5)

Proof. Since B = [b1, . . . ,bn] is a β-Blockwise Korkin-Zolotarev basis, the sequence of its first β vectors

[b1, . . . ,bβ ] constitutes a Korkin-Zolotarev basis. Then, Lemma 1 yields that, for any such sequence, we

have, for 1 ≤ i ≤ β,
‖b∗1‖
‖b∗i ‖

≤ i
1+log i

2 ,

which proves the Inequality (4).

Likewise, for every 1 ≤ i ≤ n, [πi(bi), . . . , πi(bmin(n,i+β−1))] constitutes a Korkin-Zolotarev basis.

Then, Lemma 1 yields that,
‖b∗i ‖∥∥∥b∗min(n,i+β−1)

∥∥∥ ≤ β 1+log β
2 .

So, for β < i ≤ n,

‖b∗1‖
‖b∗i ‖

≤ ‖b
∗
1‖∥∥∥b∗β∥∥∥ ×

∥∥∥b∗β∥∥∥∥∥∥b∗2β−1∥∥∥ × · · · ×
∥∥∥∥b∗b i−1

β−1 c(β−1)+1

∥∥∥∥
‖b∗i ‖

≤ β
1+log β

2 d i−1
β−1 e ≤ β

1+log β
2 ( i−1

β−1+1).

This completes the proof. ut
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3.3 y-Sparse Representations of the Short Lattice Vectors

Equation (2) shows that, for y ∼ v that is the shortest vector in the lattice L(B),
∑n
i=1 |yi|2 ‖b∗i ‖

2
is

bounded by four times the squared first minima λ1. If the lattice basis B is LLL or β-BKZ reduced, the

absolute values of elements in y corresponding to a short vector are even smaller, as Theorem 1 shows,

and, for example, fixing β =
√
n yields

|yi| ≤ 2o(n). (6)

However, the y corresponding to the short vectors behaves much better than described above. For exam-

ple, after performing only LLL-reduction on basis of random lattice of dimension 50 ( seed = 0 ) in the

SVP challenge [31], its y corresponding to the shortest vector v, whose norm ‖v‖ is 1893 as posted on

the website, has got only 7 nonzero elements and all the absolute value of the non-zero |yi| = 1, as shown

below: the shortest vector v = [-13 -124 -146 277 -107 -180 673 -311 -167 47 200 395 167 -25 -136 -392 117

-165 147 -515 185 637 343 8 247 44 -220 -146 52 135 -347 -369 -332 -102 469 -285 1 167 397 84 -97 -138

-135 218 567 141 72 21 312 -41], and its corresponding y under the LLL-reduced basis is y = [0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 -1 1 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 -1]. After computing

y corresponding to the short vectors in the random lattices with dimension 50-120 under LLL-reduced

or β-BKZ basis (β is as small as
√
n), we find that y representations of the short vectors in random

lattices with larger dimensions are similarly well-behaved: ys are quite sparse for short vectors, i.e. most

of the elements in y are zero and the non-zero elements are of small absolute values, at most 3, for all

the random lattices with dimensions less than 120. Similar sparse ys corresponding to short vectors can

also be found in the lattice challenge [21] for q-ary lattices.

We call the sparse y = (y1, . . . , yn) corresponding to the short lattice vectors as the y-sparse represen-

tations. The genetic algorithm to be described in details in the next section will be based on the y-sparse

representation. In addition, the y-sparse representation is of independent importance to the algorithms

for Shortest Vector Problem (SVP).

4 A Genetic Algorithm for SVP

4.1 Encoding a Lattice Vector as a Chromesome

Definition 2. Given a signed integer x, we define the bit string (x)2 = sgn(x) ` (|x|)2 as x’s binary

representation with a sign at the leftmost bit. And its length is

|(x)2| = 1 + (1 + blog |x|c) = 2 + blog |x|c.

Still, we can also represent a signed integer into a bit string of a fixed length ` as (x)`2 = sgn(x) ` (|x|)`−12 .

