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Abstract. WhirlBob is a new Authenticated Encryption with Associ-
ated Data (AEAD) algorithm derived from the first round CAESAR
candidate StriBob and the Whirlpool hash algorithm. The main advan-
tage of WhirlBob over StriBob is its greatly reduced implementation
footprint on resource-constrained platforms. Remarkably, the entire C
reference implementation of WhirlBob 1.0 π fits onto a single page of
the Appendix. On most low-end microcontrollers the total software foot-
print of π+BLNK = WhirlBob AEAD is less than half a kilobyte. The
greatly reduced hardware gate count is also reflected as efficient bitsliced
straight-line implementations, especially on 64-bit platforms. Bitslicing
works as an efficient countermeasure against AES-style cache timing side-
channel attacks. The new design utilizes only the LPS or ρ keying line
of Whirlpool in a flexible domain-separated Sponge mode BLNK and
adds the number of rounds in π permutation from 10 to 12 as a counter-
measure against Rebound Distinguishing attacks. As with StriBob, the
reduced-size Sponge design has a strong provable security link with the
original hash algorithm. We finally present some discussion and analysis
on differences between Whirlpool, the Russian GOST Streebog hash, and
the recently proposed draft Russian Encryption Standard Kuznyechik.

Keywords: Authenticated Encryption, Sponge designs, Whirlpool, Streebog,
GOST R 34.11-2012, StriBob, CAESAR.

1 Introduction

WhirlBob 1.0 is an Authenticated Encryption with Associated Data (AEAD)
algorithm based on the CAESAR candidate StriBob [36, 37] and NESSIE Final
Portfolio [27] hash function Whirlpool 3.0 [2]. AEAD algorithms and modes such
as GCM [28] provide both confidentiality and integrity protection in a single
pass, thus eliminating the requirement for an MAC algorithm such as HMAC
[29]. This has clear advantages for performance and implementation footprint.
Extensible-Output Functions (XOFs) such as SHA3 SHAKE [30] offer similar
features to AEADs in some Sponge modes [9].
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Fig. 1. A simplified view of a Sponge-based AEAD. First the padded Secret Key, Nonce,
and Associated Authenticated Data - all represented by du words - are “absorbed” or
mixed into the Sponge state. The π permutation is then used to also encrypt data pi
into ciphertext ci (or vice versa) and finally to “squeeze” out a Message Authentication
Code hi.

2 Motivation: Security Goals and Parameters

WhirlBob uses StriBob’s versatile BLNK Sponge AEAD mode without modifi-
cation. Outside the CAESAR context, BLNK can be also used in a wider set of
applications, even to build entire secure lightweight protocol suites [35].

A sponge mode requires only a single cryptographic component; an unkeyed
cryptographic permutation π (See Figure 1). As with other provable Sponge
modes, we assume is that π is indistinguishable from a random permutation.
This work focuses on π permutation design – for BLNK padding details and
analysis we refer to [19, 35, 37].

As it is clear that the Russian GOST hash standard Streebog [16] was closely
modeled after Whirlpool [2], the only difference between StriBob and WhirlBob
is in the particular numerical selections for the round constants Ci, the 8 - bit
S-Box S, byte permutation P , and the 8×8 MDS matrix L, which is defined over
a finite field GF(28). These components, L ◦ P ◦ S or the “LPS permutation” is
derived almost unmodified from that of Whirlpool in present work. Both StriBob
and WhirlBob have 12 rounds and the same state size.

The aim is to allow the same secure LPS implementation core (such as a
special instruction of a SoC CPU in a mobile or IoT device) to be used for
unkeyed hashing according to the Whirlpool standard. This is useful in applica-
tions such as certificate processing. The corresponding standardized, Miyagushi-
Preneel hash functions require two (or more) times as much as state and processes
data in bigger chunks. Our BLNK Sponge mode naturally also supports hashing
and MACing without encryption. The Sponge variants are slightly faster.

All of the security parameters remain unmodified. As with StriBob, we have
an b = 512 bit state, which is split to r = 256 - bit rate “block size” and c ≈ 254
- bit capacity, which is the secret state. According to Theorems such as those
given in [19, 37] this is sufficient for k = 192 - bit secret key security level when
less than 264 bits are processed under same key and nonce pair. Nonce size is
largely arbitrary, but in the standard variant we adopt n = 128 bits. See Section
4 for further security analysis.



