
Universally Composable secure TNC protocol based on IF-T
binding to TLS

(Full Version)?

Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

Institute of Software Chinese Academy of Sciences,
ISCAS, Beijing, China.

{zqyzsj@gmail.com},{zhangqy,qin_yu,fengdengguo@tca.iscas.ac.cn}

Abstract. Trusted Network Connect (TNC) requires both user authentication and integri-
ty validation of an endpoint before it connects to the internet or accesses some web service.
However, as the user authentication and integrity validation are usually done via independent
protocols, TNC is vulnerable to the Man-in-the-Middle (MitM) attack. This paper analyzes T-
NC which uses keys with Subject Key Attestation Evidence (SKAE) extension to perform user
authentication and the IF-T protocol binding to TLS to carry integrity measurement messages
in the Universally Composable (UC) framework. Our analysis result shows that TNC using keys
with SKAE extension can resist the MitM attack. In this paper, we introduce two primitive ide-
al functionalities for TNC: an ideal dual-authentication certification functionality which binds
messages and both the user and platform identities, and an ideal platform attestation function-
ality which formalizes the integrity verification of a platform. We prove that the SKAE extension
protocol and the basic TCG platform attestation protocol, both of which are defined by TCG
specifications, UC-realizes the two primitive functionalities respectively. In the end, we intro-
duce a general ideal TNC functionality and prove that the complete TNC protocol, combining
the IF-T binding to TLS which uses keys with SKAE extension for client authentication and
the basic TCG platform attestation platform protocol, securely realizes the TNC functionality
in the hybrid model.

Key words: Universally Composable security, Trusted Network Connect, SKAE, TLS

1 Introduction

Many security solutions have been introduced to protect computers from attacks in the network, such
as firewalls, virus scan engines and intrusion detection systems. However, as more and more security
incidents ascend in numbers, these traditional solutions seem to be not sufficient to counter the current
attacks. TNC, an open network access architecture enabling the network operators to authenticate the
identity of the platform and perform the integrity verification of the platform before it connects to the
network, is promoted and standardized by TCG to build a clean network environment. TNC aims to
ensure that the integrity status of all the endpoints in the network are safe. The integrity information
of an endpoint is collected and stored in a cost-effective, tamper-resistant Trusted Platform Module
(TPM).

? An extended abstract of this paper appears in NSS’14.



2 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

When an endpoint wants to connect to the network or access some web service, it first calls the
IF-T protocol [14, 18] to establish a mutually authenticated secure channel with the TNC server, then
it runs platform attestation protocol to attest its integrity status to the TNC server. The platform
attestation protocol messages are transported in the established secure channel. However, Askan et al.
[1] find that running an authentication protocol in a tunneling protocol is vulnerable to Man-in-the-
Middle (MitM) attacks, and such attacks can apply to TNC using IF-T protocol. To prevent MitM
attacks, TCG promotes the Subject Key Attestation Evidence (SKAE) extension, which enables a
cryptographic binding of a platform identity key (which signs integrity information in the platform
attestation protocol) with a user certificate. Both the user identity and SKAE extension should be
authenticated in the user authentication. The SKAE extension implies that the user authentication
and platform attestation happen on the same platform, so MitM attacks won’t work.

The UC framework defines the security goal of a protocol by an ideal functionality, which acts
as a trusted third party. A good property of UC is the composability: a protocol π communicating
with an ideal functionality F is identical to π calling a subroutine protocol ρ if ρ securely realizes π
in the UC framework. This property suits the analysis of layered protocols very well: the high layer
protocol invokes the ideal functionality realized by the lower layer protocol without considering the
implementation details of the lower layer protocol. TNC is a layered architecture: the bottom layer is
IF-T protocol, which establishes a mutual authentication secure channel, and the top layer is platform
attestation protocol. So UC suits the analysis of TNC very well, and a proved TNC functionality will
benefit the analysis of the protocols above TNC.

1.1 Related Work

To the best of our knowledge, few works on the formal analysis of TNC have been done since the
publication of TNC. Zhang et al. [21] provide the first ideal TNC functionality FTNC, and analyze the
EAP-TNC attestation protocol with Diffie-Hellman Pre-Negotiation (D-H PN) [14]. They find a MitM
attack on the D-H PN EAP-TNC protocol and patch it by authenticating the Diffie-Hellman keys.
However, their analysis is based on the assumption that the tunneled EAP protocol has provided an
ideal mutually authenticated secure channel functionality. Some analysis of TNC using the symbolic
logic method is proposed recently. Zhang et al. [22] propose a computationally sound symbolic analysis
of D-H PN EAP-TNC protocol but not the complete TNC protocol. Xiao et al. [20] analyze the
authentication property of the complete TNC protocol based on the IF-T protocol binding to TLS
in their extended strand space model. They find that the complete TNC protocol can resist MitM
attacks in the case the user is authenticated through a certificate with SKAE extension during the
TLS setup phase. This result is in accord with our analysis result in the UC framework.

Until now, most basic ideal cryptography functionalities, such as public key encryption, digital
signature, authentication communication, key exchange, and secure channel, have been realized in the
UC or similar framework (see, e.g., [3, 4, 8, 11]. Gajek et al. [6] presented the first security analysis of
the TLS protocol in the UC framework. They analyzed the key exchange functionality realized by TLS
handshake and the secure channel functionality realized by the complete TLS protocol. In our analysis,
the functionality provided by IF-T protocol binding to TLS is a variant of secure channel functionality
which provides not only user authentication but also platform authentication. Our analysis of IF-T is
based on the work of [6].



