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Abstract. A Kummer variety is obtained as the quotient of an abelian variety by the automorphism
(−1) acting on it. Kummer varieties can be seen as a higher dimensional generalisation of the x-
coordinate representation of a point of an elliptic curve given by its Weierstrass model. Although
there is no group law on the set of points of a Kummer variety, the multiplication of a point by a
scalar still makes sense, since it is compatible with the action of (−1), and can efficiently be computed
with a Montgomery ladder. In this paper, we explain that the arithmetic of a Kummer variety is not
limited to this scalar multiplication and is much richer than usually thought. We describe a set of
composition laws which exhaust this arithmetic and explain how to compute them efficiently in the
model of Kummer varieties provided by level 2 theta functions. Moreover, we present concrete example
where these laws turn out to be useful in order to improve certain algorithms. As an application
interesting for instance in cryptography, we explain how to recover the full group law of the abelian
variety with a representation almost as compact and in many cases as efficient as the level 2 theta
functions model of Kummer varieties.

1. Introduction

Efficient group law for abelian varieties have many applications in algebraic number theory and
cryptography. Let k be a finite field, the problem consists in representing the set of rational points A(k)
of an abelian variety defined over k and compute natural composition laws on this set of points such as
additions or Weil and Tate pairings. For cryptographic applications, we would like, for a level of security
roughly given by the cardinality of A(k), to have a representation as compact as possible and be able to
compute quickly all the composition laws.

If the case of elliptic curves has been widely studied for years, the literature about the higher
dimensional cases is less developed. For instance, it is known that all absolutely simple principally
polarized abelian surfaces are isomorphic to the jacobian Jac(H) of an hyperelliptic curve H of genus 2.
The addition law can then be computed using Cantor’s algorithm [Can87] and these formulas have been
optimized in [Lan05; HC]. Unfortunately, even with these formulas, genus 2 curves do not provide the
same efficiency as elliptic curves for a similar level of security.

To obtain a more compact representation and improved arithmetic, an idea is to lose information
and consider the Kummer variety KA = A/(−1) associated to the abelian variety A. For an elliptic
curve in Weierstrass coordinates E : y2 = x3 + ax+ b, a geometric point P on the Kummer line KE is
simply represented by its x-coordinate x(P ). On a Kummer variety, since we can’t distinguish between
a geometric point P ∈ A(k) (where k is an algebraic closure of k) and its opposite −P , the addition
law is only defined up to an ambiguity; more precisely from the points [P ] (in the following we often
denote by [P ] the projection of a geometric point P ∈ A(k) to KA) and [Q] one can recover two possible
additions: [P +Q] and [P −Q]. Nevertheless, one can still compute differential additions ; from the data
of [P ], [Q] and [P −Q] the point [P +Q] is uniquely determined.

By using differential additions in a Montgomery ladder [Mon92; Mon87], it is then still possible to
compute scalar multiplications on Kummer varieties. As this is sufficient for some cryptographic protocols
based on the discrete logarithm problem, it makes sense to use Kummer varieties in cryptography. In
the dimension 2 case, since the publication of fast formulas for Kummer surfaces [Gau07; GL09], using
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Kummer surfaces for cryptography has been somewhat competitive with elliptic curves. Recently the
duel has even been tipping in favor of Kummer surfaces [BCH+13; BCL+14]. We note that the fast
formulas in [Gau07] do not use Mumford coordinates but instead are based on a model of the Kummer
surfaces provided by theta functions of level 2 [Mum66b; Mum67a; Mum67b] (so in particular the
2-torsion is rational in this model). On a Kummer surface, a point will be represented by 4 projective
coordinates (the four level 2 theta functions) while on a Kummer line we just need two projective
coordinates. This is somewhat assuaged by the fact that on a Kummer surface we can work with fields
of half the size for an equivalent security.

Nonetheless, it should be remarked that the arithmetic provided by differential addition does not
allow to implement all cryptographic primitives. For instance the verification of a ECDSA signature
requires the computation of the addition law. While in the case of the Kummer line it is easy to go back
to the elliptic curve (at the cost of one square root), in dimension 2 it is harder to go back from the
Kummer surface to the abelian surface. One way would be to go to level 4 theta functions from the
level 2 theta functions, but there is a lack of explicit formulas in the literature explaining how to do
this step. The other way would be to go from the level 2 theta coordinates to the Mumford coordinates
(u, v2) on the Kummer surface using the formulas from [CR13; Cos11]; and then compute a square root
to find the Mumford coordinates (u, v) on A. But converting theta coordinates to Mumford coordinates
is pretty slow.

Moreover, while elliptic curves have an efficient addition law (especially on Montgomery curves
because they are birationally equivalent to twisted Edwards curves [BBJ+08]), it is not the case for
abelian surfaces (the level 4 theta model is even worse than Mumford coordinates since it requires 16
projective coordinates; the cost of the addition law is described in [Rob10]). This explain why, for
cryptographic applications, we are incited do as much arithmetic operations as possible on the Kummer
variety. Concidering this background, the aim of this paper is threefold:

• give a comprehensive picture of the arithmetic of Kummer varieties using tools that we have
developed for computing isogenies and optimal pairings on abelian varieties [LR12; LR13] ;

• provide an efficient algorithm to compute the fiber of the natural projection from an abelian
variety onto its associated Kummer variety;
• deduce a compact while still efficient representation of abelian varieties based on theta functions.

More precisely, we point out that what can be computed on a Kummer variety goes well beyond
differential additions. We introduce the so called compatible addition law which is well defined on a
Kummer variety. We give example of useful computations which can be carried out with compatible
addition though out of reach of differential additions. We give an algorithm to compute compatible
additions in the model of Kummer varieties provided by level 2 theta functions and we explain that by
using differential and compatible additions it is possible to compute the fiber of the natural projection
A→ KA (from level 4 to level 2) up to one choice of sign. This shows that compatible and differential
additions exhaust all the arithmetic of Kummer varieties.

Finally the main point of the paper is to use compatible additions to give a more compact and more
efficient model for the abelian variety A. Indeed representing a point in the Kummer surface using level 2
theta coordinates require 2g projective coordinates while representing a point on A using level 4 theta
coordinates require 4g of them. But all these extra coordinates only encode a choice of sign! We give a
model (a generalisation of hybrid level (2, . . . , 2, 4) theta functions) that only need one extra coordinate
to encode this choice of sign and has a scalar multiplication as fast as the one on the Kummer variety.

While, in view of cryptographic applications, we mainly consider the case of dimensions 1 and 2,
the algorithms we develop in this paper are valid in any dimension. The paper is organized as follows:
In Section 2, we describe the arithmetic on an abstract Kummer variety, and construct the new more
efficient model for abelian varieties. Then Section 3 explains how to compute efficiently this arithmetic
with the model provided by level 2 theta functions. Section 4 deals with change of level formulas and
explain how to go back and forth between the model given by level 4 theta functions and the new model
introduced in Section 2. Finally, in Section 5 we give explicit formulae for all the algorithms described
in the preceding sections for abelian surfaces.
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2. Arithmetic on Abelian and Kummer varieties

In this section, we introduce the compatible addition on the set of points of Kummer varieties. We
use this compatible addition to construct an efficient model for the abelian variety. Then we give
two examples of useful computations which can be carried out directly on a Kummer variety with
compatible additions. First, a multiway addition which allows to compute the sum P0 + . . .+ Pn from
the knowledge of P0, . . . , Pn and the sums (P0 +P1), . . . , (P0 +Pn). Secondly we explain how to compute
a multi-dimensional Montgomery ladder while keeping only 2 points in memory at each step.

2.1. Compatible additions. Let A be an abelian variety and denote by KA its associated Kummer
variety. Let π : A→ KA be the canonical projection. In this section, we adopt the following convenient
convention: for P ∈ A(k), we denote by [P ] ∈ KA(k) the point π(P ) of KA. So, the notation [P ] ∈ KA(k)
means that P ∈ A(k) and that π(P ) = [P ].

We suppose that we have a model of KA also defined over the field k where we have an algorithm which,
provided with two points [P ], [Q] ∈ KA(k), outputs equations defining the dimension 0 scheme of degree
two S = {[P +Q], [P −Q]}. More precisely this algorithm should output a rational parametrisation of S,
that is a polynomial P ∈ k[t] of degree 2 in one variable, and a rational isomorphism f : Spec k[t]/P(t)→
S together with the inverse f−1. We will call this operation the schematic addition on the Kummer
variety. We note that if [Q] is a point of 2-torsion, [P +Q] = [P −Q] so that by the hypothesis we can
compute the action of translation by points of 2-torsion. From this schematic addition it is easy to see
that we can then compute doubling and differential additions on the Kummer varieties. In fact most
models of Kummer varieties have dedicated faster formulae for the doubling and differential additions
than for the schematic addition. This is indeed the case with the theta model we consider in Sections 3
and 5.

The following very simple idea show that we can compute some additions on KA.

Proposition 2.1. Let P,Q,R, S ∈ A(k) be such that P +Q = R+S and P −Q 6= R−S, P −Q 6= S−R.
Then the point [P +Q] = [R+ S] of KA is well defined from the knowledge of [P ], [Q], [R], [S] and can
be computed as the intersection of the output of two schematic additions. We note that an equivalent
reformulation of the condition of the Proposition is that there is no point of 2-torsion U ∈ A(k) such
that (P = R+ U and Q = S + U) or (P = S + U and Q = R+ U).

