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Abstract. We introduce the k-LWE problem, a Learning With Errors variant of the
k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS su�ers from an ex-
ponential loss in k. We improve and extend it to an LWE to k-LWE reduction with
a polynomial loss in k, by relying on a new technique involving trapdoors for random
integer kernel lattices. Based on this hardness result, we present the �rst algebraic con-
struction of a traitor tracing scheme whose security relies on the worst-case hardness of
standard lattice problems. The proposed LWE traitor tracing is almost as e�cient as
the LWE encryption. Further, it achieves public traceability, i.e., allows the authority
to delegate the tracing capability to �untrusted� parties. To this aim, we introduce the
notion of projective sampling family in which each sampling function is keyed and, with
a projection of the key on a well chosen space, one can simulate the sampling function
in a computationally indistinguishable way. The construction of a projective sampling
family from k-LWE allows us to achieve public traceability, by publishing the projected
keys of the users. We believe that the new lattice tools and the projective sampling
family are quite general that they may have applications in other areas.
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1 Introduction

Since the pioneering work of Ajtai [4], there have been a number of proposals of
cryptographic schemes with security provably relying on the worst-case hardness of
standard lattice problems, such as the decision Gap Shortest Vector Problem with
polynomial gap (see the surveys [40, 51]). These schemes enjoy unmatched security
guarantees: Security relies on worst-case hardness assumptions for problems expected
to be exponentially hard to solve (with respect to the lattice dimension n), even with
quantum computers. At the same time, they often enjoy great asymptotic e�ciency, as
the basic operations are matrix-vector multiplications in dimension Õ(n) over a ring
of cardinality ≤ Poly(n). A breakthrough result in that �eld was the introduction of
the Learning With Errors problem (LWE) by Regev [49, 50], who showed it to be at
least as hard as worst-case lattice problems and exploited it to devise an elementary
encryption scheme. Gentry et al. showed in [24] that Regev's scheme may be adapted
so that a master can generate a large number of secret keys for the same public key. As
a result, the latter encryption scheme, called dual-Regev, can be naturally extended
into a multi-receiver encryption scheme. In the present work, we build traitor tracing
schemes from this dual-Regev LWE-based encryption scheme.

Traitor tracing. A traitor tracing scheme is a multi-receiver encryption scheme
where malicious receiver coalitions aiming at building pirate decryption devices are
deterred by the existence of a tracing algorithm: Using the pirate decryption device,
the tracing algorithm can recover at least one member of the malicious coalition. Such
schemes are particularly well suited for �ghting copyright infringement in the context of
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commercial content distribution (e.g., Pay-TV, subscription news websites, etc). Since
their introduction by Chor et al. [18], much work has been devoted to devising e�cient
and secure traitor tracing schemes. The most desirable schemes are fully collusion
resistant: they can deal with arbitrarily large malicious coalitions. But, unsurprisingly,
the most e�cient schemes are in the bounded collusion model where the number of
malicious users is limited. The �rst non-trivial fully collusion resistant scheme was
proposed by Boneh et al. [14]. However, its ciphertext size is still large (Ω(

√
N), where

N is the total number of users) and it relies on pairing groups of composite order. Very
recently, Boneh and Zhandry [15] proposed a fully collusion resistant scheme with poly-
log size parameters. It relies on indistinguishability obfuscation [23], whose security
foundation remains to be studied, and whose practicality remains to be exhibited. In
this paper, we focus on the bounded collusion model. The Boneh-Franklin scheme [8] is
one of the earliest algebraic constructions but it can still be considered as the reference
algebraic transformation from the standard ElGamal public key encryption into traitor
tracing. This transformation induces a linear loss in e�ciency, with respect to the
maximum number of traitors. The known transformations from encryption to traitor
tracing in the bounded collusion model present at least a linear loss in e�ciency, either
in the ciphertext size or in the private key size [8, 41, 30, 53, 7, 13]. We refer to [26] for a
detailed introduction to this rich topic. Also, in Appendix A.1, we give a short overview
of traitor tracing schemes with their properties, in particular the public traceability.

Our Contributions. We describe the �rst algebraic construction of a public-key
lattice-based traitor tracing scheme. It is semantically secure and enjoys public trace-
ability. The security relies on the hardness of LWE, which is known to be at least as
hard as standard worst-case lattice problems [50, 43, 16].

The scheme is the extension, described above, of the dual-Regev LWE-based en-
cryption scheme from [24] to a multi-receiver encryption scheme, where each user has
a di�erent secret key. In the case of traitor tracing, several keys may be leaked to a
traitor coalition. To show that we can trace the traitors, we extend the LWE problem
and introduce the k-LWE problem, in which k hint vectors (the leaked keys) are given
out.

Intuitively, k-LWE asks to distinguish between a random vector t close to a given
lattice Λ and a random vector t close to the orthogonal subspace of the span of k given
short vectors belonging to the dual Λ∗ of that lattice. Even if we are given (b∗i )i≤k
small in Λ∗, computing the inner products 〈b∗i , t〉 will not help in solving this problem,
since they are small and distributed identically in both cases. The k-LWE problem can
be interpreted as a dual of the k-SIS problem introduced by Boneh and Freeman [9],
which intuitively requests to �nd a short vector in Λ∗ that is linearly independent with
the k given short vectors of Λ∗. Their reduction from SIS to k-SIS can be adapted to
the LWE setup, but the hardness loss incurred by the reduction is gigantic. We propose
a signi�cantly sharper reduction from LWEα to k-LWEα. This improved reduction re-
quires a new lattice technique: the equivalent for kernel lattices of Ajtai's simultaneous
sampling of a random q-ary lattice with a short basis [5] (see also Lemma 2). We adapt
the Micciancio-Peikert framework from [38] to sampling a Gaussian X ∈ Zm×n along
with a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}. Kernel lattices also
play an important role in the re-randomization analysis of the recent lattice-based
multilinear map scheme of Garg et al. [22], and we believe that our new trapdoor
generation tool for such lattices is likely �nd additional applications in future. We also
remark that our technique can be adapted to the SIS to k-SIS reduction. We thus solve
the open question left by Boneh and Freeman of improving their reduction [9]: from an
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exponential loss in k to a polynomial loss in k. Consequently, their linearly homomor-
phic signatures and ordinary signature schemes enjoy much better e�ciency/security
trade-o�s.

Our construction of a traitor tracing scheme from k-LWE can be seen as an ad-
ditive and noisy variant of the (black-box) Boneh-Franklin traitor tracing scheme [8].
While the Boneh-Franklin scheme is transformed from the ElGamal encryption with
a linear loss (in the maximum number of traitors) in e�ciency, our scheme is almost
as e�cient as standard LWE-based encryption, as long as the maximum number of
traitors is bounded below n/(c log n), where n is the LWE dimension determined by
the security parameter, and c is a constant. The full functionality of black-box tracing
in both the Boneh-Franklin scheme and ours are of high complexity as they both rely
on the black-box con�rmation: given a superset of the traitors, it is guaranteed to �nd
at least one traitor and no innocent suspect is incriminated. Boneh and Franklin left
the improvement of the black-box tracing as an interesting open problem. We show
that in lattice setting, the black-box tracing can be accelerated by running the tracing
procedure in parallel on untrusted machines. This is a direct consequence of the prop-
erty of public traceability, i.e., the possibility of running tracing procedure on public
information, that our scheme enjoys. We note that almost all traitor tracing systems
require that the tracing key must be kept secret. Some schemes [17, 48, 12, 15] achieve
public traceability and some others achieve a stronger notion than public traceability,
namely the non-repudation, but the setup in these schemes require some interactive
protocol between the center and each user such as a secure 2-party computation pro-
tocol in [46], a commitment protocol in [47], an oblivious polynomial evaluation in [57,
32, 29].

To obtain public traceability and inspired from the notion of projective hash fam-
ily [20], we introduce a new notion of projective sampling family in which each sampling
function is keyed and, with a projection of the key on a well chosen space, one can
simulate the sampling function in a computationally indistinguishable way. The con-
struction of a set of projective sampling families from k-LWE allows us to publicly
sample the tracing signals.

Independently, our new lattice tools may have applications in other areas. The k-
LWE problem has a similar �avour to the Extended-LWE problem from [42]. It would
be interesting to exhibit reductions between these problems. On a closely-related topic,
it seems our sampling of a random Gaussian integer matrix X together with a short
basis of ker(X) is compatible with the hardness proof of Extended-LWE from [16].
In particular, it should be possible to use it as an alternative to [16, Def 4.5] in the
proof of [16, Le 4.7], to show that Extended-LWE remains hard with many hints
independently sampled from discrete Gaussians.

2 Preliminaries

If x is a real number, then bxe is the closest integer to x (with any deterministic rule
in case x is half an odd integer). All vectors will be denoted in bold. By default, our
vectors are column vectors. We let 〈·, ·〉 denote the canonical inner product. For q prime,
we let Zq denote the �eld of integers modulo q. For two matrices A,B of compatible
dimensions, we let (A|B) and (A‖B) respectively denote the horizontal and vertical
concatenations of A and B. For A ∈ Zm×nq , we de�ne Im(A) = {As : s ∈ Znq } ⊆ Zmq .
For X ⊆ Zmq , we let Span(X) denote the set of all linear combinations of elements

of X. We let X⊥ denote the linear subspace {b ∈ Zmq : ∀c ∈ X, 〈b, c〉 = 0}. For
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a matrix S ∈ Rm×n, we let ‖S‖ denote the norm of its longest column. If S is full
column-rank, we let σ1(S) ≥ . . . ≥ σn(S) denote its singular values. We let T denote
the additive group R/Z.

If D1 and D2 are distributions over a countable set X, their statistical distance
1
2

∑
x∈X |D1(x) − D2(x)| will be denoted by ∆(D1, D2). The statistical distance is

de�ned similarly if X is measurable. If X is of �nite weight, we let U(X) denote the
uniform distribution over X. For any invertible S ∈ Rm×m and c ∈ Rm, we de�ne the
function ρS,c(b) = exp(−π‖S−1(b − c)‖2). For S = sIm, we write ρs,c, and we omit
the subscripts S and c when S = Im and c = 0. We let να denote the one-dimensional
Gaussian distribution with standard deviation α.

2.1 Euclidean lattices and discrete Gaussian distributions

A lattice is a set of the form {
∑

i≤n xibi : xi ∈ Z} where the bi's are linearly in-
dependent vectors in Rm. In this situation, the bi's are said to form a basis of the
n-dimensional lattice. The n-th minimum λn(L) of an n-dimensional lattice L is
de�ned as the smallest r such that the n-dimensional closed hyperball of radius r
centered in 0 contains n linearly independent vectors of L. The smoothing param-
eter of L is de�ned as ηε(L) = min{r > 0 : ρ1/r(L̂ \ 0) ≤ ε} for any ε ∈ (0, 1),

where L̂ = {c ∈ Span(L) : ct · L ⊆ Z} is the dual lattice of L. It was proved in [39,
Le. 3.3] that ηε(L) ≤

√
ln(2n(1 + 1/ε))/π · λn(L) for all ε ∈ (0, 1) and n-dimensional

lattices L.
For a lattice L ⊆ Rm, a vector c ∈ Rm and an invertible S ∈ Rm×m, we de-

�ne the Gaussian distribution of parameters L, c and S by DL,S,c(b) ∼ ρS,c(b) =
exp(−π‖S−1(b − c)‖2) for all b ∈ L. When S = σ · Im, we simply write DL,σ,c. Note
thatDL,S,c = St ·DS−tL,1,S−tc. Sometimes, for convenience, we use the notationDL+c,S

as a shorthand for c + DL,S,−c. Gentry et al. [24] gave an algorithm, referred to as
GPV algorithm, to sample from DL,S,c when given as input a basis (bi)i of L such that√
ln(2n+ 4)/π ·maxi ‖S−tbi‖ ≤ 1 (see Lemma 23).
We extensively use q-ary lattices. The q-ary lattice associated to A ∈ Zm×nq is

de�ned as Λ⊥(A) = {x ∈ Zm : xt ·A = 0 mod q}. It has dimension m, and a basis can
be computed in polynomial-time from A. For u ∈ Zmq , we de�ne Λ⊥u(A) as the coset

{x ∈ Zm : xt ·A = ut mod q} of Λ⊥(A).