TNC in UC 3

1.2 Our Contributions

In this paper, we investigate the complete TNC protocol in the UC framework. We adopt the compos-
ability of the UC framework in our analysis. We first separate the Complete TNC protocol into IF-T
protocol and platform attestation protocol. Then we analyze the two protocols separately. Finally, we
analyze the complete TNC protocol in the hybrid model. The following lists our contributions more
specifically.

1. We introduce two primitive ideal functionalities for TNC. The first is a dual-authentication cer-
tification functionality FD-Cert that authenticates both the user and platform identity. This func-
tionality is necessary in the analysis of TNC as authenticating both the user and platform is a
basic security policy requirement in TNC. The second is a platform attestation functionality FP-A

that captures the security requirement of the platform integrity status validation. These two prim-
itive functionalities enable to analyze complex protocols based on SKAE extension and platform
attestation in a modular way, and simplify the analysis.

2. We consider the realization of FD-Cert and FP-A. We prove that 1) the SKAE extension creation
and processing protocol (which we call SKAE-EX for short), defined in the SKAE specification
[13], securely realizes FD-Cert; and 2) the basic TCG platform attestation protocol realizes FP-A.
On the basis of FD-Cert, we show that the IF-T protocol binding to TLS which uses keys with
SKAE extension for client authentication (which we call IF-TLS-SKAE for short) realizes a dual-
authentication secure channel functionality FD-SC.

3. We introduce a general TNC functionality FTNC and show that the complete TNC protocol,
combining IF-TLS-SKAE and the basic TCG platform attestation protocol, UC-realizes FTNC.

1.3 Organization

Section 2 gives a brief overview of the background of this paper, i.e., TNC and the UC framework.
Section 3 introduces the dual-authentication certification functionality FD-Cert, and show that 1) the
SKAE-EX protocol securely realizes FD-Cert, and 2) the IF-TLS-SKAE protocol securely realizes the
dual-authentication secure channel functionality FD-SC. Section 4 introduces the platform attestation
functionality FP-A and proves that the basic TCG platform attestation protocol realizes FP-A. Section
5 designs the general TNC functionality FTNC and analyzes the complete TNC protocol in hybrid
model. Section 6 concludes this work.

2 Background

This section briefly describes the TNC architecture and the UC framework on which our analysis is
based.

2.1 TNC in a nutshell

TNC is an open network architecture that enables network operators to assess the integrity status of
endpoints and verify the user and platform identities of endpoints in order to determine endpoints
whether to grant access to the network or web services. The integrity information can be collected
by the TCG-based integrity measurement architectures [12, 9] and stands for the security status of



4 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

the current system. The integrity information is stored in a TPM, which cannot be compromised by
a potentially malicious host system. In order to validate the integrity information of an endpoint, the
existence and genuineness of a TPM should be authenticated, i.e., the platform identity authentication.

TCG defines a series of specifications for TNC. The interoperability architecture specification [19]
describes how TNC architecture can be implemented and integrated with existing network access
control mechanisms such as 802.1X [7]. The IF-T specifications [14, 18] define how IF-T can be imple-
mented over other lower layer protocols such as tunneled Extensible Authentication Protocol (EAP)
and TLS. The IF-TNCCS messages, carrying the integrity measurement messages, are transported in
the IF-T protocol, and its message format is defined in the IF-TNCCS specification [17]. The following
gives a brief TNC flow based on the IF-T protocol binding to TLS:

0. Requirement. Before running TNC, the Network Access Requestor (NAR), which represents the
endpoint that wants to get access to a TNC protected service, is already on the network thus has
an IP address assigned.

1. TLS Setup. NAR establishes a TLS session with the Network Access Authority (NAA), who
assesses NAR and decides whether NAR should be granted to access. In this phase, NAR must
validate the certificate of NAA, e.g., NAA is authenticated to NAR. The NAR might use a client
certificate with SKAE extension for client authentication, and this is the case analyzed in this
paper.

2. User Authentication. If NAR isn’t authenticated to NAA in the TLS setup phase, user authen-
tication must be performed after TLS setup phase over the established TLS session. The second
version of [18] defines that the user authentication must be performed in the Simple Authentication
and Security Layer (SASL) [10] framework, and some standards-based authentication mechanisms
are provided in SASL.

3. Platform Attestation. In this phase, the IF-T session is available. NAA assesses the integrity of
NAR in the IF-T session established in the above phases. The assessment messages are encapsu-
lated in IF-TNCCS messages. Finally, NAA decides whether to grant NAR to access the protected
service.

2.2 The UC framework

The UC framework [2] is a kind of formal method for the modular design and analysis of multi-party
protocols. UC defines an additional entity called the environment Z. It feeds arbitrary inputs to the
parties and the adversary, then collects the outputs from the parties and the adversary. Z interacts
with two worlds: the real world and the ideal world. The real world is composed of honest parties
running a real protocol and an adversary A which controls the communication between parties and
may corrupt honest parties. The ideal world is composed of dummy parties and a simulator S. The
dummy parties simply receive inputs from Z, and forward them to the ideal functionality F , which
is a trusted party and performs the ideal cryptographic task. After completing the cryptographic
task, F hands the desired outputs to the dummy parties. The security notion of UC is defined in an
indistinguishable way as follows.