Definition 3. Given an integer vector x = (x1, x2, . . . , xn) including n signed integers, we define the

chromesome ch(x) ∈ {0, 1}` with regards to x as a bit string (x1)2 ` (x2)2 ` . . . ` (xn)2 = sgn(x1) `
(|x1|)2 ` sgn(x2) ` (|x2|)2 ` . . . ` sgn(xn) ` (|xn|)2. Then, the length ` of the chromesome is

` =

n∑
i=1

(1 + |(|xi|)2|).

We can also represent the integer vector x as a chromesome of a fixed length as

ch`1,`2,...,`n(x) = (x1)`12 ` (x2)`22 ` . . . ` (xn)`n2

= sgn(x1) ` (|x1|)`1−12 ` sgn(x2) ` (|x2|)`2−12 ` . . . ` sgn(xn) ` (|xn|)`n−12 ,
(7)

whose length is, clearly, `1 + `2 + . . .+ `n.

Finally, we define the reverse transformation from a chromesome a ∈ {0, 1}`1+`2+...+`n back into the

integer vector as ch−1`1,`2,...,`n(a) = x if and only if

ch`1,`2,...,`n(x) = a.
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As we will see in the following sections, genetic algorithms can only operate on chromesomes, therefore,

we must represent each lattice vector as a sequence of 0 and 1. Given a lattice vector v = Bx, we can

compute t = (t1, . . . , tn) as

ti =

n∑
j=i+1

µji · xj ,

and y = x + bte, we encode the chromesome regarding to the lattice point v using the integer vector y

instead of x. Then, the chromesome of v is represented as

ch`1,...,`n(y) = (y1)`12 ` (y2)`22 ` . . . ` (yn)`n2 ,

and the length ` of the whole chromesome for lattice vector v is

` =

n∑
i=1

`i.

4.2 Description of the Genetic Algorithm with an Elitist Strategy

In this subsection, we describe our genetic algorithm for the shortest vector problem, and we prove the

correctness of the algorithm in the following two subsections.

Before describing our algorithm, it is necessary to define some notions.

Definition 4. Given two chromesomes a,b ∈ {0, 1}`, for an index vector u ∈ {0, 1}`, we define

ϕu(a,b) = (a⊗ u)⊕ (b⊗ ū),

in which ⊗, ⊕ are the bitwise AND and XOR operations respectively. For an index vector m ∈ {0, 1}`,

ψm(a) = a⊕m.

Definition 5 (Crossover and Mutation). Given two chromesomes a and b ∈ {0, 1}`, we define

crossover(a,b) = ϕu(a,b),

where u ∈ {0, 1}` is uniformly distributed, and

mutation(a) = ψm(a),

where m ∈ {0, 1}` is (`, pm)-binomially distributed. Then, it is clear that

(crossover(a,b))i =

{
ai at a probability of 1/2,

bi at a probability of 1/2.

and

(mutation(a))i =

{
āi at a probability of pm,

ai at a probability of 1− pm.

where 1 ≤ i ≤ `.

A classical genetic algorithm operates on a number of binary strings [c1, c2, . . . , cp] of a certain length

`, called a population, and the number of the population p is called the population size, in which each

individual `-length bit string is called a chromesome (recall that we define ). With each chromesome the

algorithm endows a real-valued fitness function f : {0, 1}` → R to signify how good a chromesome is. The

genetic algorithm randomly generates an initial population of p chromesomes, and performs iterations

of genetic operations selection, crossover and mutation to generate a new population as long as the

9



Table 3. Genetic Algorithm for the Shortest Vector

Input: A lattice basis B ∈ Rn×n, the block size β, the mutation rate pm,

and the population size p.

Output: A lattice vector v0, such that ‖v0‖ = λ1(L).