2.2 Random lattices

We consider the following random lattices, called q-ary Ajtai lattices. They are obtained
by sampling A ←↩ U(Zm×nq ) and considering Λ⊥(A). The following lemma provides a

probabilistic bound on the smoothing parameter of Λ⊥(A).

Lemma 1 (Adapted from [24, Le. 5.3]). Let q be prime and m,n integers with

m ≥ 2n and ε > 0, then ηε(Λ
⊥(A)) ≤ 4q

n
m

√
log(2m(1 + 1/ε))/π, for all except a

fraction 2−Ω(n) of A ∈ Zm×nq .

It is possible to e�ciently sample a close to uniform A along with a short basis
of Λ⊥(A) (see [5, 6, 44, 38]).

Lemma 2 (Adapted from [6, Th. 3.1]). There exists a ppt algorithm that given

n,m, q ≥ 2 as inputs samples two matrices A ∈ Zm×nq and T ∈ Zm×m such that: the

distribution of A is within statistical distance 2−Ω(n) from U(Zm×nq ); the rows of T

form a basis of Λ⊥(A); each row of T has norm ≤ 3mqn/m.
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For A ∈ Zm×nq , S ∈ Rm×m invertible, c ∈ Rm and u ∈ Znq , we de�ne the distribu-
tion DΛ⊥u (A),S,c as c̄ +DΛ⊥(A),S,−c̄+c, where c̄ is any vector of Zm such that c̄t · A =
ut mod q. A sample x from DΛ⊥u (A),S can be obtained using the GPV algorithm along

with the short basis of Λ⊥(A) provided by Lemma 2. Boneh and Freeman [9] showed
how to e�ciently obtain the residual distribution of (A,x) without relying on Lemma 2.

Theorem 3 (Adapted from [9, Th. 4.3]). Let n,m, q ≥ 2, k ≥ 0 and S ∈ Rm×m
be such that m ≥ 2n, q is prime with q > σ1(S) ·

√
2 log(4m), and σm(S) = q

n
m ·

max(Ω(
√
n logm), 2σ1(S)

k
m ). Let u1, . . . ,uk ∈ Znq and c1, . . . , ck ∈ Rm be arbitrary.

Then the residual distributions of the tuple (A,x1, . . . ,xk) obtained with the following

two experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Zm×nq ); ∀i ≤ k : xi ←↩ DΛ⊥ui (A),S,ci
.

Exp1 : ∀i ≤ k : xi ←↩ DZm,S,ci ; A←↩ U
(
Zm×nq |∀i ≤ k : xti ·A = uti mod q

)
.

This statement generalizes [9, Th. 4.3] in three ways. First, the latter corresponds
to the special case corresponding to taking all the ui's and ci's equal to 0. This gen-
eralization does not add any extra complication in the proof of [9, Th. 4.3], but is
important for our constructions. Second, the condition on m is less restrictive (the
corresponding assumption in [9, Th. 4.3] is that m ≥ max(2n log q, 2k)). To allow for
such small values of m, we re�ne the bound on the smoothing parameter of the Λ⊥(A)
lattice (namely, we use Lemma 1). Third, we allow for a non-spherical Gaussian dis-
tribution, which seems needed in our generalized Micciancio-Peikert trapdoor gadget
used in the reduction from LWE to k-LWE in Section 3.2.

We also use the following result on the probability of the Gaussian vectors xi from
Theorem 3 being linearly independent over Zq.

Lemma 4 (Adapted from [9, Le. 4.5]). With the notations and assumptions of

Theorem 3, the k vectors x1, . . . ,xk sampled in Exp0 and Exp1 are linearly independent

over Zq, except with probability 2−Ω(n).

2.3 Rényi Divergence

We use Rényi Divergence (RD) in our analysis, relying on techniques developed in [37,
35, 36]. For any two probability distributions P and Q such that the support of P
is a subset of the support of Q over a countable domain X, we de�ne the RD (of

order 2) by R(P‖Q) =
∑

x∈X
P (x)2

Q(x) , with the convention that the fraction is zero when
both numerator and denominator are zero. We recall that the RD between two o�set
discrete Gaussians is bounded as follows.

Lemma 5 ([35, Le. 4.2]). For any n-dimensional lattice L ⊆ Rn and invertible

matrix S, set P = DL,S,w and Q = DL,S,z for some �xed w, z ∈ Rn. If w, z ∈ L,
let ε = 0. Otherwise, �x ε ∈ (0, 1) and assume that σn(S) ≥ ηε(L). Then R(P‖Q) ≤(
1+ε
1−ε

)2
· exp

(
2π‖w − z‖2/σn(S)2

)
.

We use this bound and the fact that the RD between the parameter distributions
of two distinguishing problems can be used to relate their hardness, if they satisfy a
certain public samplability property.

Lemma 6 ([36]). Let Φ,Φ′ denote two distributions, and D0(r) and D1(r) denote

two distributions determined by some parameter r. Let P, P ′ be two decision problems

de�ned as follows:
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• P : Assess whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

• P ′: Assess whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) have the following public samplability property: there

exists a sampling algorithm S with run-time TS such that for all r, b, given any sample

x from Db(r) we have:

• S(0, x) outputs a sample distributed as D0(r) over the randomness of S.

• S(1, x) outputs a sample distributed as D1(r) over the randomness of S.

If there exists a T -time distinguisher A for problem P with advantage ε, then, for
every λ > 0, there exists an O(λε−2 · (TS + T ))-time distinguisher A′ for problem P ′

with advantage ε′ ≥ ε2

4R(Φ‖Φ′) · (ε/2−O(2−λ)).

2.4 Learning with errors

Let s ∈ Znq and α > 0. We de�ne the distribution As,α as follows: Take a ←↩ U(Znq )
and e←↩ να, and return (a, 1q 〈a, s〉+ e) ∈ Znq × T. The Learning With Errors problem

LWEα, introduced by Regev in [49, 50], consists in assessing whether an oracle produces
samples from U(Znq ×T) or As,α for some constant s←↩ U(Znq ). Regev [50] showed that

for q ≤ Poly(n) prime and α ∈ (
√
n

2q , 1), LWE is (quantumly) not easier than standard
worst-case lattice problems in dimension n with approximation factors Poly(n)/α.
This hardness proof was partly dequantized in [43, 16], and the requirements that q
should be prime and Poly(n) were waived.

In this work, we consider a variant LWE where the number of oracle samples that
the distinguisher requests is a priori bounded. If m denotes that bound, then we will
refer to this restriction as LWEα,m. In this situation, the hardness assumption can
be restated in terms of linear algebra over Zq: Given A ←↩ U(Zm×nq ), the goal is to
distinguish between the distributions (over Tm)

1

q
U (Im(A)) + νmα and

1

q
U
(
Zmq
)
+ νmα .

Under the assumption that αq ≥ Ω(
√
n), the right hand side distribution is indeed

within statistical distance 2−Ω(n) to U(Tm) (see, e.g., [39, Le. 4.1]). The hardness as-
sumption states that by adding to them a small Gaussian noise, the linear spaces Im(A)
and Zmq become computationally indistinguishable. This rephrasing in terms of linear
algebra is helpful in the security proof of the traitor tracing scheme. Note that by
a standard hybrid argument, distinguishing between the two distributions given one
sample from either, and distinguishing between them given Q samples (from the same
distribution), are computationally equivalent problems, up to a loss of a factor Q in
the distinguishing advantage.

Finally, we will also use a variant of LWE where the noise distribution να is re-
placed by Dq−1Z,α, and where U(T) is replaced by U(Tq) with Tq being q−1Z with
addition mod 1. This variant, denoted by LWE′, was proved in [44] to be no easier
than standard LWE (up to a constant factor increase in α).



7

3 New lattice tools

The security of our constructions relies on the hardness of a new variant of LWE, which
may be seen as the dual of the k-SIS problem from [9].

De�nition 7. Let k ≤ m, S ∈ Rm×m invertible and C = (c1‖ · · · ‖ck) ∈ Rk×m.
The (k, S, C)-LWEα,m problem (or (k, S)-LWE if C = 0) is as follows: Given A ←↩
U(Zm×nq ),u ←↩ U(Znq ) and xi ←↩ DΛ⊥−u(A),S,ci

for i ≤ k, the goal is to distinguish

between the distributions (over Tm+1)

1

q
· U
(
Im
(ut
A

))
+ νm+1

α and
1

q
· U
(
Spani≤k

( 1

xi

)⊥)
+ νm+1

α .

The classical LWE problem consists in distinguishing the left distribution from
uniform, without the hint vectors x+

i = (1‖xi). These hint vectors correspond to the
secret keys obtained by the malicious coalition in the traitor tracing scheme. Once
these hint vectors are revealed, it becomes easy to distinguish the left distribution
from the uniform distribution: take one of the vectors x+

i , get a challenge sample y
and compute 〈x+

i ,y〉 ∈ T; if y is a sample from the left distribution, then the centered
residue is expected to be of size ≈ α · (

√
mσ1(S) + ‖ci‖), which is � 1 for standard

parameter settings; on the other hand, if y is sampled from the uniform distribution,
then 〈x+,y〉 should be uniform. The de�nition of (k, S)-LWE handles this issue by
replacing U(Zm+1

q ) by U(Spani≤k(x
+
i )
⊥).

Sampling x+
i from DΛ⊥((ut‖A)),S,ci may seem more natural than imposing that the

�rst coordinate of each x+
i is 1. Looking ahead, this constraint will prove convenient

to ensure correctness of our cryptographic primitives. Theorem 11 below and its proof
can be readily adapted to this hint distribution. They may also be adapted to improve
the SIS to k-SIS reduction from [9]. Setting C = 0 is also more natural, but for
technical reasons, our reduction from LWE to (k, S, C)-LWE works with unit vectors ci.
However, we show that for small ‖ci‖, there exist polynomial time reductions between
(k, S, C)-LWE and (k, S)-LWE.

In the proof of the hardness of (k, S)-LWE problem, we rely on a gadget integral
matrix G that has the following properties: its �rst rows have Gaussian distributions,
it is unimodular and its inverse is small. Before going to this proof, we shall build such
a gadget matrix by extending Ajtai's simultaneous sampling of a random q-ary lattice
with a short basis [5] (see also Lemma 2) to kernel lattices. More precisely, we adapt
the Micciancio-Peikert framework [38] to sampling a Gaussian X ∈ Zm×n along with
a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}.

3.1 Sampling a Gaussian X with a small basis of ker(X)

The Micciancio-Peikert construction [38] relies on a leftover hash lemma stating that
with overwhelming probability over A ←↩ U(Zm×nq ) and for a su�ciently large σ, the
distribution of At ·DZm,σ mod q is statistically close to U(Znq ). We use a similar result
over the integers, starting from a Gaussian X ∈ Zm×n instead of a uniform A ∈ Zm×nq .
The proof of the following lemma relies on [2], which improves over a similar result
from [3]. The result would be neater with σ2 = σ1, but, unfortunately, we do not know
how to achieve it. The impact of this drawback on our results and constructions is
mostly cosmetic.
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Lemma 8. Let m ≥ n ≥ 100 and σ1, σ2 > 0 satisfying σ1 ≥ Ω(
√
mn logm), m ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2
√
mσ21 log

3/2(mσ1)). Let X ←↩ Dm×n
Z,σ1 . There exists a

ppt algorithm that takes n,m, σ1, σ2, X and c ∈ Zn as inputs and returns x ∈ Zn, r ∈
Zm such that x = c+Xtr with ‖r‖ ≤ O(σ2/σ1), with probability 1− 2−Ω(n), and

∆((X,x), Dm×n
Z,σ1 ×DZn,σ2,c) ≤ 2−Ω(n).