3 WhirlBob

Despite having almost equivalent speed and size on typical 64-bit platforms, the
size and performance characteristics of StriBob and WhirlBob differ significantly
in hardware, low-end microcontrollers, and in bitslicing implementations. We
therefore suggest using WhirlBob especially in those cases.

We only give an abbreviated description of WhirlBob’s 512×512 - bit keyless
π permutation as the computation follows exactly the operation of the internal
key schedule of Whirlpool 3.0 [2]. The only modification is that the number of
rounds is increased from R = 10 to R = 12. The key schedule operation is also
effectively equivalent to the “internal block cipher” W . Eight bytes from the
S-Box are used as partial round keys Ci.

WhirlBob’s permutation π is indeed highly similar to AES. In case of StriBob,
the “Russian 512-bit block AES” permutation had to be uncovered from the
structure (See Section 4.3), but the particularities and history of Whirlpool
make it immediately obvious.

The 512-bit state is typically seen as an matrix of 8 × 8 bytes. To compute
π(x0) = x12 we iterate

xi+1 = L(P (S(x0)))⊕ Ci

where, if we use AES-style notation, S is equivalent to SubBytes, P corresponds
to ShiftColumns, L to MixRows, followed by AddRoundKey.

3.1 Lightweight Reference Implementation

The entire byte-oriented implementation of π fits onto a single page; See Ap-
pendix A. Remarkably, in addition to π, only the S-Box wbob_sbox[256] (See
Section 3.2) together with minimal BLNK logic are required for full AEAD im-
plementation. On most microcontrollers WhirlBob’s entire software footprint is
less than 500 bytes. Only slightly more is required for a shared secret handshake
protocol and two-way secure BLINKER protocol [35].

This is a significant improvement over StriBob, which typically needs almost
2kB. StriBob is also much slower and larger due to the “heavy” MDS matrix.
The reference implementation is not optimal when it comes to speed or size;
we refer to section 7.3 of [2] for a techniques that greatly reduce the number of
XORs required.

Whirlpool ISO Standard trace test vectors have been used to verify the cor-
rectness of this π implementation, up to R=10. One simply observes the keying
“line” of these traces and ignores the encryption “line”. We offer the listing of Ap-
pendix A as WhirlBob v1 π Reference implementation (Please note the system
of algorithm designations at the end of Section 5.)

3.2 S-Box Structure and Bitsliced Implementation

Whirlpool’s S-box design utilizes three 4×4 - bit “miniboxes” given in Table 1: E,
E−1, and R. Figure 2 shows how these are used to construct the 8×8 - bit S-Box.
This computation can even be performed on the fly on 4-bit microcontrollers.



x 0 1 2 3 4 5 6 7 8 9 A B C D E F
E(x) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

E−1(x) F 0 D 7 B E 5 A 9 2 C 1 3 4 8 6
R(x) 7 C B D E 4 9 F 6 3 8 A 2 5 1 0

Table 1. Three 4× 4 miniboxes that are used to build the 8× 8 S-Box in Whirlpool.
These may change in future revisions.

FPGA implementations save a significant number of LUTs by explicitly uti-
lizing the 4-bit structure rather than implementing a general 8× 8 lookup table.

The byte-oriented 8× 64 = 512 - bit state can be rapidly split into eight 64-
bit registers (the first register representing the bit 0 of each one of the 64 bytes
etc). This bitsliced mode can be maintained for the entire 12-round computation.
Bitsliced versions of the round constants are naturally used.

The parallelism evident in Figure 2 helps to speed up bitsliced implementa-
tion. We see that for 2/3 of the time, the S-Box has effectively two independent
4-bit execution paths. Interleaving these may greatly reduce wait states due to
the superscalar architecture employed by most modern CPUs. Execution time
of a bitsliced software implementation not linearly dependent on the number of
instructions.

Appendix B of current 2003 Whirlpool specification [2] gives listings with 14-
16 instructions/gates for each of the miniboxes (if ANDN instruction is allowed).
Note that we reserve the option to make revisions based on developments in gate
optimization that have occurred during the last decade.
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R

E E−1

S

Fig. 2. The 8× 8 - bit S-box is constructed from 4× 4 - bit “MiniBoxes”.