1. Preprocess the original basis B with β-BKZ procedure, generating B′;

2. Compute B′ Gram-Schmidt orthogonalization sequence B∗ = [b∗1, · · · ,b∗n] and [µij ]1≤i,j≤n;

3. Perform initialization(B∗, p) and get p tuples and bit length `1, . . . , `n;

// get p lattice vectors randomly;

4. Exchange the p tuples in a non-descending order as [(x1,y1), (x2,y2), . . . , (xp,yp)]

according to their Euclidean norms ‖Bxi‖.
5. Let v0 ← Bx1. While ‖v0‖ > λ1(L) do//λ1(L) can be its Gaussian Heuristic

(a) Let k ← 1;

(b) Select i, j from [1,. . . , p] using proportional selection;

(c) b = mutation(crossover(ch`1,...,`n(yi), ch`1,...,`n(yj)));

(d) Compute y′k = ch−1
`1,...,`n

(b) and x′k = y′k − bt′ke and store the tuple (x′k,y
′
k);

If x′k is a zero vector, remove (x′k,y
′
k) and go to (c);// zero vector is not in consideration.

(e) Let k ← k + 1, and if k < p− 1, go to (b);

(f) Let (x′p,y
′
p)← (x1,y1) and get new p tuples [(x′1,y

′
1), (x′2,y

′
2), . . . , (x′p,y

′
p)];

// reserve the best vector in the last generation of population as the elitism strategy

(g) Exchange them in a non-descending order and store again as [(x1,y1), (x2,y2), . . . , (xp,yp)]

according to their Euclidean norm ‖Bxi‖;
(h) If ‖v0‖ ≥ ‖Bx1‖, let v0 ← Bx1;

6. Return v0.

Table 4. Initialization

Input: B∗, and the population size p.

Output: p tuples (x1,y1), . . . , (xp,yp)

1. Compute αi =
‖b∗1‖
‖b∗i ‖

and `i = 2 + blogαic for all 1 ≤ i ≤ n;

2. For k ← 1 to p do

(a) Choose uniformly at random n integers |yi| ≤ αi in which 1 ≤ i ≤ n;

(b) Let xi = yi − dtic in which ti =
∑n
j=i+1 µjixj for each i;

(c) Let xk = (x1, . . . , xn), and yk = (y1, . . . , yn);

(d) Store the kth tuple (xk,yk);

3. Return the p tuples (x1,y1), (x2,y2), . . . , (xp,yp) and `1, . . . , `n.

Table 5. Crossover

Input: Two bit strings a = (a1, . . . , a`),b = (b1, . . . , b`) of length ` bits.

Output: A bit string c of length `

1. For i← 1 to ` do

(a) Choose a number r ∈ [0, 1) uniformly at random;

(b) If r < 0.5, let ci ← ai, and, otherwise, ci ← bi;

2. Return c = (c1, . . . , c`).

algorithm has not found the chromesome with the maximum fitness among all chromesomes, i.e., the

optimum solution.

As described in Table 3, the algorithm reproduces new population of new vectors from the current

population in each iteration, until we find a shortest vector in the new generation. We call each population

produced in an iteration a generation of population. In the iteration, we generate p−1 new vectors by using

the following scheme. Firstly, we choose two vectors in the current population (xi,yi) and (xj ,yj) (1 ≤
i, j ≤ n) by the proportional selection based on the fitness function. Secondly, perform ch`1,...,`n(yi) and
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Table 6. Mutation

Input: One bit strings a = (a1, . . . , a`) of length ` bits, and the mutation probability pm = 1/`.

Output: A bit string c of length ` bits.

1. For i← 1 to ` do

(a) Choose a number r ∈ [0, 1) uniformly at random;

(b) If r < 1/`, let ci ← āi, and, otherwise, ci ← ai;//āi is the flip of the bit ai
2. Return c = (c1, . . . , c`).

Table 7. Ch`1,...,`n

Input: An integer vector y = (y1, . . . , yn);

Output: A bit string a of length ` =
∑n
i=1 `i bits.