We now adapt the trapdoor construction from [38] to kernel lattices.

Theorem 9. Let n,m1, σ1, σ2 be as above, and m2 ≥ m1 bounded as nO(1). There

exists a ppt algorithm that given n,m1,m2 (in unary), σ1 and σ2, returns X1 ∈
Zm1×n, X2 ∈ Zm2×n, and U ∈ Zm×m with m = m1 +m2, such that:

• the distribution of (X1, X2) is within statistical distance 2−Ω(n) of the distribution

Dm1×n
Z,σ1 × (DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn), where δi denotes the ith canonical unit

vector in Zm2 whose ith coordinate is 1 and whose remaining coordinates are 0.
• we have |detU | = 1 and U ·X = (In‖0) with X = (X1‖X2),
• every row of U has norm ≤ O(

√
nm1σ2) with probability ≥ 1− 2−Ω(n).

The second statement implies that the last m − n rows of U form a basis of the
random lattice ker(X).

Proof. We �rst sample X1 from Dm1×n
Z,σ1 using the GPV algorithm. We run m2 times

the algorithm from Lemma 8, on the input n,m1, σ1, σ2, X1 and c running through the
columns of C = [In|0n×(m2−n)]. This gives X2 ∈ Zm2×n and R ∈ Zm1×m2 such that
Xt

2 = [In|0n×(m2−n)] +Xt
1 ·R. One can then see that U ·X = [In‖0], where

U =

[
0 Im2

Im1 −(X1|0)

]
·
[
Im1 0

−Rt Im2

]
=

[
−Rt Im2

Im1 + (X1|0)Rt −(X1|0)

]
, X =

[
X1

X2

]
.

The result then follows from Gaussian tail bounds (to bound the norms of the rows
of X1) and elementary computations. ut

Our gadget matrixG is U−t. In the following corollary, we summarize the properties
we will use.

Corollary 10. Let n,m1,m2,m, σ1, σ2 be as in Theorem 9. There exists a ppt algo-

rithm that given n,m1,m2 (in unary), and σ1, σ2 as inputs, returns G ∈ Zm×m such

that:

• the top n × m submatrix of G is within statistical distance 2−Ω(n) of Dn×m1
Z,σ1 ×

(DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)
t,

• we have |detG| = 1 and ‖G−1‖ ≤ O(
√
nm2σ2), with probability 1− 2−Ω(n).

3.2 Hardness of k-LWE

The following result shows that this LWE variant, with S a speci�c diagonal matrix,
is no easier than LWE.

Theorem 11. There exists c > 0 such that the following holds for k = n/(c log n).
Let m, q, σ, σ′ be such that σ ≥ Ω(n), σ′ ≥ Ω(n3σ2/ log n), q ≥ Ω(σ′

√
logm)

is prime, and m ≥ Ω(n log q) (e.g., σ = Θ(n), σ′ = Θ(n5/ log n), q = Θ(n5)
and m = Θ(n log n)). Then there exists a probabilistic polynomial-time reduction
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from LWEm+1,α in dimension n to (k, S)-LWEm+2n,α′ in dimension 4n, with α′ =

Ω(mn3/2σσ′α) and S =
[
σ · Im+n 0

0 σ′ · In

]
. More concretely, using a (k, S)-LWEm+2n,α′

algorithm with run-time T and advantage ε, the reduction gives an LWEm+1,α algo-

rithm with run-time T ′ = O(Poly(m)·(ε−2−Ω(n/ logn))−2·(T+Poly(m)) and advantage
ε′ = Ω((ε− 2−Ω(n/ logn))3)−O(2−n).

The reduction takes an LWE instance and extends it to a related k-LWE instance
for which the additional hint vectors (xi)i≤k are known. The major di�culty in this
extension is to restrain the noise increase, as a function of k.

The existing approach for this reduction (that we improve below) is the technique
used in the SIS to k-SIS reduction from [9]. In the latter approach, the hint vectors
are chosen independently from a small discrete Gaussian distribution, and then the
LWE matrix A is extended to a larger matrix A′ under the constraint that the hint
vectors are in the q-ary lattice Λ⊥(A′) = {b : btA′ = 0 mod q}. Unfortunately, with
this approach, the transformation from an LWE sample with respect to A, to a k-LWE
sample with respect to A′, involves a multiplication by the cofactor matrix det(G)·G−1
over Z of a k × k full-rank submatrix G of the hint vectors matrix. Although the
entries of G are small, the entries of its cofactor matrix are almost as large as detG,
which is exponential in k. This leads to an �exponential noise blowup,� restraining the
applicability range to k ≤ Õ(1) if one wants to rely on the hardness of LWE with
noise rate 1/α ≤ Poly(n) (otherwise, LWE is not exponentially hard to solve). To
restrain the noise increase for large k, we use the gadget of Corollary 10. Ignoring
several technicalities, the core idea underlying our reduction is that the latter gadget

allows us to sample a small matrix X2 with X
−1
2 also small, which we can then use

to transform the given LWE matrix A+ = (ut‖A) ∈ Z(m+1)×n
q into a taller k-LWE

matrix A′+ = T ·A+, using a transformation matrix T of the form

T =

[
Im+1

−X−12 X1

]
,

for some small independently sampled matrix X1 = [1|X1]. We can accordingly trans-
form the given LWE sample vector b = A+s + e for matrix A+ into an LWE sample
b′ = Tb = A′+s + Te for matrix A′+ by multiplying the given sample by T . Since
[X1|X2] ·T = 0, it follows that [X1|X2] ·A′+ = 0, so we can use k small rows of [X1|X2]
as the k-LWE hints x+

i for the new matrix A′+, while, at same time, the smallness of
T keeps the transformed noise e′ = Te small.

Proof. For a technical reason related to the non-zero centers δi in the distribution of
the hint vectors produced by our gadget from Corollary 10, we decompose our reduc-
tion from LWEm+1,α to (k, S)-LWE into two subreductions. The �rst subreduction
(outlined above) reduces LWEm+1,α in dimension n to (k, S, C)-LWEm+2n,α′ in di-
mension 4n, where the ith row of C is the unit vector ci = (0m+n|δi) ∈ Rm+2n for
i = 1, . . . , k. The second subreduction reduces (k, S, C)-LWEm+2n,α′ in dimension 4n
to (k, S)-LWEm+2n,α′ in dimension 4n. We �rst describe and analyze the �rst subre-
duction, and then explain the second subreduction.

Description of the �rst subreduction. Let (A+, b) with A+ = (ut‖A) denote the
given LWEα,m+1 input instance, where A+ ←↩ U(Z(m+1)×n

q ), and b ∈ Tm+1 comes
from either the �LWE distribution� 1

qU (Im(A+))+νm+1
α or the �Uniform distribution�

1
qU
(
Zm+1
q

)
+νm+1

α . The reduction maps (A+, b) to (A′,u′, X, b′) with A′ ∈ Z(m+2n)×4n
q
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and u′ ∈ Z4n
q independent and uniform, X ∈ Zk×(m+2n) with its ith row xi indepen-

dently sampled from DΛ⊥−u′ (A
′),S for i ≤ k, and b′ ∈ Tm+1+2n coming from either the

�k-LWE distribution� 1
qU (Im(A′+))+ νm+1+2n

α if b is from the �LWE distribution,� or

the �k-Uniform distribution� 1
qU
(
Spani≤k(x

+
i )
⊥) if b is from the �Uniform distribu-

tion.� Here A′+ = (u′t‖A′), and x+
i denotes the vector (1‖xi) for i ≤ k. The reduction

is as follows.

1. Sample gadget X2 ∈ Z2n×2n using Corollary 10 (with parameters n,m1,m2, σ1
and σ2 respectively set to k, n, n, σ and σ′), and sample X1 ←↩ D2n×m

Z,σ . De�ne T =[
Im+1

−X−1
2 · (1|X1)

]
∈ Z(m+1+2n)×(m+1), where 1 is the all-1 vector. Let X ∈ Zk×(m+2n)

denote the matrix made of the top k rows of (X1|X2).

2. Sample C+ ∈ Z(m+1+2n)×3n
q with independent columns uniform orthogonally to

Im((1|X)) modulo q. Let utC ∈ Z3n
q be the top row of C+, and C ∈ Z(m+2n)×3n

q

denote its remaining m+ 2n rows.

3. Compute Σ = α′ · Im+1+2n− T · T t and
√
Σ such that

√
Σ ·
√
Σ
t
= Σ; if Σ is not

positive de�nite, abort.

4. Compute A′+ = (T · A+|C+) and b′ = Tb+ 1
qC

+ · s′ +
√
Σe′, with s′ ←↩ U(Z3n

q )

and e′ ←↩ νm+1+2n
1 . Let (u′)t = (u‖uC)t ∈ Z4n

q be the top row of A′+.

5. Return (A′,u′, X, b′).

Step 1 aims at building a transformation matrix T that sends A+ to the left n
columns of A′+. Two properties are required from this transformation. First, it must
be a linear map with small coe�cients, so that when we map the LWE right hand
side to the k-LWE right hand side, the noise component does not blow up. Second,
it must contain some vectors (1‖xi) in its (left) kernel, with xi normally distributed.
These vectors are to be used as k-LWE hints. For this, we use the gadget of the previous
subsection. This ensures that the xi's are (almost) distributed as independent Gaussian
samples from DZn,σ×DZn,σ′ , and that the matrix T is integral with small coe�cients.
We de�ne B ∈ Z2n×n

q by [A+‖B] = TA+, so that we have:

[
1|X1|X2

]
·
[
A+

B

]
=
[
1|X1|X2

]
·

[
Im+1

−X−12 · (1|X1)

]
·A+ = 0 mod q.

This means each row of
(
X1|X2

)
belongs to Λ⊥−u(A

′′), where A′′ = [At|Bt]t.

At this stage, it is tempting to de�ne the k-LWE matrix as A′′ and give away the k-
LWE hint vectors xi ∈ Λ⊥−u(A′′)making up the matrixX. However, this approach does
not quite work: we have extended A by 2n rows, but we give only k hint vectors (we
cannot output them all, as the bottom rows of X2 may not be normally distributed).
This creates a di�culty for mapping �Uniform� to �k-Uniform� in the reduction. Step 2

circumvents the above di�culty by sampling extra column vectors C+ ∈ Z(m+1+2n)×3n
q

that are uniform in the subspace orthogonal to the hint vectors x+
i modulo q. When the

parameters are properly set, the columns of [T |C+] span the full subspace orthogonal

to the xi's mod q, with overwhelming probability. We �nally set A′+ =
[
A+

B

∣∣∣C+
]
.

It remains to see how to map �LWE� to �k-LWE.� The main problem, when multi-
plying b by T , is that the LWE noise gets skewed. If its covariance matrix was of the
form α2·Im+1, then it becomes α2T ·T t. To compensate for that, in Step 3, we add to T ·b
an independent Gaussian noise with well-chosen covariance Σ = α′2·Im+1+2n−α2T ·T t.
We set α′ large enough to ensure that this symmetric matrix is positive de�nite. This
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noise unskewing technique was adapted to discrete Gaussians and used in cryptography
in [44].

Analysis of the �rst subreduction. All steps of the reduction can be implemented
in polynomial time. Its correctness follows from the following three lemmas. The proofs
can be found in the appendix.

Lemma 12. The tuple (A′,u′, X) is within statistical distance 2−Ω(n/ logn) of the dis-

tribution in which A′ ∈ Z(m+2n)×4n
q and u′ ∈ Z4n

q are independent and uniform, and

the rows of X ∈ Zk×(m+2n) are from DΛ⊥−u′ (A
′),S,ci

, where ci = (0m+n|δi) ∈ Rm+2n

and δi denotes the ith canonical unit vector in Zn for i = 1, . . . , k.

Next, we assume that (A′+, X) is �xed and consider the distribution of b′ in the
two cases of the distribution of b. First we consider the �LWE� to �k-LWE� distribution
mapping.

