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Abstract. It has been an open problem for a number of years to construct an identity-based fully
homomorphic encryption (IBFHE) scheme (first mentioned by Naccache at CHES/CRYPTO 2010).
At CRYPTO 2013, Gentry, Sahai and Waters largely settled the problem by presenting leveled IBFHE
constructions based on the Learning With Errors problem. However their constructions are not boot-
strappable, and as a result, are not “pure” IBFHE schemes. The major challenge with bootstrapping in
the identity-based setting is that it must be possible to non-interactively derive from the public param-
eters an “encryption” of the secret key for an arbitrary identity. All presently-known leveled IBFHE
schemes only allow bootstrapping if such an “encryption” of the secret key is supplied out-of-band.
In this work, we present a “pure” IBFHE scheme from indistinguishability obfuscation, and extend
the result to the attribute-based setting. Our attribute-based scheme is the first to support homo-
morphic evaluation on ciphertexts with different attributes. Finally, we characterize presently-known
leveled IBFHE schemes with a view to developing a “compiler” from a leveled IBFHE scheme to a
bootstrappable IBFHE scheme, and sufficient conditions are identified.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic primitive that facilitates arbitrary computation
on encrypted data. Since Gentry’s breakthrough realization of FHE in 2009 [1], many improved variants
have appeared in the literature [2–6]. Leveled FHE is a relaxation that supports evaluation of circuits of
limited (multiplicative) depth. Such a limit L is specified in advance of generating the parameters of the
scheme. The size of the parameters along with the size of keys and ciphertexts are allowed to depend on
L. In the public-key setting, a leveled FHE scheme can be transformed into a “pure” FHE scheme (i.e. a
scheme supporting evaluation of circuits of unlimited depth) via Gentry’s bootstrapping theorem [1].

In brief, the process of bootstrapping entails using the scheme to homomorphically evaluate its own de-
cryption circuit. More precisely, ciphertexts in existing FHE schemes contain a level of “noise”. As long as
this “noise” remains below a certain threshold, decryption can be performed correctly. The goal of bootstrap-
ping is to return the noise to a reduced level, so homomorphic operations can continue to be performed. This
is achieved by publishing encryptions of the secret key bits, and homomorphically evaluating the scheme’s
decryption circuit on a “noisy” ciphertext to produce a ciphertext with less noise.

Identity-Based Encryption (IBE) is centered around the notion that a user’s public key can be efficiently
derived from an identity string and system-wide public parameters / master public key. The public parameters
are chosen by a trusted authority along with a secret trapdoor (master secret key), which is used to extract
secret keys for user identities. The first secure IBE schemes were presented in 2001 by Boneh and Franklin [7]
(based on bilinear pairings), and Cocks [8] (based on the quadratic residuosity problem).

At his talk at CHES/Crypto 2010, Naccache [9] mentioned “identity-based fully homomorphic encryp-
tion” as an open problem. At Crypto 2013, Gentry, Sahai and Waters presented the first identity-based
(leveled) fully homomorphic encryption scheme [6], largely settling the problem raised by Naccache, which
had been further explored in [10,11].

Achieving fully homomorphic encryption (FHE) in the identity-based setting turned out to be quite a
tricky problem, for a variety of reasons. Prior to [6], there were two paradigms for constructing leveled FHE:

1. Gentry’s original paradigm based on ideals, which was introduced in [1] (works which built on this
include [2, 3]); and

2. Brakersi and Vaikuntanathan’s paradigm based on the learning with errors (LWE) problem [4,5] entailing
techniques such as relinearization, modulus switching and dimension reduction.



It appeared like there was limited potential for obtaining identity-based FHE from the first paradigm because
no secure IBE schemes had been constructed with this structure; that is, roughly speaking no IBE scheme
associated an identity with an ideal, and a secret key with a “short” generator for that ideal.

The second paradigm appeared more fruitful. Starting with the work of Gentry, Peikert and Vaikun-
tanathan (GPV) [12], constructions of IBE from LWE had emerged [13–15]. But it was not straightforward
to adapt Brakersi and Vaikuntanathan’s (BV) ideas to the identity-based setting. The main reason for this is
that BV-type FHE relies on having “encryptions” of some secret key information, termed an evaluation key.
If a user directly supplies this information to an evaluator out-of-band, then evaluation can be accomplished
as in BV. IBE schemes where the evaluation key can be generated by the key holder, but cannot be derived
non-interactively, have been termed “weak” [10, 11]. Due to the difficulty of non-interactively deriving an
“encryption” of secret key information for a given identity (based on public information alone) meant that
the BV paradigm also seemed inhospitable to IBE.

Recently Gentry, Sahai and Waters (GSW) [6] developed a new paradigm from LWE where the secret
key is an approximate eigenvector of a ciphertext. Their construction is both elegant and asymptotically
faster than existing FHE schemes. Furthermore, it does not rely on an evaluation key, which means that
it can be adapted to support IBE. In fact, a “compiler” was proposed in [6] to transform an LWE-based
IBE satisfying certain properties into an identity-based (leveled) fully homomorphic encryption (IBFHE)
scheme, and it was noted that several existing LWE-based IBE schemes satisfy the required properties. The
resulting IBFHE constructions are leveled i.e. they can evaluate circuits of bounded multiplicative depth
(polynomial in the security parameter, and fixed prior to generation of the public parameters). However
unlike their public-key counterparts, these constructions are not bootstrappable, since bootstrapping relies
on “encryptions” of secret key information, akin to an evaluation key. As such, to the best of our knowledge,
there are no known “pure” IBFHE schemes in the literature, since Gentry’s bootstrapping theorem from [1]
is the only known way of converting a leveled FHE scheme to a “pure” FHE scheme.

In this paper, we identify sufficient conditions for these leveled IBFHE constructions to be bootstrappable,
and we construct the first “pure” IBFHE scheme, which we believe finally resolves the question raised by
Naccache [9].