Proof. From the hypothesis about KA and of the Proposition, the two schemes {[P +Q], [P −Q]} and
{[R + S], [R − S]} in KA can be computed with two schematic additions. By the discussion above,
we may assume that none of the point is of 2-torsion. From the hypothesis of the Proposition their
intersection has degree 1 and is equal to {[P +Q]}. �

Definition 2.2 (Compatible addition). Keeping the hypothesis of the Proposition, we call [P +Q] the
compatible addition of P and Q with respect to R and S.

Remark 2.3. By looking at the proof of Proposition 2.1, we expect a compatible addition to cost roughly
two schematic additions. Indeed the two schematic additions will output two degree two polynomials
P1 = X2 + aX + b and P2 = X2 + cX + d in k[X] parametrizing the two schemes {[P +Q], [P −Q]} and
{[R+S], [R−S]}. We recall that P1 and P2 have a common root if and only if (ad− bc)(c−a) = (d− b)2

and in this case this root is (d− b)/(a− c), so the intersection is easy to compute from the data of P1

and P2.
Actually, once we have computed the scheme {[P + Q], [P − Q]} we just need to recover enough

information about {[R+S], [R−S]} to distinguish between [P +Q] and [P −Q]. So we don’t need the full
schematic addition on [R] and [S] (see Section 5 for more details). Nonetheless, since schematic additions
are in general much more expensive than differential additions on a Kummer variety, a compatible
addition is an arithmetic operation that should not be used too often.

2.2. An efficient model for the abelian variety. This simple idea of doing compatible additions is
surprisingly powerful. As a first application, we introduce a family of embeddings of A into K2

A and
explain that the addition law of A carry on via these isomorphisms onto a law which can be efficiently
computed using the compatible addition. This is the content of the:
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Theorem 2.4. Let P0 ∈ A(k) be a point not in the 2-torsion of A. Then the map αP0 : A → K2
A,

given on geometric points by P 7→ ([P ], [P + P0]) is injective. If f : KA → Pmk is an embedding of the
Kummer variety, then fP0

: A→ Pmk × Pmk , given on geometric points by P 7→ (f([P ]), f([P + P0])) is
an embedding.

Finally, given a couple ([P1], [P2]) ∈ KA(k)2 it is easy to check if it lies in αP0(A(k)). Furthermore,
one can do arithmetic with this representation of A : from the knowledge of ([P1], [P1 + P0]) and
([P2], [P2 + P0]) one can compute ([P1 + P2], [P1 + P2 + P0]) (using two compatible additions in the
generic case). A doubling on A with this model costs a doubling and differential addition on KA, and a
differential addition on A costs two differential additions on KA.

Proof. The natural projection A→ KA has degree 2, so if ([P ], [P + P0]) = ([Q], [Q+ P0]) then either
P = Q, or P = −Q. But in the latter case, since P + P0 = Q+ P0 or P + P0 = −Q− P0 in A and P0 is
not a point of 2-torsion, we have P = −P so αP0

is injective in all cases.
In particular, the map fP0

is injective on the geometric points. It remains to see that it is also
injective on the tangent spaces. But since f is an embedding, whenever [P ] is a smooth point of KA

then f is injective at the tangent space at [P ], so fP is also injective at P . But [P ] is smooth if and only
if P is not of two torsion, and P and P + P0 can never be simultaneously of two torsion, so f is always
injective on the tangent spaces.

The couple ([P1], [P2]) ∈ KA(k)2 lies in αP0
(A(k)) if and only if [P2] ∈ {[P1 +P0], [P1−P0]} in KA(k)2

which can be tested by the way of a schematic addition.
In Proposition 2.1 set P = P1, Q = (P2 + P0), R = P1 + P0, S = P2 to recover [P1 + P2 + P0]. The

conditions of Proposition 2.1 hold if 2P0 6= 0 and 2P1− 2P2 6= 0. By hypothesis, we can rule out the case
2P0 = 0. Suppose that 2P1 − 2P2 = 0 then [P1 − P2] is a point of 2-torsion on KA, so we can compute
the addition by [P1 − P2]. From [P2 + P0] we can compute [2P2 + P0] using a differential addition, and
we recover [P1 + P2 + P0] = [2P2 + P0] + [P1 − P2]. We have shown that we can compute [P1 + P2 + P0].

Next, in Proposition 2.1 set P = P1, Q = P2, R = P0+P1, S = −P0+P2 to recover [P1+P2]. Note that
[−P0+P2] can be computed with a differential addition since we know [P0], [P2] and [P0+P2] by hypothesis.
Again, we can apply the Proposition at the condition that 2P0 − 2P2 6= 0 and 2P1 − 2P2 + 2P0 6= 0. If
2P0 − 2P2 = 0 then P0 − P2 is a point of 2-torsion so that we can compute the addition by [P0 − P2], so
that we can compute [P1 + P2] = [P0 + P1] + [P0 − P2].

On the other hand, if 2P0 = 2P2− 2P1. By permuting P1 and P2 we also know that 2P0 = 2P1− 2P2,
otherwise we could compute [P1 +P2] via a compatible addition (so in this case P0 is a point of 4-torsion).
We can also assume that neither P1 or P2 is a point of 2-torsion, otherwise we could compute [P1 + P2]
directly. We can then use Proposition 2.1 again, this time with P = P1, Q = P2, R = P0 + P1 + P2,
S = −P0. We can apply this Proposition if 2P0 + 2P2 6= 0 and 2P0 + 2P1 6= 0. But by the above
2P0 + 2P2 = 2P1 6= 0 because P1 is not a point of 2-torsion, and similarly 2P0 + 2P1 6= 0. So in all cases
we can recover [P1 + P2] and [P1 + P2 + P0]. �

Remark 2.5. On elliptic curves, we recover a representation studied by Kohel in [Koh11]. If P ′0 ∈ A(k)
is another point not of 2-torsion, one can go from the representation ([P ], [P + P0]) ∈ KA(k)2 to the
representation ([P ], [P + P ′0]) ∈ KA(k)2 only once we have fixed a choice in {P + P ′0, P − P ′0}. The
ambiguity comes from the fact that (−1) is an automorphism on A with which we can act on our
representations.

In the model of Theorem 2.4 doing an addition of ([P1], [P1 + P0]) and ([Q1], [Q1 + P0]) requires two
compatible additions (in the generic case), which is quite cumbersome. Luckily scalar multiplication are
much better behaved. Indeed the scalar multiplication ([P1], [P1 + P0]) 7→ ([nP1], [nP1 + P0]) can be
computed with a Montgomery ladder of the form ([mP1], [(m+ 1)P1], [(m+ 1)P1 + P0] where each step
will use one doubling and two differential additions on the Kummer variety. So compared to the scalar
multiplication on the Kummer variety this will be around 50 percent slower. An even better idea is
to use the standard trick to only compute [(n − 1)P1], [nP1] on the Kummer variety (via a standard
Montgomery ladder). Then at the end one can recover [nP1 + P0] by doing a compatible addition
(nP1) + (P0) = ((n− 1)P1) + (P1 + P0). So this only add an extra computation at the end compared to
the standard multiplication on the Kummer variety. Of course, the same trick will work for a multiscalar
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multiplication: we compute the multiscalar multiplication directly on the Kummer variety, except at the
last step.

Finally, it might seem that we need twice as many coordinates to represent the point P1 ∈ A(k) using
the representation ([P1], [P1 + P0]) ∈ KA(k)2 than we need to represent a point in the Kummer variety.
But actually, in a way similar to the case of elliptic curves in Weierstrass form where we only need
one extra coordinate to encode the choice of sign, once we have [P1] ∈ KA(k) we can encode [P1 + P0]
as the corresponding root in the degree two scheme {[P1 + P0], [P1 − P0]}. By hypothesis we have a
rational parametrisation of the scheme, so this can be done by using only one coordinate. In the level 2
representation of the Kummer variety, we then represent a point of A by a pair in P2g−1(k)× P1(k). We
refer to Section 5 for an analysis of the arithmetic in this representation.

2.3. Arithmetic on the Kummer variety. The model of Theorem 2.4 relies on the efficient arithmetic
of the underlying Kummer variety. In this section we explain how compatible additions can also be used
in this setting. The strategy is to combine Theorem 2.4 with Remark 2.5 to switch to a more efficient
representation when needed.

First by a trivial corollary of Theorem 2.4, we obtain:

Corollary 2.6 (Multiway additions). Let [P0] ∈ KA(k) be a point not of 2-torsion. Then from
[P1], . . . , [Pn] ∈ KA(k) and [P0 + P1], . . . , [P0 + Pn] ∈ KA(k), one can compute [P1 + · · · + Pn] and
[P0 + P1 + · · ·+ Pn] using 2(n− 1) compatible additions.

Remark 2.7. The idea behind Corollary 2.6 is that giving the points [P0 + Pi] on KA “fixes” the sign
of Pi relatively to P0. Since P1, . . . , Pn have “compatible” signs with respect to P0, this explains why
we are able to compute [P1 + · · ·+ Pn] and [P0 + P1 + · · ·+ Pn].