Lemma 13. The following holds with probability 1 − 2−Ω(n/ logn) over the choice of

X1 and X2. If b ∈ Tm+1 is sampled from 1
qU(ImA) + νm+1

α , then b′ ∈ Tm+1+2n is

within statistical distance 2−Ω(n) of 1
qU (ImA′+) + νm+1+2n

α′ .

Finally, we consider the �Uniform� to �k-Uniform� distribution mapping.

Lemma 14. The following holds with probability 1−2−Ω(n/ logn) over the choice of X1

and X2. If b is sampled from 1
qU
(
Zm+1
q

)
+ νm+1

α , then b′ is within statistical distance

2−Ω(n) of 1
qU
(
Spani≤k(x

+
i )
⊥)+ νm+1+2n

α′ .

Overall, we have described a reduction that maps the �LWE distribution� to the
�k-LWE distribution,� and the �Uniform distribution� to the �k-Uniform distribution,�
up to statistical distance 2−Ω(n/ logn).

Second subreduction. It remains to reduce the (k, S, C)-LWE with non-zero centers
for the hint distribution, to (k, S)-LWE with zero-centered hints. For this, we use
Lemma 6 to obtain the following.

Lemma 15. Let m′ = m + 2n, n′ = 4n, and assume that σm′(S) ≥ ω(
√
n). If there

exists a distinguisher against (k, S)-LWEm′,α′ in dimension n′ with run-time T and

advantage ε, then there exists a distinguisher against (k, S, C)-LWEm′,α′ with run-time

T ′ = O(Poly(m′)·(ε−2−Ω(n))−2 ·T ) and advantage ε′ = Ω((ε−O(2−n))3/R−O(2−n)),
where R = exp(O(k · (2−n + ‖C‖2/σm′(S)2))).

The main idea of the proof of Lemma 15, given in the appendix, is to apply Lemma 6
with P, P ′ being the (k, S)-LWE and (k, S, C)-LWE problems respectively, which have
instances of the form x = (r,y), where r = (A,u, {xi}i≤k) and the hints xi for i ≤ k
sampled from either the zero-centered distribution←↩ DΛ⊥−u(A),S,0

(distribution Φ of r,

in (k, S)-LWE) or the non-zero center distribution ←↩ DΛ⊥−u(A),S,ci
(distribution Φ′

of r, in (k, S, C)-LWE), and y ∈ Tm+1 is a sample from either the distribution

D0(r) =
1

q
· U
(
Im
(ut
A

))
+ νm+1

α

or the distribution

D1(r) =
1

q
· U
(
Spani≤k

( 1

xi

)⊥)
+ νm+1

α .
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Given x = (r,y), is possible to e�ciently sample y′ from either D0(r) or D1(r), so the
public-samplability property assumed by Lemma 6 is satis�ed. This Lemma gives the
desired reduction between (k, S)-LWE and (k, S, C)-LWE, as long as the RD R(Φ‖Φ′)
between the distribution of r in the two problems is polynomially bounded. The latter
reduces to obtaining a bound on the RD between a Gaussian distribution and a small
o�set thereof, which is given by Lemma 5.

In our application of Lemma 15, the (k, S, C)-LWE problem resulting from the
�rst subreduction has ‖C‖ = 1, and σm′(S) = σ, so that R = exp(O(k · (2−n +
1/σ2))) = O(1) using σ = Ω(n) and k ≤ n. This shows that the second subreduction
is probabilistic polynomial time. ut

Our technique can be applied to improve the Boneh-Freeman reduction from SIS to
k-SIS, from an exponential loss in k to a polynomial loss in k. In fact, we map A to A′′

in the same way (except that we do not use and add u on top of the matrix A) and then
also use the top k rows of (X1|X2) as the k-SIS hints for the new matrix A′′. Then,
whenever the adversary can output a short vector x1‖x2 that is orthogonal to A′′, we

can also output a short vector (x1 − x2 · X
−1
2 X1) which is orthogonal to A. As the

rows of X1 are distributed as independent Gaussian samples and the adversary is only
given its �rst k rows, it can be shown that, if x1‖x2 is linearly independent from the

k-SIS hints, then the vector (x1−x2 ·X
−1
2 X1) is null with a negligible probability. RD

may also be used to reduce k-SIS with non-zero-centered hints (with small centers) to
k-SIS with zero-centered hints.

4 A lattice-based public-key traitor tracing scheme

In this section, we describe and analyze our basic traitor tracing scheme. First, we
give the underlying multi-user public-key encryption scheme. We then explain how to
implement black-box con�rmation tracing.

4.1 A multi-user encryption scheme

The scheme is designed for a given security parameter n, a number of users N and
a maximum malicious coalition size t. It then involves several parameters q,m, α, S.
These are set so that the scheme is correct (decryption works properly on honestly gen-
erated ciphertexts) and secure (semantically secure encryption and possibility to trace
members of malicious coalitions). In particular, we set S = Diag(σ, . . . , σ, σ′, . . . , σ′) ∈
Rm×m where σ′ > σ and their respective numbers of iterations are set so that (t, S)-
LWEm+1,α is hard to solve.

Setup. The trusted authority generates a master key pair using the algorithm from
Lemma 2. Let (A, T ) ∈ Zm×nq × Zm×m be the output. We additionally sample u
uniformly in Znq . Matrix T will be part of the tracing key tk, whereas the public key
is pk = A+, with A+ = (ut‖A).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as
follows. The authority executes the GPV algorithm using the basis of Λ⊥(A) consist-
ing of the rows of T , and the standard deviation matrix S. The authority obtains a
sample xi from DΛ⊥−u(A),S

. The standard deviations σ′ > σ may be chosen as small

as 3mqn/m
√
(2m+ 4)/π. The user secret key is x+

i = (1‖xi) ∈ Zm+1. Using the Gaus-
sian tail bound and the union bound, we have ‖xi‖ ≤

√
mσ′ for all i ≤ N , with

probability ≥ 1−N · 2−Ω(m).
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The tracing key tk consists of the matrix T and all pairs (Ui, ski).
Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [24,
Se. 7.1], which we recall, for readability.1 The plaintext and ciphertext domains are P =
{0, 1} and C = Zm+1

q respectively, and:

Enc :M 7→
[
ut

A

]
· s+ e+

[
M · bq/2c

0

]
, where s←↩ U(Znq ) and e←↩ bναqem+1.

As explained in [24], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWEm+1,α is hard to solve.

Decrypt. To decrypt a ciphertext c ∈ Zm+1
q , user Ui uses its secret key x+

i and evaluates

the following function Dec from Zm+1
q to {0, 1}: Map c to 0 if 〈x+

i , c〉 mod q is closer
to 0 than ±bq/2c.

If c is an honestly generated ciphertext of a plaintextM ∈ {0, 1}, we have 〈x+
i , c〉 =

〈x+
i , e〉+M · bq/2c mod q, where e←↩ bναqem+1. It can be shown that the latter has

magnitude ≤ 2
√
mαq‖x+

i ‖ with probability 1−2−Ω(n) over the randomness of e. This
is ≤ 3mαqσ′ for all i, with probability ≥ 1−N · 2−Ω(n). To ensure the correctness of
the scheme, it su�ces to set q ≥ 4mαqσ′. Note that other constraints will be added to
enable tracing.

Theorem 16. Let m,n, q and N be integers such that q is prime and N ≤ 2o(n).
Let α, σ, σ′ > 0 such that σ′ ≥ σ ≥ Ω(mqn/m

√
logm) and α ≤ 1/(4mσ′). Then the

scheme described above is IND-CPA under the assumption that LWEm+1,α is hard.

Further, the decryption algorithm is correct:

∀M ∈ {0, 1}, ∀i ≤ N : Dec (Enc(M,pk), ski) =M

holds with probability ≥ 1− 2−Ω(n) over the randomness used in Setup and Enc.

4.2 Tracing traitors

We now present a black-box con�rmation algorithm Trace.2 It is given access to an
oracle OD that provides black-box access to a decryption device D. It takes as inputs
the tracing key tk = (T, (Ui,x+

i )i≤N ) and a set of suspect users {Ui1 , . . . ,Uik} of
cardinality k ≤ t, where t is the a priori bound on any coalition size. Wlog, we may
consider that k = t and ij = j for all j ≤ k.

Algorithm Trace gathers information about which keys have been used to build de-
coder D, by feeding di�erent carefully designed distributions to oracle OD. We consider
the following t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span(x+

1 , . . . ,x
+
i )
⊥
)
+ bναqem+1.

The �rst distribution Tr0 is the uniform distribution, whereas the last distribution Trt
is meant to be computationally indistinguishable from Enc(0). We de�ne p∞ as the
probability Pr[OD (c,M) = 1] that the decoder can decrypt the ciphertexts, over the

1 As usual, the encryption algorithm may be used to encapsulate session keys which are then fed into
an e�cient data encapsulation mechanism to encrypt the data.

2 Note that in our context, minimal access is equivalent to standard access: since the plaintext domain
is small, plaintext messages can be tested exhaustively.
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randomness of M ←↩ U({0, 1}) and c←↩ Enc(M). We de�ne pi as the probability the
decoder decrypts the signals in Tri, for i ∈ [0, t]:

pi = Pr
c←↩ T ri

M ←↩ U({0, 1})

[
OD

(
c+

[
M · bq/2c

0

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that Ui is a traitor.

The con�rmation and soundness properties are proved in the full version. We now
concentrate on a new feature of our scheme: public traceability.

5 Projective sampling and public traceability

We now modify the scheme of the Section 4 so that the tracing signals can be publicly
sampled. For this purpose, we introduce the concept of projective sampling family.

5.1 Projective sampling

Inspired from the notion of projective hash family [20], we propose the notion of pro-
jective sampling family in which each sampling function is keyed and, with a projected
key, one can simulate the sampling function in a computationally indistinguishable
way. Let X be a �nite non-empty set. Let F = (Fk)k∈K be a collection of sampling
functions indexed by K, so that Fk is a sampling function over X, for every k ∈ K. We
call Sam = (F,K,X) a sampling family. We now introduce the concept of projective
sampling.

De�nition 17 (Projective Sampling). Let Sam = (F,K,X) be a sampling family.
Let J be a �nite, non-empty set, and let π : K → J be a (probabilistic) function. Let
also P = (Pj)j∈J be a collection of sampling functions over X, and D be a distribution
over K. Then PSam = (F,K,X, P, J, π,D) is called a projective sampling family if,
with overwhelming probability over the choice of k, k′ ←↩ D, and given the secret
key k and its projected key π(k), 1) the distributions obtained using Fk and Pπ(k)
are computationally indistinguishable, and 2) the distributions obtained using Fk and
Pπ(k′) can be e�ciently distinguished.

The �rst condition means that for k ←↩ D, the value π(k) �encodes� the sampling
distribution of Fk, so that when π(k) is made public, the sampled signal Fk can be pub-
licly simulated by Pπ(k). The security requirement is very strong because the adversary
is not only given the projected key, as in projective hashing, but also the secret key k.
We require that sampling signals from the secret key and from its projected key are
indistinguishable for the insiders who know the secret key. This is relevant for traitor
tracing, as the traitors are system insiders and they possess secret data. The second
condition (that we actually do not directly use in our cryptographic application) al-
lows to prevent the trivial solution consisting in setting Pπ(k) as an e�cient sampling
function that is independent of k: the simulation signal Pπ(k) must be speci�c to k.

3

3 Another trivial situation occurs when π(k) = k: the projected key leaks the full information about
the original key and one cannot safely publish the projected key.
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5.2 Projective sampling from k-LWE

We construct a set of projective sampling families (PSami)0≤i≤t. The parameters are
almost identical to the parameters in the Setup of the multi-user scheme of Section 4. A
further di�erence, required for simulation purposes in the security proof, is that σ′ > σ
must be set Ω̃(

√
mn+ πq).