1.1 Contributions

Construction of “Pure” IBFHE We construct the first “pure” IBFHE scheme using the technique of
“punctured programming” [16], a powerful tool combining an indistinguishability obfuscator [17] with a
puncturable pesudorandom function (PRF) [18–20],

A Compiler from leveled IBFHE to “Pure” IBFHE We exploit indistinguishability obfuscation in
constructing a compiler from a leveled IBFHE satisfying certain properties to a bootstrappable, and hence
“pure”, IBFHE. Our main idea is to include in the public parameters an obfuscation of a program (with the
master secret key embedded) so that the evaluator can non-interactively derive an “evaluation key” for any
identity. Although our compiler falls short of working with arbitrary leveled IBFHE schemes, we establish
sufficient conditions for a leveled IBFHE to satisfy in order for it to be bootstrappable. This leads us to an
interesting characterization of compatible schemes, which also encompasses our positive result above.

Attribute-Based Fully Homomorphic Encryption (ABFHE) in the Multi-Attribute Setting
Sahai and Waters [21] introduced a generalization of IBE known as Attribute-Based Encryption (ABE). In a
(key-policy)? ABE scheme, a user Alice encrypts her message with a descriptive tag or attribute. The trusted
authority issues secret keys for access policies to users depending on their credentials. Hence, if a user Bob is
given a secret key for a policy f , he can decrypt messages with attributes that satisfy f . More precisely, let
ca be a ciphertext that encrypts the message m with some attribute a. Then Bob can recover the message
m if and only if m satisfies his policy f ; that is, f(a) = 1 (note that policies can be viewed as predicates).

Gentry, Sahai and Waters [6] constructed the first leveled Attribute-Based Fully Homomorphic Encryp-
tion scheme (ABFHE). However, their scheme only works in the single-attribute setting. In other words,
homomorphic evaluation is supported only for ciphertexts with the same attribute.

?There are other variants such as ciphertext-policy ABE [22], but we focus on key-policy ABE here.



We present the first ABFHE that supports evaluation on ciphertexts with different attributes. We for-
malize the notion of multi-attribute ABFHE, which can be viewed as an attribute-based analog to the notion
of multi-key FHE [23].

Example Scenario
To further illustrate the usefulness of multi-attribute ABFHE, we provide a sketch of an application scenario.
Consider a hospital H that avails of the computational facilities of a cloud provider E. Data protection
legislation requires the hospital to encrypt all sensitive data stored on third party servers. The hospital deploys
attribute-based encryption to manage access to potentially sensitive data. Therefore it manages a “trusted
authority” that issues secret keys for access policies to staff in accordance with their roles / credentials.
Beyond deploying standard attribute-based encryption, H elects to adopt multi-attribute ABFHE because
this allows computation to be performed on encrypted data stored at a third party facility such as E.

Parties such as outside researchers, medical practitioners and internal staff in H are able to encrypt
sensitive data with appropriate attributes in order to limit access to authorized staff. For example, a doctor
in the maternity unit might encrypt medical data with the attribute “MATERNITY” and a researcher in the
cardiology unit might encrypt her data with the attribute “CARDIOLOGY”. Suppose both encrypted data
sets are sent to the cloud provider E to carry out computational processing on the data (while remaining
encrypted). A multi-attribute ABFHE allows E to perform the desired computation homomorphically on
both data sets irrespective of the fact that the data sets were encrypted with different attributes.

Suppose a staff member at H has an access policy f defined by

f(x) , x = “MATERNITY” OR x = “CARDIOLOGY”.

Then this staff member is able to decrypt the result of the computation. This matches our intuition because
her policy permits her access to both the data sets used in the computation. However, a member of staff
whose access policy permits access to either “MATERNITY” or “CARDIOLOGY” (but no both) should
not be able to decrypt the result.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter κ, written negl(κ), if it is asymptotically
bounded from above by the reciprocal of all polynomials in κ.

For a probability distribution D, we denote by x
$←− D the fact that x is sampled according to D. We

overload the notation for a set S i.e. y
$←− S denotes that y is sampled uniformly from S. Let D0 and D1

be distributions. We denote by D0 ≈
C
D1 and the D0 ≈

S
D1 the facts that D0 and D1 are computationally

indistinguishable and statistically indistinguishable respectively.
We use the notation [k] for an integer k to denote the set {1, . . . , k}.

2.2 Identity Based Encryption

An Identity Based Encryption (IBE) scheme is a tuple of probabilistic polynomial time (PPT) algorithms
(Setup,KeyGen,Encrypt,Decrypt) defined with respect a message spaceM, an identity space I and a cipher-
text space C as follows:

• Setup(1κ):
On input (in unary) a security parameter κ, generate public parameters PP and a master secret key
MSK. Output (PP,MSK).

• KeyGen(MSK, id):
On input master secret key MSK and an identity id: derive and output a secret key skid for identity id.

• Encrypt(PP, id,m):
On input public parameters PP, an identity id, and a message m ∈ M, output a ciphertext c ∈ C that
encrypts m under identity id.



• Decrypt(skid, c):
On input a secret key skid for identity id and a ciphertext c ∈ C, output m′ if c is a valid encryption
under id; output a failure symbol ⊥ otherwise.

Indistinguishability under a chosen plaintext attack (IND-CPA) for IBE comes in two flavors - selective
(denoted by IND-sID-CPA) and full/adaptive (denoted by IND-ID-CPA). In the former, the adversary has to
choose an identity to attack prior to receiving the public parameters, whereas in the latter, the adversary
can make arbitrary secret key queries before choosing a target identity. Formally, the security notions are
defined by an adversary A’s success in the following game(s).

• Set id∗ ← ⊥.
• (Selective-security only): A chooses an identity id∗ ← I to attack.
• The challenger generates (PP,MSK)← Setup(1κ), and gives PP to A.
• Key Queries (1): A can make queries to an oracle O defined by

O(id) =

{
KeyGen(MSK, id) if id 6= id∗

⊥ otherwise
.