Another application of compatible additions is to do multi-scalar multiplication on the Kummer
variety. More precisely, we assume that we are given the points [P ], [Q] and [P +Q] in KA(k), and we
want to compute [αP + βQ] for some α, β ∈ Z. An easy approach is to do a 2-dimensional Montgomery
ladder. At each step we have the four elements [mP + nQ], [(m + 1)P + nQ], [mP + (n + 1)Q],
[(m+ 1)P + (n+ 1)Q]. Depending on whether the current bits of (α, β) is (0, 0), (1, 0), (0, 1) or (1, 1),
we add [mP + nQ], [(m+ 1)P + nQ], |mP + (n+ 1)Q] or [(m+ 1)P + (n+ 1)Q] to the four points. This
costs a doubling and three differential additions (the point [P −Q] is easily obtained from [P ],[Q] and
[P +Q]).

A less trivial approach [Ber06] consists in working with three points and doing one doubling and two
differential additions at each step. Actually, one can see that we only need to keep track of two elements
in the square. This is easier to see this on an example:

Example 2.8. Suppose that we have only computed [nP + (m + 1)Q] and [(n + 1)P + mQ]. If we
are lucky the current bits of (α, β) are (1, 0) or (0, 1) and we don’t need the two missing elements
for this step. In this case we can go to the next bits with only one doubling and one differential
addition. If however the bits are for instance (0, 0) then we need to recover [nP +mQ]. But this can
be done by a compatible addition with (in the terminology of Proposition 2.1) [x] = [nP + (m+ 1)Q],
[y] = [−Q], [z] = [(n + 1)P + mQ], [t] = [−P ]. (For the conditions of the Proposition to hold we
need that 2P + 2Q 6= 0 and (2n + 2)P + (2m + 2)Q 6= 0. But if this is not the case then the points
[(2n)P + (2m + 1)Q], [(2n + 1)P + (2mQ)] are easy to compute directly.) In this case we need one
compatible addition and two differentiable additions.

We expect to need to reconstruct a missing element in the square with probability 1/2. But when we
compute this missing element, we can choose which two out the three elements we keep for the next step.
Continuing the example, we now have [nP +mQ], [(n+ 1)P +mQ] and [nP + (m+ 1)Q]. We look at
the next bits of (α, β) and see that they are (0, 0) and (1, 0). Then for the current step we compute only
[(2n)P + (2n)Q], [(2n+ 1)P + (2n)Q]. We know that we won’t need to do a compatible addition for the
next two steps.

Using this strategy of keeping the two points among the three that appear next (forgetting about the
fourth point), a Monte Carlo simulation shows that on average there will be 1.111 differential additions,
0.888 doubling and 0.293 compatible additions by bits. (A cleverer strategy could detect when we will
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not use the two points before the next compatible addition anyway and take this opportunity to replace
some differential additions by doublings.)

So depending on the cost of a compatible addition compared to doublings and differential additions,
this strategy might be better than [Ber06]. But one should take care that since compatible additions are
not done for each bits, an implementation of this algorithm may not be safe against side channel attacks.

Of course we can extend Example 2.8 to multiscalar multiplication. Such a setting can appear when
using a multidimensional GLV ladder to speed-up the scalar multiplication [GLV01]. The generalisation
of [Ber06] to this setting uses a Montgomery chain with n+ 1 points at each step [Bro06] (where n is
the number of points in the multiscalar multiplication). By using compatible additions, we only need to
keep 2 points at each step.

Proposition 2.9. Assume that we have the points [P1], . . . , [Pn] ∈ KA(k) and also the 2n sums [
∑
εiPi] ∈

KA(k) for i ∈ {1, . . . , n}, εi ∈ {0, 1}. Then we can compute [
∑
αiPi] for αi ∈ N by the following recursive

algorithm: if we already have [
∑
miPi] and [P1 +

∑
miPi] then let Q =

∑
εiPi where εi is equal to the

current bit of αi. We can recover [
∑
miPi +Q] via a compatible addition between [Q], [

∑
miPi] and

[P1 +
∑
miPi], [Q− P1] and then use two differential additions to recover [

∑
niPi] and [P1 +

∑
niPi]

where ni = 2mi + εi.
This algorithm costs (at most) 1 compatible addition and two differential additions by bits.

Remark 2.10. In the preceding statement, we can assume that P1 is not of 2-torsion otherwise it is
easy to go back to a multiscalar multiplication with n− 1 points. Then by Corollary 2.6 it suffices to
have the [P1 + Pi] to recover the other sums.

Proof. We just need to check that the condition of Proposition 2.1 holds in order to do the compatible
addition. Suppose the contrary. Since P1 is not a point of 2-torsion, the only possibility is that
2(P1 +

∑
miPi −Q) = 0. But in this case

∑
niPi = 3Q− 2P1 and P1 +

∑
niPi = 3Q− P1 which are

easy to compute directly. �

Remark 2.11 (Multiscalar multiplication). We can reinterpret Proposition 2.9 as follow: the standard
approach to a multiscalar multiplication

∑
miPi is to precompute the

∑
εiPi, εi ∈ {0, 1} and do a

double and add algorithm. Proposition 2.9 can be seen as an adaptation of this algorithm to the
coordinates from Theorem 2.4: we represent a point on A by the couple ([

∑
miPi], [

∑
miPi + P1])

in the Kummer. The only difference is that rather than doing a doubling and addition (which will
involve two compatible additions on the Kummer), we do it the reverse way: first a compatible addition
to change the representation to ([

∑
miPi], [

∑
miPi +Q]) using Remark 2.5 (keeping the notations of

Proposition 2.9), and then a doubling and differential addition on the Kummer. We see that changing
the representation in Theorem 2.4 may give more efficient operations.

Of course the strategy given at the end of Example 2.8 to reduce the number of compatible additions
applies too, but the probability of having to do a compatible addition tends to one by bits exponentially
fast in n. Moreover, to prevent some side channel attacks, it may be better to always do a compatible
addition at each step anyway. However it is possible to replace the two differential additions by one
doubling and one differential addition, by computing [

∑
niPi] and [Q+

∑
niPi] instead. This strategy

of changing the couple of point we keep each time costs 1 compatible addition, 1 differential addition
and 1 doubling by bits.

Coming back to Example 2.8, if we relax the condition that in the differential chain each difference
should be P , Q, P +Q or P −Q, then [Ber06] obtains a differential chain (the “extended-gcd” chain) that
uses around 1.76 additions by bit. This algorithm constructs a differential chain R (where each element
in R is a couple), starting with R = {(0, 0), (0, 1), (1, 0), (1, 1)} and requiring that one can add P +Q
(and −P −Q) only when P ,Q and P −Q are already in R. By using “compatible additions” for the
multiscalar multiplication (and assuming that the points Pi are linearly independent for simplicity here),
one only need to construct a chain R of tuples such that if P,Q,R, S ∈ R are such that P +Q = R+ S,
then one can add P +Q (and −P −Q) to R provided that

• P −Q ∈ R;
• or P −Q 6= ±R− S.
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3. Arithmetic with theta functions

The aim of this section is to illustrate Theorem 2.4 by using level 2 theta coordinates to represent the
Kummer variety KA. We will see that in this case, the addition on the corresponding model of A can be
computed a bit more efficiently than by using two compatible additions.

This section starts by a survey of all the results on theta functions that we use in the rest of the paper.
The main results are duplication formulas and Riemann relations. We explain that a sufficient condition
for the Riemann relations to allow to compute the addition of an abelian variety is closely related to the
rank of the multiplication map in the graded ring of theta functions. We deduce algorithms to compute
addition on abelian varieties and compatible addition on Kummer varieties. We also study the three-way
addition introduced in [LR13] and conclude the Section by a summary of all forms of additions derived
from Riemann relations.

3.1. Duplication formulae and Riemann relations. For simplicity we will define theta functions
for abelian variety over the complex field C. It should be noted that the Theorems 3.1 and 3.2 are
actually valid over any field of odd characteristic k by the algebraic theory of theta functions [Mum66b].

Let A be an abelian variety over C and L be an ample symmetric line bundle on A. Writing
A = Cg/Λ where Λ is a Z-lattice of rank 2g of Cg, a section f ∈ Γ(A,L ) corresponds to an analytic
function f on Cg which satisfy the condition

f(z + λ) = aL (z, λ)f(z) ∀z ∈ Cg, λ ∈ Λ,

for a certain automorphic factor aL : Cg × Λ→ C∗ which satisfy the cocycle condition aL (z, λ+ λ′) =
aL (z, λ)aL (z + λ, λ′).

In fact, the Chern class of L can be described by a (positive) hermitian form H such that E(Λ,Λ) ⊂ Z
where E = ImH and by the theorem of Appell-Humbert the automorphic factor aL can be chosen so
that

(1) aL (z, λ) = χ(λ)eπH(z,λ)+π/2H(λ,λ)π/2,

for a certain quasi-character χ : Λ→ [1]. (For more details we refer to [Mum70; BL04]).
More concretely, if A has a principal polarisation, up to a linear transform of Cg, we can write

Λ = Zg + ΩZg where Ω ∈ Hg is in the Siegel upper half space. Then one can define a principal symmetric
line bundle L0 associated to the hermitian form H0 corresponding to the matrix (Im Ω)−1 and the
quasi-character χ0(λ) = eπiE(λ1,λ2) where λ = λ1 + λ2 is the decomposition of λ in Zg ⊕ ΩZg.