We let A←↩ U(Zm×nq ) and u←↩ U(Znq ) be public parameters. For each i, we de�ne
Ki = (Zmq )i and Di as the distribution on Ki that samples k = (xj)j≤i with xj ←↩
DΛ⊥−u(A),σ

for all j ≤ i. The sampling function Fi,k is de�ned as U(Spanj≤i(x
+
j )
⊥) +

bναqem+1. The projected key πi(k) is de�ned as follows:

• Sample H ∈ Zm×(m−n)q uniformly, conditioned on Im(A) ⊆ Im(H).

• For each j ≤ i, de�ne htj = −xtj ·H.

• Finally, set J = Zm×(m−n)q × (Zm−nq )i and set πi(k) = (H, (hj)j≤i).

We now de�ne the sampling Pi,πi(k) with projected key πi(k) = (H, (hj)j≤i), as
follows:

• Set Hj = (htj‖H) ∈ Z(m+1)×(m−n)
q . We have x+t

j ·Hj = 0 and Im(A+) ⊆ Im(Hj).

• Set Pi,πi(k) = U (∩j≤iIm(Hj)) + bναqem+1, with ∩j≤0Im(Hj) = Zm+1
q by convention.

Note that ∩j≤iIm(Hj) ⊆ Spanj≤i(x
+
j )
⊥.

Theorem 18. For each i = 0, . . . , t, PSami is a projective sampling family. Concretely,

under the (i, S)-LWEα,m hardness assumptions, given the uniformly sampled public

parameters (A,u), the secret key k = (xj)j≤i ←↩ Di and its projected key πi(k) =
(H, (hj)j≤i), the distributions Fi,k and Pi,πi(k) are indistinguishable. Moreover, they

are both indistinguishable from U(Im(A+)) + bναqem+1. Finally, with overwhelming

probability, the distributions Fi,k and Pi,πi(k′) can be e�ciently distinguished, when k′

is independently sampled from Di.

Proof. For the last statement, observe that with overwhelming probability, the secret
key k′ contains an x′j ∈ Zmq that does not belong to Spanj≤i(xj) (by Lemma 4). In
that case, taking the inner product of all x′j 's of k

′ with a sample from Pi,πi(k′) gives
small residues modulo q, whereas one of the inner products of the x′j 's with a sample
from with a sample from Fi,k will be uniform modulo q.

We now consider the �rst statement. From the hardness of (i, S)-LWEm,α, given
k, the distributions

Fi,k = U(Spanj≤i(x
+
j )
⊥) + bναqem+1 and U(Im(A+)) + bναqem+1

are indistinguishable. Further, given k = (xj)j≤i, the projected key πi(k) = (H, (hj)j≤i)
can be sampled from Di. Therefore, given both k and πi(k), the distributions Fi,k and
U(Im(A+)) + bναqem+1 remain indistinguishable.

Now, we have Im(A+) ⊆ ∩j≤iIm(Hj) ⊆ (Spanj≤i(x
+
j ))
⊥. Hence:

U(Im(A+)) + U(∩j≤iIm(Hj)) = U(∩j≤iIm(Hj)),

U(Spanj≤i(x
+
j )
⊥) + U(∩j≤iIm(Hj)) = U(Spanj≤i(x

+
j )
⊥).

We note that given h1, . . . ,hi, one can e�ciently sample from U(∩j≤iIm(Hj)). There-
fore, under the hardness of (i, S)-LWEm,α, this shows that Fi,k, Pi,πi(k) and U(Im(A+))+
bναqem+1 are indistinguishable. ut
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5.3 Public traceability from projective sampling

In the scheme of Section 4, the tracing key tk = (T, (Ui,xi)i≤N ) must be kept se-
cret, as it would reveal the secret keys of the users. The tracing signals are samples
from U(Spanj≤i(x

+
j )
⊥) + bναqem+1, which exactly matches Fi,k. By publishing the

projected key πi(k), anyone can use the projective sampling Pi,πi(k): by Theorem 18,
given (k, πi(k)), Fi,k and Pi,πi(k) are indistinguishable and they are both indistinguish-
able from the original sampling U(Im(A+))+bναqem+1. We are thus almost done with
public traceability.

However, a subtle point is that we have to use all the projective samplings (Pi,πi(k))
for transforming the secret tracing to the public tracing: all the projected keys (hj)j≤N
should be published. Because the keys k in Fi,k are not independent, it could occur
that the adversary exploits a projected key πi(k) for distinguishing Pi′,πi′ (k′) from the
original signals. To handle this, we prove that, given (xj)j≤i and all the keys (hj)j≤N ,
the adversary cannot distinguish Pi,πi(k) from the original signals. For this purpose, we
exploit a technique from [25] to simulate (hj)i<j≤N from the public information.

Theorem 19. Set i ≤ t. Under the (i, S)-LWEα,m and the LWE′α,m hardness as-

sumptions, given the secret key k = (xj)j≤i and the projected keys (H, (hj)j≤N ), the
following two distributions are indistinguishable

Pi,α(k) = U(∩j≤iIm(Hj)) + bναqem+1 and U(Im(A+)) + bναqem+1.

Proof. Assume a ppt attacker is given (xj)j≤i (with the xj 's independently sampled
from DΛ⊥−u(A),σ

) and all the projected keys (hj)j≤N )). We are to prove that, under the

(i, S)-LWEα,m and LWE′α,m hardness assumptions, it cannot distinguish between the
distributions (over Zm+1

q )

U(Im(A+)) + bναqem+1 and Pi,πi(k) = U(∩j≤iIm(Hj)) + bναqem+1.

We proceed by a sequence of games.

Game0: This is the above distinguishing game. We let ε0 denote the adversary's
distinguishing advantage. The goal is to show that ε0 is negligible.

Game1: In this second game, we sample x1, . . . ,xi from DΛ⊥−u(A),σ
as in Game0,

but the xj 's for j > i are sampled uniformly in Znq , conditioned on xtj · A = −ut.
The hj 's for j > i are modi�ed accordingly, but the rest is as in Game0. We let ε1
denote the adversary's distinguishing advantage.

The main point is that in Game1, no secret information is required for sampling
the projected keys hj 's for j > i. The proof of the following lemma may be found in
the full version.

Lemma 20. Under the LWE′α,m hardness assumption, the quantity |ε1 − ε0| is negli-
gible.

We note that, in Game1, the hj 's can be sampled publicly from the available
data. Therefore, from Theorem 18, under the (i, S)-LWEα,m hardness assumptions,
the advantage ε1 is negligible. ut
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Semantic security of the updated scheme. We modify the public information of the
scheme of Section 4, so that we can use the set of projective sampling families de-
scribed above. For this aim, we simply add the projected key (H, (hi)i≤N ) to the
public key. The scheme becomes publicly traceable because the tracing signals can be
sampled from the projected keys, as explained above. Finally, as the public key has
been modi�ed, we should prove that the knowledge of these projected keys provides
no signi�cant advantage for an adversary towards breaking the semantic security of
the encryption scheme. Fortunately, the semantic security directly follows from Theo-
rem 19, for the particular case of i = 0.
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A Traitor Tracing

A.1 A short overview

Combinatorial schemes versus algebraic schemes. There are two main ap-
proaches for devising a traitor tracing encryption scheme. Many constructions are
combinatorial in nature (see [18, 54, 19, 52, 48, 7, 10], among others): They typically
combine an arbitrary encryption scheme with a collusion-resistant �ngerprinting code.
The most interesting property in combinatorial schemes is the capacity of dealing with
black-box tracing. However, the e�ciency of these traitor tracing schemes is curbed by
the large parameters induced by even the best construction of such codes [56]: To resist
coalitions of up to t malicious users among N users, the code length is ` = Θ(t2 logN).
Lower bounds with the same dependence with respect to t have been given in [45, 56],
leaving little hope of signi�cant improvements.

An alternative approach was initiated by Kurosawa and Desmedt in [33] (whose
construction was shown insecure in [55]), and by Boneh and Franklin [8]: The tracing
functionality directly stems from the algebraic properties of the encryption scheme.
As opposed to the combinatorial approach, this algebraic approach is not generic and
requires designing ad hoc encryption schemes. We will concentrate on the algebraic
approach in this paper. Prior to this work, all known algebraic traitor tracing schemes
relied on variants of the Discrete Logarithm Problem: For instance, the earlier con-
structions (including [33, 8, 30, 34]) rely on the assumed hardness of the Decision Di�e
Hellman problem (DDH), whereas others (including [17, 11, 12, 1, 21]) rely on variants
of DDH on groups admitting pairings. The former provide strong security when in-
stantiating with groups for which DDH is expected to be very hard (such as generic
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elliptic curves over prime �elds), whereas the latter achieve improved functionalities
while lowering the performance (as a function of the security level).

Public traceability. An important problem on traitor tracing is to handle the
case where the tracer is not trusted. In this scenario, the tracing procedure must be
run in a way that enables veri�cation of the traitor implication, by a system outsider.
The strongest notion for this is non-repudiation: the tracing procedure must produce
an undeniable proof of the traitors implication. However, a necessary condition for
achieving non-repudiation is that the setup involves some interactive protocol between
the center and each user. Indeed, if the center generates all the parameters for the users,
then any pirate decoder produced by a collusion of traitors can also be produced by the
center and there is no way for the center to trustworthily prove the culpability of the
traitors. All the existing schemes enjoying non-repudiation involve complex interactive
proofs: a secure 2-party computation protocol in [46], a commitment protocol in [47],
an oblivious polynomial evaluation in [57, 32, 29].

When considering the standard setting of non-interactive setup, we cannot get the
full strength of non-repudiation, but we can still achieve a weaker but very useful
property: public traceability. This notion allows anyone to perform the tracing from
the public parameters only and hence the traitors implication can be publicly veri�ed.
Moreover, public traceability implies the capacity of delegating the tracing procedure:
the tracer can run the tracing procedure in parallel on untrusted machines without
leaking any secret information. This can prove crucial for the schemes with high tracing
complexity. In fact, there are very few (non-interactive) schemes that achieve this
property [48, 12] (some schemes, such as [17, 7, 10], partially achieve: some parts of
the tracing procedure can be run publicly). The scheme [48] is generic, based on IPP-
codes, and is thus quite impractical. The Boneh-Waters scheme [12] achieves resistance
against unbounded coalitions, but has a large ciphertext size of Θ(

√
N) group elements.

All known e�cient algebraic schemes are in the bounded collusion model and so far,
none of them enjoys public traceability. In this paper, we achieve public traceability
without downgrading the e�ciency of the proposed sheme.

A.2 Public key traitor tracing encryption

A public-key traitor tracing scheme consists of four probabilistic algorithms Setup,
Enc, Dec and Trace.

• Algorithm Setup is run by a trusted authority. It takes as inputs a security pa-
rameter λ, a list of users (Ui)i≤N and a bound t on the size of traitor coalitions. It
computes a public key pk, descriptions of the plaintext and ciphertext domains P
and C, secret keys (ski)i≤N , and a tracing key tk (which may contain the ski's and
additional data). It publishes pk,P and C, and sends ski to user Ui for all i ≤ N .
• Algorithm Enc can be run by any party. It takes as inputs a public key pk and a
plaintext message M ∈ P. It computes a ciphertext C ∈ C.
• Algorithm Dec can be run by any user. It takes as inputs a secret key ski and a
ciphertext message C ∈ C. It computes a plaintext P ∈ P.
• Algorithm Trace is explained below. If the input of Trace, i.e., the tracing key tk,
is public then we say that the scheme supports public traceability.

We require that Setup, Enc and Dec run in polynomial time, and that with over-
whelming probability over the randomness used by the algorithms, we have

∀M ∈ P, ∀i ≤ N : Dec(ski, Enc(pk,M)) =M,
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where pk and the ski's are sampled from Setup. We also require the encryption scheme
to be IND-CPA.

Algorithm Trace aims at deterring coalitions of malicious users (traitors) from
building an unauthorized decryption device. It takes as input tk and has access to a
decryption device D. Trace aims at disclosing the identity of at least one user that
participated in building D.