4 Security Analysis

We note that the security arguments and proofs offered for StriBob in [37] also
apply unmodified to the new proposal, as those proofs are based on an indistin-
guishably arguments of the π permutation and a simple theorem (Thm. 1, Sec.
3.3. in [37]) that loosely ties the Miyagushi-Preneel mode [26, 33] with the indis-
tinguishably of π. A random-indistinguishable π and appropriate padding rules
are sufficient to construct Sponge-based hashes [4], Tree Hashes [8], MACs [7],
Authenticated Encryption (AE) algorithms [6, 9], and pseudorandom extractors
(SHAKEs, PRFs, and PRNGs) [5, 30].

4.1 Side-Channel and Implementation Attacks

Whirlpool is better suited for bitsliced implementation due to its particular S-
Box and MDS design (as noted in Section 3.2). As an unconditional straight-line
code without data-dependent table lookups, a bitsliced implementation is an
effective countermeasure against cache timing attacks, which have been found
to be effective against cryptographic primitives with large tables such as AES
[1, 3, 32, 40].

A non-bitsliced implementation of the S-Box on Whirlpool, Streebog, or Stri-
Bob on 64-bit platforms typically requires lookup tables of up to 8× 256× 8 =
16384B. Even though this size easily fits into the Level 2 cache of any 64-bit sys-
tem, one may see that attacks are possible as L2 caches are not always shared
even between different execution cores within a single CPU unit. This is due to
the process switching operation of most 64-bit operating systems.

4.2 Historical Modifications to Whirlpool

Whirlpool has received a significant amount of analysis in the almost 15 years
since its original publication. Whirlpool was the only hash function in the final
NESSIE portfolio in addition to SHA-2 hashes [27]. Whirlpool has also been
standardized by ISO as part of ISO/IEC 10118-3:2004 [17].

Our design is based on Whirlpool 3.0. The amended MDS matrix used by
current (’03) Whirlpool is also used by WhirlBob as a countermeasure to the
structural observations given in [38].

Whirlpool was found to be vulnerable to a Rebound Distinguisher [21, 25, 22].
That 2188 attack applies to the 10-round variant; our 12-round version should
offer a comfortable security margin, especially as our security target is 2192. The
way the round constants are derived from the S-Box allows this change to be
made in a straightforward manner.

4.3 Notes on the origins of Streebog, Kuznyechik, and StriBob

The GOST R 34.11-2012 “Streebog” standard text [16] does not describe the
linear step as a 8 × 8 matrix-vector multiplication with GF(28) elements like



the StriBob spec [37], but as a 64 × 64 binary matrix multiplication. One can
see that 8 × 8 × 8 = 512 bits are required to describe the former, but 64 ×
64 = 4096 bits are required for the latter. The more effective description was
discovered by Kazymorov and Kazymorova in [20] by exhaustively testing all 30
irreducible polynomial basis, revealing an AES-like MDS structure. The origin of
the particular numerical values of that MDS matrix and round constants is still a
mystery. They do not appear to offer venues for size or performance optimization
like those in Whirlpool 3.0 and WhirlBob do.

The 8-bit S-Box used by StriBob was directly lifted from Streebog so that
hardware and software components developed for Streebog could be shared or
recycled when implementing StriBob. The same S-Box is also used by the very
recently proposed Russian Encryption Standard “Kuznyechik” [39].

Not much about the particular design criteria of the Streebog S-Box has been
published. That S-box was apparently selected at least 5 years ago as Streebog
already appeared in RusCrypto ’10 proceedings [24]. We can easily observe that
it offers reasonable resistance against basic methods of cryptanalysis. Its dif-
ferential bound [10] is P = 8

256 and best linear approximation [23] holds with
P = 28

128 . There does not seem to be any exploitable algebraic weaknesses. These
are the exactly same bounds as can be found for Whirlpool S-Box, but fall clearly
short from the bounds of the AES S-Box.

The Rijndael AES S-box is constructed of from finite field inversion x−1 op-
eration in GF(28) (inspired by the Nyberg construction [31]) and an affine bit
transform that serves as a countermeasure against, among other things, Interpo-
lation Attacks [18] on AES’ predecessor SHARK [34]. We refer to [15] for more
information about the AES design process.