We recall the definition of the theta functions with characteristics a, b ∈ Qg:

(2) θ [ ab ] (z,Ω) =
∑
n∈Zg

eπi
t(n+a)·Ω·(n+a)+2πi t(n+a)·(z+b).

These theta functions with characteristics are related by

(3)
θ [ ab ] (z,Ω) = eπi

taΩa+2πi ta·(z+b)θ [ 0
0 ] (z + Ωa+ b,Ω),

θ
[
a+n
b+m

]
(z,Ω) = e2πi ta·mθ [ ab ] (z,Ω),

where m,n ∈ Zg; and satisfy the functional equation

(4) θ [ ab ] (z + Ωm+ n,Ω) = e−2πi tb·m+2πi ta·ne−πi
tmΩm−2πi tmzθ [ ab ] (z).

Let n ∈ N and L = L n
0 . We have dim Γ(A,L n

0 ) = ng and if n = n1n2, a basis of the global sections
Γ(A,L n

0 ) is given by

(5) θ
[
a/n1

b/n2

]
(n1z,

n1

n2
Ω) a ∈ Z(n1), b ∈ Z(n2),

where Z(n) = Zg/nZg (this is an easy generalisation of [Mum83, p. 123–124]). One should note that
the basis given in Equation (5) corresponds to the factor of automorphy from Equation (1) twisted by a
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coboundary so that the sections are periodic with respect to Zg. In other words, we have chosen L in
its isomorphic class such that sections f ∈ Γ(A,L ) satisfy

(6)
f(z +m) = f(z),

f(z + Ωm) = e−πin
tm·Ω·m−2πin tz·mf(z).

From Equation (5), we see that the period matrix Ω defines more than an ample line bundle L0, it
also gives a canonical basis of sections of L n

0 for all n ∈ N. In the following, we will take the basis of
sections coming from the decomposition n1 = 1, n2 = n and to simplify the notations we let for i ∈ Z(n)

(7) θ
Ln

0
i (z) = θ

[
0
i/n

]
(z,Ω/n).

We will often denote this function by θi when the context is clear. This is the unique basis (up to
multiplication by a constant) such that translation by a point of n-torsion is given by

(8) θb(z +
m1

n
+

Ωm2

n
) = e−πi

tm2·Ωn ·m2−2πi tm2·ze−2πi tb·m2θb+m1
(z),

for m1,m2 ∈ Zg (for more details on the canonical choice of a basis of sections, see [Mum91; Mum66b]).
When n = 4, the decomposition n1 = 2, n2 = 2 in Equation (5) yields the classical basis of level 4

theta functions θ
[
a/2
b/2

]
(2z,Ω). More generally, in terms of the basis from Equation (5), the action of

translation by a point of n-torsion is given in projective coordinates by

(9)
(
θ
[
a/n1

b/n2

]
(n1(z +

m1

n
+

Ωm2

n
),
n1

n2
Ω)

)
a,b

=
(
e−2πi tm2·b/nθ

[
(a+m2)/n1

(b+m1)/n2

]
(n1z, n1Ω/n2)

)
a,b
.

This can be seen from Equation (8) and the linear change of variable

(10) θ
[
a/n1

b/n2

]
(n1z,

n1

n2
Ω) =

1

ng1

∑
β∈ 1

n1
Zg/Zg

e−2πi ta·βθ
[

0
b/n+β

]
.

By a theorem of Lefschetz, when n > 3 the line bundle L is very ample, so the ng theta functions θi
gives an embedding of A into the projective space Pn

g−1
C ([Mum83, Theorem 1.3, p. 125–134],[BL04,

Theorem 4.5.1]). Since θi(−z) = θ−i(z), when n = 2 the morphism to projective space factorizes through
the Kummer variety KA. When L0 is an irreducible principal polarisation on A, the morphism to
projective space associated to L = L 2

0 is actually an embedding of the Kummer variety KA ([BL04,
Theorem 4.8.1]).

The most important tools concerning the arithmetic of abelian (and Kummer) varieties embedded by
theta functions are the duplication formulae and Riemann relations. From now on, we suppose that
L = L n

0 is totally symmetric, or equivalently that n is even [Mum66b, Corollary 4 p. 315].

Theorem 3.1 (Duplication formulae). Fix z1, z2 ∈ Cg. Then for all i, j ∈ Z(n),

θ
[

0
i
n

]
(z1 + z2,

Ω

n
)θ
[

0
j
n

]
(z1 − z2,

Ω

n
) =

∑
t∈1

2Zg/Zg
θ
[

t
i+j
2n

]
(2z1, 2

Ω

n
)θ
[

t
i−j
2n

]
(2z2, 2

Ω

n
).

Reciprocally, for all χ ∈ 1
2Z

g/Zg and i, j ∈ Z(2n) such that i+ j ∈ Z(n)

θ
[ χ
i/n

]
(2z1, 2

Ω

n
)θ
[ χ
j/n

]
(2z2, 2

Ω

n
) =

1

2g

∑
t∈1

2Zg/Zg
e−2iπ2 tχ·tθ

[
2χ

i+j
2n +t

]
(z1 + z2,

Ω

n
)θ
[

0
i−j
2n +t

]
(z1 − z2,

Ω

n
).

Proof. See [Igu72, Theorem 2 p. 139, p. 141], an algebraic proof is given by [Mum66b] by applying the
isogeny theorem [Mum66a, Theorem 4] to the element of End(A×A) given by the matrix

(
1 1
1 −1

)
. For a

generalisation, see [Koi76; Kem89]. �



Arithmetic on Abelian and Kummer Varieties 9

We can rewrite the duplication formulae in the standard basis (7). For this, we let for χ ∈ Ẑ(2) and
i ∈ Z(n), UL

χ,i(z) =
∑
t∈Z(2) χ(t)θi+t(z). In terms of theta functions with characteristics, the level 2n

theta function UL 2

χ,i (z) is equal to θ
[
χ
i
n

]
(2z, 2Ω

n ), where we have identified Z(2) to its dual group Ẑ(2)

via the map x 7→ χ(z) = eπi
tx·z. It is easy to check that if t ∈ Z(2), UL 2

χ,i+t = χ(t)UL 2

χ,i and that
duplication formulae from Theorem 3.1 can be rewritten as

θL
i+j(z1 + z2)θL

i−j(z1 − z2) =
∑

χ∈Ẑ(2)

UL 2

χ,i (z1)UL 2

χ,j (z2)(11)

UL 2

χ,i (z1)UL 2

χ,j (z2) =
1

2g

∑
t∈Z(2)

χ(t)θL
i+j+t(z1 + z2)θL

i−j+t(z1 − z2),(12)

for z1, z2 ∈ Cg, χ ∈ Ẑ(2) and i, j ∈ Z(2n) such that i+ j, i− j ∈ Z(n).

Theorem 3.2 (Riemann relations). Let z1, z2, z3, z4, z ∈ Cg, such that 2z = z1 + z2 + z3 + z4 and
let z′1 = z − z1, z′2 = z − z2, z′3 = z − z3, z′4 = z − z4. Then for all characters χ ∈ Ẑ(2) and all
i, j, k, l,m ∈ Z(n) such that i+ j+k+ l = 2m, if i′ = m− i, j′ = m− j, k′ = m−k and l′ = m− l, then

(13)
(∑
t∈Z(2)

χ(t)θi+t(z1)θj+t(z2)
)
.
(∑
t∈Z(2)

χ(t)θk+t(z3)θl+t(z4)
)

=

(∑
t∈Z(2)

χ(t)θi′+t(z
′
1)θj′+t(z

′
2)
)
.
(∑
t∈Z(2)

χ(t)θk′+t(z
′
3)θl′+t(z

′
4)
)
.

In particular, we have the addition formulae for z1, z2 ∈ Cg (with χ, i, j, k, l like before):

(14)
( ∑
t∈Z(2)

χ(t)θi+t(z1 + z2)θj+t(z1 − z2)
)
.
( ∑
t∈Z(2)

χ(t)θk+t(0)θl+t(0)
)

=

( ∑
t∈Z(2)

χ(t)θ−i′+t(z2)θj′+t(z2)
)
.
( ∑
t∈Z(2)

χ(t)θk′+t(z1)θl′+t(z1)
)
.

We also have the three-ways additions formulae for z1, z2, z3 ∈ Cg:

(15)
( ∑
t∈Z(2)

χ(t)θi+t(z1 + z2 + z3)θj+t(z1)
)
.
( ∑
t∈Z(2)

χ(t)θk+t(z2)θl+t(z3)
)

=

( ∑
t∈Z(2)

χ(t)θi′+t(0)θj′+t(z2 + z3)
)
.
( ∑
t∈Z(2)

χ(t)θk′+t(z1 + z3)θl′+t(z1 + z2)
)
.

Proof. We can verify (13) by expressing the left hand side and right hand side of the equation in
term of the UL 2

χ,i basis using (11). Then (14) and (15) are immediate consequences of (13) (using that
θi(−z2) = θ−i(z2)) For more details, see [LR12] or [Mum66b]. A slightly different form is also given in
[Mum66b, p. 334–335]; see also [Mum83; Koi76] for an analytic proof. �

If 4|n, following [Mum83], by applying (13) with z1 = z2 and z3 = z4 = 0, we obtain a complete set
of equations for the embedding of A into PZ(n). It is clear that Riemann equations are parametrized
by the (projective) theta null point 0A = (θi(0))i∈Z(n) which is defined in particular by the data of Ω
and n. If n = 2, since the Riemann equations are trivial, they do not give equations for the embedding
of KA is PZ(2). Nonetheless, in the case that dimA = 1, KA is just the projective line and there is no
equations and if dimA = 2 then the embedding of KA is PZ(2) is given by a well known quartic equation
(see [Mum66b, §5] for instance) the coefficients of which can easily be computed from the knowledge of
the level 2 theta null point. In the following, we suppose that A is given by the way of its theta null
point so that we have a projective model of A on which we would like to have an efficient and complete
arithmetic.