We consider the minimal black-box access model [8]. In this model, the tracing
authority has access to an oracle OD that itself internally uses D. Oracle OD behaves
as follows: It takes as input any pair (C,M) ∈ C × P and returns 1 if D(C) = M
and 0 otherwise; the oracle only tells whether the decoder decrypts C toM or not. We
assume that if M is sampled from U(P) and C is the output of algorithm Enc given
pk and M as inputs, then the decryption device decrypts correctly with probability
signi�cantly more than 1/|P|:

Pr
M ←↩ U(P)
C ←↩ Enc(M)

[
OD(C,M) = 1

]
≥ 1

|P|
+

1

λc
,

for some constant c > 0. This assumption is justi�ed by the fact that otherwise the
decryption device is not very useful. Alternatively, we may force the correct decryp-
tion probability to be non-negligibly close to 1, by using an all-or-nothing transform
(see [30]). We also assume that the decoder D is stateless/resettable, i.e., it cannot see
and adapt to it being tested and replies independently to successive queries. Handling
stateful pirate boxes has been investigated in [28, 27].

In our scheme, algorithm Trace will only be a con�rmation algorithm. It takes as
input a set of (suspect) users (Uij )j of cardinality k ≤ t, and must satisfy the following
two properties:

• Confirmation. If the traitors are all in the set of suspects (Uij )j≤k, then it
returns �User Uij0 is guilty� for some j0 ≤ k;
• Soundness. If it returns �User Uij0 is guilty� for some j0 ≤ k, then user Uij0
should indeed be a traitor.

The con�rmation algorithm should run in polynomial-time. It may be converted into a
(costly) full-�edge tracing algorithm by calling it on all subsets of users of cardinality t.

A.3 Con�rmation and soundness of the proposed traitor tracing

We de�ne the usefulness of the decoder as ε := p∞− 1
|P| = p∞− 1

2 . It can be estimated

to within a factor 2 with probability ≥ 1− 2−Ω(n) via the Cherno� bound.

We can now formally describe algorithm Trace. It proceeds in three steps, as
follows.

1. It computes an estimate ε̃ of the usefulness ε of the decoder to within a multi-
plicative factor of 2, which holds with probability ≥ 1−2−n. This can be obtained
via Cherno�'s bound, and costs O(ε−2n).

2. For i from 0 to t, algorithm Trace computes an approximation p̃i of pi to within an
absolute error ≤ ε̃

16t , which holds with probability ≥ 1−2−n (also using Cherno�'s
bound).

3. If p̃i− p̃i−1 > ε̃
8t for some i ≤ t, then Trace returns �User Ui is guilty.� Otherwise,

it returns �⊥.�
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Note that we are implicitly using the fact that D is stateless/resettable. Also, if ε
is n−c for some constant c, then Trace runs in polynomial time.

We start with the con�rmation property.

Theorem 21. Assume that decoder D was built using {skij}j≤k ⊆ {ski}i≤t. Under the
assumption that (t, S)-LWEm+1,α is hard, algorithm Trace returns �User Ui is guilty�
for some i ≤ t.

Proof. Wlog we may assume that the traitors in the coalition know all the secret
keys sk1, . . . , skt. The hardness of (t, S)-LWEm+1,α implies that the distributions Enc(0)
and Trt are computationally indistinguishable. As a consequence, we have that pt is
negligibly close to p∞ (the rounding to nearest of the samples from ναq can be per-
formed directly on the challenge samples, obliviously to any secret data, as in the proof
of semantic security of Section 4.1).

On the other hand, the acceptance probability p0 is ≤ 1
2 . As pt − p0 >

ε
2 and |p̃i −

pi| ≤ ε
8 for all i, we must have p̃t−p̃0 >

ε
4 ≥

ε̃
8 , with probability exponentially close to 1.

As a consequence, there must exist i ≤ t such that p̃i− p̃i−1 > ε̃
8t , and algorithm Trace

returns �User Ui is guilty.� ut

Proving the soundness property is more involved. We exploit the hardness of (t, S)-
LWE and rely on Theorem 3 several times.

Theorem 22. Assume that decoder D was built using {skij}j≤k. Under the parameter

assumptions of Theorem 3 with (k, n) in Theorem 3 set to (t + 1, n + t + 1), and the

computational assumption that (t+1, S)-LWEm+1,α is hard: if algorithm Trace returns

�User Ui0 is guilty�, then i0 ∈ {ij}j≤k.

Proof. Assume (by contradiction) that the traitors {Uij}j≤k with k ≤ t succeed in
having Trace incriminate an innocent user Ui0 (with i0 6∈ {ij}j≤k). We show that
the algorithm T the traitors use to build the pirate decoder may be exploited for
solving (t + 1, S)-LWEm+1,α. First, note that algorithm T provides an algorithm A
that wins the following game.

Game0. The game consists of three steps, as follows:

• Initialize0: Sample A←↩ U(Zm×nq ), u←↩ U(Znq ) and xi ←↩ DΛ⊥−u(A),S
for i ≤ t+1.

• Input0: Send A+ = (ut‖A) and (xi)i≤t+1,i 6=i0 to A.
• Challenge0: Sample b ←↩ U({0, 1}). Send to A arbitrarily many samples from
U
(
Spani≤i0−1+b(x

+
i )
⊥)+ bναqem+1.

We say that A wins Game0 if it �nds the value of b with non-negligible advantage.

Algorithm A can be obtained from algorithm T by sampling plaintextM uniformly
in {0, 1}, and giving (c + (M |0t)t,M) as input to OD, where c is any sample from
Challenge0. We now introduce two variations of Game0, which di�er in the Initialize
and Challenge steps.

Game1. The game consists of three steps, as follows:

• Initialize1: Sample A ←↩ U(Zm×nq ), u ←↩ U(Znq ), xi ←↩ DΛ⊥−u(A),σ
for i ≤ t + 1,

and b+j ←↩ U(Spani<i0(x
+
i )
⊥) for j ≤ t− i0 + 2.

• Input1: Send A+ = (ut‖A) and (xi)i≤t+1,i 6=i0 to A.
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• Challenge1: Sample b ←↩ U({0, 1}). If b = 0, then send to A arbitrarily many
samples from U

(
Spani<i0(x

+
i )
⊥) + bναqem+1. If b = 1, then send to A arbitrarily

many samples from:

U
(
Im
[
A+|b+1 | . . . |b

+
t−i0+2

])
+ bναqem+1.

As in Game0, algorithm A wins Game1 if it guesses b with non-negligible advantage.

Game′1 is as Game1, except that if b = 0 in the challenge step, then the samples sent
to A are from the distribution U

(
Spani≤i0(x

+
i )
⊥)+ bναqem+1. (The bj 's are sampled

from U(Spani<i0(x
+
i )
⊥) in both cases.)

Note that A's inputs in Game0, Game1 and Game′1 are identical (only the distribu-
tions of the Challenge steps vary). By the triangle inequality, if A wins Game0 with
some non-negligible advantage, then it may be used to win either Game1 or Game′1
with non-negligible advantage. In our use of A to solve (t+ 1, S)-LWE, we may guess
in which situation we are. We now consider the two situations separately.

First situation: Algorithm A wins Game1 with non-negligible advantage. Then it may
be used to solve (t + 1, S)-LWE. Indeed, assume we have a (t + 1, S)-LWE input
(A,u, (xi)i≤t+1), and that we aim at distinguishing between the following distributions
over Zm+1

q :

U
(
Im(A+)

)
+ νm+1

αq and U
(
Spani≤t+1(x

+
i )
⊥
)
+ νm+1

αq .

To solve this problem instance, we sample bj for j ≤ t − i0 + 2 as in Initialize1.
Then we add a uniform Zq-linear combination of the bj 's to the (t+ 1, S)-LWE input
samples. Since m ≥ t+ n, these (t− i0 +2) vectors are linearly independent and none
of them belongs to Spani0≤i≤t+1(x

+
i )
⊥, with probability ≥ 1 − 2−Ω(n). In that case,

the transformation maps U
(
Spani≤t+1(x

+
i )
⊥)+ νm+1

αq to U
(
Spani<i0(x

+
i )
⊥)+ νm+1

αq ,

and maps U(Im(A+)) + νm+1
αq to U(Im[A+|b+1 | . . . |b

+
t−i0+2]) + νm+1

αq . We then round
the samples to the nearest integer vectors, and Algorithm A distinguishes between the
resulting distributions, and its output is forwarded as output to the initial (t+ 1, S)-
LWE instance.

Second situation: Algorithm A wins Game′1 with non-negligible advantage. It seems
quite similar to the �rst situation, but the following observation hints why its han-
dling is somewhat more complex. In the �rst situation, the domains of the noise-
less variants of the distributions to be distinguished are contained into one another:
Im([A+|b1| . . . |bt−i0+2]) ⊆ Spani<i0(x

+
i )
⊥. In the second situation, no such inclusion

holds. The purpose of the sequence of games below is to map Game′1 to recover such
an inclusion setting.

Let us de�ne Game2 as being the same as Game′1, but with the following updated
�rst step:

• Initialize2: Sample A ←↩ U(Zm×nq ), u ←↩ U(Znq ), bj ←↩ U(Zmq ) and vj ←↩ U(Zq)
for j ≤ t− i0 + 2, xi ←↩ DΛ⊥−u(A),S

for i ≥ i0 and xi ←↩ DΛ⊥−u′ (A
′),S for i < i0, with

A′ = [A|b1| . . . |bt−i0+2] and u′ = (u‖v1‖ . . . ‖vt−i0+2).

We show that the residual distributions at the end of Initialize1 and Initialize2
are essentially the same. For that, we use Theorem 3 twice. First, starting from
Initialize1, we swap the samplings of A and u with those of (xi)i<i0 . This ensures
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that the residual distribution of Initialize1 is within statistical distance 2−Ω(n) from
the residual distribution of the following experiment: Sample xi ←↩ DZm,S for i < i0,

A+ = (ut‖A) ←↩ U(Z(m+1)×n
q ) conditioned on x+t

i · A+ = 0 for all i < i0, xi ←↩
DΛ⊥−u(A),S

for i ∈ [i0, t + 1], and b+j ←↩ U(Spani<i0(x
+
i )
⊥) for j ≤ t − i0 + 2. The

samplings of the last x+
i 's and those of the b+j 's being independent, their order can be

exchanged. We can now apply Theorem 3 a second time, to postpone the samplings
of (xi)i<i0 after those of the b+j 's. This gives us that the residual distributions of

the above experiment and that of Initialize2 are within statistical distance 2−Ω(n).
Overall, we have shown that the residual distributions of (A,u, (bj)j , (vj)j , (xi)i) af-
ter Initialize1 and Initialize2 are within exponentially small statistical distance.
Hence algorithm A wins Game2 with non-negligible advantage.

Now, consider Game3, which di�ers from Game2 only in that xi0 is also sampled
from DΛ⊥−u′ (A

′),S .

• Initialize3: Sample A ←↩ U(Zm×nq ), u ←↩ U(Znq ), bj ←↩ U(Zmq ) and vj ←↩ U(Zq)
for j ≤ t− i0 + 2, xi ←↩ DΛ⊥−u(A),S

for i > i0 and xi ←↩ DΛ⊥−u′ (A
′),S for i ≤ i0

As xi0 is not given to A at step Input3 and as it is not involved in the challenge
distributions
U
(
Spani<i0(x

+
i )
⊥)+bναqem+1 and U(Im[A+|b1| . . . |bt−i0+2])+bναqem+1, this modi�-

cation does not alter the winning probability of A: algorithm A also wins Game3 with
non-negligible advantage. Now, we again use Theorem 3 twice, but with (xi)i≤i0 : once
for swapping the samplings of these xi's with A

+ and the b+j 's, and once for swapping

the samplings of A+ and these xi's. This shows that algorithm A wins Game4 with
non-negligible advantage, where Game4 di�ers from Game3 only in its �rst step, as
follows.