• (Full-security only): A chooses its target identity id∗ ← I now.
• Challenge Phase: A chooses two messages m0,m1 ∈M and sends them to the challenger.

• The challenger uniformly samples a bit b
$←− {0, 1}, and returns c∗ ← Encrypt(PP, id∗,mb).

• Key Queries (2): A makes additional queries to O.
• Guess: A outputs a guess bit b′.

The adversary is said to win the above game if b = b′.

2.3 Identity-Based Fully Homomorphic Encryption (IBFHE)

We first define Leveled IBFHE. This definition is for the single-identity setting, which we consider in this
paper. This means that evaluation is supported only for ciphertexts with the same identity.

Definition 1. A Leveled IBFHE scheme with message space M, identity space I, a class of circuits C ⊆
M∗ →M and ciphertext space C is a tuple of PPT algorithms (Setup,KeyGen,Encrypt,Decrypt,Eval) defined
as follows:

• Setup(1κ, 1L):
On input (in unary) a security parameter κ, and a number of levels L (maximum circuit depth to support)
generate public parameters PP and a master secret key MSK. Output (PP,MSK).

• KeyGen, Encrypt and Decrypt are defined the same as IBE.
• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ciphertexts c1, . . . , c` ∈ C,

output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1κ), id ∈ I, C : M` → M ∈ {C ∈ C : depth(C) ≤ L},
µ1, . . . , µ` ∈M, ci ← Encrypt(PP, id, µi) for i ∈ [`], and c′ ← Eval(PP, C, c1, . . . , c`):
• Correctness

Decrypt(sk, c′) = C(µ1, . . . , µ`) (2.1)

for any sk← KeyGen(MSK, id).
• Compactness

|c′| = poly(κ) (2.2)

In a leveled fully homomorphic encryption scheme, the size of the public parameters along with the size of
keys are allowed to depend on L.

There are different ways to define bootstrapping; the formulation here was chosen to best fit with the
results in this paper. We assume without loss of generality that the class of circuits C supported by the
scheme is built from a set of binary operations e.g: {⊕,�} i.e. ⊕ :M×M→M and � :M×M→M.



Definition 2. A leveled IBFHE is said to be bootstrappable if there exists a pair of PPT algorithms
(GenBootstrapKey,Bootstrap) defined as follows:

• GenBootstrapKey(PP, id) : takes as input public parameters PP and an identity id, and outputs a boot-
strapping key bkid.

• Bootstrap(PP, bkid, c) takes as input public parameters PP, a bootstrapping key bkid for identity id, and
a ciphertext c ∈ C, and outputs a ciphertext c′ ∈ C.

Over all (PP,MSK): for every pair of ciphertexts c1, c2 ∈ C, all identities id and all secret keys skid and for
all ◦ ∈ {⊕,�}:

Decrypt(skid,Eval(◦,Bootstrap(PP, id, c1),Bootstrap(PP, id, c2)) = Decrypt(skid, c1) ◦ Decrypt(skid, c2).

Informally, what the above definition says is that at least one additional homomorphic operation (either ⊕
or �) can be applied to a pair of “refreshed” (i.e. bootstrapped) ciphertexts before bootstrapping is needed
again. For a more thorough discussion on bootstrapping, we refer the reader to [1].

2.4 Indistinguishability Obfuscation

Garg et al. [17] recently introduced a candidate construction of an indistinguishability obfuscator based
on multi-linear maps. Many of our constructions in this work depend on the notion of indistinguishability
obfuscation. Here we give a brief overview of its syntax and security definition.

Definition 3 (Indistinguishability Obfuscation (Based on Definition 7 from [24])). A uniform
PPT machine iO is called an indistinguishability obfuscator for every circuit class {Cκ} if the following two
conditions are met:

• Correctness: For every κ ∈ N, for every C ∈ Cκ, for every x in the domain of C, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ, if C0(x) = C1(x) for all
inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]| − |Pr[A(iO(C1)) = 1]| ≤ negl(κ).

2.5 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is a constrained PRF (Key,Eval) with an additional PPT
algorithm Puncture. Let n(·) and m(·) be polynomials. Our definition here is based on [24] (Definition 3.2).
A PRF key K is generated with the PPT algorithm Key which takes as input a security parameter κ. The
Eval algorithm is deterministic, and on input a key K and an input string x ∈ {0, 1}n(κ), outputs a string
y ∈ {0, 1}m(κ).

A puncturable PRF allows one to obtain a “punctured” key K ′ ← Puncture(K,S) with respect to a
subset of input strings S ⊂ {0, 1}n(κ) with |S| = poly(κ). It is required that Eval(K,x) = Eval(K ′, x) ∀x ∈
{0, 1}n(κ) \S, and for any poly-bounded adversary (A1,A2) with S ← A1(1κ) ⊂ {0, 1}n(κ) and |S| = poly(κ),
any key K ← Key(1κ), any K ′ ← Puncture(K,S), and any x ∈ S, it holds that

Pr[A2(K ′, x,Eval(K,x)) = 1]− Pr[A2(K ′, x, u) = 1] ≤ negl(κ)

where u
$←− {0, 1}m(κ).



3 Construction of “Pure” IBFHE

We now construct a “pure” IBFHE from indistinguishability obfuscation. The main idea is to use the tech-
nique of punctured programming, which involves using indistinguishability obfuscation together with a punc-
turable PRF. In our case, we use the puncturable PRF for the derivation of a user’s public key from her
identity. Moreover, a unique key pair for a public-key encryption (PKE) scheme can be associated with every
identity. If the PKE scheme is also “pure” fully-homomorphic, then we obtain a “pure” IBFHE scheme.
Let EFHE := (Gen,Encrypt,Decrypt,Eval) be a public-key FHE. We denote by PKFHE and SKFHE its public-
key and private-key space respectively. Consider the following function FMapPK : I → PKFHE that maps an
identity id ∈ I to a public key for EFHE:

Program FMapPK(id) :

1. Compute rid ← PRF.Eval(K, id).
2. Compute (pkid, skid)← EFHE.Gen(1κ; rid).
3. Output pkid

A formal description of a scheme Ê∗ that uses an obfuscation of FMapPK is as follows.