Definition 1. A protocol π UC-realizes (or emulates) an ideal functionality F if for any adversary
A in the real world, there exists an adversary (simulator) S in the ideal world such that for any
environment Z, the probability that Z distinguishs whether it is interacting with the real protocol π
and A or with the ideal functionality F and S is at most a negligible probability, i.e., EXECπ,A,Z ≈
EXECF,S,Z .



TNC in UC 5

A good feature of UC framework is its composition theorem.

Definition 2 (Composition theorem). Let π be a protocol that uses subroutine calls to an ideal
functionality f . We call π is an f -hybrid protocol. If protocol ρ realizes f , then the composed protocol
πρ/f , in which each invocation of f is replaced by an invocation of ρ, UC-realizes π. Another way of
saying it is, πρ/f UC-realizes π in f -hybrid model, i.e., EXECπρ/f ,A,Z ≈ EXECfπ,S,Z .

3 SKAE Certification Functionality

Functionality FD-Cert

Signature Generation: Upon receiving a value (Sign, sid,m) from party S, verify that sid = (U,P, s) for
some s (We denote by U the user identity and P the platform identity). If not, then ignore the request.
Else send (Sign, sid,m) to the adversary. Upon receiving (Signature, sid,m, σ) from the adversary, verify
that no entry (m,σ, 0) is recorded. If it is, then output an error message to S and halt. Else, output
(Signature, sid,m, σ) to S, and record the entry (m,σ, 1).

Signature Verification: Upon receiving a value (Verify, sid,m, σ) from some party S′, hand (Verify, sid,m, σ)
to the adversary. Upon receiving (Verified, sid,m, φ) from the adversary, do:
1. If (m,σ, 1) is recorded then set f = 1.
2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded, then set f = 0 and

record the entry (m,σ, 0).
3. Else, if there is an entry (m,σ, f ′) recorded, then set f = f ′.
4. Else, set f = φ, and record the entry (m,σ′, φ).

Output (Verified, sid,m, f) to S′.

Fig. 1. The Dual-authentication Certification Functionality, FD-Cert

This section presents the dual-authentication certification functionality FD-Cert authenticating
both the user and platform identity. We analyze the SKAE extension creation and processing protocol
(SKAE-EX) defined in [13]. SKAE-EX runs in a setting of the existence of 1) an Attestation Identity
Key (AIK), which certifies that the user key with SKAE extension is under the protection of the TPM
where AIK resides, 2) a trusted certificate authority that registers user identities together with public
keys. We formalize the global assumptions by utilizing the certification functionality FCert and the
certificate authority functionality FCA presented in [3]. We assume that the signature of the user key
with SKAE extension is secure, so we add the signature functionality FSIG presented in [3] to our
global assumptions. Our analysis shows that the SKAE extension creation and processing protocol
defined in [13] UC-realizes FD-Cert in the (FCert,FCA,FSIG)-hybrid model. We don’t describe FCert,
FCA, and FSIG in this paper, and for readers who are interested in them please consult [3] for details.

It’s reasonable to assume that the AIK certification capability provided by TPM (see [15, 16] for
details) securely realizes FCert, as the AIK certification with the help of a PrivacyCA [5] is the same
as the CAS protocol [3] which UC-realizes FCert.



6 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

3.1 The Dual-authentication Certification Functionality, FD-Cert

The ideal dual-authentication certification functionality, FD-Cert is presented in Figure 1. It is similar
to FCert, except that it binds a signature for a message with the user identify and the platform
identify, which are encoded in the sid. The dual binding relationship is critical in the complete TNC
protocol, and is one of the two essential approaches used in TNC to prevent MitM attacks. This
binding relationship shows that the key used in the user authentication is protected by some TPM
which is identified by an AIK. If the later platform attestation protocol uses the same AIK, then the
user authentication and the platform attestation must operate in the same platform, which prevents
MitM attacks.

3.2 Analysis of SKAE-EX

We show that the SKAE-EX protocol UC-realizes FD-Cert with the aid of an AIK certified by a
trusted PrivacyCA and ideally authenticated communication with a “trusted certification authority”.
The certified AIK is formalized as FCert, and this formalization is reasonable as we have explained
that the AIK certification capability is the same as the CAS protocol3, which UC-realizes FCert. The
trusted certification authority assumption is formalized as FCA which registers user identities with
public values. We stress that FCA doesn’t check the possession of secret key corresponding to the
registered public value, which models most practical CAs.

The formal description of SKAE-EX protocol is given in Figure 2.

Theorem 1. Protocol SKAE-EX securely realizes functionality FD-Cert in the (FCert,FCA,FSIG)-hybrid
model.