• Initialize4: Sample A ←↩ U(Zm×nq ), u ←↩ U(Znq ), xi ←↩ DΛ⊥−u(A),S
for i ≤ t, and

b+j ←↩ U(Spani≤i0(x
+
i )
⊥) for j ≤ t− i0 + 2.

The situation we are in now is very similar to that in the �rst situation, where A
was supposed to win Game1. The arguments used in the �rst situation readily carry
over here (up to replacing Spani<i0x

+
i and Spani≥i0x

+
i by Spani≤i0x

+
i and Spani>i0x

+
i ,

respectively). ut

B Basic results on lattices

Gentry et al. [24] showed that Klein's algorithm [31] can be used to sample fromDL,S,c.
This discrete Gaussian sampler was later re�ned in [16].

Lemma 23 ([16, Le. 2.3]). There exists a ppt algorithm that, given a basis (bi)i
of an n-dimensional lattice L, c ∈ Span(L) and S ∈ Rm×m invertible satisfying√
ln(2n+ 4)/π ·maxi ‖S−tbi‖ ≤ 1, returns a sample from DL,S,c.

The following basic results on lattice Gaussians are usually stated for full-rank
lattices. As we consider lattices that are not full-rank, we adapt them. The proofs
can be modi�ed readily to handle this more general setup, by relying on an isometry
from Span(L) to Rn with n = dimL.

Lemma 24 (Adapted from [3, Le. 3]). For any n-dimensional lattice L ⊆ Rm,
c ∈ Span(L) and S ∈ Rm×m invertible satisfying σm(S) ≥ ηε(L) with ε ∈ (0, 1/2), we
have Prb←↩DL,S,c [‖b− c‖ ≥ σ1(S) ·

√
n] ≤ 2−n+2.
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Lemma 25 (Adapted from [39, Le. 4.4]). For any lattice L ⊆ Rm, c ∈ Span(L)
and S ∈ Rm×m invertible satisfying σm(S) ≥ ηε(L) with ε ∈ (0, 1/2), we have ρS,c(L) ∈
(1−ε1+ε , 1) · ρS(L).

Lemma 26 (Special case of [44, Th. 3.1]). Let S1, S2 ∈ Rm×m invertible, c ∈
Rm, and Λ1, Λ2 ⊆ Rm be full-rank lattices. Assume that 1 ≥ ηε(S

−1
1 Λ1) and 1 ≥

ηε(
√

(S1S
t
1)
−1 + (S2S

t
2)
−1 · Λ2) for some ε ∈ (0, 1/2). If x2 ←↩ DΛ2,S2,0 and x1 ←↩

DΛ1,S1,c−x2, then the residual distribution of x1 is within statistical distance 8ε of

DΛ1,S,c, with S =
√
S1S

t
1 + S2S

t
2.

Lemma 27 ([2, Th. 5.1]). Let n ≥ 100, ε ∈ (0, 1/1000), σ ≥ 9
√
ln(2n(1 + 1/ε))/π

and m ≥ 30n log(σn). Let c ∈ Rm and X ←↩ Dm×n
Z,σ . Let S ∈ Rm×m with σm(S) ≥

10nσ log3/2(nmσ/ε). Then, with probability ≥ 1−2−n over the choice of X, we have Xt·
Zm = Zn and ∆(Xt ·DZm,S,c, DZn,SX,Stc) ≤ 2ε.

Lemma 28 ([3, Le. 8]). Let n ≥ 1, m ≥ 2n, and σ ≥ C ·
√
n for some absolute

constant C. Let X ←↩ Dm×n
Z,σ . Then, except with probability 2−Ω(m), we have σn(X) ≥

Ω(σ
√
m).

C Missing proofs of Section 3

Proof of Lemma 8. We apply Lemma 27 with S invertible chosen so that SX = σ2In
for some σ2 > σ1, thus obtaining an unskewed Gaussian distribution DZn,σ2 . The
scaling σ2 is chosen su�ciently large so that the assumptions of Lemmas 27 and 28
hold.

We �rst sample X from Dm×n
Z,σ1 , using Lemma 23. By Lemma 27 (that we use

with ε = 2−n), its row Z-span is Zn with probability ≥ 1− 2−n: we now assume that
we are in this situation. Then we sample r fromDZm,S , using Lemma 23 again, for some
invertible matrix S ∈ Rm×m chosen as described below. Finally, we set x = c+Xt · r.
If the assumptions of Lemma 27 are satis�ed, we know that, except with probability
≤ 2−n over X, the distribution of x is, conditioned on X, within statistical distance 2ε
of DZn,SX,c.

We build S using the singular value decomposition X = UX ·Diag((σi(X))i≤n)·VX ,
where UX ∈ Rm×n and VX ∈ Rn×n are orthogonal matrices. We de�ne S = US ·
Diag((si)i≤m) · VS as follows: we set U tS =

[
VX 0
0 Im−n

]
and V t

S = [UX |U⊥X ], where U⊥X is

an orthonormal basis for the orthogonal of UX ·Rn; we also set si = σ2/σi(X) for i ≤ n
and si = σn(S) for i > n. This leads to SX = σ2 · In, as required.

To check that the assumptions of Lemma 27 are satis�ed, note that the smallest
singular value of S is σm(S) = s1 = σ2/σ1(X). Hence the assumption σm(S) ≥
10nσ1 log

3/2(nmσ1/ε) is satis�ed if σ2 ≥ σ1(X) · 10nσ1 log3/2(nmσ1/ε). The latter
holds by the choice of σ2, using the fact that σ1(X) ≤ ‖X‖ ≤

√
m · σ1. The second

inequality holds with probability ≥ 1−n2−m+2, using the union bound and Lemma 24.
Finally, the bound on ‖r‖ follows from Lemma 24 and the facts that σ1(S) =

σ2/σn(X) and σn(X) ≥ Ω(σ1
√
m) except with probability 2−Ω(m), by Lemma 28. ut

Proof of Lemma 12. Let D0 denote the desired distribution for (A′,u′, X). We �rst
apply Theorem 3 (with the theorem parametersm,n, k, σ1(S), σm(S) having the values
m + 2n, 3n, n/(c log n), σ′ and σ, respectively) to show that D0 is within statistical
distance 2−Ω(n) of the distribution D1 on tuples (A′,u′, X) de�ned as follows: u′ ∈ Z3n

q
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is sampled uniformly, X ∈ Zk×(m+2n) has its ith row xi independently sampled from

DZm+2n,S,ci , and A′ ∈ Z(m+2n)×3n
q is sampled uniformly from the set of solutions to

xti · A′ = −u′t mod q. Indeed, the assumptions of the theorem are satis�ed by our
choice of parameters.

Next, let A′ =

(
A

B

∣∣∣∣C), where A ∈ Zm×nq , B ∈ Z2n×n
q and C ∈ Z(m+2n)×3n

q . Note

that in the distribution D1, all of A
′ is chosen uniformly from the set of solutions to

X ·A′ = U ′ mod q (where U ′ ∈ Zk×3nq consists of k copies of u′t). We now show that D1

is within statistical distance 2−Ω(n) to the distribution D2 that is de�ned as D1, except
that in D2, the submatrix A ∈ Zm×nq is chosen independently uniformly at random,
and then B,C are chosen uniformly from the set of solutions to X ·A′ = U ′ mod q. The
distribution of (C,u′, X) is the same in D1 and D2, by de�nition. The condition on
(A,B) inD1 isX1·A+X2·B = U mod q, whereX1 ∈ Zk×m andX2 ∈ Zk×2n are the left
and right submatrices of X, respectively, and U ∈ Zk×nq consists of the n left columns
of U ′. If X2 has full rank k over Zq, then for every choice of A ∈ Zm×nq , the latter

equation has the same number of solutions for B ∈ Z2n×n
q (namely q(2n−k)·n). Hence,

conditioned on X2 having rank k, the distribution of (A,B) is the same in D1 and D2.
Therefore, the statistical distance ∆(D1, D2) is 2

−Ω(n) if the probability that X2 has
rank k in D1 is 2−Ω(n). The latter holds by Lemma 4 and our choice of parameters.

Finally, let D3 denote the distribution of (A′,u′, X) in the reduction. We show
below that ∆(D2, D3) ≤ 2−Ω(n/ logn), which completes the proof.

First, we consider the distribution of X. By Corollary 10, we have that, in distri-
bution D3, the last 2n columns of X are within statistical distance ε1 = 2−Ω(n/ logn)

of Dk×n
Z,σ × DZ,σ′,δ1‖ . . . ‖DZ,σ′,δk . Since the �rst m columns of X are independently

distributed as Dk×m
Z,σ in both D2 and D3, it follows that the distribution of X in D3 is

within statistical distance ε1 = 2−Ω(n/ logn) of its distribution DZm+2n,S in D2.

Next, we consider the distribution of A′ given some �xed (u′, X). Observe that the
only di�erence between these conditional distributions in D2 and D3 is that in D3,
matrix B is de�ned as the unique solution to (1|X1)·(ut‖A)+X2·B = 0 mod q, whereas
in D2, matrix B is chosen uniformly among the solutions to (1|X1) · (ut‖A)+X2 ·B =
0 mod q, where X1, X2 are the top k rows of X1, X2, respectively. We show that these
conditional distributions are within statistical distance ε2 = 2−Ω(n), which immediately
implies that ∆(D2, D3) ≤ ε1 + ε2 = 2−Ω(n/ logn), as required.

To see this, let X ′1, X
′
2 denote the bottom 2n− k rows of X1, X2, respectively. Fix

X1, X2, X
′
2,u, A, with A such that η2−n(Λ

⊥(A)) = O(
√
n logm)·q

n
m . By Lemma 1, this

condition holds with probability 1−2−Ω(n) over the uniform choice of A. Let B∗ denote
any solution to (1|X1) · (ut‖A) +X2 ·B = 0 mod q. Let p(B∗) denote the probability
that B = B∗ in distribution D3, conditioned on X1, X2, X

′
2,u, A. We show that p(B∗)

is of the form (1+ εB∗) ·K for any such B∗, for εB∗ ≤ 2−Ω(n) and some normalization
constant K independent of B∗. From this it follows immediately that, in D3, the
conditional distribution of B is within distance 2−Ω(n) of the uniform distribution on
the set of solutions to (1|X1) · (ut‖A) + X2 · B = 0 mod q, which is the conditional
distribution of B in D2, and our claim follows immediately. The probability p(B∗) is
the probability that X ′1 ·A+X ′2 ·B = U mod q, conditioned on X1, X2, X

′
2,u, A. Let

x′1,i ∈ Zm and x′2,i ∈ Z2n denote the ith rows of X ′1 and X
′
2, respectively, for i ≤ 2n−k.

Observe that the set of solutions for x′1,i ∈ Zm to x′t1,i · A + x′t2,i · B∗ = −ut mod q

is the coset Λ⊥−u−x′2,i·B∗
(A) and, since x′1,i is independently distributed as DZm,σ for
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each i, it follows that

p(B∗) =
∏

i≤2n−k
DZm,σ(Λ

⊥
−u−x′t2,i·B∗

(A)) =
∏

i≤2n−k
ρσ,ci(Λ

⊥(A))/ρσ(Zm),

for some ci ∈ Zmq such that cti ·A = ut+x′t2,i ·B∗ mod q. By Lemma 25, using the choice

of σ ≥ η2−n(Λ⊥(A)) = O(
√
n logm) ·q

n
m , we have ρσ,ci(Λ

⊥(A)) = (1+ε′B∗) ·ρσ(Λ⊥(A))
for some ε′B∗ ≤ 2−Ω(n). It follows that p(B∗) ∼ 1 + εB∗ for some εB∗ ≤ n2−Ω(n). ut

Proof of Lemma 13. In our proof, we need to use a bound on the probability that a
collection of vectors t1, . . . , td+w uniformly and independently sampled from a linear
subspaceX of dimension d over Zq, spansX. This is given by the following proposition.