• Ê∗.Setup(1κ): Compute K ← PRF.Key(1κ), compute obfuscation H ← iO(FMapPK) of FMapPK with K
embedded. Output (H,K) (note that H constitutes the public parameters and K constitutes the master
secret key).

• Ê∗.KeyGen(K, id): Compute rid ← PRF.Eval(K, id), compute (pkid, skid) ← EFHE.Gen(1κ; rid), and output
skid.

• Ê∗.Encrypt(H, id,m): Compute pkid ← H(id) and output EFHE.Encrypt(pkid,m).
• Ê∗.Decrypt(skid, c): Output EFHE.Decrypt(skid, c).
• Ê∗.Eval(H,C, c1, . . . , c`): Compute pkid ← H(id) and output EFHE.Eval(pkid, C, c1, . . . , c`).

Lemma 1. Assuming indistinguishability obfuscation, a secure puncturable PRF and an IND-CPA-secure
public-key FHE scheme EFHE, the scheme Ê∗ is IND-sID-CPA secure.

Proof. We prove the lemma via a hybrid argument.
Game 0: This is the real system.
Game 1: This is the same as Game 0 except for the following changes. Suppose the adversary chooses id∗

as the identity to attack. We compute K ′ ← PRF.Puncture(K, id∗) and answer secret key requests using K ′

instead of K.
The adversary cannot detect any difference between the games since for all id 6= id∗, it holds that

PRF.Eval(K, id) = PRF.Eval(k′, id).
Game 2 This is the same as Game 1 except that we make the following changes to FMapPK:

• Add before step 1: if id = id∗, then output pkid∗ (defined below). Else run steps 1 - 3.
• Replace K with K ′.

where (pkid∗ , skid)← EFHE.Gen(1κ; rid∗) and rid∗ ← PRF.Eval(K, id∗).
Observe that the modified function is identical to FMapPK, and due to the security of indistinguishability

obfuscation, their respective obfuscations are thus computationally indistinguishable.
Game 3: This is the same as Game 2 except that we change how pkid∗ is computed. We do this indirectly by

changing how rid∗ is computed instead. More precisely, we choose a uniformly random string rid∗
$←− {0, 1}m

where m is the length of the pseudorandom outputs of PRF.Eval i.e. m = |PRF.Eval(K, id∗)|.
By the security of the puncturable PRF, we have that

{(K ′, id∗,PRF.Eval(K, id∗)} ≈
C
{(K ′, id∗, r) : r

$←− {0, 1}m)}.

It follows that Game 2 and Game 3 are computationally indistinguishable.
Game 4: This is the same as Game 3 except that we replace the challenge ciphertext with an encryption of
a random message. The adversary has a zero advantage in this game.



If a PPT adversary A can distinguish between Game 3 and Game 4, then there exists a PPT adversary
B that can use A to attack the IND-sID-CPA security of EFHE. When B receives the challenger’s public key
pk, it sets pkid∗ ← pk where id∗ is the target identity chosen by A. Note that pkid∗ has the same distribution
as that from Game 3. Suppose m0 and m1 are the messages chosen by A. B samples a random bit b, and

also samples a random message m′
$←−M, and sends (mb,m

′) to the IND-CPA challenger, who responds with
a challenge ciphertext c∗. Then B relays c∗ to A as the challenge ciphertext. Let b′ denote the random bit
chosen by the challenger. If b′ = 0, then the game is distributed identically to Game 3; otherwise if b′ = 1
it is distributed identically to Game 4. It follows that any A with a non-negligible advantage distinguishing
between the games contradicts the hypothesized IND-CPA security of EFHE. ut

Theorem 1. Assuming indistinguishability obfuscation, one-way functions and fully homomorphic encryp-
tion, there exists an IND-sID-CPA-secure “pure” IBFHE scheme i.e. an identity-based scheme that can ho-
momorphically evaluate all circuits.

Proof. The construction Ê∗ is fully homomorphic if the underlying PKE scheme EFHE is fully homomorphic.
Lemma 1 shows that Ê∗ is IND-sID-CPA secure assuming indistinguishability obfuscation, one-way functions
and the IND-CPA security of EFHE. The result follows. ut

3.1 Extension to Attribute Based Encryption

The scheme Ê∗ can be extended to an Attribute Based Encryption (ABE) scheme. Recall that in a (key-
policy) ABE scheme, an encryptor associates an attribute a ∈ A with her message, whereas a decryptor
can only successfully decrypt a ciphertext with attribute a ∈ A if he holds a secret key for a policy (i.e.
a predicate) f : A → {0, 1} with f(a) = 1. We denote by F the class of supported policies. Therefore, in
an ABE scheme, the trusted authority issues secret keys for policies instead of identities as in IBE. The
fundamental difference is that there is no longer a one-to-one correspondence between attributes and policies
(which is the case in IBE).

Beyond notationally replacing the set of identities I with a set of attributes A in Ê∗, nothing changes
for setup, encryption and evaluation. The primary change takes place with respect to key generation. In
KeyGen, given a punctured PRF key K ′ and a policy f ∈ F, we return as the secret key for f an obfuscation
df ← iO(FDecf ), where FDecf is defined as follows with respect to f :

Program FDecf (a, c) :

1. If f(a) = 0, Output ⊥.
2. Compute ra ← PRF.Eval(K, a).
3. Compute (pka, ska)← EFHE.Gen(1κ; ra).
4. Output EFHE.Decrypt(ska, c).