Proof. LetA be an adversary that interacts with parties running SKAE-EX in the (FCert,FCA,FSIG)-hybrid
model. We construct an ideal adversary (simulator) S such that no environment Z can distinguish
whether it’s interacting with A and SKAE-EX in the real world or it’s interacting with S and FD-Cert

in the ideal world. S runs a simulated copy of A and simulates for this copy interaction with parties
running SKAE-EX. All messages from Z to A and back are forwarded. The operations of S are shown
below:

Simulating signature generation. When S receives a message (Sign, sid,m) from FD-Cert, where
sid = (U,P, s) and both U and P are not corrupted, it proceeds as follows:
1. If this is the first time that U generates a signature, then simulates for A:

a) The process of key generation: send (KeyGen, (U, s)) to A (in the name of FSIG), and
obtains (Verification key, (U, s), v) from A.

b) The AIK certification: send (Sign, (P, s), v) to A, and obtain (Signature, (P, s), v, σAIK)
from A, and record (v, σAIK).

c) The registration of user key: send to A the message (Registered, U, v, P, σAIK) in the term
of FCA, and record (U, v, P, σAIK) after receiving Ok from A.

2. Simulate for A the processing of signing m. That is, in the name of FSIG, send to A the message
(Sign, (U, s),m). After receiving (Signature, (U, s),m, σ) from A, records the pair (m,σ) and
sends (Signature, sid,m, σ) to FD-Cert.

S simulates the interaction of a party whose user identity is corrupted or platform identity is
corrupted (or both are corrupted) as follows:

3 Readers who are interested in the details of the CAS protocol please consult [3].



TNC in UC 7

1. If the user identity U is corrupted, the process of key generation and signature generation is
similar to the uncorrupted user, except that A can register a different public value v′ to FCA.
Note that the simulation is still valid, as if the user is corrupted, FSIG follows the instruction
of A to verify a signature.

2. If the platform identity P is corrupted, all that S has to do is to simulate for A the interaction
with FCert. That is, whenever a party sends a messages (Sign, (P, s), v′) to FCert, FCert queries
A to get a signature σAIK.

Simulating signature verification. When S receives a verification request made by an uncorrupted
party S′ (both U ′ and P ′ are uncorrupted) from FD-Cert, S proceeds as follows:
1. If this is the first verification request from S′, then simulates for A:

a) The exchange between S′ and FCA. That is, send a message (Retrieve, (U,P ), S′) in the
name of FCA. When A responds with Ok, if FCA has a tuple (U, v, P, σAIK) recorded then
record this tuple for the simulated S′, else record a (U,P,⊥).

b) The AIK verification. That is, S simulates for A following the logic of FCert: when FCert

decides to send (Verify, (P, s), v, σAIK) to A then send this message to A and obtain
(Verified, (P, s),m, φ) from A; when FCert decides to output to S′, if neither U nor P is
corrupted then follow the logic of FCert to output (Verified, (P, s), v, f) to S′ (If (v, σAIK)
is recorded previously, then f = 1, else f = 0), else output (Verified, (P, s), v, φ) to S′.

2. The process of signature verification. Denote the message from FD-Cert by (Verify, sid,m, σ)
where sid = (U,P, s). Forward (Verify, (U, s),m, σ, v) to A in the name of FSIG, and forward
A’s response to FD-Cert.

Simulating party corruptions. When A corrupts the user or platform of some party, S corrupts
the corresponding user or platform in the ideal world, and provides the obtained information to
A. This has no effect on the simulation, as the real world protocol maintains no secret state.

It can be readily seen that the view of of Z in an interaction of A and SKAE-EX protocol is
distributed identically to the view of Z in an interaction with and S and FD-Cert in the ideal world.

3.3 Dual-authentication Secure Channel Functionality

We describe our dual-authentication secure channel functionality FD-SC in Figure 3. FD-SC enables the
responder of the secure channel to authenticate both the user and the platform identify of the initiator,
and guarantees that the adversary gains no more information than some side channel information
about the transmitted plaintext m, such as the length of m. The leakage information is expressed by
a leakage function l(m).

We argue that the IF-T protocol binding to TLS using keys with SKAE extension for client authen-
tication (IF-TLS-SKAE) securely realizes FD-SC. Gajek et al. [6] has presented the security analysis
of the complete TLS protocol, combining Handshake and Record Layer, in the UC framework. They
first showed that the master key generation subroutines in Handshake protocol UC-realize the key ex-
change functionality FKE given the traditional certification functionality FCert, then that the complete
TLS protocol framework securely realizes secure channel functionality FSC in the FKE-hybrid model.
Since 1) we have proved that user keys with SKAE extension UC-realizes the dual-authentication
functionality, and 2) the IF-TLS-SKAE protocol is a complete TLS protocol using keys with SKAE
extension for client authentication, we directly get theorem 2. The proof can be easily got following
the proof of [6].

Theorem 2. The IF-TLS-SKAE protocol securely realizes functionality FD-SC.



8 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

Protocol SKAE-EX

Signature Protocol: When activated with input (Sign, sid,m), party S does:
1. S verifies that sid = (U,P, s) for some identifier s; if not then the input is ignored. (That means that

S verifies that it’s the legitimate user and platform for this sid)
2. If this is the first activation then S does:

a) Generates a user key using its TPM. We model the generation by utilizing FSIG, i.e., sends
(KeyGen, (U, s)) to FSIG.

b) Once S obtains a key from the TPM, i.e., receiving (Verification key, (U, s), v) from FSIG, it invokes
the AIK of the TPM, which is bound to the platform identity P , to certify that v comes from a
genuine TPM identified as P . We model the AIK certification by sending (Sign, (P, s), v) to FCert.

c) After obtaining a certification from AIK, i.e., receiving (Signature, (P, s), v, σAIK) from FCert,
S sends (Register, U, v, P, σAIK) to FCA, who doesn’t perform any check and just record
(U, v, P, σAIK) if this is the first request from S. From then on, the user key is bound to the
user identity U .