10 DAVID LUBICZ AND DAMIEN ROBERT

3.2. Addition from Riemann relations. It is clear that Equation (14) can be used to compute the
addition law on A. It order to do so, it is important to know when the factor of the left hand side of (14),∑
t∈Z(2) χ(t)θk+t(0)θl+t(0) does not cancel. By Equation (12), we have

∑
t∈Z(2) χ(t)θk+t(0)θl+t(0) =

UL 2

χ,k0
(0)UL 2

χ,l0
(0) where k0, l0 ∈ Z(2n) are such that k0 + l0 = k and k0 − l0 = l. To understand the

arithmetic of theta functions, we thus need to investigate the non cancellation of the level 2n theta
functions UL 2

χ,i . Actually, this non cancellation is closely related to the rank of the natural multiplication
map Γ(A,L )⊗ Γ(A,L )→ Γ(A,L 2).

To see this, following Mumford [Mum66b, p. 328], we consider the morphism ξ : A × A → A ×
A, (x, y) 7→ (x+y, x−y). Let π1 and π2 the first and second projections A×A→ A. Let ∆ : X → X×X
be the diagonal; ∆ induces the multiplication map ∆∗ : Γ(A, π∗1L )⊗ Γ(A, π∗2L )→ Γ(A,L 2), π∗1θ

L
i ⊗

π∗2θ
L
j 7→ (θL

i ⊗ θL
j ). If S : A→ A×A is the inclusion map x 7→ (x, 0) then ∆ fits into the commutative

diagram

(A,L 2)

(A×A, π∗1L 2 ⊗ π∗2L 2) (A×A, π∗1L ⊗ π∗2L ).
ξ

S
∆

so ∆∗ = S∗ξ∗. But ξ∗ is given by the duplication formula from Theorem 3.1 and S∗ : Γ(A ×
A, π∗1L 2 ⊗ π∗2L 2)→ Γ(A,L 2) is given by π∗1θL 2

i ⊗ π∗2θL 2

j 7→ θL 2

j (0)θL 2

i . We finally get that the map
Γ(A,L )⊗ Γ(A,L )→ Γ(A,L 2) is given by

(16)
∑
t∈Ẑ(2)

χ(t)
(
θL
i+t ⊗ θL

j+t

)
7→ UL 2

χ, i+j2

UL 2

χ, i−j2

(0),

which makes clear the link between the non cancellation of the UL 2

χ,i (0) and the rank of the multiplication
map.

Theorem 3.3. Let L0 be a principal symmetric line bundle on A. Then the multiplication map

Γ(A,Lm
0 )⊗ Γ(A,L n

0 )→ Γ(A,L n+m
0 )

is surjective when m > 2 and n > 3. In particular, if L = L n
0 with n > 2 even, then Γ(A,L ) ⊗

Γ(A,L )→ Γ(A,L 2) is surjective, or equivalently for any χ ∈ Ẑ(2), i ∈ Z(2n), there exists i0 ∈ Z(n)

such that UL 2

χ,i+i0
(0) 6= 0.

If L = L 2
0 , then the rank of the multiplication map is equal to the number of even theta null

coordinates UL 2

χ,i (0) 6= 0 for χ ∈ Ẑ(2), i ∈ Z(4) such that χ(2i) = 1.

Proof. This Theorem is proved analytically in [Koi76], and algebraically in [Kem88] (see also [Kem89,
Lemma 17]). When n is divisible by 4, Mumford has a finer result in [Mum66b, p. 340]. �

The use of the words odd and even for the theta null coordinates comes from the fact that when
n = 2, we have UL 2

χ,i (−z) = χ(2i)UL 2

χ,i (z). So when χ(2i) = −1, the function UL 2

χ,i is odd and we have
UL 2

χ,i = 0. In terms of theta functions with characteristics, the functions UL 2

χ,i correspond to the usual

level 4 theta functions {θ
[
a/2
b/2

]
(2·,Ω) | a, b ∈ Z} and χ(2i) corresponds to (−1)

ta·b which determines
the 2g−1(2g + 1) even theta functions from the 2g−1(2g − 1) odd ones.

Remark 3.4 (Normal projectivity). If L is a very ample line bundle on a smooth projective variety
X, the corresponding embedding of X into projective space is said to be projectively normal if the
homogeneous ring associated to this embedding is integrally closed. This condition is equivalent to
the condition that SnΓ(X,L )→ Γ(X,L n) is surjective for all n > 2 [Har00, Exercice 5.14 p. 126], or
equivalently by [BL04, p. 187] that Γ(X,L n)⊗ Γ(X,L )→ Γ(X,L n+1) is surjective for n > 1. (We
remark that the condition that Γ(X,L n)⊗ Γ(X,L )→ Γ(X,L n+1) is surjective for n sufficiently large
is equivalent to L being very ample by [Mum69, p. 38]).
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By Theorem 3.3, if L = L n
0 where L0 is a principal ample symmetric line bundle and n > 3, then

(A,L ) is projectively normal. If n is totally symmetric, then by definition L descends to an ample
line bundle M on KA, and if π : A→ KA denotes the projection, then π?Γ(KA,M ) = Γ(A,L )+ where
Γ(A,L )+ denotes the section invariant under the action by −1. By [Koi76, Corollary 4.5.2],[Kem88] the
multiplication map Γ(A,L 2m

0 )+ ⊗ Γ(A,L 2n
0 )+ → Γ(A,L

2(n+m
0 )+ is surjective when n > 1 and m > 2.

So if n > 2, the variety (KA,M ) is projectively normal. When n = 2, we have Γ(A,L )+ = Γ(A,L ) or
in other words L can be seen as a line bundle on KA. Then (KA,L ) is projectively normal if and only
if Γ(A,L )⊗ Γ(A,L )→ Γ(A,L 2)+ is surjective, but by Theorem 3.3 this is equivalent to the condition
that every even theta null coordinate is nonzero.

Remark 3.5 (Non annulation of the even theta null coordinates). When g = 1, it is well known that
the three even theta null coordinates are never 0 for an elliptic curve. When g = 2 the product of
the square of the 10 even theta null coordinates define a modular form χ10 of weight 10 on the Siegel
modular space whose locus is the abelian surfaces that are isomorphic to a product of two elliptic
curves [GL12, Section 2.6]. More precisely, when Ω is in the fundamental domain defined by Gottschling
[Got59] then the even theta null coordinates are nonzero except θ [ 11

11 ] (0,Ω) which cancels exactly when

Ω =

(
τ1 0
0 τ2

)
, that is when (A,L ) is isomorphic to a product of elliptic curves with the product

polarization. For more details we refer to [Dup06].
When g > 2 it is well known that Jacobians of hyperelliptic curves are characterized by the cancellation

of some even theta null coordinates [Mum84, §6], so an absolutely simple abelian variety can have a zero
even theta null coordinate.

Corollary 3.6. Let L = L n
0 , where n is even and L0 is principal and symmetric, coming from a

period matrix Ω. We represent the abelian variety (A,L ) via the corresponding theta null point.
If n > 2 then for all z1, z2 ∈ Cg, if we are given (θi(z1))i∈Z(n)) and (θi(z2))i∈Z(n), then one can

recover all products θi(z1 + z2)θj(z1 − z2) for i, j ∈ Z(n).
If n = 2 and we assume that the even theta null coordinates are nonzero, then from the same data we

can recover all terms of the form θi(z1 + z2)θj(z1 − z2) + θj(z1 + z2)θi(z1 − z2) for i, j ∈ Z(2).

Proof. When n > 2, for all i, j ∈ Z(n) and χ ∈ Ẑ(2), we can find k, l ∈ Z(n) such that i+j+k+l ∈ 2Z(n)
and

∑
t∈Z(2) χ(t)θk+t(0)θl+t(0) 6= 0. Indeed, we may as well take k = i, l = j, and if needed translate

them by a suitable element by using Theorem 3.3 so that UL 2

χ, k+l
2

(0)UL 2

χ, k−l2

(0) 6= 0. By Theorem 3.2 we

can then recover
∑
t∈Z(2) χ(t)θi+t(z1 + z2)θj+t(z1 − z2). By summing over χ ∈ Ẑ(2), we then recover

θi(z1 + z2)θj(z1 − z2).
The case n = 2 is done similarly, we refer to [LR10] and [Rob10] for more details. �

By the discussion of Remark 3.4 for n = 2, it should not be surprising that when the even theta null
coordinates are nonzero we can recover the symmetric elements θi(z1+z2)θj(z1−z2)+θj(z1+z2)θi(z1−z2).
From now on we will always assume that we are in this case when n = 2. It is easy from
Corollary 3.6 to describe equations of the degree 2 scheme {[P +Q], [P −Q]} for [P ], [Q] ∈ KA which
is the output of the schematic addition, see Section 5.2. We refer to [LR13] for more details and to
Section 5 for explicit formulas in dimension 2.