Decryption is straightforward: given a secret key for f , namely the obfuscation df , a decryptor simply
computes df (a, c) where a is the attribute associated with ciphertext c. Hence, we obtain an ABFHE for
general-purpose policies f .

3.2 Multi-Attribute ABFHE

One of the limitations of our ABFHE construction is that homomorphic evaluation is restricted to the single-
attribute setting. In other words, homomorphic evaluation is only supported for ciphertexts with the same
attribute. In fact, this is the case for the only known leveled ABFHE in the literature [6].

A related notion to multi-attribute ABFHE was formalized in [25], although we will use a simpler def-
inition here. Recall our illustrated example from the introduction, where a computation was performed on
data encrypted under the attribute “MATERNITY” along with data encrypted under the attribute “CAR-
DIOLOGY”. In this case, the number of distinct attributes was 2.

Let M be an upper bound on the number of distinct attributes supported when homomorphically evaluat-
ing a circuit. In multi-attribute ABFHE, the main syntactic change is that the size of an evaluated ciphertext



is allowed to depend on M . Also, M is a parameter that is specified in advance of generating the public
parameters.

To be more precise, consider ciphertexts c1, . . . , c` passed to the Eval algorithm. Each of the ` ciphertexts
may have a different attribute. Thus there is at most k ≤ ` distinct attributes in this set. As long as k ≤M ,
the scheme can handle the evaluation of a circuit. Let c∗ ← Eval(PP, C, c1, . . . , c`) be an evaluated ciphertext,
where PP is the public parameters and C is a circuit. It is required that |c∗| = poly(κ,M).

The main idea in [25] is to use multi-key FHE, as introduced by López-Alt, Tromer and Vaikuntanathan
[23], to construct a scheme with similar properties to a multi-attribute ABFHE, but with a few limitations.
One of these limitations is that only a bounded number of ciphertexts N can be evaluated (where N is
fixed a priori), regardless of whether there are less than N distinct attributes. So basically, the scheme
from [25] places a limit on the number of independent senders. In contrast, multi-attribute ABFHE permits
an unbounded number of independent senders provided the total number of distinct attributes is at most
M .

Multi-Attribute ABFHE can be viewed as an attribute-based analog to multi-key FHE from [23]. In
multi-key FHE, the size of evaluated ciphertexts depends on an a priori fixed parameter M , which represents
the number of independent keys tolerated by the scheme. Hence data encrypted under at most M distinct
public keys pk1, . . . , pkM can be used together in an evaluation.

We exploit multi-key FHE to construct a multi-attribute ABFHE. Our scheme is very similar to our
(single-attribute) ABFHE scheme described above in Section 3.1. The main change is that EFHE is replaced
with a multi-key FHE scheme EMKFHE (such as the NTRU-based scheme from [23]). The latter is instantiated
with parameter M supplied when generating the public parameters. Suppose a collection of input ciphertexts
c1, . . . , c` are associated with a set of k ≤M distinct attributes a1, . . . , ak ∈ A. Hence, an evaluated ciphertext
c∗ is associated with a set A = {a1, . . . , ak}.

Decryption depends on the intended semantics. One may wish that the decryption process is collaborative
i.e. there may not be a single f that satisfies all k attributes, but users may share secret keys for a set of
policies {f} that “covers all” k attributes. Alternatively, and this is the approach taken in [25], it may be
desired that a user can only decrypt c∗ if she has a secret key for a policy f that satisfies all k attributes. For
simplicity, the approach taken here offers security for only the former approach, but it is not difficult to adapt
this to achieve security for the latter. Security relies on whether there is an efficient test to check whether
a ciphertext has been “fully decrypted”. More precisely, we require that EMKFHE.Decrypt({ska1 , . . . , skak}, c)
outputs a message m ∈M if and only if the supplied secret keys ska1 , . . . , skak are sufficient to fully decrypt
to a plaintext message, and outputs ⊥ otherwise. This is the case for the scheme in [23] with all but negligible
probability.

Program FDecf (A, c) :

1. Set k ← |A|
2. Parse A as {a1, . . . , ak}.
3. If k = 0 or ∃i ∈ [k] f(ai) = 0, Output ⊥.
4. For i ∈ [k]:

(a) Compute rai ← PRF.Eval(K, ai).
(b) Compute (pkai , skai)← EMKFHE.Gen(1κ; rai).

5. Output EMKFHE.Decrypt({ska1 , . . . , skak}, c).

4 A Compiler to Transform a Leveled IBFHE into a “Pure” IBFHE

So far we have obtained “pure” IBFHE, ABFHE and multi-attribute ABFHE schemes. Although these
constructions are impractical, they serve as possibility results for these primitives. Next we turn our attention
to obtaining a “compiler” to transforming an arbitrary leveled IBFHE into a bootstrappable IBFHE, and
as a consequence, a “pure” IBFHE. One of the primary reasons for this is efficiency. One of the reasons our
previous constructions are impractical is that they rely on indistinguishability obfuscation for the frequently
used process of deriving a public-key for a user’s identity. With appropriate parameters, bootstrapping is
a process that might be carried out infrequently - or needed only in especially rare occasions. Therefore,



preserving the performance of existing leveled IBFHEs for encryption, decryption and evaluation of “not-
too-deep” circuits is desirable. But having the capability to bootstrap, even if expensive, is useful in those
cases where evaluation of a deep circuit is needed. This is particularly true in the identity-based setting
because keys cannot be generated on a once-off basis as they might be in many applications?? of public-key
FHE, nor can they be changed as frequently, since all users of the identity-based infrastructure are affected.

Intuitively, the central idea to make a leveled IBFHE scheme bootstrappable is as follows. Firstly, we
include an obfuscation of a program in the public parameters. This program “hides” the master secret key
(trapdoor) of the scheme. Such a program can use the trapdoor to generate a secret key for an identity,
and then use that secret key to output a bootstrapping key that is derived from the secret key. Hence, an
evaluator can run the obfuscated program to non-interactively accomplish bootstrapping.