3. S sends (Sign, (U, s),m) to FSIG. Upon receiving (Signature, (U, s),m, σ) from FSIG, S outputs
(Signature, sid,m, σ).

Verification Protocol: When activated with input (Verify, sid,m, σ), where sid = (U,P, s), party S′ does:
1. S′ check whether it has a tuple (U, v, P, σAIK) recorded. If not, then S′ sends (Retrieve, U, P ) to FCA,

and obtains a response (Retrieve, U, v, P, σAIK). If v =⊥ then S′ rejects the signature, i.e., it outputs
(Verified, sid,m, 0). Else it records (U, v, P, σAIK).

2. S′ uses its user key to verify σ, i.e., sends (Verify, (U, s),m, σ, v) to FSIG, and obtains a response
(Verified, (U, s),m, f). If f = 0, S′ outputs (Verified, sid,m, 0).

3. S′ uses its AIK to verify the SKAE extension, i.e., sends (Verify, (P, s), v, σAIK) to FCert, and ob-
tains a response (Verified, (P, s), v, f). If f = 0, S′ outputs (Verified, sid,m, 0). Else, S′ outputs
(Verified, sid,m, 1).

Fig. 2. The SKAE-EX protocol for realizing FD-Cert

Functionality FD-SC

FD-SC proceeds as follows, running with some initiators (U1, P1), . . . , (Un, Pn) and some responders
S1, . . . , Sn, and parameterized by a leakage function l : {0, 1}∗ → {0, 1}∗.
1. Upon receiving an input (Establish-session, sid, Sj , initiator) from some initiator (Ui, Pi), send

(sid, (Ui, Pi), Sj) to the adversary, and wait to receive an input (Establish-session, sid, (Ui, Pi), re-
sponder) from Sj . Once receiving this input, set a boolean variable active. Say that (Ui, Pi) and Sj

are the partners of this session.
2. Upon receiving an input (Send, sid, m) from one of the partners of this session, and if active is set,

send (Receive, sid, m) to the other partner and (Sent, sid, l(m)) to the adversary.

Fig. 3. The Dual-authentication Secure Channel Functionality, FD-SC



TNC in UC 9

4 Analysis of Platform Attestation

In this section we first introduce the ideal platform attestation functionality FP-A which formalizes the
PCR-based platform attestation proposed by TCG, and then show that the TCG platform attestation
protocol securely realizes FP-A given an incorruptible FCert functionality. The incorruptibility models
the protection capability provided by TPM, a tamper-resistant hardware token.

4.1 Platform Attestation Functionality

We first describe the ideal platform attestation functionality FP-A modeling a prover to attest its PCR
information to a verifier informally. See Figure 4 for a precise definition.

Functionality FP-A

FD-SC proceeds as follows, running with some provers P1, . . . , Pn and some verifiers V1, . . . , Vn, and every
prover Pi is initialized with a acceptable PCR status PCRi.
1. Upon receiving an input (Challenge, sid, P , verifier) from some verifier V , do:

a) Send (sid, P, V ) to the adversary, and receive an response (Ok, nonce′) from the adversary. If V
is corrupted, then record nonce′, else generate a fresh nonce and record it. Then output (sid, n)
to the adversary, V and P (n stands for the recorded nonce).

b) Wait to receive an input (Attest, sid, V , prover) from P . Once receiving this input, output
(SentPCR, sid, P , V ) to the adversary.

2. Upon receiving (SendPCR, sid, V , (n, PCR′)) from the adversary, check whether (n, PCR′) is record-
ed. If it’s recorded, output (SentPCR, sid, P , (n, PCR′)) to V . Else, record the pair (n, PCR), and
output (SentPCR, sid, P , (n, PCR)) to V .

3. Upon receiving an input (Corrupt, sid, V , Verifier) from the adversary, mark V as corrupted.
4. Upon receiving an input (Corrupt, sid, P , Prover) from the adversary, change PCR to PCR.

Fig. 4. The Platform Attestation Functionality, FP-A

At beginning, each honest prover is initialized with a PCR status which is acceptable for a honest
verifier. Through the Challenge interface, a verifier declares that it’s willing to verify the PCR status
of a prover. This request is forwarded to the prover and the adversary. If the verifier is corrupted,
FP-A receive a nonce from the adversary and record it. If the verifier is not corrupted, FP-A generates
a fresh random nonce itself and record it. The nonce is then output to the adversary, the verifier
and the prover. Through the Attest interface, the requested prover provides its received nonce and
declares that it wants to attest its PCR status to the verifier. After receiving the challenge and attest
messages, FP-A record the nonce and the current PCR status, then: 1) if the verifier is not corrupted,
FP-A returns the nonce and the current PCR status to the verifier, and 2) if the verifier is corrupted,
and there exists a nonce and a PCR status in the record, FP-A asks the adversary whether to return
the previous or the current PCR status. Through the corruption interface, the adversary can corrupt
any prover or verifier. If the adversary decides to corrupt the prover, the PCR of the prover will be
changed to a unacceptable status. FP-A captures the intuitive notion of TNC:

1. Once the platform is corrupted, which means that the adversary runs some malicious code on the
platform, the PCR will record this code and change to a status which is not acceptable to a honest



10 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

verifier. This property captures the integrity measurement and storage capability of a platform
equipped with a TPM.