When n > 2 is even we can thus compute the addition of the projective points P1, P2 ∈ A(k). Indeed,
for j = 1, 2, let zj ∈ Cg be such that Pj = (θi(zj))i∈Z(n). If θi0(z1 − z2) 6= 0, then the projective point
(θi(z1 + z2)θi0(z1 − z2))i∈Z(n) represents the point P1 + P2.

3.3. Affine additions. One can see that the relations in Theorem 3.2 are stronger than just computing
additions on the variety A. To explain this, we introduce the affine theta coordinates of z ∈ Cg as the
point of AZ(n) given by (θi(z))i∈Z(n). Then, if we know the affine theta coordinates of z1, z2 ∈ Cg and
also the affine theta coordinates of the point z1 − z2, then by Corollary 3.6 we can recover the affine
theta coordinates of the point z1 + z2 ∈ Cg. This affine differential addition allows us to recover the
analytic addition law on (Cg,+) which is above the abelian variety A ' Cg/(Zg + ΩZg). This affine
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differential addition is an essential building block for algorithms on abelian varieties that needs a bit
more arithmetic, like isogenies [LR12; CR13] or pairings [LR10; LR13].

In this context, the affine three-way addition formulae from Equation (15) are also very usefull;
let z1, z2, z3 ∈ Cg, then given the affine coordinates of z1, z2, z3, z2 + z3, z1 + z3, z1 + z2 one can use
Equation (15) to recover the affine coordinates of z1 + z2 + z3. (We refer to [LR13] for a proof which use
a result similar to Theorem 3.3 but for sections of fibers translated by points, see also [Kem88]).

Unlike the standard addition, the (affine) differential addition can also be computed when the level n
is two. Indeed, for the differential addition, by Corollary 3.6 we know the elements θi(z1 + z2)θj(z1 −
z2) + θj(z1 + z2)θi(z1 − z2), from which it is easy to also recover the coordinates θi(z1 + z2) if we also
know the θi(z1 − z2).

We show that the affine three-way addition can also be computed when the even theta null coordinates
are non zero. This is a strengthening a result of [LR13] which the same result is proved only for general
points.

Proposition 3.7. Let L = L n
0 with n even and z1, z2, z3 ∈ Cg. Then from the affine level n theta

coordinates of z1, z2, z, z2 + z3, z1 + z, z1 + z2, one can compute the affine coordinates of z1 + z2 + z3 up
to a sign.

Proof. If n > 4, this was already proven in [LR13]. We can thus assume that n = 2. If z1, z2 or z is a
point of 2-torsion, we can directly compute the (affine) action of translation by it using Equation (8). If
not one can do a compatible addition to recover z1 + z2 + z3 projectively. We then need to find the
projective factor λ. Writing z1 + 2z2 + z3 = (z1 + z2) + (z2 + z3) = (z1 + z2 + z3) + z2 where the two
terms on the right can be computed exactly by a differential addition gives λ2. �

Of course in practice it is faster to use Equation (15) to compute the three-way addition because it
will give enough relations in the generic case that to use the method of the proof of Proposition 3.7.

Corollary 3.8. Let n be even, and assume that we have m points Pi ∈ A(k) given by their theta
coordinates (θk(zi)k∈Z(n)). Assume that we also know the theta coordinates (θk(zi + zj)k∈Z(n)) for
all i 6= j. Then for any (λi)

m
i=1 ∈ Zm, there exists an alorithm to recover the theta coordinates of

(θk(λ1z1 + · · ·+ λmzm)k∈Z(n)) of the sum
∑
λizi.

Proof. By an easy recursive application of Proposition 3.7 we can recover all points
∑
εizi where

εi ∈ {0, 1}. One can then use differential additions to recover
∑
λizi. �

3.4. Summary. Lest the reader be overwhelmed by all the different additions available from Riemann
relations, a summary is probably welcome. Assume that the level n is even. Then (with the further
hypothesis that the even theta null coordinates are non zero if n = 2), we can (provided we have the
theta null point):

• Given the affine (resp. projective) theta coordinates of z1, z2 and z1−z2 compute the differential
addition to get the affine (resp. projective) theta coordinates of z1 + z2 (Corollary 3.6);

• Given z in affine (resp. projective) theta coordinates compute the doubling 2z as a special case
of the differential addition;

• Given the affine theta coordinates of z1, z2, z3, z1 + z2, z1 + z3 and z2 + z3 compute the affine
three way addition to get the affine theta coordinates of z1 + z2 + z3 (Proposition 3.7);

• More generally given the affine theta coordinates of zi (i = 1, . . . ,m) and of zi + zj (i 6= j)
compute a multiway addition to get the affine theta coordinates of z1 + · · ·+ zm (Corollary 3.8);

• Given the projective theta coordinates of z1 and z2 compute the schematic addition {z1 +z2, z1−
z2} (by the discussion following Corollary 3.6);

• As a corollary of the schematic addition, given the projective theta coordinates of z1, z2 and one
extra coordinate θi(z1 + z2)/θj(z1 + z2) with i 6= j, provided it is well defined (or the coordinate
θi(z1 − z2)/θj(z1 − z2)), compute the addition z1 + z2 in projective coordinates (Indeed [LR13]
and Section 5.2 explain how Corollary 3.6 gives an algorithm for the schematic addition where the
degree two scheme is parametrized by the roots {θi(z1 + z2)/θj(z1 + z2), θi(z1− z2)/θj(z1− z2)});
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• Given the projective theta coordinates of zi (i = 1, . . . ,m) and the projective theta coordinates
of zi+z0 (with z0 not of 2-torsion), compute the projective theta coordinates of z0 +z1 + · · ·+zm
and z1 + · · ·+ zm (Corollary 2.6);

• When n > 2, given the projective theta coordinates of z1 and z2, compute the projective theta
coordinates of z1 + z2 (Corollary 3.6).

We refer to Section 5 for explicit formulae for abelian surfaces with n = 2. In general the more information
we have, the faster are the algorithms to compute the addition. In particular differential additions are
very fast on the Kummer variety, especially in the generic case when the coordinates of z1 − z2 are all
non zero as in [Gau07].

Using Theorem 2.4 with level 2 theta functions, the addition of ([P ], [P + P0]) and ([Q], [Q+Q0])
uses two compatible additions. But when [P + Q] is computed on the Kummer variety by the first
compatible addition, rather than doing a second one we can compute [P + Q + P0] on the Kummer
variety using the (projective) three way addition. By Section 5 this method is faster (and indeed we use
the extra information we have just computed).

Remark 3.9. If we represent KA via the embedding given by level 2 theta functions, then by Corollary 3.6
and Section 5.2 we have explicit formulae for the schematic addition, and so we can represent P ∈ A
using Theorem 2.4 by ([P ], [P + P0]). It is straightforward to apply the isogeny and pairing algorithms
from [LR12; LR13] on this representation.

For an isogeny f : A→ B, what we can compute is the map from the representation from ([P ], [P+P0])
on A to the representation ([Q], [Q + f(P0)]) on B. In the case that f is an endomorphism so that
B = A, we will usually want to compute the endomorphism with respect to the same representation
([Q], [Q + P0]) on A. Such is the case, for instance, when we want to use f to speed-up the scalar
multiplication as in [GLV01]. To obtain f we can apply Remark 2.5 and compute once and for all an
element in {[P0 + f(P0)], [P0 − f(P0)]} ⊂ KA(k) (such a choice may amount to replace f by −f).

4. Arithmetic, levels and isogenies

In this section we give formulae to go back and forth between the embedding given by Theorem 2.4
where the Kummer variety is embedded via level 2 theta coordinates and the embedding of the abelian
variety given by level 4 theta coordinates.

As an application, we explain how to compute the fiber of the natural projection π : A→ KA (from
level 4 to level 2). The main result, extending the usual genus 1 case, says that we can compute this
fiber only with differential and compatible additions up to one choice of sign (which involves taking a
square root). We conclude the section by giving an efficient compression scheme for even higher level
theta coordinates.

4.1. Level 4 theta coordinates. If E : y2 = f(x) is an elliptic curve given by its Weierstrass equation,
working on the Kummer line amounts to forgetting the coordinate y. Reciprocally, given a point
[P ] = x(P ) on the Kummer line, finding the points P,−P on E above it comes down to computing a
square root to find {(x(P ),

√
f(x(P ))), (x,−

√
f(x(P )))}.

If we use Theorem 2.4 to represent the abelian variety A as a subvariety of KA ×KA where KA is
embedded using level 2 theta functions, then the fiber is easy to compute: given [P ] ∈ KA(k) we need to
compute [P + P0] ∈ KA(k) to get the representation ([P ], [P + P0]) ∈ A(k). But the schematic addition
between [P ] and [P0] outputs a degree 2 polynomial whose roots encode [P +P0] and [P −P0] which are
the two points above [P ] (see Section 5 for explicit formulae). Hence computing the fiber only requires a
square root.

Now to compute the fiber in level 4 theta coordinates it only remains to show how to convert back
and forth from these coordinates to the model from Theorem 2.4.