1. Let a = sgn(y1) ` (|y1|)`1−1
2 ` sgn(y2) ` (|y2|)`2−1

2 ` . . . ` sgn(yn) ` (|yn|)`n−1
2 ;

//(| · |)`2 means transforming an integer into its binary representation of length exactly `;

2. Return a.

Table 8. Ch−1`1,...,`n

Input: A bit string vector a = (a1, . . . , a`) of length ` =
∑n
i=1 `i;

Output: An integer vector y = (y1, . . . , yn).

1. Let `← 1; For i← 1 to n do

(a) yi =
∑`i−1
i=1 a`+i · 2i; // transform a bit string back into a decimal integer

(b) If a` is 1, yi ← −yi; // add the sign

(c) `← `+ `i;

2. Return y = (y1, . . . , yn).

ch`1,...,`n(yj) to obtain two chromesomes for the two vectors. Thirdly, perform the subroutine crossover

and mutation on the two chromesomes to gain a new bit string b ∈ {0, 1}`1+`2+...+`n . Finally, we recover

the y = ch`1,...,`n(b) and x = y − bte to reconstruct a tuple (x,y). Thereby, we yield a new vector from

two vectors in the current population, if x is not a zero vector for the reason that the shortest vector

problem means to find the nonzero shortest vector in a lattice. Similarly, we can generate independently

p−1 such tuples (vectors) to constitute a new population. Besides, we reserve the vector with the shortest

Euclidean norm in the current population as the pth vector in the new population, which is called an

Elitist Strategy. The elitist strategy assures the convergence in the finite generations to the optimum

population as we will prove in the next section.

In our genetic algorithm, we use the proportional selection to select a chromesome from a population

based on its fitness as:

Pr[ci is selected] =
f(ci)∑p
j=1 f(cj)

.

As far as the shortest lattice vector problem (SVP) is concerned, we regard the lattice vectors v = Bx

as the individuals and, as defined in Section 4.1, we encode the vectors into chromesomes using the ch

operation based on the vectors y = x+bte. We define the fitness function f as the inverse of the Euclidean

norm of the vector as:

f(v) =
1

‖v‖2
=

1

‖Bx‖2
.

Thereby, the shortest vector obtains the maximum fitness, and enjoys the largest probability that it

is selected in the procedure of proportional selection. We choose the square of the Euclidean norm

as the fitness function to avoid computing the square root, which is time-assuming in the program

implementation.
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The optimum of the mutation probability in genetic algorithms is proved to be 1/` by Bäck [3].

Therefore, the probability that mutation generates the solution a′ from individual a is given by,

Pr(a
mutation−−−−−−→ a′) = pHam(a,a′)

m (1− pm)(`−Ham(a,a′)) > 0,

which is very important to ensure the convergence of the algorithm, and here Ham(a, a′) denotes the

hamming distance of two chromesomes a and a′.

4.3 Convergence of the Elitist Genetic Algorithm

In this section, we prove that the genetic algorithm with an elitist strategy converges to the optimum

populations if it iterates a large enough number of generations, under a Markov analysis. For more about

Markov stochastic processes, you can refer to [37].

First, denote N be the set of all the N = 2` lattice vectors. Define C = {‖v‖, v ∈ N}, suppose that C
has s elements {F1, F2, . . . , Fs}, where F1 < F2 < · · · < Fs. This immediately gives us a opportunity to

partition N into a collection of s nonempty subsets Ni, where

Ni = {v ∈ N , ‖v‖ = Fi}.

Then for a population P , define

‖P‖ = min
v∈P
‖v‖ .

Denote P be the set of all the populations. Thus we can consider the collection of populations of the

same norm as a set, denoted by Ei, i = 1, 2, . . . , s, that is

Ei = {P ∈ P, ‖P‖ = Fi}.

Let ei(> 0) be the number of populations in Ei, and Pij be the jth population of Ei, j = 1, 2, . . . , ei and

i = 1, 2, . . . , s. In other words, any population in P is represented as Pij for some i and j.