Proposition 29. Let d,w, q > 0 with q prime. Let X denote a d-dimensional Zq-
linear space. Let t1, . . . , td+w ∈ X be independently sampled from U(X). Then we have

Spani≤d+w(ti) = X, with probability ≥ 1− 2d+w/qw+1.

Proof. For i ≤ d + w, let χi denote the Bernoulli random variable that is 0 if ti ∈
Spanj<i(tj) and 1 else. Let ri denote the rank of Spanj≤i(tj). Since ri = ri−1 + χi,

we have rd+w =
∑d+w

i=1 χi. Let S denote the set of binary vectors of length d+ w and
weight < d. Then it su�ces to bound the probability that χ = (χ1, . . . , χd+w) ∈ S. To
do so, let χ′ = (χ′1, . . . , χ

′
d+w) ∈ {0, 1}d+w denote any �xed vector in S. Note that for

any i ≤ d+w, we have Pr[χi = 0|χj = χ′j for j < i] = q
∑
j<i χ

′
j/qd ≤ 1/q, since χ′ ∈ S.

It follows that Pr[χ = χ′] ≤ 1/qz, where z denotes the number of zero entries in χ′.
Since the weight of χ′ is < d, we have z > d + w − d = w, so Pr[χ = χ′] ≤ 1/qw+1.
Taking a union bound over all χ′ ∈ S, and using |S| ≤ 2d+w completes the proof. ut

We now prove the lemma. We have b = 1
qA

+ · s + e ∈ Tm+1 with e sampled

from νm+1
α and s from U(Znq ), so

b′ = T · b+ 1

q
C+ · s′ +

√
Σ · e′

=
1

q
TA+ · s+ 1

q
C+ · s′ + T · e+

√
Σ · e′

=
1

q
A′+ ·

[
s
s′

]
+ T · e+

√
Σ · e′.

Now, since s and s′ are uniform and independent, we have 1
qA
′+ · [s‖s′] is uniformly

distributed in Im(A′+). Moreover, the vector T · e is normally distributed with co-
variance matrix α2 · TT t, while

√
Σe′ is independent and normally distributed with

covariance matrix Σ = α′2Im+1+2n − α2TT t (we show below that Σ is indeed a valid
covariance matrix, i.e., is positive de�nite, so that

√
Σ exists, except with probability

2−Ω(n/ logn)). Therefore, the vector T ·e+
√
Σe′ has distribution νm+1+2n

α′ , as required.

It remains to show that Σ = α′2Im+1+2n−α2TT t is a positive de�nite matrix, with
overwhelming probability over the choice of X1 and X2. By de�nition, the singular val-
ues of Σ are of the form α′2−α2σi(T )

2, where the σi(T )'s are the singular values of T . It
therefore su�ces to show that α′2 > α2σ1(T )

2, where σ1(T ) is the largest singular value
of T . We have σ1(T ) ≤

√
m+ 1‖T‖ (by Schwarz's inequality). Each column of T has

norm ≤
√
1 + (m+ 1)‖X−12 ‖2t2, where t denotes the maximum column norm of the
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matrix (1|X1). Since the columns ofX1 are sampled fromDZ2n,σ, we have by Lemma 24

that t ≤ σ ·
√
2n, and by Corollary 10 that ‖X−12 ‖ = O(σ′n), with both bounds holding

with probability ≥ 1 − 2−Ω(n/ logn). It follows that σ1(T ) = O(mn3/2σσ′), and hence
the assumption that α′ = Ω(mn3/2σσ′α) allows us to complete the proof. ut

Proof of Lemma 14. We have b = 1
qy+e ∈ Tm+1 with e sampled from νm+1

α and y

from U(Zm+1
q ), so

b′ =
1

q
T · y +

1

q
C+ · s′ + T · e+

√
Σe′ =

1

q
[T |C+] ·

[
y
s′

]
+ T · e+

√
Σe′.

Now, since y and s′ are uniform and independent, we have that 1
q [T |C

+] · [y‖s′] is
uniform in Im([T |C+]).

By construction of T and C, we have that Im([T |C+]) is a subspace of X⊥ =(
Spani≤k(x

+
i )
⊥). We claim that in fact Im([T |C+]) = X⊥, except with probability

2−Ω(n/ logn) over the choice of the xi's and C+. Indeed, by Lemmas 12 and 4, with
probability ≥ 1−2−Ω(n/ logn), the vectors x+

1 , . . . ,x
+
k are linearly independent over Zq

and hence the subspace X⊥ has dimension m+ 1 + 2n− k. Now, the m+ 1 columns
of T are linearly independent. Hence, it su�ces to show that the 3n projections of the
columns of C+ on the orthogonal complement of Im(T ) ⊆ X⊥ span that (2n − k)-
dimensional space. As these projections are uniform, we can apply Proposition 29,
which tells us this is the case with probability ≥ 1− 23n/qn+k+1 ≥ 1− 2−Ω(n).

We have showed that 1
q [T |C

+] · [y‖s′] is within statistical distance ≤ 2−Ω(n) of
1
qU(X⊥), with probability ≥ 1 − 2−Ω(n/ logn) over the choice of X. As shown in

Lemma 13, we also have that the noise term T ·e+
√
Σe′ is within statistical distance

2−Ω(n) of the distribution νm+1+2n
α , as required. ut

Proof of Lemma 15. Consider the following sequence of games.
Let Game0 denote the original (k, S)-LWE game, in which the distinguisher B

receives an instance of the form (r,y), where r = (A,u, {xi}i≤k) with A←↩ U(Zm′×n′q ),

u ←↩ U(Zn′q ) and xi ←↩ DΛ⊥−u(A),S,0
for i ≤ k, and y ∈ Tm′+1 is a sample from either

the distribution

D0(r) =
1

q
· U
(
Im
(ut
A

))
+ νm

′+1
α

or the distribution

D1(r) =
1

q
· U
(
Spani≤k

( 1

xi

)⊥)
+ νm

′+1
α .

Let ε0(B) = ε denote the advantage of B in distinguishing between these distri-
butions in Game0. Similarly, in the following, we let εi(B) denote the corresponding
attacker advantage in Gamei.

Let Game1 denote a modi�cation of Game0 in which we change the distribution
of A by rejection sampling as follows: we sample A uniformly from Zm′×n′q , but reject

and resample A if η2−n(A) > 4qn
′/m′

√
log(2m′(1 + 2n))/π = O(

√
n). By Lemma 1,

the rejection probability is 2−Ω(n), and therefore, the distinguishing advantage ε1(B)
satis�es ε1(B) ≥ ε0(B)− 2−Ω(n).
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Let Game2 denote a modi�cation of Game1 in which we change the distribution of
the hint xi's in r from the zero-centered distribution DΛ⊥−u(A),S,0

of (k, S)-LWE to the

non-zero centered distribution DΛ⊥−u(A),S,ci
of (k, S, C)-LWE. We observe that, since

given r = (A,u, {xi}i≤k), one can e�ciently sample a vector y from either distribution
D0(r) orD1(r), the (k, S, C)-LWE problem has the public samplability property needed
to apply Lemma 6. It follows that there exists a distinguisher B′ in Game2 with run-
time T ′ = O(Poly(m′) · ε1(B)−2 ·T ) and advantage ε2(B′) ≥ Ω((ε1(B)−O(2−n))3/R),
where R = R(Φ1‖Φ2) denotes the RD between the distributions Φ1 and Φ2 of r in
Game1 and Game2, respectively. Since the xi's are independent, and conditioning on u
and A, we have, from the multiplicative property of the RD, that

R ≤ max
u∈Zn′q

∏
i≤k

R
(
DΛ⊥−u(A),S,0

‖DΛ⊥−u(A),S,ci

)
≤ max

c̄∈Rm′

∏
i≤k

R
(
DΛ⊥(A),S,c̄‖DΛ⊥(A),S,c̄+ci

)
.

The latter can be bounded from above by applying Lemma 5. The smoothing condition
of the lemma holds since σm′(S) ≥ ω(

√
n), so we have by the rejection step of the

previous game that σm′(S) ≥ η2−n(A). This leads to

R ≤
∏
i≤k

exp(2−n+3 + 2π‖ci‖2/σm′(S)2) ≤ exp(k · (2−n+3 + 2π‖C‖2/σm′(S)2)).

Finally, let Game3 denote a modi�cation of Game2, in which we undo the rejection
sampling of A introduced in Game1, sampling it uniformly instead. By the same argu-
ment as in the change from Game0 to Game1, the advantage of B′ in Game3 satis�es
ε3(B′) ≥ ε2(B′)− 2−Ω(n). Note that the instance distribution in Game3 is identical to
that of the (k, S, C)-LWE game, so B′ has advantage ε3(B′) against (k, S, C)-LWE, as
required. ut

D Missing proof of Section 5

Proof of Lemma 20. Our aim is to reduce LWE′α,m+1 to distinguishing Game1 and
Game0. Assume we have the following multiple LWE′ input (B,yi+1, . . . ,yN ) where
B ←↩ U(Zm×nq ), and yj = Bsj + ej with sj ←↩ U(Znq ) and either ej ←↩ U(Zmq ) for
all j, or ej ←↩ DZm,αq for all j. Our goal is to exploit a distinguisher between Game0
and Game1 to decide whether the ej 's are Gaussian or uniform. We simulate Game1
and Game0 as follows (depending on the nature of ei):

� Sample A ∈ Zm×nq and T ∈ Zm×m such that A is uniform conditioned on Bt ·A = 0

and T is a full-rank basis of Λ⊥(A) satisfying ‖T‖ ≤ O(
√
mn log q logm). This can

be performed in ppt using [25, Le. 4].

� De�ne H as a randomized basis of the kernel of B. It is m×(m−n) with probabil-
ity 2−Ω(n). The distribution of the pair (A,H) is within statistical distance 2−Ω(n)

of its distribution in Game0 and Game1.

� Sample u ←↩ U(Znq ) and sample the keys x1, . . . ,xi ←↩ DΛ⊥−u(A),S
by using the

trapdoor matrix T (this is why σ′ must be set su�ciently large). Compute htj =
−xtj ·H for j ≤ i.

� Using linear algebra, �nd c such that ct ·A = ut. For each j ∈ [i+ 1, N ]:
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• Compute utj = ytj · A. Since yj = B · sj + ej , we have utj = etj · A (although
we would prefer ut = etj ·A).
• Sample e′j ←↩ c − yj + DΛ⊥(A),S2,−c+yj where S2 =

√
SSt − α2q2Im (these

are diagonal matrices), using T . Since yj − ej ∈ Λ⊥(A), we can rewrite the
latter as e′j ←↩ c− ej +DΛ⊥(A),S2,−c+ej .

• Compute zj = yj + e
′
j . We now have (etj + e

′t
j ) ·A = ztj ·A = ct ·A = ut.

• Set htj = −ztj ·H. Note that htj = −(etj + e′tj ) ·H.
� Return A,u, H, (xj)j≤i and (hj)j≤N .

We observe that for each j ∈ [i+ 1, N ], we have zj = yj + e
′
j = B · sj + (ej + e

′
j). We

consider two cases.

� When ej ←↩ DZm,αq, the residual distribution of DΛ⊥(A),S2,−c+ej is within negli-
gible statistical distance to DΛ⊥(A),S,−c; this is provided by Lemma 26, whose as-
sumptions are satis�ed (thanks to the second lower bound on σ′) and to Lemma 1;
consequently, the residual distribution of ej + e′j is negligibly close to the dis-
tribution c + DΛ⊥(A),S,−c, and hence the distribution of zj is statistically close
to DΛ⊥u (A),S . Overall, the data available to the adversary follows the same distri-
butions as in Game0, up to negligible statistical distance.

� When ej ←↩ U(Zmq ), the residual distribution of zj is uniform (by adapting the
argument above). The data available follows the same distributions as in Game1,
up to negligible statistical distance.

This completes the proof of the lemma. ut