2. Against the replay attack for honest parties. FP-A sends not only the PCR status but also a fresh
nonce aiming to prove that the PCR status is fresh.

3. If the verifier is corrupted, the platform attestation will not be reliable. That is, if the nonce is
not fresh, then the adversary can mount a replay attack.

4.2 Analysis of TCG Platform Attestation Protocol

We show that the TCG platform attestation protocol (we call P-Attest for short), depicted in Figure
5, securely realizes FP-A given FCert which models an AIK. In order to model the protection capability
of TPM, corruption of a prover only changes the PCR status of the prover and the certification party
in FCert, which means that the AIK is incorruptible.

TCG Platform Attestation Protocol

Each prover is initialized a PCR status which is valid to the verifier.
1. Upon receiving an input (Challenge, sid, P , verifier), verifier V generates a fresh random nonce n,

sends (sid, V, n) to P .
2. Upon receiving an input (Attest, sid, V , prover), prover P waits for a nonce n from verifier V . Upon

receiving of (sid, V, n), P sets sid′ = (P, sid), sets m = (n, PCR), sends (Sign, sid′,m) to FCert,
obtains the response (Signature, sid′,m, σ), and sends (sid, P,m, σ) to V .

3. Upon receiving (sid, P,m, σ), V sets sid′ = (P, sid), checks whether the nonce in m equals n, sets
m = (n, PCR), sends (Verify, sid′,m, σ) to FCert, and obtains a response (Verified, sid′,m, σ, f). If
f = 1 then V outputs (SentPCR, sid,P,V, (n, PCR)) and halts, else B halts without output.

Fig. 5. The TCG Platform Attestation Protocol

Theorem 3. The P-Attest protocol securely realizes functionality FP-A in the FCert-hybrid model.

Proof. Let A be an adversary that interacts with parties running P-Attest in the FCert-hybrid model.
We construct an ideal world adversary (or simulator) S such that no environment Z can distinguish
whether it’s interacting with A and P-Attest in the real world or it’s interacting with S and FP-A in
the ideal world. S runs a simulated copy of A and simulates for this copy an interaction with parties
running P-Attest. All messages from Z to A and back are forwarded. The operations of S are shown
below:

Simulating the verifier. When an uncorrupted verifier V is activated with input (Challenge, sid,
P , verifier), S obtains this input from FP-A and waits for a message (sid, n) from FP-A. Then, S
simulates a run of V and the interaction with FCert for A.
1. S delivers A the message (sid, V, n) sent from P to V .
2. When receiving a message (sid, P,m, σ) where m = (n, PCR) from A, S simulates for A

the interaction with FCert. That’s, send (Verify, sid′ = (P, sid),m, σ) to A and record the
response. If there exists a recorded signature (m,σ) (simulating FCert), then S deliver the
message (SentPCR, sid, P, V, (n, PCR)) to V . Otherwise, deliver nothing.



TNC in UC 11

Simulating the prover. When an uncorrupted prover P is activated with inputs (Attest, sid, V ,
prover), S obtains this input from FP-A and waits for a message (sid, V, n) from FP-A. Then, S
simulates a run of P and the interaction with FCert for A: S sends to A the message (Sign, sid′ =
(P, sid),m = (n, PCR)) in the name of FCert, and obtains a signature σ from A. Next, S hands
A the message (sid, P,m, σ) sent from P to V .
If the prover is corrupted, which means the PCR status of P is invalid, the simulation is similar
to a uncorrupted party.

Simulating party corruptions. When A corrupts a party, S corrupts the corresponding party in
the ideal world, and provides the obtained information to A. This has no effect on the simulation,
as the real world protocol maintains no secret state.

The only potential case in which the view of Z in the real world and in the ideal world may differ is
if the verifier receives a message (Verified, sid′,m, σ, f = 1) from FCert in the real world, while A never
delivered the message (sid, P,m = (n, PCR), σ). But if A never delivered (sid, P,m = (n, PCR), σ),
then m was never signed by FCert. So in this case, V would always receive (Verified, sid′,m, σ, f = 0).
In a conclusion, the simulation is perfect.

5 Analysis of Complete TNC

We first introduce our general ideal TNC functionality FTNC. We then analyze the complete TNC
protocol, combining TCG attestation protocol and IF-TLS-SKAE protocol, and show that it realizes
the ideal TNC functionality in the (FD-SC,FP-A)-hybrid model. To show the usefulness of the dual-
authentication feature provided by FD-SC, we show that the above simulation will not hold if FD-SC

is replaced with an usual secure channel functionality without dual-authentication feature.

5.1 A General TNC functionality

Our ideal TNC functionality is depicted in Figure 6. Our functionality FTNC is much more general than
the TNC functionality presented in [21] as our functionality models the IF-T protocol and the above
IF-TNCCS protocol as secure channel and platform authentication functionality respectively, while
the TNC functionality in [21] only models the IF-T binding to EAP protocol. Our TNC functionality
captures the following TNC features:

1. User Authentication and Platform Authentication. FD-SC authenticates both user and platform
identities of connecting endpoints.

2. Platform Attestation. FP-A abstracts the main goal of the IF-TNCCS protocol carried in the
secure channel established by IF-T, that is, the platform integrity attestation.