In any generation, the genetic operators create a population Pkl from some population Pij . As in our

strategy we always preserve the previous best in the population, then the norm of the new generation is

at most Fi, thus the genetic operators cannot generate a population Pkl from Pij , if k > i. The creation of

a population Pkl from Pij can be viewed as a transition from Pij to Pkl. Denote pij→kl be the probability

that the genetic operators result in the population Pkl ∈ Ek from Pij ∈ Ei, and pij→k be the probability

of transition from Pij to an population in Ek. Obviously,

pij→k =

ek∑
l=1

pij→kl, and

s∑
k=1

pij→k = 1.

Therefore, we can get the following conclusion.

Theorem 2. For all j = 1, 2, . . . , ei, and i = 1, 2, . . . , s,

pij→k

{
> 0, if k ≤ i
= 0, otherwise.

Proof. Let P = {v1,v2, . . . ,vp} be a population generated using the genetic operators on Pij . As the

best chromosome v0 ∈ Pij is copied in the population P , then ‖P‖ ≤ ‖v0‖ = Fi. This implies pij→kl = 0

for all l = 1, 2, . . . , ek, if k > i, which implies pij→k = 0 directly.

Now for k ≤ i, consider a population Pkl1 containing the best chromosome v0 in Pij . It is clear that

the probability will be minimum if we need to mutate each character of each chromosome present in Pij
after the selection and crossover operations. As for our strategy, we copy the best chromosome into the

new generation, there are at most (p− 1)l characters need to mutate, then the minimum probability to

obtain Pkl1 from Pij is
(
1
l

)(p−1)l
> 0, then pij→k =

∑ek
l=1 pij→kl ≥ pij→kl1 > 0, for all k ≤ i. ut
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One can consider any population Pij as a state of a Markov chain. The probabilities pij→kl represent

the transition probabilities from population Pij to Pkl. In order to denote the transition probability

matrix Pr for this Markov chain, let us order the states as Pll, . . . , P1e1 , P21, . . . , P2e2 , . . . , Ps1, . . . , Pses .

Let p
(n)
ij→kl be the probability that GA results in Pkl at the nth step given the initial state is Pij , then

the n−step transition probability matrix Pr(n) = Prn. Let p
(n)
ij→k =

∑
l

p
(n)
ij→kl, then p

(n)
ij→k denotes the

probability of reaching a population in Ek in n steps with the starting population as Pij . Therefore, as a

direct consequence of Theorem 2 in [4], we have the following result to guarantee the convergence of our

algorithm.

Theorem 3. In our GA strategy, for a mutation probability 1
l ,

lim
n→∞

p
(n)
ij→k = 0, for 2 ≤ k ≤ s, ∀j = 1, 2, . . . , ei and i = 1, 2, . . . , s.

Hence, lim
n→∞

p
(n)
ij→1 = 1, ∀j = 1, 2, . . . , ei and i = 1, 2, . . . , s.

Note that E1 represents the set of populations containing the shortest vector, thus Theorem 3 shows

that the genetic algorithm will return the shortest vector if it runs long enough.

5 Further Improvements on Our Genetic Algorithm

In this section, we adopt some heuristic techniques to the genetic algorithm to improve its efficiency: the

local search and heuristic pruning, which we will discuss in details.

5.1 Local Search

Table 9. Local Search

Input: B, and an integer vector y = (y1, . . . , yn);

Output: An integer vector y′′ = (y′′1 , . . . , y
′′
n).