However in order to prove selective security of such a scheme, we need to remove all secret key information
for the adversary’s target identity. The reason for this is that our obfuscator is not a virtual black-box
obfuscator i.e. we cannot argue that the obfuscated program leaks no information about the trapdoor to the
adversary. Therefore, certain properties are needed of a leveled IBFHE scheme E before it is admissible for
our “compiler”.

4.1 Weakly-bootstrappable IBFHE

Our starting point is leveled IBFHE schemes, such as those constructed via the GSW compiler from [6],
that support bootstrapping when given “encryptions” of secret key bits. We refer to such “encryptions” of
secret key bits as a bootstrapping key. As mentioned in the introduction, there is no known way (in current
schemes) to non-interactively derive a bootstrapping key for a given identity from the public parameters
alone. The only way bootstrapping can be achieved in such schemes is when a bootstrapping key is passed
to the evaluator out-of-band, which breaks an attractive property of IBE, namely that all keys are derivable
from the public parameters and a user’s identity alone.

We now give a formal definition for a leveled IBFHE that supports bootstrapping when supplied with a
bootstrapping key, and we say such a scheme is weakly bootstrappable. The main difference between weakly
bootstrappable and bootstrappable (see Definition 2) is that the former requires a secret key for an identity
in order to generate a bootstrapping key, whereas the latter only needs an identity. Note that the leveled
IBFHEs from [6] are weakly bootstrappable.

Definition 4. A leveled IBFHE scheme E is said to be weakly bootstrappable if there exists a pair of PPT al-
gorithms (WGenBootstrapKey,Bootstrap) where Bootstrap is defined as in Definition 2 and WGenBootstrapKey
is defined as follows:

• WGenBootstrapKey(PP, skid) : takes as input public parameters PP and a secret key skid for identity id,
and outputs a bootstrapping key bkid.

Like a bootstrappable leveled IBFHE, a weakly-bootstrappable leveled IBFHE requires a circular security
assumption to be made to prove IND-sID-CPA security. This is because an adversary is given bkid∗ for her
target identity id∗, which consists of encryptions of secret key bits.

4.2 Single-Point Trapdoor Puncturability

The next requirement we place on a leveled IBFHE to work with our compiler is called single-point trapdoor
puncturability. Intuitively, this means that there is a way to “puncture” the master secret key (aka trapdoor)
T to yield a proper subset T ′ ⊂ T that is missing information needed to derive a secret key for a given identity
id∗. Furthermore, for all other identities id 6= id∗, the punctured trapdoor contains enough information to
efficiently derive the same secret key for id as one would derive with the original trapdoor T , assuming we
are given the same randomness. A formal definition will help to elucidate this notion.

??For many applications of public-key FHE, leveled FHE is usually adequate because a new key pair can be
generated on a once-off basis for a particular circuit, whose depth is known, and a leveled FHE can be parameterized
accordingly.



Definition 5. An IBE scheme E is single-point trapdoor-puncturable if there exists PPT algorithms TrapPuncture
and SimKeyGen with

• TrapPuncture(T, id∗): On input trapdoor T and identity id∗, output a “punctured trapdoor” T ′ ⊂ T with
respect to id∗.
• SimKeyGen(T ′, id): On input a “punctured trapdoor” T ′ with respect to some identity id∗, and an identity
id, output a secret key for id if id 6= id∗, and ⊥ otherwise.

and these algorithms satisfy the following conditions for any (PP, T ) ← E .Setup(1κ), id∗ ∈ I and T ′ ←
TrapPuncture(T, id∗) ⊂ T :

E .KeyGen(T, id) = SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}. (4.1)

4.3 Our Compiler

Let E be a leveled IBFHE scheme. The required properties that E must satisfy for compatibility with our
compiler are:

Property 1: (Weakly-Bootstrappable) E is weakly-bootstrappable i.e. there exists a pair of PPT algo-
rithms (WGenBootstrapKey,Bootstrap) satisfying Definition 4.

Property 2: (Single-Point Trapdoor-Puncturable) E is single-point trapdoor-puncturable i.e. there
exists a pair of PPT algorithms (TrapPuncture,SimKeyGen) satisfying Definition 5.

Property 3: (Indistinguishability given punctured trapdoor) For all id ∈ I and m ∈ M: for every
skid∗ ← E .KeyGen(T, id∗), and bkid∗ ←WGenBootstrapKey(PP, skid∗), the distributions

{(PP, T ′, bkid∗ , E .E .Encrypt(PP, id∗,m)} ≈
C
{(PP, T ′, bkid∗ , E .E .Encrypt(PP, id∗,m′)) : m′

$←−M}

are computationally indistinguishable.

There are concrete schemes that almost meet all three properties. One such example is the leveled IBFHE
from Appendix A of [6]. This scheme admits algorithms (TrapPuncture,SimKeyGen) that satisfy a relaxation
of Equation 4.1 in Definition 5, namely the requirement of equality is relaxed to statistical indistinguishability;
more precisely it holds that

E .KeyGen(T, id) ≈
S
SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}

for any id ∈ I. However, we have been unable to find a leveled IBFHE scheme (from the GSW compiler)
that meets the stronger condition of Equation 4.1.

Note that it is only necessary that SimKeyGen run in polynomial time - the essential challenge is to derive
some “canonical” secret key for an identity given less trapdoor information (but the same randomness). In
Appendix A, we discuss the failure of single-point trapdoor-puncturability in current LWE-based leveled
IBFHE schemes. It appears new ideas are needed to achieve it.

Formal Description We now proceed with a formal description of a bootstrappable scheme Ê1 that is
constructed using a scheme E satisfying the above properties. Let (WGenBootstrapKey,Bootstrap) be a pair
of PPT algorithms meeting Property 1.