If (A,L0) is a principally polarised abelian variety, the map from the abelian variety (level 4) to
the Kummer variety (level 2) is given by the duplication formulae from Theorem 3.1. More precisely,
if L = L 2

0 and we work with the basis (θL
i )i∈Z(2) of level 2 theta functions for the embedding of KA

and the basis (θL 2

i )i∈Z(4) of level 4 theta functions for the embedding of A, then the natural projection
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A→ KA is given by

(17) θL
i+j(x)θL

i−j(x) =
1

2g

∑
t∈Z(2)

θL 2

i+t(x)θL 2

j+t(0)

Indeed, we note that on the left of Equation (17) we get a product of two level 2 theta functions, so by
Theorem 3.3 and Remark 3.4 we get all even coordinates Γ(A,L 2)+. Thus Equation (17) defines the
projection map π from (A,L 2) to (KA,L 2+).

We suppose here that we know the abelian variety A via its level 4 theta null point 0̃A = (θi(0))i∈Z(n).
For i ∈ Z(4), we note Ti the point of 4-torsion corresponding to − i

4 ∈
1
4Z

g/Zg from Equation (9). Fix a
point i0 ∈ Z(4), given P in (A,L 2) Equation (9) shows how to compute P + Ti0 from which we get
([π(P )], [π(P + Ti0)]). This explain how to go from level 4 to the embedding from Theorem 2.4 with
P0 = Ti0 .

It remains to explain how to invert Equation (17) to go from ([π(P )], [π(P + Ti0)]) to P . It will be
easier to work with the variables UL 2

χ,i from Section 3 since Equation (12) gives

(18) UL 2

χ,i (P )UL 2

χ,j (0) =
∑
t∈Z(2)

χ(t)θL
i+j+t(P )θL

i−j+t(P ),

Since the odd theta null values are null, using Equation (18) directly allows only to recover the coordinates
UL 2

χ,i such that χ(2i) = 1.
Let i be an element of Z(4), from Equation (9) we compute that Uχ,i(Ti) = Uχ,0(0) 6= 0. With the

equation

(19) UL 2

χ,i (P )UL 2

χ,i (Ti) =
∑
t∈Z(2)

χ(t)θL
2i+t(P + Ti)θ

L
t (P − Ti),

we can then recover UL 2

χ,i (P ) provided that we know the level 2 theta coordinates of [P +Ti] and [P −Ti].
We already know by hypothesis [P+Ti0 ] ∈ KA(k). From Ti ∈ A we can compute ([Ti], [Ti+T0]) ∈ KA×KA.
Then we just need to use a compatible addition (Proposition 2.1) to recover P +Ti, and then a differential
addition to get P − Ti.

Remark 4.1. One should be careful here because Equation (19) makes sense for affine coordinates and
we are working with projective coordinates. What happens is that by taking an affine lift of the level 4
theta null point, we can use Equation (9) to get a canonical lift of the 4-torsion points Ti. Let z ∈ Cg be
a lift of P , then if we take any affine lift P̃ + Ti of [P + Ti] ∈ KA it is equal to z + Ti up to a projective
factor λ. But then computing P̃ − Ti affinely via a differential addition gives that P̃ − Ti is equal to
z − Ti up to the projective factor λ−1; so these factors cancels out in Equation (19).

4.2. A compact representation of higher level theta coordinates. Let (A,L n
0 ) be an abelian

variety described by level n theta functions with 2 | n and n > 2. There exists a generalisation of the
duplication formulae given by [Koi76; Kem89] which gives the projection map π from A to KA (in
level 2). Unfortunately this change of level map is harder to inverse than the duplication formulae.
Instead we will investigate another map that comes from isogenies.

Theorem 4.2 (Isogeny theorem). Let n = n1n2 and ` = `1`2. Let π : A = Cg/(Zg ⊕ ΩZg) → B =
Cg/(Zg ⊕ l1

l2
ΩZg) : z 7→ l1z be the canonical isogeny with kernel K = 1

`1
Zg/Zg ⊕ 1

`2
ΩZg/ΩZg. Then if

we use the basis with level `n = (`1n1)(`2n2) from Equation (5) for A and the basis with level n = n1n2

for B, we get that

π∗
(
θ
[
a/n1

b/n2

]
(n1z,

n1

n2

(`1
`2

Ω
)
)

)
= θ

[
a`1/n1`1
b`2/n2`2

]
(n1(`1z),

n1`1
n2`2

Ω)

Proof. This is immediate. �
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Corollary 4.3. Let A = Cg/(Zg ⊕ ΩZg) be an abelian variety, that we represent via the embedding of
level n theta functions where n = 2m is greater or equal to 4. Let π : A→ B = Cg/(Zg ⊕ Ω

mZg) : z 7→ z

be the canonical isogeny of kernel K = 1
mΩZg/ΩZg, where we represent B with level 2 theta coordinates.

Then
(θBi (π(z))i∈Z(2) = (θAϕ(i)(z))

where ϕ : Z(2)→ Z(n) is the natural embedding.

We can also see the theta coordinates as affine coordinates on Cg rather than as projective coordinates
on the abelian variety A = Cg/Λ. We recall from Section 3 that we define the affine coordinates of
z ∈ Cg as θi(z), i ∈ Z(n). It is easy to lift π to an affine map π̃ such that π̃∗θBi = θAϕ(i):

Theorem 4.4. Let e1, . . . , eg be a basis of 1
nZ

g/Zg given by affine theta coordinates (they can be
recovered from the affine theta null point of level n on A via Equation (8)).

Let z ∈ Cg. Then
• The affine theta null point 0̃A can be recovered from the 1 + g(g + 1)/2 points π̃(0A), π̃(ei),
π̃(ei + ej);

• The affine theta null point z can be recovered from the above data and the 1 + g points π̃(z),
π̃(z + ei). In particular we can encode a point on A by using (1 + g)2g coordinates (once we
know the theta null point).

Proof. If we combine Equation (9) with the form of π̃ given by Corollary 4.3, then it is straightforward to
see that we can recover the theta coordinates of z from the theta coordinates of the points π̃(z+

∑
λiei)

where λi ∈ {0, . . . , `− 1}. But π̃(z +
∑
λiei) = π̃(z) +

∑
π̃(λiei). By Corollary 3.8, we can recover the

right hand term from the points π̃(0A), π̃(ei), π̃(ei + ej), π̃(z), π̃(z + ei) by using three-way additions
and differential additions. �

Remark 4.5. If n > 4 and g > 1 we thus also get a more compact representation of a point x in
the abelian variety A than by using the level n theta functions as coordinates. We can also compute
the arithmetic directly on this representation: if we know the coordinates of x, y ∈ A given by π̃(x),
π̃(x+ ei), π̃(y), π̃(y + ei); then we can recover the coordinates π̃(x+ y), π̃(x+ y + ei) by doing some
three-way additions. (Of course if we already know π̃(x− y), π̃(x− y + ei) it is faster to do differential
additions).

Remark 4.6. If we only know π(z), since B is represented by theta functions of level 2 this mean that
we know π(z) ∈ KB , and the best we can hope is to recover the preimage [z] + Kerπ ∈ A. This preimage
can be recovered in a similar way as we did in the inversion of the duplication formula. First we fix a
choice of π(z) + π(e1); we can recover all the other points π(z) + π(ei) by a compatible addition with
π(e1 + ei). Now we fix an affine lift λiπ̃(z + ei) where λi is an unknown projective factor. By computing
differential additions, and since π̃(z +mei) = π̃(z) we recover λmi as in [LR12; CR13]. We choose λi
satisfying these equations; by Theorem 4.4 we can then recover one of the element z (or −z) in the
preimage. In total there is 2mg possible choices, so we recover all elements in the preimage.

Example 4.7. Let D be the diagonal matrix with entries (1, . . . , 1, 2) and let A′ be the abelian variety
A′ = Cg/(Zg +DΩZg) where Ω ∈ Hg. Then Ω induces a polarisation L of type (1, . . . , 1, 2) on A′; a
basis of sections of L 2 is given by

θ [ 0
b ] (·,Ω(2D)−1)b∈(2D)−1Zg/Zg .

If A′ is simple, then by [BL04, Theorem 4.3.1] L has no fixed components so that L 2 is a very ample
line bundle by [BL04, Theorem 4.5.5]. So in this case we can embed the abelian variety A′ using only
2 · 2g projective coordinates. Unfortunately A′ is not principally polarized in general since the Néron
Severi group of an abelian variety is Z generically.

Still, if we let π : A′ → A = Cg/(ΩZg+Zg), then a similar reasoning as in Corollary 4.3 and Theorem 4.4
show that for z ∈ Cg, the level (2, 2, . . . , 2, 4)-theta coordinates of z with respect to A′ can be recovered
from the level 2 theta coordinates with respect to A of the two points π̃(z) and π̃(z + e) where e is the
point of 4-torsion generating D−2Zg/Zg. Thus we see that hybrid level-(2, 2, . . . , 4) theta functions are
a particular case of Theorem 2.4.
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5. Explicit formulae for abelian surfaces

Let (ai)i∈Z(2) be the level two theta null point representing a Kummer variety KA of dimension 2.
Let x = (xi)i∈Z(2) and y = (yi)i∈Z(2), we let X = x+ y and Y = x− y. We will give formulae for the
coordinates 2κij = XiYj +XjYi.

Let i ∈ Z(2), χ ∈ Ẑ(2) and let

zχi =
( ∑
t∈Z(2)

χ(t)xi+txt
)( ∑

t∈Z(2)

χ(t)yi+tyt
)
/
( ∑
t∈Z(2)

χ(t)ai+tat
)
.