1. Let y′′ ← y, and compute v′′ such that y′′ ∼ v′′;

2. p← 1;

3. While p = 1 do // if y′ has been updated in the last iteration.

(a) Compute v such that y ∼ v;

(b) Let p← 0. For all y′ such that ‖y′ − y‖ = 1 do

(i) Compute v′ such that y′ ∼ v′;

(ii) If 0 < ‖v′′‖ < ‖v′‖, then let y′′ ← y′, v′′ ← v′ and p← 1;

(c) Let y← y′′; //Choose the best y′′ nearby y;

4. Return y′′ = (y′′1 , . . . , y
′′
n).

Local search is a kind of hill-climbing algorithm which is capable of finding the locally optimal point

nearby a given point. As shown in Table 9, given an integer vector y which represents a specific vector v

in lattice L(B), we first choose the lattice vector v ∼ y as the critical vector which serves as the starting

point from which we search all the nearby vectors. Starting from Step (b), the algorithm searches all the

vectors y′ in 2n directions with distance 1, i.e. ‖y′ − y‖ = 1, and finds the best nearby vector y′′ whose

corresponding lattice vector v′′ ∼ y′′ is shorter than the critical vector v. Then the algorithm chooses v′′

as the new critical vector, and repeats the steps above until all the 2n nearby vectors are no better than

the critical vector. For short, local search always takes the steepest direction. Note that local search can

always find a vector which is at least as short as the given vector, and that is a locally optimal vector

near the given one. Local search may sometimes not find the globally optimal vector, i.e. the shortest

vector, in the sense of ”greedy” algorithm, but it can never miss it if the given vector is near the shortest

vector. So it enhances the probability that it succeeds in finding the shortest vector for a random search

algorithm.
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In the genetic algorithm, we perform local search on all the newly-generated vectors after performing

crossover and mutation, and we can find a locally optimal vector nearby. Experiments in the next

section show that local search helps reduce the running time greatly.

5.2 Optimizations: Heuristic Pruning

As in the y-sparse representation of the shortest vector of the random lattice with dimension 50 under

a LLL-reduced basis, y =[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 -1 1 0 0 0

0 0 1 0 0 0 0 0 -1 0 0 0 -1], we can observe that: first, the first half of the elements of y are all zeros;

second, all the nonzero elements are quite small. Experiments show that the two observations hold in the

y-sparse representation of short vectors in the random lattice with dimensions 50-120 under a LLL- or

BKZ-reduced basis. Therefore, in order to obtain short vectors, we can adopt the two heuristic techniques

below.

Technique 1 : We fix the first half of the elements yi, for 1 ≤ i ≤ bn/2c, of y as 0 beforehand.

Technique 2 : We bound the rest elements yi, for bn/2c ≤ i ≤ n, of y as αi =

√
‖b∗1‖
‖b∗i ‖

instead of

αi =
‖b∗1‖
‖b∗i ‖

.

The two techniques help narrow the search space dramatically, like the pruning techniques in the

enumeration algorithms. So we call the two techniques as Heuristic Pruning. Albeit heuristically, the two

pruning never miss any shortest vectors in dimensions 50-120 as the experiments show below. Adopting

the two heuristic techniques, we modify the initialization procedure as heuristic initialization shown in

Table 10 as in Step (1) and Step (2). In fact, we can try much smaller αi than the suggested in Table 10.

Table 10. Heuristic Initialization

Input: B∗, and the population size p.

Output: p tuples (x1,y1), . . . , (xp,yp)

1. Let `i ← 0 for 1 ≤ i ≤ bn/2c;

2. Compute αi =

√
‖b∗1‖
‖b∗i ‖

and `i = 2 + blogαic for all bn/2c < i ≤ n;

3. For k ← 1 to p do

(a) Choose uniformly at random n integers |yi| ≤ αi in which 1 ≤ i ≤ n;

(b) Let xi = yi − dtic in which ti =
∑n
j=i+1 µjixj for each i;

(c) Let xk = (x1, . . . , xn), and yk = (y1, . . . , yn);

(d) Store the kth tuple (xk,yk);