Consider the following program FGenBK to generate a bootstrapping key:

Program FGenBK(id) :

1. Compute r1 ‖ r2 ← PRF.Eval(K, id).
2. Compute skid ← KeyGen(T, id; r1).
3. Output WGenBootstrapKey(PPE , skid; r2).

The scheme Ê1 includes an obfuscation of this program (with key K and trapdoor T ) for the purpose of
bootstrapping:



• Ê1.Setup(1κ) :
1. Set (PPE , T )← E .Setup(1κ).
2. Compute K ← PRF.Key(1κ)
3. Compute β ← iO(FGenBK)
4. Output (PP := (PPE , β),MSK := T )

• Ê1.KeyGen = E .KeyGen
• Ê1.Encrypt = E .Encrypt
• Ê1.Decrypt = E .Decrypt
• Homomorphic Evaluation: Evaluation of a gate such as NAND is as in E . Bootstrapping is performed

as follows:
• Ê1.Bootstrap(PP, id, c):

1. Parse PP as (PPE , β).
2. Set bkid ← β(id).
3. Output Bootstrap(PPE , bkid, c).

The main idea is that Ê1 includes an obfuscation β ← iO(FGenBK) in its public parameters so an evaluator
can derive a bootstrapping key bkid for a given identity id and then invoke Bootstrap.

Theorem 2. Assuming indistinguishability obfuscation, one-way functions, Ê1 is IND-sID-CPA secure if E
satisfies Property 1 - Property 3.

The theorem is proved in Appendix B.

The construction (Ê∗) from Section 3 satisfies Property 1 - Property 3 .
The construction Ê∗ trivially satisfies Property 1. The reason for this is that it uses an underlying public-key
FHE scheme. All public-key FHEs are bootstrappable (in the sense of Definition 2), and being bootstrappable
implies being weakly-bootstrappable.

Furthermore Ê∗ is also single-point trapdoor-puncturable (Property 2). In fact, this notion is closely tied
with puncturable PRFs. It can be easily seen that by letting T = K and T ′ = K ′ with K ← PRF.Key(1κ) and
K ′ ← PRF.Puncture(K, id∗), an IBE scheme such as Ê∗ using an obfuscation of a function similar to FMapPK

is naturally single-point trapdoor puncturable. Moreover, in this case, we have that KeyGen = SimKeyGen =
PRF.Eval.

Finally, Property 3 follows from the security of the public-key FHE, since T ′ = K ′ gives no information
about the secret key for the public-key FHE scheme due to the security of the PRF.

Alternative Approach There is an alternative approach to constructing our compiler which relies on a
different requirement to single-point puncturability. However, the bootstrappable schemes that are produced
are less efficient. An overview of this approach is given in Appendix C.
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A Failure of single-point trapdoor-puncturability in LWE-based IBFHE
schemes

All concrete trapdoor-puncturable weakly-bootstrappable IBFHE constructions are based on LWE? ? ?. More pre-
cisely, they are transformations via the GSW compiler [6] of LWE-based IBEs built from the preimage sampleable

? ? ?With the exception of the scheme from Section 3 based on punctured programming.



functions from [12] and the basis extension technique introduced in [15]. These underlying IBEs include the Binary
Tree Encoding HIBE from [15] and the IBE from [26], and exclude the schemes from [12–14] since these schemes are
not trapdoor-puncturable in the sense captured by Definition 5.

We can classify all LWE-based schemes we are aware of that satisfy Definition 5 in the following way, Consider
an identity space I = {0, 1}` for some fixed integer `. The public parameters in these schemes include matrices
A1,0,A1,1, . . . ,A`,0,A`,1. An encryption of a message under an identity id = id1 . . . id` ∈ {0, 1}` is performed as a
dual-Regev [12, 27] encryption with the matrix Aid = A1,id1 ‖ · · · ‖ A1,id` . Consider the function fAid(x) = Aidx
mod q, and let u be a public vector. It is a hard problem to find a “short” preimage of u under fAid . Such a preimage e
is a secret key for identity id ∈ {0, 1}`. In the real system, the matrices Ai,b for i ∈ [`], b ∈ {0, 1} are generated together
with trapdoors Ti,b using a trapdoor generation algorithm such as that from [28]. So we have T = {Ti,b}i∈[`],b∈{0,1}.
Owing to basis extension techniques, a “short” preimage in f−1

Aid
(u) can be sampled given only a single Tj,idj for some

j ∈ [`]. It follows that for a target identity id∗, the punctured trapdoor is T ′ = {Ti,1−id∗
i
}i∈[`] ⊂ T . However, although

any trapdoor can be used to sample statistically close “short” preimages, we are not aware of any method for these
trapdoors to find the same preimage in polynomial time, even when the same randomness is used. As such, there is
no known efficient simulator SimKeyGen that can satisfy Equation 4.1.

B Proof of Theorem 2

Theorem 2. Assuming indistinguishability obfuscation, one-way functions, Ê1 is IND-sID-CPA secure if E satisfies
Property 1 - Property 3.

Proof. We prove the theorem via a hybrid argument.

Game 0: This is the real system.

Game 1: This is the same as Game 0 except for the following changes. Suppose the adversary chooses id∗ as the
identity to attack. Compute r1 ‖ r2 ← PRF.Eval(K, id∗) and compute bkid∗ ← WGenBootstrapKey(PPE , skid∗ ; r2)
where skid∗ ← KeyGen(T, id∗; r1). Make the following changes to FGenBK, which we call F ′GenBK, and set β ← iO(F ′GenBK)

1. if id = id∗, then output bkid∗ .

2. Else: Run Step 1 - 3 of FGenBK.

Observe that FGenBK is identical to F ′GenBK since bkid∗ is computed above in the same manner as FGenBK. The games
are indistinguishable due to the security of indistinguishability obfuscation.

Game 2 This is the same as Game 1 except with the following changes. Compute a punctured PRF key K′ ←
PRF.Puncture(K, id∗) that is defined for all strings except the input string id∗, where id∗ is the “target” identity
chosen by the adversary. Replace all occurrences of K in F ′GenBK with K′. We call the modified function F ′′GenBK.