3. Corrupt Platforms. The FP-A models the corruption of a platform in TNC by marking the PCR
status as invalid.

4. Corrupt Users. We model a relaxed network policy which mainly validates the integrity status
reported by a genuine TPM and the platform identity, that is, “integrity information reported by
the platform and by the proof-of-identity supplied by the platform”. Even the user of an endpoint
is corrupted, the endpoint is able to connect to the network if it has valid PCR status. However,
a constrained policy can be easily modeled by changing our functionality.



12 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

Functionality FTNC

FTNC proceeds as follows, running with some NARs and some NAAs. Each NAR is composed of a user U
and a platform P , and is initialized by a valid PCR status PCR.
1. Upon receiving an input (TNC Request, sid, NAR=(U,P ), NAA) from some NAR, send (sid, (U,P ),

NAA) to the adversary, and wait to receive an input (TNC Response, sid, NAR=(U,P ), NAA) from
NAA. Once receiving this input, set a boolean variable active.

2. Upon receiving (TNC Establish, sid, NAR=(U,P ), NAA, f) from the adversary, and if active is set:
a) If neither P nor NAA is corrupted, output (TNC Established, sid, NAR=(U,P ), NAA, 1) to NAA.
b) Else, if NAA is corrupted, output (TNC Established, sid, NAR=(U,P ), NAA, f) to NAA.
c) Else, if P is corrupted, output (TNC Established, sid, NAR=(U,P ), NAA, 0) to NAA.

3. Upon receiving an input (Corrupt Platform, sid, P ), change the PCR of P to PCR and mark P as
corrupted.

4. Upon receiving an input (Corrupt NAA, sid, NAA), mark NAA as corrupted.

Fig. 6. The TNC Functionality, FTNC

5.2 Realizing TNC functionality

Figure 7 shows the complete TNC protocol. We prove it in the following theorem.

Theorem 4. The complete TNC protocol securely realizes functionality FTNC in the (FD-SC,FP-A)-
hybrid model.

Protocol TNC

1. When activated with input (TNC Request, sid, NAR=(U,P ), NAA) by Z, NAR sends an input (Establish-
session, sid, (U,P ), initiator) to FD-SC, then waits for a challenge from NAA.

2. When activated with input (TNC Response, sid, NAR=(U,P ), NAA)by Z, NAA do:
a) Send an input (Establish-session, sid, (U,P ), responder) to FD-SC.
b) Send an input (Challenge, sid, P , verifier) to FP-A, receive (sid, n), and record n.
c) Send (Send, sid, n) to FD-SC.

3. Upon receiving the challenge n from FD-SC, NAR sends (Attest, sid, NAA, prover) to FP-A.
4. Upon receiving (SentPCR, sid, P , m = (n′, PCR′)) from FP-A, NAA checks whether n′ = n and PCR′ is

valid. If m passes the two checks, NAA sets f = 1, else sets f = 0. Then NAA outputs(TNC Established,
sid, NAR=(U,P ), NAA, f).

Fig. 7. The TNC protocol for realizing FTNC

Proof. Let A be an adversary that interacts with parties running TNC in the (FD-SC,FP-A)-hybrid
model. We construct an ideal world adversary S such that no environment Z can distinguish whether
it’s interacting with A and TNC in the real world or it’s interacting with S and FTNC in the ideal
world. As usual, S runs a simulated copy of A and simulates for this copy an interaction with parties
running TNC. All messages from Z to A and back are forwarded. The operations of S are shown
below:



TNC in UC 13

Simulating the NAR. When an uncorrupted NAR is activated with input (TNC Request, sid,
NAR=(U,P ), NAA) by Z, S obtains this input from FTNC. Then S simulates a run of NAR and
the interaction with (FD-SC,FP-A) for A. For the seek of simplicity, we omit the simulation of
NAR, which directly follows the flow of Figure 7. We focus on the interaction with FD-SC and
FP-A:
– When the logic of NAR instructs it to send (Attest, sid, V , prover) to FP-A, send (SentPCR,
sid, P , NAA) to A.

Simulating the NAA. When an uncorrupted NAA is activated with input (TNC Response, sid,
NAR=(U,P ), NAA) by Z, S obtains this input from FTNC. Then S simulates a run of NAA and
the interaction with (FD-SC,FP-A) for A. Similarly, we omit the simulation of NAA, and focus on
the interaction with FD-SC and FP-A:
– When NAA sends (Challenge, sid, P , verifier) to FP-A, send (sid, P, V ) to A.
– When NAA sends a nonce n to FD-SC, send (Send, sid, l(n)) to A in the name of FD-SC.

Simulating party corruptions. When A corrupts NAR or NAA, S corrupts the corresponding
party in the ideal world, and provides the obtained information to A.

It is easy to verify that the above simulation is perfect, i.e., for any environment Z and A the view
of Z in an interaction of A and TNC is distributed identically to the view in an interaction with S
and the ideal TNC functionality.

5.3 Realizing TNC without Dual Authentication

To demonstrate the usefulness of the dual-authentication feature we proposed in this paper, we show
that the complete TNC protocol depicted in Figure 7 cannot realize FTNC if the dual-authentication
feature is removed, i.e., replacing FD-SC with FSC.

Theorem 5. The complete TNC protocol doesn’t UC-realize functionality FTNC in the (FSC,FP-A)-
hybrid model.