4. Return The p tuples (x1,y1), (x2,y2), . . . , (xp,yp) and `1, . . . , `n.

5.3 Parallelization

The main body of our genetic algorithm can be easily parallelized into a concurrent algorithm to reduce the

running time. As shown in 1, the genetic algorithm can be implemented in a message-passing methods

by using p processes: Process 0 keeps a chromesome pool of this generation, or colony, including p

chromesomes (or vectors), and, in each iteration, it distributes randomly two chromesomes to each of

the other p − 1 processes; Process i(1 ≤ i ≤ p − 1) receives two chromesomes and performs in sequence

crossover, mutation, and local search, thereby generating a new chromesome (or vector), and, then,

sends the newly-generated vector back to Process 0; finally, Process 0 receives all the newly-generated

vectors from all the other p−1 processes, as well as the best chromesome in the last generation, and the p

chromesomes constitutes a new colony, which ends the current iteration. After that, Process 0 starts the

iteration again by distributes chromesomes in the new colony to other processes, and all the p processes
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Fig. 1. Parallelization of the Genetic Algorithm

performs the same operations iterations after iterations until Process 0 obtains the shortest vector in its

newly-created chromesome pool. Clearly, the parallel program shortens the running time by p times.

Moreover, we can move further to the parallelization. It is easy to keep a number, say n, of concurrent

genetic algorithms as described above running in parallel under distinct equivalent lattice basis and

using different random seeds, and, therefore, the whole parallel algorithm requires np processes in all.

Experiments show that this new parallel algorithm finds the shortest vector amazingly sooner than

the sequential genetic algorithm. The parallel program terminates once one of the n concurrent genetic

algorithm find the shortest vector.

6 Experimental Results

Although we prove that the genetic algorithm with an elitist strategy is doomed to converge to the

shortest vector, we fail to estimate its time complexity (it is still an open problem to prove the first

hitting time of the genetic algorithm, except for some special circumstances). Furthermore, the genetic

algorithm adopting local search and heuristic pruning is based on the scheme in the sense of greedy

strategy and some heuristic observations. So it is necessary to perform experiments to see if it is better

than the previous algorithms.

Experiments are performed on a workstation with 16 Intel Xeon 2.4Ghz CPUs and 16G RAM under

a Red Hat Linux Server release 5.4. Our genetic algorithm is implemented in C++ using Victor Shoup’s

Number Theory Library version 6.0.0 [35]. The genetic algorithm chooses the mutation rate pm = 1/`,

and the population size as twice the rank of the lattice, i.e., p = 2n. All the genetic algorithms start on a

basis which is
√
n-BKZ reduced, and the basis and its negative vectors serve as the initial population. All

the experiments are performed on the random lattices in the SVP challenge [31], which are of extremely

large volume (determinant). All the results of lattice with a dimension larger than 91 are obtained using

parallel programs as in Section 5.3, and the parallel programs are implemented using MPI, which runs

using one thousand cores on a high-performance cluster. The running time of the parallel program are

recalculated into that of sequential CPU core programs.

The first experiment means to justify our local search and heuristic techniques, and it runs on the

random lattice of dimension 40 generated using seed 0. As shown in Table 11, the genetic algorithm

without heuristic techniques finds the shortest vector of norm 1702 using 255.5810 seconds, and the

genetic algorithm with local search finds the solution within only 21.8347 seconds. Adopting the two

heuristic techniques, the algorithm runs even faster, only 11.8442 seconds. Therefore, we conclude that
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Running Time Heuristic Techniques Adopted

255.5810s Genetic Algorithm without Heuristic Techniques

21.8347s Genetic Algorithm with Local Search

11.8442s Genetic Algorithm with Local Search and Techniques 1 and 2

Table 11. Running Times (Dimension 40) with and without Heuristic Techniques

local search and the heuristic pruning do make sense. All the following experiments are performed using

the genetic algorithms with both local search and heuristic pruning.