Observe that F ′GenBK = F ′′GenBK because PRF.Eval(K, id) = PRF.Eval(k′, id) for all id 6= id∗. Therefore, the games
are indistinguishable due to the security of indistinguishability obfuscation.

Game 3: This is the same as Game 2 except that we change how bkid∗ is computed. We do this indirectly by
changing how r1 ‖ r2 ← PRF.Eval(K, id∗) is computed instead. More precisely, we choose a uniformly random string

r′1 ‖ r′2
$←− {0, 1}m where m is the length of the pseudorandom outputs of PRF.Eval i.e. m = |PRF.Eval(K, id∗)|.

By the security of the puncturable PRF, we have that

{(K′, id∗,PRF.Eval(K, id∗)} ≈
C
{(K′, id∗, r) : r

$←− {0, 1}m)}.

It follows that Game 2 and Game 3 are computationally indistinguishable.

Game 4: This is the same as Game 3 except that we make the following changes. We compute a punctured trapdoor
T ′ ⊂ T using the TrapPuncture algorithm (which exists by Property 2) i.e. T ′ ← TrapPuncture(T, id∗). We answer
secret key queries with SimKeyGen(T ′, ·). The games cannot be distinguished by an adversary as a result of Equation
4.1 in Definition 5 (single-point trapdoor puncturability).

Game 5: The only change in this game is that we set β ← iO(F ′′′GenBK) where F ′′′GenBK is the same as F ′′GenBK except skid
is computed as

skid ← SimKeyGen(T ′, id; r1).

As a result of Equation 4.1 in Definition 5 (single-point trapdoor puncturability), we have that F ′′′GenBK = F ′′GenBK and
hence their obfuscations are indistinguishable to a PPT adversary by the security of indistinguishability obfuscation.

Game 6: Note that Game 5 removes all references to T . In this game, we produce the challenge ciphertext given to

the adversary as an encryption of a uniformly random message m′
$←−M. The adversary has a zero advantage in this

game.



An efficient distinguisher D that can distinguish between Game 5 and Game 6 can be used to violate Property
3. Let b be the challenger’s random bit. Let m0 and m1 be the messages chosen by the adversary. Given a challenge
instance of Property 3 of the form (PP, T ′, bkid∗ , c

∗) where id∗ is the adversary’s target identity, and c∗ is an encryption
of either mb or a uniformly random element in M. Note that PP, T ′ and bkid∗ are distributed identically to both
Game 5 and Game 6. Hence, we can construct an algorithm to perfectly simulate D’s view, and give c∗ to D as the
challenge ciphertext. If c∗ encrypts mb, Game 5 is perfectly simulated; otherwise if c∗ encrypts a random message,
Game 6 is perfectly simulated. It follows that a non-negligible advantage distinguishing between Game 5 and Game
6 implies a non-negligible advantage distinguishing the LHS and RHS distributions of Property 3. ut

C Alternative Approach for Our Compiler: Using an obfuscated program for
bootstrapping

Consider the following program FBootstrap that performs the bootstrapping operation:

Program FBootstrap(id, c) :

1. Compute r1 ‖ r2 ← PRF.Eval(K, id).
2. Compute r3 ← PRF.Eval(K, id ‖ c).
3. Compute skid ← KeyGen(T, id; r1).
4. Compute bkid ←WGenBootstrapKey(PPE , skid; r2).
5. Output Bootstrap(PPE , bkid, c; r3).

We define another scheme Ê2 that is defined in the same way as Ê1 with the following changes:

1. An obfuscation β ← iO(FBootstrap) is generated in the setup algorithm and included in the public parameters.
2. The bootstrapping algorithm Ê2.Bootstrap, on input identity id and ciphertext c, simply becomes equivalent to

computing β(id, c) .

Once again the proof strategy proceeds in the same manner as the previous approach. When we move from T
to T ′, it becomes necessary to ensure that on input an identity id 6= id∗ to FBootstrap, performing bootstrapping
with a bootstrapping key based on a different underlying secret key (i.e. one generated with T ′ instead of T ) can
produce an identical ciphertext to the ciphertext outputted by the original FBootstrap above. More precisely, what
is needed here is an algorithm SimBootstrap such that for any id ∈ I \ {id∗}, skid ← KeyGen(T, id; r1), bkid ←
WGenBootstrapKey(PPE , skid; r2), randomness r1, r2, r3, and ciphertext c ∈ C, it holds that

Bootstrap(PPE , bkid, c; r3) = SimBootstrap(PPE , T
′, id, c, r1, r2, r3). (C.1)

The barrier to realizing such an algorithm SimBootstrap for presently-known IBFHEs hinges on the fact that a
ciphertext c∗ obtained from a homomorphic evaluation of a circuit C is dependent on the plaintext inputs to C, even
leaving aside the output of C that is encrypted by c∗. Thus, homomorphically evaluating the decryption circuit, as
in bootstrapping, with encryptions of two different secret keys (i.e. two different bootstrapping keys) results in two
different resultant ciphertexts. However, it is non-trivial to “wipe” from c∗ the unique trace left by a secret key skid
without access to skid.

Note that if E is single-point trapdoor-puncturable (i.e. it satisfies Equation 4.1), then it is easy to construct an
algorithm SimBootstrap that satisfies C.1. Such a SimBootstrap would use SimKeyGen with T ′ and r1 to generate skid,
then skid and r2 to generate bkid. Hence, single-point trapdoor-puncturability implies security of both approaches.
However due to the fact that FBootstrap subsumes FGenBK, the additional complexity of FBootstrap is extraneous for
a single-point trapdoor-puncturable E , since the process of bootstrapping itself can be more efficiently performed
directly by the evaluator. As a result, Approach 1 is preferable for a single-point trapdoor-puncturable scheme.