Proof. Consider the following environment Z and adversary A. Z first activates a NAR=(U,P1)
with input (TNC Request, sid, NAR=(U,P1), NAA) and a NAA with input (TNC Response, sid,
NAR′=(U,P ), NAA). Then Z instructs A to:

1. Corrupt both the user U and platform P1 of NAR.
2. Instruct NAR to send an input (Establish-session, sid, U , responder) to FSC.
3. After receiving challenge nonce n from FSC, notify Z.

Finally, Z instructs P to send (Attest, sid, V , prover) to FP-A (or activates a NAA′′=(U ′, P )). If NAA
outputs (TNC Established, sid, NAR′=(U,P ), NAA, 1), then Z outputs REAL. Otherwise Z outputs
IDEAL.

In the real execution of TNC, NAA authenticates the user U and checks that the PCR status of
platform P is not corrupted, so it would output that NAR is allowed to access the requested network.
However, in the simulation of ideal world, FTNC never receives the TNC request from NAR=(U,P ),
so it would always output that NAR is not allowed to access the requested network.



14 Shijun Zhao, Qianying Zhang, Yu Qin, and Dengguo Feng

6 Conclusion

We analyze the complete TNC protocol, combining the IF-T binding to TLS and TCG platform
attestation protocol, in the UC framework. We show that the SKAE extension introduced by TCG
plays an important part in preventing the MitM attack presented in [1]. Our roadmap for the analysis
of the complete TNC protocol adopts the modular feature of UC framework. We partition the com-
plete TNC into a secure channel functionality and a platform attestation functionality. Then show
that the IF-TLS-SKAE protocol and the basic TCG platform attestation protocol securely realizes
the two primitive functionalities respectively. Finally, we use the composition theorem to argue that
the complete TNC protocol realizes TNC. Besides, the dual-authentication certification functionality
FD-Cert and the platform attestation functionality FP-A enable us to analyze protocols that use SKAE
extension or TCG platform attestation in a modular way.

References

1. N. Asokan, V. Niemi, and K. Nyberg. Man-in-the-middle in tunnelled authentication protocols. In Security
Protocols, pages 28–41. Springer, 2005.

2. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 136–145. IEEE, 2001.

3. R. Canetti. Universally composable signature, certification, and authentication. In Computer Security
Foundations Workshop, 2004. Proceedings. 17th IEEE, pages 219–233. IEEE, 2004.

4. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels. In
Advances in Cryptology-EUROCRYPT 2002, pages 337–351. Springer, 2002.

5. L. Chen and B. Warinschi. Security of the TCG Privacy-CA solution. In Embedded and Ubiquitous
Computing (EUC), 2010 IEEE/IFIP 8th International Conference on, pages 609–616. IEEE, 2010.

6. S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk. Universally composable security analysis
of tls. In Provable Security, pages 313–327. Springer, 2008.

7. Institute for Electrical and Electronics Engineers (IEEE). IEEE802, Port-Based Network Access Control,
IEEE Std 802.1X-2004, December 2004.

8. R. Küsters and M. Tuengerthal. Joint state theorems for public-key encryption and digital signature
functionalities with local computation. In Computer Security Foundations Symposium, 2008. CSF’08.
IEEE 21st, pages 270–284. IEEE, 2008.

9. J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execution infrastructure
for tcb minimization. In ACM SIGOPS Operating Systems Review, volume 42, pages 315–328. ACM,
2008.

10. A. Melnikov and K. Zeilenga. Simple Authentication and Security Layer (SASL). Technical report, RFC
4422, June, 2006.

11. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure
message transmission. In Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 184–200. IEEE, 2001.

12. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementation of a tcg-based integrity
measurement architecture. In USENIX Security Symposium, volume 13, pages 16–16, 2004.

13. Trusted Computing Group. Subject Key Attestation Evidence Extension Version 1.0, Revision 7., 16 June
2005.

14. Trusted Computing Group. TNC IF-T: Protocol Bindings for Tunneled EAP Methods Specification
Version 1.1, Revision 10., 21 May 2007.

15. Trusted Computing Group. Trusted Platform Module Library Part 1: Architecture, Family “2.0” Level
00, Revision 00.99., 22 August 2013.



TNC in UC 15

16. Trusted Computing Group. Trusted Platform Module Library Part 3: Commands, Family “2.0” Level 00,
Revision 00.99., 22 August 2013.

17. Trusted Computing Group. TNC IF-TNCCS: TLV Binding Specification Version 2.0, Revision 16., 22
January 2010.

18. Trusted Computing Group. TNC IF-T: Binding to TLS Specification Version 2.0, Revision 7., 27 February
2013.

19. Trusted Computing Group. TNC Architecture for Interoperability Specification Version 1.5, Revision 3.,
7 May 2012.

20. Y. Xiao, Y. Wang, and L. Pang. Security analysis and improvement of TNC IF-T Protocol Binding to
TLS. Communications, China, 10(7):85–92, 2013.

21. J. Zhang, J. Ma, and S. Moon. Universally composable secure TNC model and EAP-TNC protocol in
IF-T. Science China Information Sciences, 53(3):465–482, 2010.

22. Z. Zhang, L. Zhu, F. Wang, L. Liao, C. Guo, and H. Wang. Computationally sound symbolic analysis of
EAP-TNC protocol. In Trusted Systems, pages 113–128. Springer, 2012.