Dimension Seed Previous Challenge Our Results

40 0 1702 1702

50 0 1893 1893

51 0 1885 1885

66 3 2099 2036

67 0 n/a 2187

69 0 2226 2212

73 0 2220 2190

79 0 n/a 2346

81 0 n/a 2276

83 0 n/a 2433

85 0 n/a 2412

86 0 2456 2387

87 0 n/a 2497

91 0 n/a 2468

Table 12. Comparison of Results (Euclidean Norm) on SVP challenge

Second, we perform experiments using the improved genetic algorithm on the random lattices of

dimensions 40-118 generated using mostly seed 0 except for seed 3 of dimension 66. As shown in Table

12, it shows that our genetic algorithm can always find vectors at least as good as previous challenges in

the same lattice, some of them even shorter. For example, the previous challenge of lattice of dimension

66 seed 3 is of norm 2099, while we obtain a vector of norm 2036. The previous challenge for dimension

69 is 2226, and our result is 2212, and for dimension 73 our result is 2190 compared to 2220 of previous

challenge, and for dimension 86 ours is 2387 as for previous 2456. We also make some records without

any previous challenge results as in the table 11, like the dimension 91, 87, 85, and so on. So far, we

have posted 25 challenge results (with the largest dimension 91, most in Feb. 2013) on the SVP challenge

website (See link [31]), and we have performed experiments on lattices up to dimension 118. We are still

performing more experiments using our genetic algorithm on random lattices with even larger dimensions

in SVP challenge. Moreover, we have attempted 200-dimensional q-ary lattices of lattice challenge[31].

Finally, we compare our improved genetic algorithm with Kannan-Helftich enumeration and Enumer-

ation with conservative Pruning, which are of polynomial space complexity as the genetic algorithm is.

The enumeration with extreme pruning [11], though efficient, suffers from a low rate of success, or, in

other words, fails to find a short vector at a high probability, and, then, we choose to implement an

enumeration with a relatively conservative pruning, which guarantees finding the shortest vector. Both

algorithms are implemented using the same NTL library as our genetic algorithm, and both run on the

same 16-CPU workstation. In order to obtain a fair comparison, we preprocess the three algorithms with

a
√
n-BKZ reduction. The running times of the three algorithms are compared in the Fig. 2. The ex-

periments are performed on random lattices from dimension 20 to 118 generated with seed 0. As shown

in the Table, the genetic algorithm outperforms the other two algorithms in running times over all the
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Fig. 2. Comparison of the Logarithms of the Running Times of Main SVP Algorithms

dimensions. The Kannan-Helfrich enumeration runs the slowest among the three, and it succeeds in find-

ing the shortest vector only up to dimension 70. The enumeration with pruning, which we implement

only the conservative pruning to make sure the shortest vector can always be found, runs faster than

Kannan-Helfrich enumeration and can only find the shortest vector at most dimension 80. As for the

genetic algorithm, its performance is much better than the previous two greatly. The genetic algorithm

manages to find the shortest vectors for random lattices of up to dimension 118.

7 Conclusion

In this paper, we are the first to propose a genetic algorithm aiming at searching the shortest vector of the

random lattices from the SVP challenge [31], which has attracted numerous attention in cryptography

community. Our algorithm can converge to the shortest vector at a probability close to 1, and the

experimental results show that it is efficient and gains some advantages over other algorithms.

Although only three distinct algorithm descriptions are available to choose from on the website:

”enumeration”, ”BKZ”, and ”sieve”, as well as ”other”, the SVP challenge was opened in 2010 to

evaluate and compare all sorts of SVP algorithms. So, it is quite inspiring to post challenge results from

novel original algorithms, not just of the three types above. Our algorithm is beyond the three, and,

namely, a main body of genetic algorithm with a preprocessing of a BKZ reduction, which helps reduce

the population space (like reduced Markov chain[26]).

Furthermore, we also attempt some low-dimensional q-ary lattices from the lattice challenge[21] using

our genetic algorithm. Although our algorithm only works well on dimension 200, compared to the records

of dimension up to 800, it is, we believe, promising for our genetic algorithm to challenge some high-

dimensional q-ary lattices, if we find some new heuristic techniques effective for q-ary lattices, like local

search and heuristic pruning for the SVP challenge in this paper.
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