By Equation (12),
∑
t χ(t)ai+tat is simply the classical theta null point θ

[
χ/2
i/2

]
(0,Ω)2. Then Theorem 3.2

gives

4X00Y00 = z00
00 + z01

00 + z10
00 + z11

00 ;

4X01Y01 = z00
00 − z01

00 + z10
00 + z11

00 ;

4X10Y10 = z00
00 + z01

00 − z10
00 − z11

00 ;

4X11Y11 = z00
00 − z01

00 − z10
00 + z11

00 ;

2(X10Y00 +X00Y10) = z00
10 + z01

10 ;

2(X11Y01 +X01Y11) = z00
10 − z01

10 ;

2(X01Y00 +X00Y01) = z00
01 + z10

01 ;

2(X11Y10 +X10Y11) = z00
01 − z10

01 ;

2(X11Y00 +X00Y11) = z00
11 + z11

11 ;

2(X01Y10 +X10Y01) = z00
11 − z11

11 ;

As usual, we let M represent the cost of a multiplication (in the field of definition of x and y), S
represent the cost of a square, and M0 represent the cost of a multiplication coming from the theta
null point (ai)i∈Z(2) (so a data that depend only on the Kummer variety). Finally I represent the cost
of an inversion, which we will replace by some multiplications using the fact that we have projective
coordinates. We may suppose that a0 = 1. Also we note Aχi =

∑
χ(t)ai+tai. We have seen that from

the duplication formulae, if ai = θ
[

0
i/2

]
(0,Ω/2) then Aχi = θ

[
χ/2
i/2

]
(0,Ω)2. For homogeneity reasons,

we may also assume that A00
00 = 1.

To compute the four z00
i we need 4M + 8S + 3M0. To compute the two z10

i we need 2M + 4M + 2M0.
But actually, since we already have the squares x2

i from the computation of the z00
i , we can compute the

product xi+txt as 2xi+txt = (xi+t + xt)
2 − x2

i+t − x2
t so the actual cost is 2M + 4S + 2M0. In total to

compute all κij we need 4M + 8S + 3M0 + 3(2M + 4S + 2M0) = 10M + 20S + 9M0. When x = y, the
cost reduces to 8S + 3M0 + 3(2M + 2S + 2M0) = 6M + 14S + 9M0.

5.1. Differential additions. The first four equations are enough to give the κii and can be used to
compute the differential addition X from x, y, Y in 4M + 8S + 3M0 + 4I (in the generic case where
the coordinates of Y are nonzero, otherwise we need all the κij). Similarly, to compute the double
of x (again in the generic case where the coordinates of the theta null point are nonzero), we need
8S + 6M0. Once we have computed the differential addition x + y, computing another differential
addition x+ y′ involving the same point x costs only 4M + 4S + 3M0 + 4I. In a Montgomery ladder,
computing the scalar multiplication nP , the differential additions will involve the point P so up to some
precomputations the 4I from the formula above become 3M . One step of the Montgomery ladder then
costs 7M + 12S + 9M0; we recover the formulas from [Gau07] this way. In [Gau07] a 3M − 3S − 3M0

tradeoff is described. For the complexity analysis here we assume that we have small constants so the
cost of M0 is small and we have not done this trade off.

In a d-multiscalar Montgomery ladder, computing the multiplication m1P1 + · · ·+mdPd, the algorithm
from [Bro06] costs 1 doubling and d differential addition on the Kummer variety by step. This give a
complexity of 8S + 6M0 + d(7M + 4S + 3M0) = 7dM + (8 + 4d)S + (6 + 3d)M0.
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5.2. Compatible additions. We describe the degree two scheme {X,Y } by the polynomial Pα(Z) =
Z2 − 2κα0

κ00
Z + καα

κ00
whose roots are {XαX0

, YαY0
} (where α is such that XαY0 −X0Yα 6= 0). To compute κ00

and καα we need 4M + 8S + 3M0, and to compute κα0 we need 2M + 4S + 2M0; so in total to compute
Pα, we need 6M + 12S + 5M0 + 2I.

Once we have a root Z, if we let Z ′ = 2κα0

κ00
− Z be the conjugate root (corresponding to Yα

Y0
), we can

recover the coordinates Xi, Yi by solving the equation(
1 1
Z Z ′

)(
Yi/Y0

Xi/X0

)
=

(
2κ0i/κ00

2καi/κ00

)
;

We find Xi = 2(Zκ0i−καi)
κ00(Z−Z′) = Zκ0i−καi

Zκ00−κα0
for i 6= 0, α (here we have X0 = 1, Xα = Z). But usually we

will express Z = (X0 : Xα) ∈ P1 as a point in the projective line, and we find that

Xi =
Xακ0i −X0καi
Xακ00 −X0κα0

.

Recovering the projective coordinates ofX then costs 8M (given the κij). To sum up, given Z = (X0 : Xα)
recovering X costs in total (10M + 20S + 9M0) + 8M = 18M + 20S + 9M0.

For a compatible addition, where x+ y = z + t, we can find Z as the common root between Pα and
the similar polynomial P′α(Z) = Z2 − 2

κ′α0

κ′00
Z +

κ′αα
κ′00

coming from the symmetric coordinates zitj + tizj .
Computing the coefficients needed for P′α costs 6M + 12S + 5M0. The common root is

Z =

κ′αα
κ′00
− καα

κ00

−2κα0

κ00 + 2
κ′α0

κ′00

=
κ′αακ00 − καακ′00

2(κ′α0κ00 − κα0κ′00)
.

Computing Z projectively costs 4M . In the end, a compatible addition costs (18M + 20S + 9M0) +
(6M + 12S + 5M0) + 4M = 28M + 32S + 14M0.

5.3. Multiscalar multiplication. We compute the cost of a multiscalar multiplication using the
strategy outlined in Proposition 2.9 and Remark 2.11; which cost one compatible addition, one differential
addition and one doubling by multibits. With the same notations as this Proposition, we assume that we
have precomputed all data corresponding to the

∑
εiPi, εi ∈ {0, 1}. For the compatible addition, due to

the precomputations we gain (1M + 4S + 2S × 3 + 9M0) + (1M + 4S + 2S + 5M0) = 2M + 16S + 14M0

and the compatible addition costs 26M + 16S. The doubling and the differential addition then cost
(8S+6M0)+(7M +3M0) = 7M +8S+9M0 (reusing what we have already computed for the compatible
addition). Finally we get a cost of 33M + 24S + 9M0 by multibits.

So for a d-dimensional GLV scheme, using compatible additions or only differential additions according
to the size of d, we get a cost of of Max(7dM + (8 + 4d)S+ (6 + 3d)M0, 33M + 24S+ 9M0). In particular,
even for large d we are competitive with the best result using Mumford coordinates (in Jacobian form)
[HC] which needs 52M + 11S for a mDBLADD.

We note that there is probably a lot of room for improvement here. First, we only need the square of
the coordinates of the point computed via a compatible addition, there may be a way to compute them
directly faster. Also we have not used the equation of the Kummer surface to speed up the computations.

5.4. Three way additions. In the ([x], [x+ T ]) representation, a doubling costs one doubling and one
differential addition in the Kummer, for a cost of 4M + 12S + 12M0. A differential addition costs two
differential additions in the Kummer, for a cost of (4M + 8S + 3M0 + 4I) + (4M + 4S + 3M0 + 4I) =
8M + 12S + 6M0 + (6M + 4M + 4M) = 24M + 12S + 6M0.

A standard addition is much more expensive: we compute x + y + T via a compatible addition
(x + T ) + y = x + (y + T ), for a cost of 28M + 32S + 14M0. We could compute x + y via another
compatible addition, but it is faster to do a three-way addition, using Equation (15). For all χ ∈ Ẑ(2),( ∑

t∈Z(2)

χ(t)(x+ y + T )tTt
)( ∑

t∈Z(2)

χ(t)xtyt
)

=
( ∑
t∈Z(2)

χ(t)0t(x+ y)t
)( ∑

t∈Z(2)

χ(t)(y + T )t(x+ T )t
)
.

To recover x+ y, this costs (4M + 4M + 3M0) + (1M + 1I)× 4 + 3M0 = 12M + 6M0 + 4I = 22M + 6M0.
In total a standard addition costs (28M + 32S + 14M0) + (22M + 6M0) = 50M + 32S + 20M0.



18 DAVID LUBICZ AND DAMIEN ROBERT

If we will add y a lot of time so we are allowed to make precomputations first, then as in Section 5.3
the cost of the compatible addition to compute x + y + T is 28M + 16S, the cost of the three-way
addition is 20M + 6M0 for a total cost of 48M + 16S + 6M0.

As we can see the arithmetic is extremely expensive in this representation. To be efficient, one
need to go to the level 2 Kummer model (once the necessary precomputations have been done in this
representation), and only switch back to this representation at the end using a compatible addition.

6. Conclusion

In this paper we have shown how a simple type of addition on a Kummer variety which we called the
compatible addition can be used to do some arithmetic that does not come from differential additions.

We have used this tool to explain how to go from a level 2 theta representation to a level 4 theta
representation and to derive an efficient representation of an abelian variety A by embedding it into K2

A.
If KA is represented by theta functions of level 2, this representation only add one extra coordinates
(more precisely this gives an embedding of A into P2g−1×P1), and benefits from the same efficient scalar
multiplication as the one in KA.
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