The author had brief informal discussions with some members of the Streebog
and Kuznyechik design team at the CTCrypt ’14 workshop (05-06 June 2014,
Moscow RU). Their recollection was that the aim was to choose a “randomized”
S-Box that meets the basic differential, linear, and algebraic requirements. Ran-
domization was simply iterated until a “good enough” permutation was found.
This was seen as an effective countermeasure against yet-unknown attacks. At
the time of Streebog S-Box selection (before 2010’s) the emergence of allegedly
effective AES Algebraic Attacks such as [14] was a major concern for much of the
symmetric cryptographic community. Hence it was felt appropriate to avoid too
much algebraic structure in either the S-Box or MDS matrix while also ensuring
necessary resistance against known attacks such as DC and LC. Algebraic attack
attempts of this type against AES have since largely fizzled out, so we feel confi-
dent that the Whirlpool S-Box should be sufficient for our claimed security level,
especially as it offers significantly better speeds in bitsliced implementations.

One is left with the impression that Streebog is a “whitened” or randomized
copy of the original Whirlpool design. Despite its partially unknown origins and
relative shortcomings on some implementation targets, we consider StriBob to
be a more secure algorithm than WhirlBob if appropriately implemented. Indeed
some of the more successful attacks on AES and Whirlpool have been based on
their deep structural self-similarities and simplistic key schedules [11–13].



5 Conclusions

We have introduced the WhirlBob 1.0 authenticated encryption algorithm, a
variant of the StriBob first round CAESAR candidate. The new proposal loans
its key components from the Whirlpool 3.0 hash function, modifying it into
a Sponge AEAD. WhirlBob has extremely small implementation footprint on
resource-limited software and hardware platforms – typically under half a kilo-
byte. The reference implementation fits onto a single page of Appendix A.

The hardware-optimized design of Whirlpool components also gives Whirl-
Bob efficient bitsliced implementation. A bitsliced implementation is an effective
countermeasure against cache timing attacks, which have been a concern against
AES. The b = 8 × 64 - bit state size is particularly suitable for bitslicing of an
byte-oriented algorithm on 64-bit platforms.

We also discussed the design choices for the S-Box and other components used
in the Streebog hash and Kuznyechik cipher, which are standards or becoming
standards for the Russian security market. StriBob uses this S-Box as well, and
we feel that it offers better long-term security than Whirlpool, if appropriately
implemented.

However WhirlBob has superb implementation characteristics on lightweight
platforms and offers provable security assurance through its security reduction
to the well-analyzed Whirlpool hash. Furthermore, the RAM requirement of
WhirlBob AEAD is only half of that required by Whirlpool.

Note on designations. This document describes WhirlBob 1.0, which corre-
sponds to Whirlpool 3.0’s components.

Should StriBob be selected for the second round of the CAESAR competi-
tion, that version will be designated STRIBOBr2d2 (Round 2, Design 2) a.k.a.
WhirlBob 2.0 and may differ from this description. The original StriBob based
on Streebog components will be designated STRIBOBr2d1 (Round 2, Design 1.)
The current official first round algorithm designation is STRIBOBr1 [37].
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A WhirlBob 1.0 π “8-bit” Reference Implementation

This ANSI C function implements the WhirlBob 512× 512-bit π permutation.
void wbob_pi(uint8_t st[64]) // WhirlBob Pi
{

int r, i, j;
uint8_t t[64], x, *pt;

for (r = 0; r < 12; r++) { // 12 rounds
for (i = 0; i < 64; i++) {

t[(i & 7) + ((i + (i << 3)) & 070)] = // P
wbob_sbox[st[i]]; // S

}
// The round constants C comes from the S-box
pt = (uint8_t *) &wbob_sbox[8 * r];
for (i = 0; i < 8; i++)

st[i] = pt[i]; // C in first 8
for (i = 8; i < 64; i++)

st[i] = 0; // zero the rest

// Apply the circular , low weight MDS matrix
for (i = 0; i < 64; i += 8) {

pt = &st[i]; // start of row
for (j = 0; j < 8; j++) {

x = t[i + j]; // Circular MDS
pt[j & 7] ^= x; // 01
pt[(j + 1) & 7] ^= x; // 01
pt[(j + 3) & 7] ^= x; // 01
pt[(j + 5) & 7] ^= x;
pt[(j + 7) & 7] ^= x;
// x <- 02
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 6) & 7] ^= x; // 02
// x <- 04
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 2) & 7] ^= x; // 04
pt[(j + 5) & 7] ^= x; // 01 + 04 = 05
// x <- 08
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 4) & 7] ^= x; // 08
pt[(j + 7) & 7] ^= x; // 01 + 08 = 09

}
}

}
}


